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Abstract. Code-based public-key cryptosystems are promising candi-
dates for standardization as quantum-resistant public-key cryptographic
algorithms. Their security is based on the hardness of the syndrome de-
coding problem. Computing the syndrome in a finite field, usually F2,
guarantees the security of the constructions. We show in this article that
the problem becomes considerably easier to solve if the syndrome is com-
puted in N instead. By means of laser fault injection, we illustrate how to
compute the matrix-vector product in N by corrupting specific instruc-
tions, and validate it experimentally. To solve the syndrome decoding
problem in N, we propose a reduction to an integer linear programming
problem. We leverage the computational efficiency of linear program-
ming solvers to obtain real-time message recovery attacks against the
code-based proposal to the NIST Post-Quantum Cryptography standard-
ization challenge. We perform our attacks in the worst-case scenario, i.e.
considering random binary codes, and retrieve the initial message within
minutes on a desktop computer.

Our attack targets the reference implementation of the Niederreiter cryp-
tosystem in the NIST PQC competition finalist Classic McEliece and is
practically feasible for all proposed parameters sets of this submission.
For example, for the 256-bit security parameters sets, we successfully re-
cover the message in a couple of seconds on a desktop computer. Finally,
we highlight the fact that the attack is still possible if only a fraction
of the syndrome entries are faulty. This makes the attack feasible even
though the fault injection does not have perfect repeatability and re-
duces the computational complexity of the attack, making it even more
practical overall.

Keywords: Code-based cryptography · Classic McEliece · Syndrome
decoding problem · Laser fault injection · Integer linear programming



1 Introduction

For the last three decades, public key cryptography has been an essential com-
ponent of digital communications. Communication protocols rely on three core
cryptographic functionalities: public key encryption (PKE), digital signatures,
and key exchange. These are implemented using Diffie-Hellman key exchange
[16], the RSA cryptosystem [44], and elliptic curve cryptosystems [26, 39]. Their
security relies on the difficulty of number theoretic problems such as the In-
teger Factorization Problem or the Discrete Logarithm Problem. Shor proved
that quantum computers can efficiently solve each of these problems [47], po-
tentially making all public-key cryptosystems (PKC) based on such assumptions
impotent.

Since then, cryptographers proposed alternative solutions which remain safe
in the quantum era. These schemes are called post-quantum secure [9]. In 2016,
the National Institute of Standards and Technology (NIST) made a call to the
community to propose post-quantum secure solutions for standardization. Mul-
tiple candidates were submitted, that are based on various hard problems (lat-
tices, error-correcting codes, multivariate systems of equations and hash func-
tions). In this work, we analyze one of the four finalists, the only one that uses
error-correcting codes, Classic McEliece6 [1].

1.1 General decoding and integer linear programming

The hardness of general decoding for a linear code is an NP-complete problem
in coding theory [8], which makes it an appealing candidate for code-based post-
quantum cryptography. From the original scheme proposed by McEliece [36]
to the latest variants submitted to the NIST PQC competition [1, 3, 5, 4], the
majority of these PKCs base their security on the syndrome decoding problem
(SDP). Informally, for a binary linear code C of length n and dimension k, having
a parity-check matrix H, the SDP is defined as follows: given s ∈ Fn−k

2 , find a
binary vector x having less than t values equal to one, such that Hx = s.

A recent possible solution to solve the general decoding problem is to use
Integer Linear Programming (ILP). The idea was first proposed by Feldman [19]
and later improved by Feldman et al. [20]. Since the initial problem is nonlin-
ear, some relaxation was proposed in order to decrease the complexity. For more
details on these aspects, we refer the reader to the excellent review of Helmling
et al. [22]. One of the latest proposals [50] introduces a new method for trans-
forming the initial decoding problem into an ILP, formalism that fits perfectly
the ideas that we will put forward in this article. Let us briefly explain the idea
of Tanatmis et al. [50]. The general decoding problem can be tackled using the
well-known maximum-likelihood decoder. Let C be a binary linear code of length
n and dimension k, with parity-check matrix H. The integer linear programming
formulation of maximum-likelihood decoding is given in Equation (1).

min{vxT |Hx = 0 ,x ∈ {0, 1}n}, (1)

6 https://classic.mceliece.org/nist.html
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where v is the log-likelihood ratio (see [20, 33]). Tanatmis et al. proposed to
introduce an auxiliary positive variable z ∈ Nn−k, and define a new problem:

min{vxT |Hx = 2z ,x ∈ {0, 1}n, z ∈ Nn−k}. (2)

The advantage of (2) compared to (1) is that z introduces real/integer con-
straints, which are much easier to handle for solvers than binary constraints.
Also, there are as many constraints as rows in H. Finding an appropriate vari-
able z is not trivial and algorithms such as [50] are constantly modifying the
values of z in order to find the correct solution.

Inspired by the ideas of Tanatmis et al., we define the SDP as an ILP. Then,
we propose to determine a valid constraints integer vector z so that the problem
becomes easier to solve. Such an approach was recently proposed as a proof of
concept in [17]. Simulations for small to medium sized random codes (n < 1500
and k < 750) using the simplex algorithm were performed in [17]. However,
cryptographic parameters were out of reach. Hence, in order to achieve our goal
we will propose several improvements compared to [17] (detailed in Section 3.4),
among which we count the following:

– Instead of solving the integer constrains problem using the simplex we will
solve a relaxed version (with real constrains) using the interior point method.

– An optimization scheme, where only a small proportion of the parity-check
rows are required, is proposed. This amount of information required to re-
trieve a valid solution points out to an information theoretical threshold of
the integer-SDP.

– Simulations show that the overall complexity empirically decreases from
O(n3) for the initial algorithm to O(n2) for the optimized algorithm.

– In a practical implementation, real cryptographic instances are solved within
minutes, proving the efficiency of the algorithm.

Before that, we need to put forward a recent result in laser fault injection [14].

1.2 Related works

Understanding how fault attacks allow to corrupt the instructions executed by a
microcontroller has been a vivid topic of research in recent years. While electro-
magnetic fault injection is probably the most commonly used technique, certainly
because of its relatively low cost, it has several drawbacks. Indeed, while the ”in-
struction skip” or ”instruction replay” fault models were clearly identified [45],
most of the time going down to the instruction set level leaves a lot of questions
open [40]. As such, only a handful of the observed faults can be tracked down
and explained by a modification of the bits in the instruction [31]. Last, but not
least, electromagnetic fault injection usually exhibits poor repeatability [13], as
low as a few percents in some cases.

