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We study the stabilization problem of a linear time-invariant system with an unknown stochastic input delay. We propose to robustly compensate for the stochastic delay with a constant time horizon prediction-based controller. We prove the mean-square exponential stabilization of the closed-loop system under a sufficient condition, which requires the range of the delay values to be sufficiently narrow and the constant delay used in the prediction-based controller to be chosen in this range. Numerical simulations illustrate the relevance of this condition and the merits of our control design.

Introduction

Time delays are ubiquitous in engineering systems. Especially, the development of communication technology led to the large spread of sophisticated network control systems [START_REF] Selivanov | Predictor-based networked control under uncertain transmission delays[END_REF][START_REF] Witrant | Stabilisation des systèmes commandés par réseaux[END_REF]. Yet, information transmitted through these networks often suffers from lag [START_REF] Simon | Real-time control systems: feedback, scheduling and robustness[END_REF], data reordering, packets dropouts [START_REF] Fagnani | Average consensus with packet drop communication[END_REF], data corruption or quantization [START_REF] Carli | Quantized coordination algorithms for rendezvous and deployment[END_REF]. Such phenomena play a crucial role in the dynamic of vehicular traffic [START_REF] Hafner | Cooperative collision avoidance at intersections: Algorithms and experiments[END_REF]. Indeed, in addition to the driver reaction time, wireless vehicle-to-vehicle communication [START_REF] Zhang | Beyond-line-of-sight identification by using vehicle-to-vehicle communication[END_REF] used to monitor vehicles ahead when beyond the line of sight often introduces substantial communication delays and packet losses [START_REF] Bresch-Pietri | Estimation for decentralized safety control under communication delay and measurement uncertainty[END_REF][START_REF] Molnár | Application of predictor feedback to compensate time delays in connected cruise control[END_REF] while transmitting the remote vehicles information. These phenomena can be accounted for by a stochastic delay model (see [START_REF] Gupta | On the effect of stochastic delay on estimation[END_REF][START_REF] Gupta | Data transmission over networks for estimation and control[END_REF]).

When a delay affects the input of a dynamical system, prediction-based laws [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF][START_REF] Smith | A controller to overcome dead time[END_REF] are the state-of-the-art control strategy [START_REF] Palmor | Time-delay compensation-Smith predictor and its modifications[END_REF]. It was first applied to linear systems with constant input delays (see [START_REF] Kwon | Feedback stabilization of linear systems with delayed control[END_REF][START_REF] Manitius | Finite spectrum assignment problem for systems with delays[END_REF]), then extended to handle time-varying delays (see [START_REF] Bekiaris-Liberis | Nonlinear control under nonconstant delays[END_REF][START_REF] Nihtila | Finite pole assignment for systems with time-varying input delays[END_REF]), uncertain input delays or disturbances (see [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF][START_REF] Mondié | Delay robustness of closed loop finite assignment for input delay systems[END_REF]), and nonlinear systems (see [START_REF] Bekiaris-Liberis | Robustness of nonlinear predictor feedback laws to time-and state-dependent delay perturbations[END_REF][START_REF] Karafyllis | Predictor feedback for delay systems: Implementations and approximations[END_REF]). The main ingredient of this class of control law requires calculating a state prediction over a time window This paper was not presented at any IFAC meeting. Email addresses: sijia.kong@mines-paristech.fr (SiJia Kong), delphine.bresch-pietri@mines-paristech.fr (Delphine Bresch-Pietri).

of the length of the delay or future value of the delay in the case of a time-varying delay. However, this strategy difficultly translates to the case of unknown future delay variations and even more to stochastic delays.

While a vast number of works [START_REF] Hale | Introduction to functional differential equations[END_REF][START_REF] Ito | On stationary solutions of a stochastic differential equation[END_REF][START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF][START_REF] Mohammed | Stochastic functional differential equations[END_REF][START_REF] Song | Stability of linear stochastic delay differential equations with infinite markovian switchings[END_REF] have investigated the stability or stabilization of Stochastic Delay Differential Equations (SDDEs) in various contexts, only a few works have considered the case where the delay itself is a stochastic variable. Indeed, prediction-based control laws have been applied to linear SDDEs in [START_REF] Cacace | Predictor based output-feedback control of linear stochastic systems with large i/o delays[END_REF], but the delay itself is assumed to be constant. Up to our knowledge, ones of the few studies to consider the delay as a stochastic variable are [START_REF] Kolmanovsky | Mean-square stability of nonlinear systems with time-varying, random delay[END_REF][START_REF] Kolmanovsky | Optimal control of continuous-time linear systems with a time-varying, random delay[END_REF][START_REF] Li | Predictor-based h∞ leader-following consensus of stochastic multi-agent systems with random input delay[END_REF][START_REF] Sykora | On the moment dynamics of stochastically delayed linear control systems[END_REF]. While [START_REF] Sykora | On the moment dynamics of stochastically delayed linear control systems[END_REF] studies a piecewise constant process and [START_REF] Li | Predictor-based h∞ leader-following consensus of stochastic multi-agent systems with random input delay[END_REF] analyzes a deterministic delay term multiplied by a random variable, [START_REF] Kolmanovsky | Mean-square stability of nonlinear systems with time-varying, random delay[END_REF][START_REF] Kolmanovsky | Optimal control of continuous-time linear systems with a time-varying, random delay[END_REF] consider stochastic state delays modeled as a Markov process with a finite number of states. The authors then consider each delay value separately, following the so-called technique of probabilistic delay averaging. This constant delay reasoning inspired the core of our analysis methodology.

