
HAL Id: hal-03270335
https://hal.science/hal-03270335v1

Submitted on 24 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiler and optimization level recognition using graph
neural networks

Sébastien Bardin, Tristan Benoit, Jean-Yves Marion

To cite this version:
Sébastien Bardin, Tristan Benoit, Jean-Yves Marion. Compiler and optimization level recognition
using graph neural networks. MLPA 2020 - Machine Learning for Program Analysis, Jan 2021,
Yokohama / Virtual, Japan. �hal-03270335�

https://hal.science/hal-03270335v1
https://hal.archives-ouvertes.fr

Compiler and optimization level recognition using graph neural networks

Sébastien Bardin1 , Tristan Benoit2 and Jean-Yves Marion2

1CEA, LIST, Paris-Saclay, France,
2Université de Lorraine, CNRS, LORIA Nancy, France

sebastien.bardin@cea.fr, {tristan.benoit,jean-yves.marion}@loria.fr

Abstract
We consider the problem of recovering the compil-
ing chain used to generate a given bare binary code.
We present a first attempt to devise a Graph Neural
Network framework to solve this problem, in or-
der to take into account the shallow semantics pro-
vided by the binary code’s structured control flow
graph (CFG). We introduce a Graph Neural Net-
work, called Site Neural Network (SNN), dedicated
to this problem. Feature extraction is simplified by
forgetting almost everything in a CFG except trans-
fer control instructions. While at an early stage, our
experiments show that our method already recov-
ers the compiler and the optimization level prove-
nance with very high accuracy. We believe these
are promising results that may offer new, more ro-
bust leads for compiling tool chain identification.

1 Introduction

The problem. Identifying the compiling chain, i.e. both
the compiler (e.g. Visual Studio) and its optimization options
(e.g. −O1,−O2), that have been used to produce a given bare
binary code is an important problem in at least two scenarios:
to determine security flaws inside binary codes and to identify
known functions.

• Applications are built by linking together libraries that
are quite often commercial off-the-shelf (COTS)1. As
a result, applications are developed more easily and
quickly, and are usually more robust since COTS are
normally already well-tested components. On the other
hand, developers do not have the source code of COTS
and in fact they do not even know the compiling chain
used to generate these COTS. This is an important issue
in software maintenance and long-term support. Indeed,
compilers may inject vulnerabilities that are discovered
after the COTS released and after the deployment of the
applications that used them. For example, CVE-2018-
12886 describes a vulnerability allowing an attacker to
bypass stack protection and [Hohnka et al., 2019] is a

1More than 70% of commercial applications used COTS accord-
ing to a Gartner study.

recent comprehensive study on vulnerabilities produced
by compilers. Hence, there is a need to be able to re-
trieve the compiling chain in order to assess whether an
application may present a certain vulnerability.

• The library function identification in a binary code is an-
other primary issue for software maintenance and secu-
rity, such as cloning detection (see for example [White
et al., 2016] using Deep Learning) or malware reverse
engineering (see for example [Calvet et al., 2012] us-
ing I/O relationship). The function name identification
problem is readily solved when the binary code ana-
lyzed is a well-behaved binary code, that is when it
contains enough information to disassemble it. For ex-
ample, IDA disassembler proposes the F.L.I.R.T algo-
rithm [Guilfanov, 2012] based on signature-patterns that
recognizes functions and assigns a name to them, while
ByteWeight [Bao et al., 2014] constructs a weight pre-
fix tree of the function prologue by machine learning to
identify functions. These methods works well for reg-
ular binary codes, yet identification fails in many sit-
uations: when the library is unknown, when the code
is slightly modified in such a way that its pattern does
not match anymore, or when it is stripped or obfuscated.
And in this context, the identification of the compiler
together with the compiling options used to generate a
binary code may help [Shirani et al., 2017].

Actually, we tested IDA Freeware edition to determine the
compiler used to generate a binary code. For this, we per-
formed the test manually on 15 unstripped and stripped binary
codes. On unstripped binary codes, IDA correctly distinguish
MinGW binary codes from Visual Studio ones. In the case
of stripped binary codes, IDA is not able to find the correct
compiler and assigns each binary code to Visual Studio, prob-
ably as a default setting. Moreover and in all cases, IDA was
unable to retrieve the compiling options.