Conversely, another actively studied technique is laser fault injection, which
offers several advantages when it comes to interpreting the observed faults. For
example, the instruction skip fault model has been experimentally validated
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by laser fault injection, with perfect repeatability and the ability to skip one
or multiple instructions [18]. On a deeper level of understanding, it has been
shown in [14] that it was possible to perform a bit-set on any of the bits of an
instruction while it is fetched from the Flash memory of the microcontroller.
This modification is temporary since it is performed during the fetch process.
As such, the instruction stored in the Flash memory remains untouched. We
place ourselves in this framework here. We reproduce the fault injection setup to
show how this powerful fault model gives the possibility to actively corrupt the
instructions and allows to mount a fault attack on code-based cryptosystems.

In a recent article [27], the authors present a physical attack on the code-
based finalist Classic McEliece. The idea is to combine side-channel information
and the use of the information set decoding algorithm to recover the message
from a Classic McEliece hardware reference implementation. In this paper, we
will focus on the same candidate. Our approach of combining techniques coming
from laser fault attacks and algorithms for general decoding problem fits well in
this new trend in cryptanalysis.

Moreover, implementations of the Classic McEliece on memory-constrained
is an active research topic [46]. These implementations are typically subject to
physical attacks, such as the one described in this article.

1.3 Contributions

This article makes the following contributions.

– First, we propose a new attack on code-based cryptosystems which security
relies on the SDP. We show by simulations that, if the syndrome is computed
in N instead of F2, then the SDP can be solved in polynomial time by linear
programming.

– Second, we experimentally demonstrate that such a change of set is feasible
by corrupting the instructions executed during the syndrome computation.
To this end, we rely on backside laser fault injection in Flash memory in order
to transform an addition over F2 into an addition over N. We perform this
by corrupting the instruction when it is fetched from Flash memory, thereby
replacing the exclusive-OR operation with an add-with-carry operation.

– Third, we then show, starting with the faulty syndrome, that the secret
error-vector can be recovered very efficiently by linear programming. By
means of software simulations we show that, in particular, this attack scales
to cryptographically strong parameters for the considered cryptosystems.

– Finally, we highlight a very practical feature of the attack, which is that
only a fraction of the syndrome entries need to be faulty in order for the
attack to be successful. On top of that, this fraction decreases when the
cryptographic parameters grow. This has important practical consequences,
since the attack can be carried out even if the fault injection is not perfectly
repeatable. Moreover, this also drastically reduces the number of inequalities
to be considered in the linear programming problem, thereby making the
problem much easier to solve.
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The proposed attack fits in the following framework. We perform a message
recovery attack against code-based cryptosystems based on Niederreiter’s model.
Specifically, we recover the message from one faulty syndrome and the public
key. The attacker must have physical access to the device, where the laser fault
injection is performed during encryption, i.e., the matrix-vector multiplication.
The total number of faults the attacker must inject is upper-bounded by the
code dimension.

Our attack was performed on a real microcontroller, embedding an ARM
Cortex-M3 core, where we corrupted the XOR operation and obtained the faulty
outputs. As in our case, one needs to perform single-bit and double-bit faults, in
a repeatable and controlled manner. This method strongly relies on the work of
Colombier et al. [14] and thus can be verified and repeated experimentally. We
stress out that constant-time implementations are of great help for this attack
setting, since they allow to easily synchronize the laser shots with the execution
of the algorithm.

We chose to attack here two multiplication methods: the schoolbook and
the packed version. The former is general, and is considered for example in the
NTL library 7. The later is the reference implementation of the Classic McEliece
cryptosystem and makes optimum use of the computer words.

The article is organized as follows. In Section 2, we focus on code-based cryp-
tosystems,and in particular the NIST PQC competition finalist Classic McEliece.
Section 3 defines the SDP in N and shows how it relates to linear programming.
In Section 4, we show how the corruption of instructions by laser fault injec-
tion allows to switch from F2 to N during the syndrome computation. Section 5
presents experimental results following the attack path, from laser fault injection
to the exploitation of the faulty syndrome by linear programming. Finally, we
conclude this article in Section 6.

2 Code-based cryptosystems

2.1 Coding theory – preliminaries

Notations The following conventions and notations are used. A finite field
is denoted by F, and the ring of integers by N. Vectors (column vectors) and
matrices are written in bold, e.g., a binary vector of length n is x ∈ {0, 1}n, an
m × n integer matrix is A = (ai,j)0≤i≤m−1

0≤j≤n−1
∈ Mm,n (N). A row sub-matrix of

A indexed by a set I ⊆ {0, . . . ,m− 1} is denoted by AI, = (ai,j) i∈I
0≤j≤n−1

. The

same applies to column vectors, i.e., xI is the sub-vector induced by the set I
on x.

Error correcting codes We say that C is an [n, k] linear error-correcting code,
or simply a linear code, over a finite field F if C is a linear subspace of dimension k

7 https://www.shoup.net/ntl/
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of the vector space Fn, where k, n are positive integers with k < n. The elements
of C are called codewords. The support of a codeword Supp(c) is the set of
non-zero positions of c. We will represent a code either by its generator matrix,
G ∈ Mk,n (F) (rank(G) = k), or by its parity-check matrix, H ∈ Mn−k,n (F),

(rank(H) = n − k), where HGT = 0 holds. One of the key ingredients for
decoding is the usage of a metric. The Hamming weight of a vector wt(x) is the
number of non-zero components of x. Now, we can define a well-known strategy
used for general decoding, i.e., syndrome decoding.

Definition 1 (Binary-SDP).

Input: H ∈Mn−k,n (F2) of rank n− k, a vector s ∈ Fn−k
2 and t ∈ N∗.

Output: x ∈ Fn
2 , with wt(x) ≤ t, such that Hx = s.