In this paper, we consider for the first time the problem of prediction-based control of dynamical systems subject to stochastic input delays. We consider linear dynamics and model the delay as a Markov process with a finite number of states. We propose to use a prediction-based controller aiming at compensating for this delay. Yet, due to its stochastic nature and the fact that the current delay value is unlikely to be measured, we design a constant-horizon prediction. This control strategy builds on the delay-robustness results obtained for prediction-based controllers in the deterministic case. Indeed, delay-robust compensation can be achieved not only for a constant time-delay [START_REF] Mondié | Delay robustness of closed loop finite assignment for input delay systems[END_REF], but also for a timevarying one provided that the delay rate remains sufficiently small [START_REF] Bekiaris-Liberis | Robustness of nonlinear predictor feedback laws to time-and state-dependent delay perturbations[END_REF] or using a small-gain approach [START_REF] Karafyllis | Delay-robustness of linear predictor feedback without restriction on delay rate[END_REF]. In this paper, we extend these results to the stochastic delay case and establish that a constant horizon prediction-based controller guarantees mean-square exponential stabilization of the system provided that the horizon prediction is sufficiently close to the delay values. This is the main contribution of the paper.

This paper is organized as follows. In section 2, we begin with the problem statement and state our main theorem. In section 3, we propose a backstepping transformation to reformulate the system, which establishes the preliminaries to analyze the stability of the closed-loop system in section 4. Simulation results are given in section 5 to illustrate the relevance of the stabilization conditions we formulated.

Notations.

In the following sections, for a signal v :

(x,t) ∈ [0, 1] × R → v(x,t) ∈ R, we denote v(t) its spatial L 2 -norm v(t) = 1 0 v(x,t) 2 dx (1) 
For a matrix A, λ (A) denotes its spectrum while min(λ (A)) and max(λ (A)) are the minimum and maximum eigenvalues of the matrix A respectively.

Additionally, |A| denotes its Euclidean norm

|A| = max(λ (A T A)) (2) 
in which A T denotes the transpose of A.

E(x)

denotes the expectation of a random variable x. For a random signal x(t) (t ∈ T ⊂ R), the conditional expectation of x(t) at the instant t knowing that x(s) = x 0 at the instant

s ≤ t is denoted E [s,x 0 ] (x(t)).
Finally, e i ∈ R r (r ∈ N + and i ∈ {1, ..., r}) denotes the i th unit vector, that is,

e 1 = 1 0 • • • 0 T , e 2 = 0 1 • • • 0 T , ..., e r = 0 0 • • • 1 .

Problem Statement and Main Result

We consider the following controllable linear dynamics

Ẋ(t) = AX(t) + BU(t -D(t)) (3) 
in which the R n -valued random variable X and U ∈ R are the state and control input, respectively. The stochastic delay D is a Markov process with the following properties:

(1)

D(t) ∈ {D i , i ∈ {1, ..., r}}, r ∈ N with 0 < D ≤ D 1 < D 2 < ... < D r ≤ D. (2)
The transition probabilities P i j (t 1 ,t 2 ), which quantify the probability to switch from D i at time t 1 to D j at time t 2 ((i, j) ∈ {1, ..., r} 2 , t 2 ≥ t 1 ≥ 0), are differentiable functions P i j : R 2 → [0, 1] satisfying

r ∑ j=1 P i j (t 1 ,t 2 ) = 1, (0 ≤ t 1 ≤ t 2 ) (4) 
(3) The realizations of t → D(t) are continuous from the right.

We consider the following constant time horizon predictionbased control law

U(t) = K e AD 0 X(t) + t t-D 0 e A(t-s) BU(s)ds (5) 
in which K is a feedback gain such that A + BK is Hurwitz, and

D 0 ∈ [D, D] is constant.
Exact compensation of the non-constant delay in (3) requires the function φ : t → t -D(t) to be invertible in order to define the feedback law U(t) = KX(φ -1 (t)). However, in the case of a stochastic delay, the function has no reason to be invertible. In addition, even if it were, the computation of φ -1 (t) would require to know future realizations of the delay which is impossible in practice.

For these reasons, we therefore propose to use the constant horizon prediction-based controller [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF]. Note that, if the time lag D was constant and equal to D 0 , the control law would then correspond to the exact prediction of the state X over a time window of D 0 units. Consistently, we now formulate the main result of the paper which states that robust compensation is achieved if the time delay remains sufficiently close to D 0 .