Goal and approach. The goal of the paper is to devise a
machine learning based solution to the compiling chain iden-
tification problem.

Rosenblum et al.’s pioneering work [Rosenblum et al.,
2011] introduced the problem and a first solution based on
Support Vector Machine (SVM). Most of the recent works
on this topic [Yang et al., 2019; Rahimian et al., 2015;
Chen et al., 2019; Massarelli et al., 2019] rely on machine-

learning based approaches, taking their roots in Convolu-
tional Neural Networks (CNN). Hence, the extracted features
of a binary code are embedded as a text or as an image in or-
der to be fed to a CNN. But a program is not like a text or an
image that can be projected into a regular Euclidean space.

Claim. We claim that binary code semantics should be taken
into account and the first model is given by its Control Flow
Graph (CFG). That is why we suggest to use Graph Neural
Networks (GNN) [Zhou et al., 2018]. As a result, relation-
ships between basic blocks (nodes of CFG) are taken into ac-
count in the graph embedding, and the weight of a CFG node
depends transitively on its neighbors.

Contribution. Our paper makes the following contributions:

1. We develop a Graph Neural Network based framework
that we call Site Neural Network (SNN) to determine
the compiler family and the optimization level that gen-
erate a given binary code. The overall architecture is
displayed in Figure 1 and Figure 2. The preprocessing
is made as follows : a CFG is extracted from a binary
code and then abstracted by just preserving the skeletal
control flow. Then, the abstracted flow graph is chopped
into fixed size that we call sites. This preprocessing step
is fully automatic and unsupervised. Next, the Site Neu-
ral network takes the graph of all sites as input in order
to classify the binary code. The overall architecture of
our framework follows the approach of adapting Resid-
ual Neural Network (ResNet) to sites [Zhao et al., 2018]
and by refining the model with adaptive max pooling
layers [Shervashidze et al., 2011] to graphs.
Our approach has at least two advantages.

(a) Compared to prior works [Rosenblum et al., 2011;
Yang et al., 2019; Rahimian et al., 2015; Chen et
al., 2019; Massarelli et al., 2019], the model is
quite simple because it is reduced to sites. There
are no instruction specific features and no focus on
prologue/epilogue of binary functions. And so, we
do expect that Site Neural Networks are more ro-
bust and generic.

(b) From a methodological point of view, Site Neu-
ral Networks provides end-to-end graph based clas-
sifiers. As a result, decisions and classifications
should be more easily based on the binary code se-
mantics.

2. Most of the works in compiler provenance based on Ma-
chine Learning use datasets comprised of a set of binary
functions generated by different compilers and optimiza-
tion levels. From our point of view, this approach creates
a bias as identifying function boundaries can be diffi-
cult (stripped binary code, obfuscated COTS) – this bias
might be acceptable depending on the context.
Thus, in our dataset we use full binary codes without any
knowledge about functions and their localization. Our
dataset consists of about 30,000 binary codes compiled
from 30,000 different source codes with two compilers
and three optimization levels. Thus, we can train and test
our approach with six distinct and well-balanced sets of

binary codes and all having a different code sources. It
is for this reason that in the remainder of the paper, we
will use the macro-average measures. The fact that our
datasets are well-balanced is evidenced by a respective
macro-average F1-Score of 0.973 and 0.996.

3. The identification covers two compilers, Visual Studio
and MinGW, and three types of optimization O0, O1,
and O2. We evaluated our system in terms of detec-
tion accuracy on a broad dataset composed of about
30000 binary codes. It makes accurate predictions with
an overall F1-score of 0.978 with an estimated standard
deviation of 0.0049. Also, we demonstrate the ability
of our SNN-based approach to successfully recover the
compiling chain on both un-stripped and stripped binary
codes from our datasets.

Overall, we believe these are promising results that may
offer new, more robust leads for compiling tool chain identi-
fication.