2.2 NIST PQC competition

The main goal of the process started by NIST is to replace three standards that
are considered the most vulnerable to quantum attacks, i.e., FIPS 186-48 (for
digital signatures), NIST SP 800-56A9 and NIST SP 800-56B10(both for keys es-
tablishment in public-key cryptography). For the first round of this competition,
69 candidates met the minimum criteria and the requirements imposed by NIST.
26 out of 69 were announced on January 30, 2019 for moving to the second round.
From these, 17 are public-key encryption and/or key-establishment schemes and
9 are digital signature schemes. Since July 2020, NIST started the third round
of this process where only seven finalists were admitted (four PKE/KEM and
three signature schemes). In addition to the finalists, eight alternate candidates
were selected.

In this article, we focus on one of the finalists, Classic McEliece, which is a
merger of the former Classic McEliece submission and NTS-KEM. In Table 1 the
design rationale of the McEliece [36] and Niederreiter [42] schemes is illustrated.
The private key is a structured code, and the public key its masked variant. We
would like to stress out that our method applies to any code-based cryptosystem
that bases its security on the binary SDP.

2.3 Security and practical parameters

Basically, all the code-based schemes support their security on the hardness of
the SDP. Hence, state-of-the-art algorithms for solving the SDP are used to set
up the security level of any such proposals. The best strategy in this direction is
the class of so-called Information Set Decoding (ISD) algorithms. The original
algorithm was proposed by Prange [43] and has been significantly improved

8 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
9 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-56Ar2.pdf
10 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-56Br1.pdf
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Table 1: McEliece and Niederreiter PKE schemes
McEliece PKE Niederreiter PKE

KeyGen(n, k, t) = (pk, sk)

G-generator matrix matrix of C H-parity-check of C
\\ C an [n, k] that corrects t errors
An n× n permutation matrix P

A k × k invertible matrix S An (n− k)× (n− k) invertible
matrix S

Compute Gpub = SGP Compute Hpub = SHP

pk = (Gpub, t) pk = (Hpub, t)
sk = (S,G,P ) sk = (S,H,P )

Encrypt(m, pk) = z

Encode m→ c = mGpub Encode m→ e
Choose e

\\ e a vector of weight t

z = c + e z = Hpube

Decrypt(z, sk) = m

Compute z∗ = zP−1 Compute z∗ = S−1z
z∗ = mSG + eP−1 z∗ = HPe
m∗ = Decode(z∗,G) e∗ = Decode(z∗,H)
Retrieve m from m∗S−1 Retrieve m from P−1e∗

since then [7, 28, 30, 34, 35, 48]. Under the assumption that the public code is
indistinguishable from a random code, the ISD techniques are considered the
best strategy for message recovery. For Classic McEliece, the error weight t is of

order o(n), when n→∞, to be more precise is of order (n−k)
log2(n)

. In this case, the

time complexity of the ISD variants is 2ct(1−o(1)), where c is a constant given
by the code rate. Table 2 gives the list of parameters for the Classic McEliece
proposal.

Table 2: IND-CCA2 KEM McEliece parameters.

Parameters set 348864 460896 6688128 6960119 8192128

n 3488 4608 6688 6960 8192
k 2720 3360 5024 5413 6528
t 64 96 128 119 128

Equivalent bit-level security 128 196 256 256 256
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3 Syndrome decoding over N

3.1 Description of the problem

Definition 2 (N-SDP).
Input: H ∈Mn−k,n (N) with hi,j ∈ {0, 1} for all i, j,

s ∈ Nn−k and t ∈ N∗ with t 6= 0.
Output: x ∈ Nn with xi ∈ {0, 1} and wt(x) ≤ t, such that Hx = s.

Notice that H and x are binary, as in the SDP, whereas s is integer. Basically,
H and x are sampled exactly as for the SDP, it is only the operation, i.e., matrix-
vector multiplication, that changes, and thus its result.

Possible solutions Based on the similarities with SDP, one might try to solve
N-SDP using techniques from coding theory. We briefly enumerate three possible
solutions.

1. The simplest solution is to solve it as a linear system. If we consider the
system Hx = s, it has n − k equations and n unknowns, and hence, can
be solved efficiently. However, there are k free variables, and 2k possible
solutions, since x ∈ {0, 1}. For each instance, compute the Hamming weight,
and stop when the value is smaller than or equal to t. This procedure is not
feasible in practice for cryptographic parameters, due to the values of k.

2. Another possible solution is combinatorial (emulating an exhaustive search).
One can choose subsets of si elements from Supp(Hi,) for increasing values
of i, until it finds the correct combinations. This solution can be further
optimised by choosing subsets from a smaller set at each iteration, where
previously selected positions are rejected from the updated set. Even so, the
time complexity will be dominated by a product of binomial coefficients that
is asymptotically exponential in t.

3. A modified ISD to the integer requirements. Let us choose the original al-
gorithm of Prange [43],that is randomly permuting the matrix H (denote
P such a permutation) until the support of the permuted x is included in
the set {0, . . . , n− k− 1}, i.e., the set where the HP is in upper triangular
form. To put an integer matrix in the upper triangular form, one has to use
the equivalent of the Gaussian elimination for the integers, i.e., the Hermite
normal form. So, by computing an integer matrix A and H∗, so that H∗ is
upper triangular on its first n− k positions we obtain:

AHP
(
P Tx

)
= AH ′x′ = H∗x′ = As. (3)

If Supp(x′) ⊆ {0, . . . , n − k − 1} then the new syndrome s∗ = As has
rather small integer entries, that directly allow the computation of x′. This
algorithm has time complexity similar to the classic ISD, and hence, remains
exponential in t.

Since all these methods are not feasible in practice for cryptographic param-
eters, we propose another solution. For that, let us notice the following fact.
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Remark 1. As for the maximum-likelihood decoding problem, we can reformu-
late N-SDP as an optimization problem:

min{wt(x) |Hx = s,x ∈ {0, 1}n}, (4)

where H and s are given as in Definition 2.

This fact leads us to searching for mathematical optimization techniques,
such as integer linear programming.

3.2 Integer Linear programming

ILP was already used in a cryptographic context, mainly for studying stream
ciphers [11, 12, 41]. The authors of [41] implemented ILP-based methods that
gave practical results for Enocoro-128v2, as well as for calculating the number
of active S-boxes for AES. In [11, 12] ILP was used for studying the Trivium
stream cipher and the lightweight block cipher Ktantan. In all of these, the
technique was to reformulate the original cryptographic problems by means of
ILP, and use some well-known solvers in order to obtain practical evidence of
their security. Typically, in [12] the authors used the CPLEX solver. There are
mainly three big solvers for LP and ILP problems: lpSolve11, IBM CPLEX12

and Gurobi13, recently tested for various types of practical problems [32].
We point here some necessary facts about ILP, as we will use ILP as a tool

only. Interested readers might check [10, 23] for more details.