Theorem 1 Consider the closed-loop system consisting of the system (3) and the control law [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF]. There exists a positive constant ε (K) such that, if

|D 0 -D j | ≤ ε (K), j ∈ {1, ..., r} (6) 
there exist positive constants R and γ such that

E [0,(ϒ(0),D(0))] (ϒ(t)) ≤ Rϒ(0)e -γt (7) 
with

ϒ(t) = |X(t)| 2 + t t-D-D 0 U(s) 2 ds (8) 
The prediction-based control law (5) would exactly compensate for the input delay with a constant time lag equal to D 0 . In other words, if D(t) = D 0 , applying the variation of constant formula, it would follow that U(t) = KX(t + D 0 ) and that, after D 0 units of time, the corresponding closedloop dynamics would be Ẋ = (A + BK)X which is exponentially stable. Condition [START_REF] Cacace | Predictor based output-feedback control of linear stochastic systems with large i/o delays[END_REF] guarantees that the prediction performed in (5) remains sufficiently accurate in the case of a stochastic delay. In details, (6) requires the sequence of the

random delay D = D 1 • • • D i • • • D r T r∈N
to be limited in a vicinity ε of the constant D 0 .

Note that this result is consistent with the delay-robustness results obtained in the deterministic delay case. Indeed, [START_REF] Bekiaris-Liberis | Robustness of nonlinear predictor feedback laws to time-and state-dependent delay perturbations[END_REF][START_REF] Kong | Constant time horizon predictionbased control for linear systems with time-varyig input delay[END_REF] provide a similar robust compensation result for a timedifferentiable delay function, under the assumptions that both the range of variation of the delay and its variation rate is sufficiently limited. A similar result was obtained in [START_REF] Karafyllis | Delay-robustness of linear predictor feedback without restriction on delay rate[END_REF] but through a small-gain approach enabling to avoid restricting the delay rate. Finally, as the delay process under consideration only takes a finite number of values, it is worth noticing that similar robustness properties were also obtained in a discrete-time context in [START_REF] Choi | Compensation of time-varying input delay for discrete-time nonlinear systems[END_REF] where the prediction is approximated to respect causality. Hence, this theorem falls within this framework and extends it to the stochastic context. Finally, note that the limit ε depends on the feedback gain K, the choice of which is likely to play a crucial role in practice. However, capturing this dependence is a complex task from a Lyapunov stability point of view and would require additional studies.

We now provide the proof of this theorem in the following sections.

PDE Representation of the Delay and Backstepping Transformation

First, to represent the control input which is subject to a stochastic delay, we define a distributed actuator vector as,

for x ∈ [0, 1], v(x,t) = v 1 (x,t) • • • v k (x,t) • • • v r (x,t) T with v k (x,t) = U(t + D k (x -1)). This enables to rewrite (3) as    Ẋ(t) = AX(t) + Bδ (t) T v(0,t) Λ D v t (x,t) = v x (x,t) v(1,t) = 1U(t) (9) 
in which

Λ D = diag(D 1 , ..., D r ), 1 is a r-by-1 all-ones vector and δ (t) ∈ R r is such that, if D(t) = D j , δ i (t) = 1 if i = j 0 otherwise (10) 
Hence, δ (t) is a Markov process with the same transition probabilities as the process D(t), but with the finite number of states (e i ) instead of (D i ). In the sequel, δ (t) and D(t) will thus be equivalently used. Now, we introduce v(x,t) to represent the control input U(t) within the interval [t -D 0 ,t], and the corresponding input estimation error ṽ(x,t) defined as

v(x,t) = U(t + D 0 (x -1)) ṽ(x,t) = v(x,t) -1 v(x,t) (11) 
Then, the extended state (X(t), v(x,t), ṽ(x,t)) satisfies

           Ẋ(t) = AX(t) + B v(0,t) + Bδ (t) T ṽ(0,t) D 0 vt (x,t) = vx (x,t) v(1,t) = U(t) Λ D ṽt (x,t) = ṽx (x,t) -Σ D vx (x,t) ṽ(1,t) = 0 (12) 
in which

Σ D = ( D 1 -D 0 D 0 , ..., D r -D 0 D 0 )
T and 0 is a r-by-1 allzeros vector.

Besides, to ease the stability analysis, we also introduce another actuator µ(x,t) = U t -D 0 + D(x -1) to describe the history of the input on a longer time window [t -D -D 0 ,t -D 0 ]. Correspondingly, we extend the dynamic to (X(t), v(x,t), ṽ(x,t), µ(x,t)) satisfying

                     Ẋ(t) = AX(t) + B v(0,t) + Bδ (t) T ṽ(0,t) D 0 vt (x,t) = vx (x,t) v(1,t) = U(t) Λ D ṽt (x,t) = ṽx (x,t) -Σ D vx (x,t) ṽ(1,t) = 0 Dµ t (x,t) = µ x (x,t) µ(1,t) = v(0,t) (13) 
In other words, v now cascades into the transport PDE satisfied by µ. Finally, in view of stability analysis, we introduce the backstepping transformation (see [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF])

w(x,t) = v(x,t) -Ke AD 0 x X(t) -D 0 x 0 Ke AD 0 (x-y) B v(y,t)dy ( 14 
)
Lemma 2 The backstepping transformation [START_REF] Gupta | On the effect of stochastic delay on estimation[END_REF], jointly with the control law (5), transform the plant (13) into the target system (X(t), w(x,t), ṽ(x,t), µ(x,t))