2 Related works
As we previously said, Rosenblum et al. in a series of two
seminal papers [Rosenblum et al., 2010; Rosenblum et al.,
2011] were the first to attempt to recover the compiler and
compiler options using SVM – where features are composed
of regular expressions (idioms) on the assembly program to-
gether with 3-vertex graphlets. Rahimian et al. [Rahimian
et al., 2015] developed BinComp that uses a complex model
based on three layers and where the last one is an Annotated
Control Flow Graphs. All these features are embedded into a
vector by applying a neighbor hash graph kernel.

More recently, three papers were published on compiler
provenance. Yang et al. [Yang et al., 2019] extracts 1024 bits
from the object file and process them with a one-dimensional
CNN. Chen et al. [Chen et al., 2019] describes the Himalia
approach based on a two-tier classifier. Features are extracted
from binary functions and consist of a sequence of instruc-
tion types of fixed size, which are eventually completed by
padding. Thus, Himalia focuses on prologue and epilogue of
functions and as a result is able to explain its classification.
That said, the authors made the strong hypothesis to be able
to determine the function prologue and epilogue.

Lastly, the closest related work is by Massarelli et al. [Mas-
sarelli et al., 2019]. They propose a graph embedding neural
network based on methods developed in the field of natural
language processing (NLP). The preprocessing is composed
of two stages. The first stage transforms a sequence of in-
struction in a vector by measuring different instruction pa-
rameters. Then, the overall CFG is embedded into a graph,
which is aggregated by a 2-round processes using a Recur-
rent Neural Network.

3 Background
Recent work used convolutional neural networks to predict
the compiler toolchain. Two difficulties here are that (i) bi-
nary code semantics, denoted by a control flow graph, has
to be taken into account and (ii) the input to the classifier,
a binary code or CFG, can be of arbitrary size. The second

Figure 1: Overall architecture of the preprocessing phase

Figure 2: Overall architecture of Site Neural Networks

difficulty is yet inherent to most machine learning pipelines
that can only handle inputs of a fixed size. In this paper, we
replace convolutional neural networks (CNN) by graph neu-
ral networks (GNN) [Micheli, 2009; Zhou et al., 2018]. The
architecture of GNN is mostly based on a transformation of
classical CNN architecture and for example the paper [Zhao
et al., 2018] generalizes ResNet [He et al., 2015] to graphs.
Inputs of a graph neural network is the representation of a
graph and the survey [Hamilton et al., 2017] discusses the dif-
ferent graph representation. Compared to unstructured data
like texts (one-dimensional data) or images (two-dimensional
data), the graph encoding must preserve certain properties
like the shape or the connectivity.

A key feature is the pooling method. A pooling layer of
GNN does not depend on the input size. For this, the pool-
ing can just take the sum of node values. There are other
methods such as sort pooling selecting a fixed sized set of
maximum node values [Zhang et al., 2018] or such as adap-
tive max pooling by dividing the matrix at each convolution
in a fixed number of parts [Yan et al., 2019], as illustrated in
Figure 4.

Note that there is still a fundamental limitation in the GNN
approaches. Indeed, subgraph isomorphism is an important
problem in graph classification. In [Xu et al., 2018], it is
demonstrated that GNN cannot do better than WL-test of iso-
morphism [Weisfeiler and Leman, 1968], even if naming each
node with an identifier increases the predictive capacity of the
model as shown in [Seidel et al., 2015].

4 Our method for compiler identification
4.1 Binary code preprocessing
The architecture of the preprocessing is shown in Figure 1.
Inputs are binary codes. Each binary code is disassembled
and the Control Flow Graph is built. Then, there are two
more steps that we call the forgetful phase and the chopping
phase that are explained below:

Symbol Signification

RET return
CALL function call
JMP unconditional jump
HLT interruption
INVALID failure when disassembling
UNDEF unknown address
JCC conditional jump
SWITCH jump to multiples destinations

Table 1: Automatic labelling

Figure 3: The forgetful phase

4.2 The forgetful phase
The forgetful phase consists in simplifying a CFG by remov-
ing sequential instructions and by just keeping control flow
instruction types. Figure 3 illustrates this reduction. For this,
the phase runs in two stages :

1. All consecutive nodes labeled by a sequential instruction
(like mov or add) are pruned in one single node that is
removed.