Definition 3 (ILP problem). Let n,m ∈ N+, b ∈ Nn, s ∈ Nm and
A ∈Mm,n (N). The ILP problem is defined as the optimization problem

min{bTx|Ax = c,x ∈ Nn,x ≥ 0}. (5)

Any vector x satisfying Ax = s is called a feasible solution. If a feasible
solution x∗ satisfies the minimum condition in (5) then x∗ is optimal. In order
to redefine our initial problem, i.e., (4) into an ILP problem, we need to redefine
the Hamming weight of a vector as a linear operation.

3.3 Solving N-SDP using ILP

Theorem 1 ([17]). Let us suppose that there exists a unique vector x∗ ∈ {0, 1}n
with wt(x∗) = t, solution to the N-SDP. Then x∗ is the optimum solution of an
ILP problem.

Proof. Suppose that such an x∗ exists and is unique, i.e., Hx∗ = s with s ∈
Nn−k and wt(x∗) = t. We will construct an ILP problem for which x∗ is the
optimum solution. For that, we simply set A = H, c = s, and bT = (1, . . . , 1)

11 http://lpsolve.sourceforge.net/5.5/
12 https://www.ibm.com/products/ilog-cplex-optimization-studio
13 https://www.gurobi.com
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in (5). Since x ∈ {0, 1}n wt(x) =
∑n

i=1 xi = (1, . . . , 1) · x, but this is equal to

bTx∗. The ILP problem we need to solve can now be defined as:

min{bTx|Hx = s,x ∈ {0, 1}n}, (6)

which is exactly (4). This implies that x∗ is a feasible solution to (6), and as
x∗ is the unique vector satisfying Hx∗ = s with wt(x∗) ≤ t, x∗ is optimum for
the minimum weight condition.

ILP problems are defined as LP problems with integer constraints, hence any
algorithm for solving an LP problem could potentially be used as a subroutine
for solving the corresponding ILP problem. Usually, these are formalised in a
sequential process, where the solution to one LP problem is close to the solution
to the next LP problem, and so on, until eventually the ILP problem is solved.
One of the most efficient method for solving ILP problems is the branch and
cut method. In a branch and cut algorithm, an ILP problem is relaxed into an
LP problem that is solved using an algorithm for LP problems. If the optimal
solution is integral then it gives the solution to the ILP problem. There are
mainly two famous methods for solving the linear problem: the simplex and the
interior point method.

The simplex algorithm, introduced by Dantzig in [15], is one of the most
popular methods for solving LP problems. The idea of this algorithm is to move
from one vertex to another on the underlying polytope, as long as the solution is
improved. The algorithm stops when no more neighbours of the current vertex
improve the objective function. It is known to be really efficient in practice, by
solving a large class of problems in polynomial time. However, it was proved in
[25] that there are instances where the simplex falls into the exponential time
complexity class.

Interior point algorithms represent a class of alternative algorithms to
the simplex method, and were first proposed by [24]. Several variants improved
the initial method, also by providing polynomial time complexity [29, 51]. As
the name suggests, this method starts by choosing a point in the interior of
the feasible set. Moving inside the polyhedron, this point is improved, until the
optimal solution is found.

Efficient solutions using interior point methods were proposed for the problem
of maximum-likelihood decoding of binary codes [49, 53, 54]. These have running
times dominated by low-degree polynomial functions in the length of the code.
Also, they are in particular very efficient for large scale codes [49, 53]. For these
particular interesting arguments, we choose the interior point method for solving
the N-SDP.

Solving the N-SDP The algorithm we propose here to solve the N-SDP can be
described as follows. Initiate the parameters from (6), solve a relaxation of the
N-SDP (using the interior point methods), round the solution to binary entries
(using the method from [37]) and finally verify if the binary solution satisfies
the parity-check equations and the weight condition. The relaxation of the ILP

10



problem to an LP problem is a common method, more exactly, the LP problem
that we have to solve is:

min{bTx |Hx = s,0 � x � 1,x ∈ Rn}, (7)

where � is defined by x � y if and only if xi ≤ yi for all 0 ≤ i ≤ n− 1.

Algorithm 1 ILP solver for N-SDP

Input: H, s, t
Output: x solution to N-SDP or ERROR

1: Set b = (1, . . . , 1)T

2: Solve equation (7) . Using the interior-point method
3: round the solution x∗ to x∗ ∈ {0, 1}n . as done in [37]
4: if Hx∗ = s and wt(x) ≤ t then
5: return x∗

6: else
7: return ERROR
8: end if

3.4 Optimization

In this paragraph we propose an optimization to Algorithm 1. Let us first define
the following sets :

Definition 4. Let 0 < ` < n − k and ∅ ⊂ I0 ⊂ · · · ⊂ I` ⊆ {0, . . . , n − k − 1}.
For 0 ≤ i ≤ ` we define HIj = {x ∈ {0, 1}n | HIj ,x = sIj}, and H = {x ∈
{0, 1}n |Hx = s}.

Now, let us prove how to reduce the number of constraints to our initial prob-
lem. First, notice that N-SDP can be written as min{bTx | x ∈ H}. Secondly,
we prove that:

Proposition 1. Let 0 < ` < n − k and ∅ ⊂ I0 ⊂ · · · ⊂ I` ⊆ {0, . . . , n − k − 1}
and x∗Ij = min{bTx | x ∈ HIj}, for any 0 ≤ j ≤ `. Then wt(x∗) ≥ wt(x∗I`) ≥
· · · ≥ wt(x∗I0).

Proof. From definition 4 we deduce

H ⊆ HI` · · · ⊆ HI0 . (8)

Since the sets HIj are finite, we can take the minimum and use the inclusion
from (8) to deduce the result.