                     Ẋ(t) = (A + BK)X(t) + Bδ (t) T ṽ(0,t) + Bw(0,t) D 0 w t (x,t) = w x (x,t) -D 0 Ke AD 0 x Bδ (t) T ṽ(0,t) w(1,t) = 0 Λ D ṽt (x,t) = ṽx (x,t) -Σ D h(t + D 0 (x -1)) ṽ(1,t) = 0 Dµ t (x,t) = µ x (x,t) µ(1,t) = KX(t) + w(0,t) (15) 
in which, h is defined for t ≥ 0 as h(t) = D 0 K (A + BK)e AD 0 X(t) + e AD 0 Bδ (t) T ṽ(0,t) ( 16)

+ e AD 0 Bw(0,t) + D 0 (A + BK) 1 0 e AD 0 (1-x) B w(x,t) + Ke (A+BK)D 0 x X(t) + x 0
KD 0 e (A+BK)D 0 (x-y) Bw(y,t)dy dx PROOF. The space-derivative of the backstepping transformation ( 14) can be written as

w x (x,t) = vx (x,t) -KAD 0 e AD 0 x X(t) -D 0 KB v(x,t) -D 0 x 0 KAD 0 e AD 0 (x-y) B v(y,t)dy (17) 
Besides, the time-derivative of ( 14) reads

w t (x,t) = vt (x,t) -D 0 x 0 Ke AD 0 (x-y) B vt (y,t)dy -Ke AD 0 x AX(t) -Ke AD 0 x B v(0,t) -Ke AD 0 x Bδ (t) T ṽ(0,t) (18) 
From ( 14), ( 17) and ( 18) with an integration by parts, we obtain the two equations with respect to w in [START_REF] Gupta | Data transmission over networks for estimation and control[END_REF]. Finally, from the definition of ṽ and v in [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF], one can observe that h(t

+ D 0 (x -1)) = vx (x,t) = D 0 U(t + D 0 (x - 1 
)) which gives the desired expression of h(t) for t ≥ 0, taking a timederivative of (5) and using the inverse backstepping transformation of ( 14), which is v(x,t) =w(x,t) + Ke (A+BK)D 0 x X(t)

+ x 0 KD 0 e (A+BK)D 0 (x-y) Bw(y,t)dy (19) 
We are now ready to carry out the stability analysis.

Lyapunov Stability Analysis

Preliminaries

Let us define the state of the target system [START_REF] Gupta | Data transmission over networks for estimation and control[END_REF] as

Ψ = (X, w, ṽ, µ) ∈ R n × L 2 ([0, 1], R) × L 2 ([0, 1], R r ) × L 2 ([0, 1], R) D Ψ .
Note that [START_REF] Gupta | Data transmission over networks for estimation and control[END_REF] was reformulated as a dynamical system involving a random parameter, as studied in [START_REF] Kats | On the stability of systems with random parameters[END_REF] or [START_REF] Cortés | Random linear-quadratic mathematical models: computing explicit solutions and applications[END_REF]. However, the results presented in [START_REF] Cortés | Random linear-quadratic mathematical models: computing explicit solutions and applications[END_REF] on the existence of solutions consider a more complex stochastic framework. This is why, for the sake of self-containedness, we now formulate a well-posedness result.

Following [START_REF] Kats | On the stability of systems with random parameters[END_REF], by a weak solution to the closed-loop system (3) and ( 5), we refer to a

R n × L 2 ([-D, 0], R) × R-valued random variable (X(X 0 ,t),U t (U 0 , •), D(t))
, the realizations of which satisfy an integral form of ( 3) and ( 5), that is,

X(t) = X(0) + t 0 (AX(s) + BU(s -D(s))) ds (20) 
and ( 5) for t ≥ 0.

Similarly, by a weak solution to [START_REF] Gupta | Data transmission over networks for estimation and control[END_REF], we refer to a D Ψ × Rvalued random variable (X(X 0 ,t), w(w 0 , •,t), ṽ(ṽ 0 , •,t), µ(µ 0 , •,t), D(t)), the realizations of which are a weak solution of [START_REF] Gupta | Data transmission over networks for estimation and control[END_REF], that is, in the PDEs standard sense [11, Definition 3.1.4] of weak solutions for the transport PDEs and under an integral form for the ODE.

Lemma 3 For every initial condition (X 0 ,U 0 ) ∈ R n × L 2 ([-D, 0], R), the closed-loop system consisting of (3) and the control law (5) has a unique weak solution such that X(t) = e At X(0)

+ t 0 e A(t-s) BU(s -D(s))ds (21) 
Consequently, for each initial condition in D Ψ , the target system (15) also has a unique weak solution.

PROOF. We first focus on the existence of a solution. Notice that, for X defined in [START_REF] Kats | On the stability of systems with random parameters[END_REF], performing an integration by parts,

X(0) + t 0 (AX(s) + BU(s -D(s))) ds =X(0) + t 0 BU(s -D(s))ds + t 0
Ae As X(0)ds

+ t 0 s 0 Ae A(s-ξ ) ds BU(ξ -D(ξ ))dξ =e At X(0) + t 0 e A(t-ξ ) BU(ξ -D(ξ ))dξ = X(t) (22) 
which corresponds to an integral form of (3). Observe that Then, as U 0 ∈ L 2 ([-D, 0], R), U defined in (5) remains bounded on the interval [0, D] from the corresponding inverse Volterra integral equation [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF][START_REF] Yosida | Lectures on differential and integral equations[END_REF]. Consequently, by a straightforward iterative argument on time intervals of length D, one can prove that both X and U, as defined through ( 21) and ( 5) remain bounded for positive times, and that, consequently, the integral in ( 21) is well-defined. Hence, ( 21) and ( 5) define a weak solution to the closed-loop system.