2. All remaining nodes are relabeled based on the instruc-
tion type following Table 1.

The forgetful phase respects the underlying structure of the
input CFG and maps it to a reduced graph that we call the
forgetting CFG for convenient notation in the remainder.

4.3 The chopping phase
The chopping phase cuts a forgetting graph into a set of small
disconnected subgraphs. These subgraphs are called sites and
their size is at most of 24 nodes. Sites are obtained using
a breadth first search algorithm from the forgetting graph –
the algorithm is presented in Appendix (Algorithm 1). We
associate to each node of a site two features composed of the
instruction type (see Table 1) and a unique identifier in order
to solve the problem of anonymity.

Clearly, the forgetful and chopping phases reduce drasti-
cally the input dimension. Moreover, since each site has a
small diameter at most 24), a small number of convolutions
allows information to pass through all nodes. Notice that

sites are directed graphs, but they are processed as undirected
graphs during convolution computations.

4.4 Site Neural Networks
The input are graphs that are built by the two previous phases
from a binary code. Take a graph composed of a set of nodes
V and represented by the adjacency matrix A. We define X0

as the matrix containing the nodes attributes, thus it has a
dimension of n× 2.

Mini-batches. A single input is a set of sites which are col-
lectively regrouped in a graph. In the training phase, the in-
put graphs are partitioned into mini-batches. This gives us
the opportunity to normalize the data [Ioffe and Szegedy,
2015]. Each mini batch B is normalized by calculating
batchNormB(x) = x−µB

σB
, where µB is the observed mean

and σB is the observed variance. Notice that, the observed
means and variances are memorized, because they are reused
in test time. This process has been shown to be successful,
but is not yet understood in theory. The activation function is
the rectified linear unit relu(x) = max(0, x).

Deep Convolution. Now, the vector sequence of node val-
ues (Yk+1)k≥0 obtained after k + 1 convolution(s) is defined
as follows:

Y1 = relu(batchNormB((A+ I)X0W0 + b0))

Yk+1 = (relu(batchNormB((A+ I)YkWk + bk))|Yk)

The notation | is the matrix augmentation. As usual with deep
convolutions, the output of one step is fed into every future
step.

Dimensions. Let dt be the hyper parameter corresponding
to the second dimension of the matrix Wt at convolution t.
The first dimension of the matrix Wk, for k > 0, is

∑k−1
t=0 dt.

Output. The dimension of the matrix Yk, for k > 0, is n×∑k
t=0 dt where n is the number of nodes. We now perform a

pooling, which reduces the matrix of the last convolution to
some smaller fixed size matrix.

Adaptive Max Pooling Layer(s). Following [Shervashidze
et al., 2011], a crucial point in our approach is the extrac-
tion of features based on the Weisfeiler-Lehman test of graph
isomorphism. For this, we apply on the result of the convo-
lutional layers an Adaptive Max Pooling (AMP) step. This
pooling operation is defined by an operator ampn,m that re-
duces a matrix to a matrix of smaller dimension n × m as
follows: Take a matrix M of dimension u× v. M is cut into
n×m matrices of kernel size

⌈
u
x

⌉
×
⌈
v
y

⌉
. We take the maxi-

mum in each block. The figure 4 illustrates the adaptive max
pooling computation. We iterate four times the adaptive max
pooling operation to extract a fixed size representation of X .

Readout layer. At this point we have obtained from the
adaptive max pooling layers a fixed size representation of our
graph. The output of the adaptive max pooling layers is fed
into a multilayer perceptron to predict the probability distri-
bution of the class that the input graph should belong to.

Figure 4: An example of two adaptive max pooling on a matrix of
dimension 8 × 22. The first adaptive max pooling is of dimension
2× 2, it has a kernel size of dimension 4× 11. The second adaptive
max pooling is of dimension 4× 4, it has a kernel size of dimension
4× 6.

5 Evaluation
5.1 Implementation details
We perform four convolutions with a dimension of 8 at each
step. The hyper-parameter dt of the matrix Wt is 8 for
each convolution t. We use four pooling layers with amp2,2,
amp4,4, amp8,8 and amp16,16 operators. The multilayer per-
ceptron has four layers of respective numbers of weights of
384, 256, 128 and 2. We implemented our framework using
the language python along with the machine learning library
PyTorch. Prepossessing is performed using C++.