Hence, the sequence wt(xI∗
0
), . . . ,wt(xI∗

`
) is non-decreasing. If the initial set

is I0 = {si0} then the sequence of Hamming weight of the solutions starts from
wt(xI∗

0
) = si0 .
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We will thus use Proposition 1 as a reduction of our initial problem to a
shorter one, in terms of constraints or equivalently in the dimension of the sys-
tem. Two algorithms exploiting the result of Proposition 1, are presented here.
Both are based on the same rationale:

1. Choose I0 and call the ILP solver for N-SDP (Algorithm 1);
2. if the output is an optimum solution for the full problem then stop;
3. if not add an extra row to I0 to create I1 and continue until a solution is

found.

This procedure allows us to solve an easier instance and reduce the overall time
complexity of our algorithm. The way rows are sampled for building I0, I1, . . . , I`
has a significant impact on the length of the chain `. Two natural methods for
creating the sets are described. The first one, uses uniform random sampling
(each row has a probability 1/(n − k) of being selected), and as we shall see in
Section 5.2 it allows to solve the N-SDP for all the Classic McEliece parameters
only by using less than 40% of the rows. Reducing the parameter ` might be
achievable by starting in a more clever way. More exactly, by including rows in
an ordered manner, where the ordering corresponds to the decreasing order on
the entries of the syndrome. By doing so, we start at wt(xI∗

0
) = max{si, 0 ≤

i ≤ n − k}. For the parameters used in the Classic McEliece proposal, the
improvement of this method compared with the random sampling, reduces the
number of required rows for solving the N-SDP by a multiplicative factor close
to 2. As we shall see in Section 5.2, considering only a fraction of the syndrome
entries decreases the empirically observed time complexity of the N-SDP from
O(n3) to O(n2).

4 Fault injection

As shown in the previous section, computing the syndrome in N instead of F2

makes the SDP considerably easier to solve. In order to perform this change,
we must have the processor perform the additions in N instead of F2 during the
syndrome computation. This is done by replacing the exclusive-OR instruction
with an add-with-carry instruction. Since both these arithmetic instructions are
performed by the arithmetic logic unit of the processor, their associated op-
codes are close, in the sense that the Hamming distance between them is small.
Therefore, only few bits must be modified to switch from one to the other.

We focus on the Thumb instruction set here since it is widely used in em-
bedded systems. The fact that, in the Thumb instruction set, the exclusive-OR
instruction can be transformed into an add-with-carry instruction by a single
bit-set can be considered pure luck. This is at least partially true but this is not
as surprising as it seems. Indeed, both these instructions are ”data processing”
instructions. As such, they are handled by the arithmetic logic unit. Therefore,
the opcode bits are used to generate similar control signals, and it is not sur-
prising that they differ by only a few bits. A few examples of corruptions in
other instruction sets are given in Appendix A, showing that this attack could
be easily ported to other targets.

12



4.1 Previous work

The single-bit fault model is a very powerful one and allows an attacker to mount
efficient attacks [21]. However, performing a single-bit fault in practice is far from
trivial. While these can be performed by global fault injection techniques, such
as under-powering [6], further analysis is necessary to filter the exploitable faults.
Indeed, while performing a single-bit fault at a non-chosen position is feasible,
targeting one bit specifically is much more complicated.

To this end, a more precise fault injection technique is required. In this
regard, laser fault injection is a well-suited method. Indeed, as shown in [14], it
is possible to perform a single-bit bit-set fault on data fetched from the Flash
memory. This makes it possible to alter the instruction while it is fetched, before
it is executed by the processor. We insist here on the fact that, as detailed in [14],
the corruption is temporary, and only performed on the fetched instruction. The
content of the Flash memory is left untouched. Therefore, if the instruction is
fetched again from the Flash memory while no laser fault injection is performed
then it is executed normally.

Colombier et al. showed that targeting a single bit in a precise manner is rel-
atively easy, since it only requires to position the laser spot at the right location
on the y-axis in the Flash memory [14], aiming at different word lines. Indeed,
moving along the x-axis does not change the affected bit, since the same word
line is covered by the laser spot. Therefore, targeting a single bit of the fetched
instruction is possible. This observation was experimentally confirmed on two
different hardware targets in [38], further proving the validity of this fault model.
Moreover, they also showed that two adjacent bits can also be set by shooting
with sufficient power between two word lines. This single-bit or dual-bit bit-set
fault model is the one we use as a framework for the rest of the article.

4.2 Bit-set fault on an exclusive-OR instruction

Using the fault injection technique described above, we now show how to apply it
to replace an exclusive-OR instruction with an add-with-carry instruction. Fig-
ure 1 shows the Thumb encoding of both instructions, given in the ARMv7-M
Architecture Reference Manual14. When comparing both instructions, we ob-
serve that only one single-bit bit-set fault, on the bit of index 8, is required to
replace the exclusive-OR instruction with an add-with-carry instruction. This is
highlighted in red in Figure 1.

4.3 Bit-set fault on schoolbook matrix-vector multiplication

Now that we have shown that a single-bit fault can replace an exclusive-OR in-
struction with an add-with-carry instruction, we will extend it to a matrix-vector
multiplication, used to compute the syndrome in code-based cryptosystems. The
syndrome computation is typically implemented as shown in Algorithm 2. This
is how it is done in the NTL library for instance, which is widely used by NIST
PQC competition candidates.

14 https://static.docs.arm.com/ddi0403/e/DDI0403E_B_armv7m_arm.pdf
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic EORS: Rd = Rm ^ Rn
0 1 0 0 0 0 0 0 0 1 Rm Rdn

Generic ADCS: Rd = Rm + Rn
0 1 0 0 0 0 0 1 0 1 Rm Rdn

Fig. 1: Thumb encoding of the exclusive-OR (EORS) and add-with-carry (ADCS)
instructions. The bit set by laser fault injection is highlighted in red.

Algorithm 2 Matrix-vector multiplication.