U(t -D(t)) = δ (t) (U(t -D 1 ) . . . U(t -D r ))
Secondly, we prove the uniqueness of this solution. Suppose that there exist two different solutions (X 1 ,U 1 ) and (X 2 ,U 2 ) for a given initial condition. It then holds

   ( Ẋ1 -Ẋ2 )(t) =A(X 1 -X 2 ) + B(U 1 (t -D(t)) -U 2 (t -D(t))) (X 1 -X 2 ) (0) =0 (23) 
with U 1 = U 2 for t < 0, and for t ≥ 0

       U 1 (t) = K e AD 0 X 1 (t) + t t-D 0 e A(t-s) BU 1 (s)ds U 2 (t) = K e AD 0 X 2 (t) + t t-D 0 e A(t-s) BU 2 (s)ds (24) 
For any delay realization, it thus holds that U 1 (t -D(t)) = U 2 (t -D(t)) for t ∈ [0, D], which, in turns, gives X 1 (t) = X 2 (t) for t ∈ [0, D]. Iterating on intervals of length D, we then obtain X 1 = X 2 and U 1 = U 2 for t ∈ R + .

Let us now observe that the well-posedness of the closedloop system (3) and ( 5) implies the one of ( 9) and ( 5) by equivalence. The one of ( 13) and ( 5) and thus of (15) by backstepping transformation then follow (see [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]Theorem 3.1]).

From Lemma 3, (Ψ, δ ) thus defines a continuous-time Markov process and we can therefore introduce the following elements for stability analysis.

In the sequel, we consider the following Lyapunov functional candidate

V (Ψ) =X T PX + bD 0 1 0 (1 + x)w(x) 2 dx + c r ∑ l=1 1 0 (1 + x)(e l • D) T ṽ(x) 2 dx + dD 1 0 (1 + x)µ(x) 2 dx (25)
with b, c, d > 0, P the symmetric positive definite solution of the equation P(A + BK) + (A + BK) T P = -Q, for a given symmetric positive definite matrix Q, and

D = D 1 • • • D i • • • D r T r∈N
and where • denotes the Hadamard multiplication and the square in ṽ(x) 2 should be understood component-wise.

As the functional V is not differentiable with respect to time t when evaluated at Ψ(t) and δ (t), we introduce the infinitesimal generator L (see [START_REF] Kolmanovsky | Optimal control of continuous-time linear systems with a time-varying, random delay[END_REF] and [START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF]) as

LV (Ψ, δ ) (26) 
= lim sup

∆t→0 + 1 ∆t E [t,(Ψ,δ )] (V (Ψ(t + ∆t), δ (t + ∆t))) -V (Ψ, δ )
We also define L j , the infinitesimal generator of the Markov process (Ψ, δ ) for the target system obtained from ( 15) by fixing δ (t) = e j , as

L j V (Ψ) = dV dΨ (Ψ, e j ) f j (Ψ) (27) 
in which f j denotes the operator corresponding to the dynamics of the target system [START_REF] Gupta | Data transmission over networks for estimation and control[END_REF] with the fixed value δ (t) = e j , that is, for Ψ = (X, w, ṽ, µ),

f j (Ψ)(x) =        (A + BK)X + Be T j ṽ(0) + Bw(0) 1 D 0 w x (x) -D 0 Ke AD 0 x Be T j ṽ(0) Λ -1 D ṽx (x) -Σ D h(• + D 0 (x -1)) 1 D µ x (x)        (28) 
For the sake of conciseness, in the sequel, we denote V (t), LV (t) and L j V (t), for short, instead of V (Ψ(t), δ (t)), LV (Ψ(t), δ (t)) and LV (Ψ(t)) respectively.

It is worth noticing that, due to the fact that V does not depend explicitly on δ and (4), the infinitesimal generators are related as follows

LV (t) = r ∑ j=1 P i j (0,t) dV dΨ (Ψ(t)) f j (Ψ(t)) + r ∑ j=1 ∂ P i j ∂t (0,t)V (t) = r ∑ j=1 P i j (0,t)L j V (t) (29) 
Therefore, in view of stability analysis, as a first step, one can focus on the derivative of the Lyapunov functional evaluated for a dynamic with a fixed delay, that is, L j V . This is the approach we follow in the sequel.

Lyapunov analysis

Lemma 4 Assume there exists a positive constant ε such that

|D 0 -D j | ≤ ε, j ∈ {1, ..., r} (30) 
Then, there exist (b, c, d, η) ∈ (R * + ) 4 which are independent of ε such that the Lyapunov functional V defined in [START_REF] Kong | Constant time horizon predictionbased control for linear systems with time-varyig input delay[END_REF] satisfies

LV (t) ≤ -(η -g(ε))V (t), t ≥ D ( 31 
)
with the function g : R + → R + satisfying lim ε→0 g(ε) = 0.