5.2 Datasets
We evaluated the performance of our framework against two
datasets coming from two separate domains :

The Codeforces Dataset. This dataset is made from 19,986
source codes, that solve 91 problems from Codeforces
2. We compiled them using Visual Studio 2019 and
MinGW on Windows 10 with optimization options O0,
O1, O2 and O3. As a result, we get 7 distinct classes of
approximately 3,000 binary codes;

The CSmith Dataset This dataset is produced using CSmith
[Yang et al., 2011], a random program generator created
to find bugs in compilers. We compiled 10,562 binaries,
half of them with Visual Studio 2019 and the other half
with MinGW using an optimization level among O0, O1,
O2 and O3. The average size of each binary code is ap-
proximately 30Kb and there is at most 10 nested loops;

Similarities. In Codeforces Dataset, there are huge simi-
larities between programs compiled with MinGW O2 and
MinGW O3. Over a random sample of 2920 binary codes,
561 binary codes compiled with O2 are identical when com-
piled with O3. This has already been reported in [Egele et al.,
2014] and has been an issue to Chen et al. [Chen et al., 2019]
in their compiler optimization detection framework. Straight-
forwardly, this is not the case however in the Visual Studio
Compiler which has only one advanced optimization level.

5.3 Research questions
We investigate the following research questions in order to
validate our framework and to see its current limits:

2https://codeforces.com/

RQ1 Does our framework have the capacity to predict the
compiler and optimization level of binary codes coming
from our datasets?

RQ2 Using our framework, can a model learned from a spe-
cific dataset be applied on another dataset? The question
is to know whether or not what has been learned with
one dataset by our framework can be exploited on an-
other distinct dataset.

RQ3 Are the performances decreasing when binary codes are
stripped ? That is, take a SNN trained with an un-
stripped dataset: are we still able to detect the compiler
and the compiling options from a stripped binary code?

5.4 RQ1: Compiler and optimization option
identification

Methodology. To answer the first question, we consider
both datasets separately. Due to the similarity between pro-
grams produced by MinGW -O2 and by MinGW -O3, we
will consider MinGW -O2/O3 as a proper sub class. Figure
5 presents our hierarchical classifier. A site neural network is
specialized to make the separation between two choices (e.g.
between MinGW -O0/O1 and MinGW -O2/O3).

To run this experiment, each dataset is split in a train set, a
validation set and a test set with resp. 80%, 10%, and 10% of
the starting datasets. Next, for both datasets, each specialized
site neural network is trained using 0.0005 as the learning rate
during 30 epochs. The loss function is . And, we select the
model for each specialized site neural network with the best
accuracy on the validation split on some epoch.

After training, each site neural network is evaluated thanks
to the validation set of the corresponding dataset. We per-
formed this operation twice to mitigate randomness. Consid-
ering any class as important as any other, we choose to report
the macro average of the precision, recall and F1-Score using
three significant digits.

Figure 5: The first hierarchical classifier using five different site neu-
ral network specialist.

Results. Table 2 reports the performance of a classifier
trained on Codeforces Dataset. It achieves an overall F1-
score of 0.973 with an estimated standard deviation of
0.0017.

In table 3, we just report, due to the lack of space, the
performance of a classifier trained on CSmith Dataset. It
achieves a slightly better overall F1-score of 0.996 with an
estimated standard deviation of 0.0023.

Class Precision Recall F1-Score Support

MinGW O0 0.960 0.961 0.961 285
MinGW O1 0.954 0.947 0.951 285
MinGW O2/3 0.994 0.997 0.996 570
VS O0 0.981 0.974 0.977 285
VS O1 0.975 0.975 0.975 285
VS O2 0.974 0.979 0.976 285

Macro Avg 0.973 0.972 0.973 1995

Table 2: Prediction on Codeforces Dataset.