1: function Mat vec mult(matrix, error vector)
2: for r ← 0 to n− k − 1 do
3: syndrome[r] = 0 . Initialisation

4: for r ← 0 to n− k − 1 do
5: for c ← 0 to n− 1 do
6: syndrome[r] ^= matrix[r][c] & error vector[c]

7: . Multiplication and addition

8: return syndrome

When performing laser fault injection in this setting, an attacker has essen-
tially three delays to tune. According to this implementation, an exclusive-OR
instruction will be executed at each run of the inner for loop. The delay between
the execution of these instructions is constant. We refer to it as tinner. The sec-
ond delay of interest is between the last and the first exclusive-OR instruction
of the inner for loop, when one iteration of the outer for loop is performed. This
delay is constant too. We refer to it as touter. Finally, the last delay to tune is
the initial delay, before the matrix-vector multiplication starts. We refer to it as
tinitial. Figure 2 shows these three delays on an example execution.

execution
starts X
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X
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X
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X
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X
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X
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X
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X
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X
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X
O
R

X
O
R

tinitial tinner touter
time

Fig. 2: Laser fault injection delays to tune

These delays can be tuned one after the other. The first delay to tune is
tinitial, then tinner and finally touter. Therefore, performing laser fault injection
on the schoolbook matrix-vector multiplication does not induce much additional
practical complexity compared with the exclusive-OR instruction alone because
of the regularity of the computation. Overall, (n− k)×n faults are necessary to
obtain the full faulty syndrome in N.
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4.4 Bit-set fault on a packed matrix-vector multiplication

The matrix-vector multiplication method described in Algorithm 2 makes poor
use of the capacity of the computer words when matrix entries are in F2. Indeed,
even if both the matrix and the error-vector are binary, their elements are stored
in a full computer word. Although the smallest type available can be used, it
still takes a byte to store only one bit of information.

To overcome this, consecutive bits in the rows of the parity-check matrix can
be packed together in a single computer word. Typically, eight bits are packed in
a byte. In this setting, the dimensions of the matrix, error-vector and syndrome
are changed. The parity-check matrix now has n−k rows and n/8 columns. The
error-vector now has n/8 entries. The syndrome now has (n− k)/8 entries..

Algorithm 3 Matrix-vector multiplication with packed bits15.

1: function Mat vec mult packed(matrix, error vector)
2: for r ← 0 to n− k − 1 do
3: syndrome[r/8] = 0 . Initialisation

4: for r ← 0 to n− k − 1 do
5: b = 0

6: for c ← 0 to n/8− 1 do
7: b ^= matrix[r][c] & error vector[c] . Multiplication and addition

8: b ^= b >> 4; .
9: b ^= b >> 2; . Exclusive-OR folding

10: b ^= b >> 1; .
11: b &= 1; . LSB extraction
12: syndrome[r/8] |= b << (r%8) . Bits packing

13: return syndrome

Compared to the schoolbook method shown in Algorithm 2, a variable b is
used to store the intermediate result of the multiplication and addition (see line 7
of Algorithm 3). Next, a few extra steps are performed on this variable. First,
it is necessary to compute the exclusive-OR of all the bits of this variable. This
is done by computing the exclusive-OR of the lower half and the upper half, by
shifting by four positions (see line 8 of Algorithm 3). This is repeated again by
shifting by two and finally one position (see lines 9 and 10 of Algorithm 3). We
refer to this technique as exclusive-OR folding. The least-significant bit is then
extracted (see line 11 of Algorithm 3). Finally, it is packed into the syndrome
byte at the correct position (see line 12 of Algorithm 3).

Compared to the schoolbook matrix-vector multiplication shown in Algo-
rithm 2, several different faults are required here. They are detailed below.

15 as implemented by the syndrome function in the encrypt.c source file of the software
submission of Classic McEliece : https://classic.mceliece.org/nist.html
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Fault on the multiplication and addition for loop The first specific fault
to perform on the packed matrix-vector multiplication is on the inner for loop
found on line 6 of Algorithm 3. Indeed, since the bits of the parity-check matrix
are now packed, we cannot perform the sum over N and expect the final value to
be the sum of all individual bits. This is because, when bits are stored in a word,
performing the addition in N will incur carries which will propagate and make
the final byte useless, since individual contributions of the rows of the parity
check matrix are mixed.

To overcome this issue, we propose to prematurely exit this for loop. Before
explaining how this can be achieved in practice by laser fault injection, we detail
the consequences it has on the packed matrix-vector multiplication.

Consequence of a premature exit of the inner for loop of the packed matrix-
vector multiplication If we are able to prematurely exit the inner for loop, then
the value of the intermediate variable b, which holds the temporary result of the
multiplication and addition, is changed. We shall identify the possible values of
b by induction. Let us refer to the value of b after the i-th execution of the for
loop as bi.

Let us first identify the base case, that is, exiting after only one execution.
We have:

b0 = matrix[r][0] & error vector[0] (9)

We can now identify the induction step, which corresponds to the subsequent
executions of the for loop. We then have:

bi = bi−1 ˆ (matrix[r][i] & error vector[i]) (10)

Therefore, we now have the values of b from b0 to bn/8−1. The value bi is
obtained by executing the for loop i times and prematurely exiting it only then.
As mentioned in subsection 4.1, this is feasible since instructions are corrupted
”on the fly”, only when they are fetched from the Flash memory.

In order to obtain the faulty syndrome entry, that is, the sum over N, we
must compute the sum given in Equation (11). We use the Hamming weight
(wt) to obtain the sum of the individual bits.

wt(b0) +

n/8−1∑
i=1

wt(bi ˆ bi−1) (11)

We then obtain a faulty syndrome entry just like the one we got after per-
forming fault injection on the schoolbook matrix-vector multiplication. The next
paragraph describes how to perform it practically by laser fault injection.

Premature exit of a for loop by laser fault injection As discussed in [14], prema-
turely exiting a for loop is feasible by corrupting the loop variable increment.
Instead of incrementing the loop variable by only 1, we can try to make this
increment as large as possible. As shown in Figure 3, the increment of the loop
variable at the end of the for loop is performed by a 16-bit ADD instruction. It
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mov r1, #0

inner:

...

...

...

add r1, #1

cmp r1, #N/8

ble @inner

(a) Typical assembly
code of a for loop.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic ADD: Rdn += imm8

0 0 1 1 0 Rdn imm8

ADD r1 #1

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

ADD r1 #193

0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1

(b) Thumb encoding of the ADD instruction and two exam-
ples with different immediate values. The bits which must
be set by laser fault injection are highlighted in red.

Fig. 3: Assembly code of a for loop and a way to exit it prematurely by corrupting
the loop variable increment.

has been demonstrated in [14] that it is possible to perform a bit-set fault on
two adjacent bits of the instruction. Here, we can thus make the increment step
as large as 193 by setting the bits of index 6 and 7 of the ADD instruction.