PROOF. Taking a derivative of ( 25) and applying integrations by parts and Young's inequality, we obtain

dV dΨ (Ψ) f j (Ψ) (32) 
= -X(t) T QX(t) + 2X(t) T PB(w(0,t) + ṽ j (0,t))

+ 2b 1 0 (1 + x)w(x,t) w x (x,t) -D 0 Ke AD 0 x × B ṽ j (0,t) dx + 2c r ∑ l=1 1 0 (1 + x) ṽl (x,t) ṽlx (x,t) + 1 - D l D 0 h(t + D 0 (x -1)) dx + 2d 1 0 (1 + x)µ(x,t)µ x (x,t)dx ≤ - min(λ (Q)) 2 -4d|K| 2 |X(t)| 2 -d µ(t) 2 -b(1 -2D 0 |K||B|e |A|D 0 γ 1 ) w(t) 2 -c r ∑ l=1 1 - 2 D 0 |D 0 -D l |γ 2 ṽl (t) 2 -b -4d - 4|PB| 2 min(λ (Q)) w(0,t) 2 -c - 4|PB| 2 min(λ (Q)) -2bD 0 |K||B|e |A|D 0 1 γ 1 ṽ j (0,t) 2 -c ∑ l = j ṽl (0,t) 2 -dµ(0,t) 2 + 2c D 0 r ∑ l=1 |D 0 -D l | 1 γ 2 h(t + D 0 (x -1)) 2
for any γ 1 , γ 2 ≥ 0.

Therefore, applying [START_REF] Manitius | Finite spectrum assignment problem for systems with delays[END_REF] and Lemma 6 given in Appendix, one gets for t ≥ D,

LV (t) = r ∑ j=1 P i j (0,t) dV dΨ (Ψ) f j (Ψ) (33) ≤ - min(λ (Q)) 2 -4d|K| 2 |X(t)| 2 -b 1 -2D 0 |K||B|e |A|D 0 γ 1 w(t) 2 -c r ∑ l=1 1 - 2 D 0 |D 0 -D l |γ 2 ṽl (t) 2 -d µ(t) 2 -b -4d - 4|PB| 2 min(λ (Q)) w(0,t) 2 -c - 4|PB| 2 min(λ (Q)) -2bD 0 |K||B|e |A|D 0 1 γ 1 r ∑ j=1 P i j (0,t) ṽ j (0,t) 2 -c r ∑ j=1 P i j (0,t) ∑ l = j ṽl (0,t) 2 -dµ(0,t) 2 + 2crε D 0 1 γ 2 MV (t)
in which the positive constant M does not depend on ε and is defined in Lemma 6.

Observing that

D 0 ∈ [D, D], let us choose (b, c, d, γ 1 , γ 2 ) ∈ (R * + ) 5 as follows (a) d < min(λ (Q)) 8|K| 2 (34) 
(b) b ≥ 4d + 4|PB| 2 min(λ (Q)) (35) 
(c) γ 1 < 1 2D|K|e |A|D |B| (36) (d) γ 2 < 1 4 min 1 - D 1 D -1 , D r D -1 -1 (37) 
(e) c ≥ 4|PB| 2 min(λ (Q)) + 2bD|K||B|e |A|D 1 γ 1 (38) 
From [START_REF] Mondié | Delay robustness of closed loop finite assignment for input delay systems[END_REF], one then obtains [START_REF] Mohammed | Stochastic functional differential equations[END_REF] with the well-defined con-

stant η = min min(λ (Q))-8d|K| 2 2 max(λ (P)) , 1-2D|K||B|e |A|D γ 1 2D , 1 4D r , 1 2D
, and the function

g(ε) = 2cr D 0 1 γ 2 Mε ( 39 
)
which satisfies lim ε→0 g(ε) = 0.

Proof of Theorem 1

Firstly, as lim ε→0 g(ε) = 0, there exists ε * > 0 such that ηg(ε) = γ > 0 for ε < ε * . Therefore, according to Dynkin's formula [12, Theorem 5.1, p. 133], from [START_REF] Mohammed | Stochastic functional differential equations[END_REF], one obtains

for ε < ε * E [D,(Ψ,D)(D)] (e γt V (t)) -e γD V (D) (40) 
≤ E [D,(Ψ,D)(D)] t D
[γe γs V (s) + e γs LV (s)] ds = 0 from which, using standard conditional expectation properties, one deduces

E [0,(Ψ,D)(0)] (e γt V (t)) ≤E [0,(Ψ,D)(0)] (e γD V (D)) (41) 
Hence, it follows that

E [0,(Ψ,D)(0)] (V (t)) ≤ E [0,(Ψ,D)(0)] (V (D))e -γ(t-D) (42) 
Noticing that V and ϒ are equivalent, that is, that there exist positive constants q 1 and q 2 such that for ∀t ≥ 0, [START_REF] Kong | Constant time horizon predictionbased control for linear systems with time-varyig input delay[END_REF]), it thus follows that

q 1 V (t) ≤ ϒ(t) ≤ q 2 V (t) (see
E [0,(ϒ(0),D(0))] (ϒ(t)) ≤ q 2 q 1 E [0,(ϒ(0),D(0))] (ϒ(D))e -γ(t-D) .
From the definition of ϒ in ( 8), one deduces that there exists a constant R 0 such that

ϒ(t) ≤ R 0 ϒ(0), t ∈ [0, D] (43) 
(see Lemma 5 in the appendix for a proof of this property). Finally, the function ϒ thus satisfies E [0,(ϒ(0),D(0))] (ϒ(t)) ≤ q 2 q 1 R 0 ϒ(0)e -γ(t-D) , Theorem 1 is then proved with R = q2 q 1 R 0 e γD .