Precision Recall F1-Score Support

Macro Avg 0.996 0.996 0.996 1050

Table 3: Prediction on CSmith Dataset

Precision Recall F1-Score Support

Macro Avg 0.979 0.978 0.978 3052

Table 4: Prediction on the full Dataset

In table 4, we report the performance of a classifier trained
with the full Dataset. The full dataset is composed of the
union of both datasets. It achieves an overall F1-Score of
0.978 with a standard deviation of 0.0049. Taking into ac-
count that the full Dataset contains one third instances from
the CSmith Dataset and two third from Codeforces Dataset,
we could have expected an overall F1-Score of 0.996 ×
10562
30548 +0.973× 19986

30548 ≈ 0.981. Thus, there is a small loss of
0.003.

Conclusion. We conclude that our framework has an el-
evated capacity to predict a compiler and the optimization
level of a binary from our datasets. Our framework exhibits
a potential loss when the diversity of the input data increases.
Further analysis is needed to tackle a more robust statistical
analysis.

5.5 RQ2: Applying a model learned on a dataset to
a new dataset

We used our previous models on the datasets we had not
learned.

Methodology. We conduct two symmetric experiments.
First, we trained specialized site neural networks as explained
previously following the decision tree in 5 with Codeforces
dataset. Then, we evaluate trained specialized site neural net-
works with Codeforces dataset on CSmith dataset in order to
see if the starting dataset is sufficient.

Second, we inverse the role of Codeforces dataset and of
CSmith dataset. That is, we evaluate trained specialized site
neural networks with CSmithdataset on Codeforces dataset.

Precision Recall F1-Score Support

Macro Avg 0.531 0.505 0.477 1050

Table 5: Prediction on CSMith using Codeforces models

Precision Recall F1-Score Support

Macro Avg 0.225 0.254 0.201 1995

Table 6: Prediction on Codeforces using CSmith models

Precision Recall F1-Score Support

Macro Avg 0.993 0.993 0.993 1995

Table 7: Prediction on Codeforces stripped binary codes

Precision Recall F1-Score Support

Macro Avg 0.999 0.999 0.999 1050

Table 8: Prediction on CSmith stripped binary codes

Results. In table 5, we report the performance of a classi-
fier trained with Codeforces dataset on the CSmith Dataset.
It achieves an overall F1-Score of 0.477 with an estimated
standard deviation of 0.0191. In table 6, we report the per-
formance of a classifier trained with the CSmith dataset on
Codeforces Dataset which achieves an overall F1-Score of
0.201 with a standard deviation of 0.0537. We are intrigued
by the fact that no instance was classified as a MinGW -OO
compiler.

Conclusion. We speculate that due to the purpose of the
CSmith generated programs, the CSmith Dataset is more spe-
cific than the Codeforces Dataset. While the result of predict-
ing the CSmith dataset shows a clear loss of 0.519, we still
achieve a moderate F1-score. We conclude that what have
been learned with one dataset by our framework may partly
be exploited on a distinct dataset.

5.6 RQ3 : Are the performances decreasing when
binary codes are stripped ?

Methodology. We used both previous models that are
trained on un-stripped binary codes. And we challenge them
with stripped binary code of the same dataset. We selected
10% of binary codes to make both experiments.
Results. Results are given in Tables 7 and 8 respectively. In
both cases, the F1-Score obtained in stripped binary is very
similar to the one on un-stripped binary codes, that was pre-
sented in section 5.4, see Table 2 and Table 3.

Conclusion. When binary codes are stripped and unlike
IDA, there is no noticeable difference in the accuracy of the
recognition of the compilers and of the compiling option.
This result confirms the fact that this approach can be used
to detect the COTS compilation chain as part of software

maintenance. This result confirms the fact that this approach
may be used in detecting COTS compiling chain for software
maintenance.

6 Limitations
• Our dataset is composed for one part of small programs

(most file sizes are around 30kb) coming from Code-
forces dataset and for the other part, synthetic programs
generated by CSmith. It would be interesting to use a
more diverse dataset. Nevertheless, our evaluation on
both datasets at least demonstrates the accuracy of SNN.
• The experiments should be pursued to incorporate other

compilers with more optimizations. We leave this for
future work.
• Our approach was tested and validated on un-stripped

and stripped binary codes. In adversarial contexts where
binary are obfuscated or when we are dealing with mal-
ware, the situation is quite different. We believe this is a
challenge worth working on.