As shown in Algorithm 3, the body of the inner for loop normally executes
n/8 times. By performing the previously described fault, we can make the loop

variable increment step as large as 193. Therefore, the loop is executed
⌈

n
8×193

⌉
=⌈

n
1544

⌉
times. Our objective is to exit the for loop prematurely. In this regard,

for large values of n, executing the loop
⌈

n
1544

⌉
times can lead to execute the for

loop for a few more iterations.
For instance, if n = 3488, then the loop should be executed n

8 = 436 times.
If we want to exit after 5 iterations to obtain b5, then we will in fact obtain:

b5 = b4 ˆ matrix[r][5] & error vector[5] ˆ

matrix[r][198] & error vector[198] ˆ (12)

matrix[r][391] & error vector[391]

instead of:
b5 = b4 ˆ matrix[r][5] & error vector[5] (13)

since 391 ≡ 198 ≡ 5 mod 193.
Therefore, we have a few parasitic extra elements in the bi value. How-

ever, since the error-vector has low weight, we can expect the associated bytes,
error vector[198] and error vector[391] in Equation 12, to be all zeros and
therefore not change the bi value.

Another approach would be to obtain multiple values for every bi, by explor-
ing several increment steps. The correct one could then potentially be extracted
as the common pattern of all these values. This will not be investigated further
in this article but could be the subject of future research.

Fault on the exclusive-OR folding Now that we obtained a temporary faulty
syndrome entry stored in the intermediate variable b, we must deal with the
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exclusive-OR folding (see lines 8 to 10 of Algorithm 3) in order to keep this
value intact.

There are two ways to address the exclusive-OR folding. The first possibility
is to corrupt the destination register in the instruction. Depending on the level
of optimisation used for the compilation, the exclusive-OR folding can be either
decomposed into three consecutive shift-exclusive-OR pairs or be performed di-
rectly by three consecutive ”wide” exclusive-OR operations. Indeed, as specified
in the ARM reference manual, the exclusive-OR instruction can be made ”wide”
to include an optional shift of one of the operands (see ARMv7-M Reference
Manual). In both cases, corrupting the destination register is easy and consists
only in performing a bit-set on the Rd part of the instruction.

The second possibility, which is the one we consider more practical, is to
notice that the sequence of three operations that make up the exclusive-OR
folding constitute a permutation over F8

2. We verified it exhaustively for the
256 possible values. Therefore, rather than performing the destination register
corruption described previously, one can simply inverse the permutation.

Fault on the least-significant bit extraction The next operation to address
is the least-significant bit (LSB) extraction (see line 11 of Algorithm 3).

Again here, there are two possible faults. Similarly to what was presented
before for the exclusive-OR folding, it is also possible to corrupt the destination
register. This would leave the source register untouched and preserve the full
value of bi, not only its LSB. The second option is to corrupt the ”immediate”
operand of the AND instruction that performs the masking to extract the LSB.
To extract the LSB, this immediate value is 0x01. The objective here is to set as
many bits as possible to 1 in the immediate value, in order for the AND masking to
reset as few bits as possible. Depending on the level of optimisation used for the
compilation, the LSB extraction can be performed in one or two instructions. For
the sake of readability, we consider only the case where two 16-bit instructions
are used instead of a condensed 32-bit one. However, the idea to apply is exactly
the same.

Figure 4a shows the two assembly instructions that perform the LSB extrac-
tion. First, the mask value is loaded. It is then used as a mask in the subsequent
AND instruction. Ideally, we would like to load 255 as a mask instead, so that no
bits are reset by the AND masking. However, this requires to perform a bit-set
on seven adjacent bits, which is out of reach with a single-spot laser that can
at most fault two adjacent bits [14]. This could be done with a multi-spot laser
setup though. Therefore, here, four intermediate faults are necessary. For each
of them, two bits of the mask are set, as shown in Figure 4b, giving the following
mask values: 0x03, 0x0D, 0x31 and 0xC1. We refer to the four consecutive faulty
byte values as b#3, b#13, b#49 and b#193. Then the correct b value, without LSB
extraction, is given in Equation (14).

b = b#3 | b#13 | b#49 | b#193 (14)
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mov r1, #1

and r1, r2

(a) Assembly code of
the LSB extraction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic MOV: Rd = imm8

0 1 0 0 0 Rd imm8

MOV r1 #1

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

MOV r1 #3

0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

MOV r1 #13

0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1

MOV r1 #49

0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1

MOV r1 #193

0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1

(b) Thumb encoding of the MOV instruction and the set of four
corruptions required to get the full byte value. The bits which
must be set by laser fault injection are highlighted in red.

Fig. 4: Assembly code of the LSB extraction and the four necessary corruptions
required to prevent it and obtain the full byte value.

Fault on the bits packing operation The previous sections showed how it
is possible to keep the b value intact. Finally, the last operation to address is
the bits packing operation (see line 12 of Algorithm 3). There are two issues to
address here. First, we must deal with the left shift that will cause the most
significant bits of b to be dropped. Second, we must address the eight successive
OR operations performed for each syndrome entry.

We will actually start without dealing with the shift. The objective here is
to have the b stored in the syndrome vector directly, to make them available to
the attacker. To this end, we will apply again the idea of modifying the loop
increment (as shown in Figure 3 but this time for the outer for loop). The
pattern to observe is the following. If we increase the loop increment after the
first execution of the outer for loop, then we have: s[0] = b, with b not being
shifted. All other syndrome entries are altered and unusable. If we increase the
loop increment after the ninth execution of the outer for loop, then we have:
s[1] = b, with b not being shifted. Again, all other syndrome entries are altered
and unusable. We then repeat this process and exit the outer for loop after the
i-th execution, i ∈ {8m + 1 | m ∈ N, m < k/8}.

This fault leaves us with a syndrome vector which entries contain every eighth
faulty syndrome value, those for which the row index r verifies r ≡ 0 mod 8.
Therefore, we only have 12.5 % of the faulty syndrome entries to feed to the
linear programming solver. We briefly examine some possibilities to obtain a
higher percentage.