Simulations

To illustrate Theorem 1 and in particular the role played by the condition (6), we consider the following toy example

Ẋ(t) = 0 1 -1 1 
X(t) + 0 1 U(t -D(t)) (44) 
The control law ( 5) is applied with the feedback gain K = -1 2 resulting in conjugate closed-loop eigenvalues

λ (A + BK) = {-0.5000 + 1.3229i, -0.5000 -1.3229i}.
The initial conditions are chosen as X(0) = [1 0] T and U(t) = 0, for t ≤ 0. The integral in ( 5) is discretized using a trapezoïdal scheme. Finally, the simulations are carried out with a discrete-time solver in Matlab-Simulink and a sampling time ∆t = 0.01 s.

We consider 5 different delay values (D 1 , D 2 , D 3 , D 4 , D 5 ) = (0.5, 0.75, 1, 1.25, 1.5). Besides, the initial transition proba-bilities are taken as1 P i j (0, 0 + ) = 0.4985 (i ∈ {1, ..., 5}, j = {3, 4}) and P i j (0, 0 + ) = 0.001 (i ∈ {1, ..., 5}, j = {1, 2, 5}), which means that the delay values are initially concentrated in D 3 and D 4 .

In addition, we introduce the following Kolmogorov equation [START_REF] Kolmanovsky | Mean-square stability of nonlinear systems with time-varying, random delay[END_REF][START_REF] Rausand | System reliability theory: models, statistical methods, and applications[END_REF][START_REF] Ross | Introduction to probability models[END_REF] to describe the time-evolution of the transition probabilities ∂ P i j (s,t) ∂t =c j (t)P i j (s,t) + r ∑ k=1 P ik (s,t)τ k j (t), s < t P ii (s, s) =1 and P i j (s, s) = 0 for i = j [START_REF] Yosida | Lectures on differential and integral equations[END_REF] in which τ i j and c j = ∑ r k=1 τ jk are positive-valued functions such that τ ii (t) = 0.

In details, τ i j ∆t is approximately the probability of transition from D i to D j on the interval [t,t +∆t). Similarly, 1-c j (t)∆t represents somehow the probability of staying at D j during the time interval [t,t + ∆t).

Here, we choose for simulation the transition rates τ i j as

τ(t) = {τ i j (t)} 1≤i, j≤r (46) 
=0.03

         0 e -10t e -10t e -10t e -10t e -10t 0 1 2 -e -10t 1 2 -e -10t e -10t e -10t 1 -3e -10t 0 e -10t e -10t e -10t 1 -3e -10t e -10t 0 e -10t
e -10t e -10t e -10t e -10t 0

        
The delay values will therefore gradually evolve towards a uniform distribution among the delay values D 2 , D 3 and D 4 .

Firstly, we pick D 0 = 1. This results in a value 2 ε = max j=1,...,r |D 0 -D j | = 0.5. Fig. 1 represents the results obtained for Monte-Carlo simulations of 100 trials. One can observe that the resulting mean value of the state, which approximates the expectation of Theorem 1, indeed converges to the origin.

On the other hand, the choice of a larger prediction horizon D 0 = 1.25 (corresponding to the larger value ε = 0.75) results into a diverging behaviour pictured in Fig. 2. This confirms that the choice of prediction horizon D 0 should be restricted in a sufficiently small range to guarantee the stability of the dynamics, on average. 

Conclusion

In this paper, we proposed a constant horizon predictionbased controller to compensate for a stochastic input delay modelled as a Markov process with a finite number of values. We proved the exponential mean-square stability of the closed-loop control system provided that the delay values are limited and in the vicinity of the chosen prediction horizon. Simulations on a toy example illustrated the relevance of this condition and the interest of this prediction-based control law.

Simulation results emphasize the crucial role played by the delay distribution and its evolution. However, the robustness analysis provided in this paper does not distinguish between the probability distributions. It is built on the worstcase scenario of a uniform probability of taking any delay value. Hence, the sufficient condition we obtain is likely to be somehow conservative. Relaxing this condition by including the delay distribution into the stability analysis is an important direction of future work. Adapting the predictionhorizon to the current delay distribution could also be an interesting design feature to explore, as it is likely to increase the closed-loop delay-robustness. Similarly, capturing the dependence on the feedback gain on this robustness margin is an important practical question for control tuning, which should be explored.