7 Conclusion
Our starting hypothesis is that binary code is not unstructured
data and that semantics is important. In this ongoing work,
we begin to explore the possibility of (i) extracting semantic
features in the form of graphs and (ii) processing the neural
networks of the graphs in order to propagate the information
according to the topology of the graph. The outcome is to
improve binary code analysis in particular in the context of
obfuscated codes and malware.

This work opens several immediate questions. The combi-
nation of the forgetful phase followed by the chopped phase
provides a simple and realistic feature graph model. That
said, one could think of a first phase that would leave out
less information and various ways of cutting out a graph by
having, for example, sites of different sizes. Also, the pool-
ing layers play an important role. It should be worth looking
at which features are useful and how they are intertwined in
order to improve pooling. This question bounces off the ques-
tion of semantics. Finally, CFG provides only a very shallow
semantics view of a given program. An interesting question
would be to automatically extract and take advantage of some
sort of richer semantic features.

As a conclusion, we believe our preliminary results are
promising and may offer new, more robust leads for compil-
ing tool chain identification.

Acknowledgments
This work is supported by a public grant overseen by the
French National Research Agency (ANR) as part of the ”In-
vestissements d’Avenir” French PIA project ”Lorraine Uni-
versité d’Excellence”, reference ANR-15-IDEX-04-LUE.

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).

References
[Bao et al., 2014] Tiffany Bao, Jonathan Burket, Maverick

Woo, Rafael Turner, and David Brumley. BYTEWEIGHT:
Learning to recognize functions in binary code. In 23rd
USENIX Security Symposium, p. 845–860, 2014.

[Calvet et al., 2012] Joan Calvet, José M. Fernandez, and
Jean-Yves Marion. Aligot: Cryptographic function identi-
fication in obfuscated binary programs. In Proceedings of
the 2012 ACM CCS, p. 169–182, 2012.

[Chen et al., 2019] Yu Chen, Zhiqiang Shi, Hong Li, Weiwei
Zhao, Yiliang Liu, and Yuansong Qiao. Himalia: Recov-
ering compiler optimization levels from binaries by deep
learning. In Intelligent Systems and Applications, p. 35–
47. Springer Publishing, 2019.

[Egele et al., 2014] Manuel Egele, Maverick Woo, Peter
Chapman, and David Brumley. Blanket execution: Dy-
namic similarity testing for program binaries and compo-
nents. In 23rd USENIX Security Symposium, p. 303–317,
2014.

[Guilfanov, 2012] Ilfak Guilfanov. Ida fast library identifi-
cation and recognition technology (flirt technology): In-
depth, 2012.

[Hamilton et al., 2017] William L. Hamilton, Rex Ying, and
Jure Leskovec. Representation learning on graphs: Meth-
ods and applications. 2017. arxiv:1709.05584.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

[Hohnka et al., 2019] Michael J. Hohnka, Jodi A. Miller,
Kenrick M. Dacumos, Timothy J. Fritton, Julia D. Erdley,
and Lyle N. Long. Evaluation of compiler-induced vul-
nerabilities. Journal of Aerospace Information Systems,
16(10):409–426, 2019.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift,
2015.

[Massarelli et al., 2019] Luca Massarelli, Giuseppe Luna,
Fabio Petroni, and Leonardo Querzoni. Investigating
graph embedding neural networks with unsupervised fea-
tures extraction for binary analysis. 2019.

[Micheli, 2009] Alessio Micheli. Neural network for graphs:
A contextual constructive approach. Neural Networks,
IEEE Transactions on, 20:498 – 511, 2009.

[Rahimian et al., 2015] Ashkan Rahimian, Paria Shirani,
Saed Alrbaee, Lingyu Wang, and Mourad Debbabi. Bin-
comp: A stratified approach to compiler provenance attri-
bution. Digital Investigation, 14:S146 – S155, 2015.

[Rosenblum et al., 2010] Nathan Rosenblum, Barton Miller,
and Xiaojin Zhu. Extracting compiler provenance from
program binaries. p. 21–28, 2010.

[Rosenblum et al., 2011] Nathan Rosenblum, Barton P.
Miller, and Xiaojin Zhu. Recovering the toolchain prove-
nance of binary code. In Proceedings of the 2011 Inter-

national Symposium on Software Testing and Analysis, p.
100–110, 2011.