Finally, the delay process considered in this work has a finite number of states. Extending this analysis to the case where the delay can take values in a given continuum is another challenging theoretical issue worth exploring in the future. U(s) 2 ds with U(t) = U 0 (t) for t ≤ 0. Thus, by using Theorem 2 in [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF], the prediction-based control law can be also written as Lemma 6 Consider the function h defined in [START_REF] Hafner | Cooperative collision avoidance at intersections: Algorithms and experiments[END_REF]. There exists M > 0 such that h(t + D 0 ( • -1)) 2 ≤ MV (t), t ≥ D 0 (A.8)

U(t) (A.3) = K D X(t) +
PROOF. First, from [START_REF] Hafner | Cooperative collision avoidance at intersections: Algorithms and experiments[END_REF], h can be expressed as h(t) = D 0 K e AD 0 AX(t) + e AD 0 BU(t -D(t)) (A.9)

+ BU(t)e AD 0 BU(t -D 0 ) + A 

Fig. 1 .Fig. 2 .

 12 Fig. 1. Simulation results of the closed-loop system (44) and (5) for D = (0.5, 0.75, 1.0, 1.25, 1.5) T , X(0) = [1 0] T and U(t) = 0 for t ≤ 0. The prediction horizon is D 0 = 1.0. The transition probabilities follow the dynamics (45)-(46). (a) and (b) picture results corresponding to one delay realization. (c) and (d) present the results of 100 trials, in which the means and the standard deviations are highlighted by the coloured lines. It can be seen from the graph of the time lag change (Fig.1.a) that the delay, which originally takes mainly its value among D 3 and D 4 , becomes gradually evenly distributed between D 2 , D 3 and D 4 . This change in transition probabilities explains why the choice of D 0 = D 3 yields closed-loop stability on average, while the one of D 0 = D 4 does not. The

A Technical Lemmas Lemma 5

 5 Consider (3). There exists a constant R 0 such that the function ϒ defined in (8) satisfiesϒ(t) ≤ R 0 ϒ(0), t ∈ [0, D] (A.1)PROOF. Using (21) in Lemma 3, for t ∈ [0, D], and definingN 1 = 2e 2|A|D max{1, |B| 2 }, it holds |X(t)| 2 (A.2) ≤N 1 |X(0)| 2 +

t 0 Φ 0 -D 0 Φ 0 Φ 0 0 Φ 0 U

 0000000 D (t, s)X(s)ds + (t, s)U 0 (s)ds with K D = Ke AD 0 , and Φ D and Φ 0 two continuous functions defined in[START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF]. Replacing (A.3) into (A.2), one obtains|X(t)| 2 ≤ N 1 |X(0)| 2 + (s, ξ ) 2 U 0 (ξ ) 2 dξ ds D (s, ξ ) 2 |X(ξ )| 2 dξ dsThus, using again (A.2) and (A.3) and by a straightforward iteration on time intervals of length D, we can get that there exist N 2 > 0 and a continuous function Φ0 such that|X(t)| 2 ≤ N 2 |X(0)| 2 + 0 -D Φ0 (t, s)U 0 (s) 2 ds (A.5)Similarly, there exist a constant N 3 > 0 and a continuous function Φ0 such thatU(t) 2 ≤ N 3 |X(0)| 2 + 0 -D Φ0 (t, s)U 0 (s) 2 ds (A.6)Therefore, as from (8), it holdsϒ(t) = |X(t)| 2 + 0 t-D-D 0 U 0 (s) 2 ds + t (s) 2 ds (A.7)the conclusion follows from (A.5) and (A.6).

M 1 2 + M 2 2 + M 3 2 + |A| 2 t+D 0 (x- 1 )

 12223221 |X(t + D 0 (x -1))| |U(t + D 0 (x -1) -D(t + D 0 (x -1)))| |U(t + D 0 (x -1))| 2 + M 4 |U(t + D 0 (x -2))| t+D 0 (x-2)e 2|A|(t+D 0 (x-1)-s) |B| 2 |U(s)| 2 ds dx

  T , in which δ (t) is a bounded almost-everywhere continuous function (due to the assumption that the realizations of D and thus δ are right-continuous [9, Exercise 4 p.7]) and thus integrable and also square-integrable. As U 0 ∈ L 2 ([-D, 0], R), it follows from Cauchy-Schwarz's inequality, that t → U(t -D(t)) is integrable on the interval [0, D]. Consequently, the integral in (21) is well-defined for t ∈ [0, D], and X is bounded on the interval [0, D].

To avoid a conflict between the initial condition in[START_REF] Yosida | Lectures on differential and integral equations[END_REF] and their discretized version used in simulation, we denote their initial conditions as P i j (0, 0 + ).

The previous proof guarantees the existence of ε , but can difficulty be used to provide an interesting estimate of it. Indeed, picking Q = I 2 in the Lyapunov equation and the intermediate constants according to (34)-[START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF] results into a value of

ε ≈ 3e -20, which is of course very conservative and cannot be used in practice. This originates mainly from the value of M ≈ 1e15 obtained in Lemma 6 and could in all likelihood be decreased by avoiding the use of equivalence constants in the definitions of both η and M.

with

From the definition of the dynamics (3), it holds

e A(t-s) BU(s -D(s))ds

Then, with [START_REF] Karafyllis | Delay-robustness of linear predictor feedback without restriction on delay rate[END_REF], the equation (A.10) gives

and the positive constants (M X , M w , M µ ) are defined as follows

Consequently, from the definition of Lyapunov functional V (t) in ( 25)

The lemma is then proved with the positive constant M = 5|K| 2 D 2 max{ M X min(λ (P)) , M w bD , M µ dD }.