[Seidel et al., 2015] J. Seidel, R. Wattenhofer, and Y. Emek.
Anonymous Distributed Computing: Computability, Ran-
domization, and Checkability. ETH-Zürich, 2015.

[Shervashidze et al., 2011] Nino Shervashidze, Pascal
Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12(77):2539–
2561, 2011.

[Shirani et al., 2017] Paria Shirani, Lingyu Wang, and
Mourad Debbabi. Binshape: Scalable and robust binary
library function identification using function shape. In
DIMVA, p. 301–324. Springer Publishing, 2017.

[Weisfeiler and Leman, 1968] B. Yu. Weisfeiler and A. A.
Leman. Reduction of a graph to a canonical form and an
algebra arising during this reduction. 1968.

[White et al., 2016] M. White, M. Tufano, C. Vendome, and
D. Poshyvanyk. Deep learning code fragments for code
clone detection. In 2016 31st IEEE/ACM ASE, p. 87–98,
2016.

[Xu et al., 2018] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural net-
works?, 2018.

[Yan et al., 2019] Jiaqi Yan, Guanhua Yan, and Dong Jin.
Classifying malware represented as control flow graphs
using deep graph convolutional neural network. In 49th
Annual IEEE/IFIP DSN, p. 52–63, 2019.

[Yang et al., 2011] Xuejun Yang, Yang Chen, Eric Eide, and
John Regehr. Finding and understanding bugs in c compil-
ers. In Proceedings of the 32nd ACM SIGPLAN PLDI, p.
283–294, 2011.

[Yang et al., 2019] S. Yang, Z. Shi, G. Zhang, M. Li, Y. Ma,
and L. Sun. Understand code style: Efficient cnn-based
compiler optimization recognition system. In ICC 2019 -
IEEE, p. 1–6, 2019.

[Zhang et al., 2018] Muhan Zhang, Zhicheng Cui, Marion
Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In 32th AAAI Confer-
ence on Artificial Intelligence, 2018.

[Zhao et al., 2018] Wenting Zhao, Chunyan Xu, Zhen Cui,
Tong Zhang, Jiatao Jiang, Zhenyu Zhang, and Jian Yang.
When work matters: Transforming classical network
structures to graph cnn. arXiv:1807.02653, 2018.

[Zhou et al., 2018] Jie Zhou, Ganqu Cui, Zhengyan Zhang,
Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of
methods and applications, 2018.

A Additional material
The breadth first search algorithm of the chopping phase per-
forms a limited exploration of the graph. During that explo-
ration, it disconnects from the graph multiple small subgraphs
.

Algorithm 1 Graph chopping algorihtm
Input: A forgetting graph G = (V,E), a root vertex r in V
Parameters: n the number of sites to extract, s max node in
a site
Output: A graph containing a maximum of n sites

Let Gr = (Vr, Er) be a a graph.
while |V | > 0 and n > 0 do

Let q1 be a queue.
Let q2 be a queue.
Let g = (N,A) be a graph.
push q1, r
while |N | < s and |q1| > 0 do

empty q2
for all x ∈ q1 do

if |N | > s then
break

end if
for all y such that (x, y) ∈ E do

if |N | > s then
break

end if
if y ∈ N then
A← A ∪ {(x, y)}
break

end if
N ← N ∪ {y}
A← A ∪ {(x, y)}
push y in q2

end for
end for
q1← q2

end while
V ← V \ {N}
E ← E \ {(u, v)|u, v ∈ N}
r ← first vertex left in V
Vr ← Vr ∪N
Er ← Er ∪A
n← n− 1

end while
return Gr

	Introduction
	Related works
	Background
	Our method for compiler identification
	Binary code preprocessing
	The forgetful phase
	The chopping phase
	Site Neural Networks

	Evaluation
	Implementation details
	Datasets
	Research questions
	RQ1: Compiler and optimization option identification
	RQ2: Applying a model learned on a dataset to a new dataset
	RQ3 : Are the performances decreasing when binary codes are stripped ?

	Limitations
	Conclusion
	Additional material