The issue here is with the left shift operation, which discards the most sig-
nificant bits of the byte b. This shift is implemented with the LSL instruction.
As it turns out, performing a one-bit bit-set at different positions of this in-
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struction leads quite a few corrupted instructions. They are listed in Figure 5.
The most interesting corruption is probably to turn the LSL instruction into a
CMP instruction, which compares the values stored in the registers and updates
the processor flags but does not modify the content of the registers. Therefore,
this is the corruption that we pick. Alternatively, other corruptions such as LSR
(logical shift right) or SBC (subtract with carry) could also be exploited, but
would require more analysis.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic LSL: Rdn <<= Rm
0 1 0 0 0 0 0 0 1 0 Rm Rdn

Generic LSR: Rdn >>= Rm
0 1 0 0 0 0 0 0 1 1 Rm Rdn

Generic SBC: Rdn -= Rm
0 1 0 0 0 0 0 1 1 0 Rm Rdn

Generic CMP: Compare(Rm, Rn)

0 1 0 0 0 0 1 0 1 0 Rm Rn

Fig. 5: Possible corruptions of the LSL instruction with a one-bit bit-set fault

At last, the final operation to deal with is the OR operation which packs the
bits together without affecting the ones which have already been packed. This
must be addressed by premature exit of the outer for loop again.

After the row of index r ≡ 0 mod 8 has been processed, the syndrome entry
holds the correct value, as mentioned before, making 12.5 % of the faulty entries
readily available. However, if we run the outer for loop for one more iteration,
the row of index r ≡ 1 mod 8 is processed. The syndrome entry value is then:
br≡0 | (br≡1 << 1). If the value br≡0 had many zeroes and the most significant
bit of br≡1 is not 1, then the value of br≡1 can be deduced. However, this might
not be correct, but considering the low error weight t for the Classic McEliece
parameter sets, this might be possible. A trial-and-error process could then be
followed, trying to include those new faulty syndrome entries into the problem
fed to the solver.

Summary and feasibility of faulting the packed matrix-vector multi-
plication Figure 6 summarizes the steps performed in the packed matrix-vector
multiplication and the associated faults required to compute the multiplication
in N instead of F2. Essentially, a lot of required faults involve prematurely exiting
the inner and outer for loops.

For practical reasons, it is worth noting which bits of the instructions must be
set. Indeed, this determines the position of the laser spot in the Flash memory.
The timing of the laser fault injection can be tuned very precisely, allowing to
selectively target one instruction only. However, given the linear speed at which a
typical XYZ stage travels and the operating frequency of the device, it is foolish

20



For loop of
multiplications
and additions

Exclusive-OR
folding

LSB extraction Bits packing

Prematurely
exiting F8

2 permutation

OR after four
complementary

mask corruptions

Prematurely
exiting the

outer for loop

Fig. 6: Summary of the operations found in the packed matrix-vector multipli-
cation and the required associated faults.

to try to fault consecutive instructions at different bit positions. Premature exit
of a for loop requires to set the bits of index 7 and 6. Corrupting the MOV

instruction to avoid LSB extraction, as depicted in Figure 4b, requires to set
the bits 7 and 6, then 5 and 4, then 3 and 2, and finally 1. This is thus not
feasible with a single-spot laser injection station, but would be possible with a
multi-spot station.

5 Experimental results

5.1 Fault injection

We did perform the fault described above by laser fault injection. This allowed
us to replace the exclusive-OR instruction by an add-with-carry instruction. We
use an infrared laser, at a wavelength of 1064 nm and perform backside injection
on the target. We reused the laser fault injection parameters given in [14]. The
injection power is 1 W. The laser spot has a diameter of 5 µm. The duration
of the laser pulse is 135 ns. This is roughly equal to the clock period of the
microcontroller, which runs at 7.4 MHz. Laser synchronisation is becoming more
precise and circuit with faster clocks are definitely within reach, with laser pulses
as short as a few nanoseconds. Then, the fault is achieved by placing the laser
spot in the Flash memory of the 32-bit microcontroller. This device embeds an
ARM Cortex-M3 core, which is a very common processor core found in many
embedded systems. We validated that the fault injection was indeed correctly
performed by comparing input/output pairs with and without fault injection.
This confirmed that the exclusive-OR instruction can indeed be replaced with
an add-with-carry instruction.

Figure 7 shows a detailed example of instruction corruption performed by
laser fault injection. The example code simply loads an identical constant value
into two registers and performs the exclusive-OR of them. The value is then read
out from the destination register.

On the first line, no fault injection is performed. Since the value loaded into
the registers is the same, the exclusive-OR leads to a byte where all bits are zero,
as shown in the readout value of the destination register.

On the second line, a fault is injected. This allows to perform a bit-set on
the bit of index 8, as shown in red in the ”Binary machine code” column. This
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Fault Assembly code Binary machine code Readout

mov r3, #90 0010 0011 0101 1010

No mov r4, #90 0010 0100 0101 1010 r3 = 0x00

eors r3, r4 0010 0000 0110 0011

mov r3, #90 0010 0011 0101 1010

Yes mov r4, #90 0010 0100 0101 1010 r3 = 0xB4

adcs r3, r4 0010 0001 0110 0011

Fig. 7: Detailed example of instruction corruption by laser fault injection. The
effects of the fault are highlighted in red

in turns changes the exclusive-OR operation into an add-with-carry operation.
This is visible in the ”Assembly code” column, where the eors instruction is
replaced with an adcs instruction. As a consequence, the value stored in the
destination register is different from zero and equal to the sum of both registers
instead. Since we observe precisely this value in our experimentation, it confirms
that the instruction has been successfully corrupted.

Following the fault injection strategies detailed in Section 4, we are able to
obtain a syndrome with values in N. The following section describes the actual
exploitation of this syndrome to recover the binary error-vector.

5.2 Syndrome decoding over N with integer linear programming

After obtaining a faulty syndrome with entries in N, we feed it and the parity-
check matrix to the linear programming solver. We used the linprog function
of the scipy.optimize [52] Python module. It implements the interior point
method as described in [2]. As mentioned in Section 3, we chose the interior
point method over the simplex, for several already known arguments. We still
performed a comparison between these two methods for our specific problem,
and indeed, the interior point method turned out to be much faster.

In order to remain as general as possible, we consider parity-check matrices of
random binary codes. Since no efficient decoding algorithm exists for these, they
can be considered the worst-case scenario. Also, all the code-based proposals
to the NIST competition state that the public codes are indistinguishable from
random codes. Parity-check matrices which are associated with structured codes
thus cannot be harder to handle than the ones of random binary codes. All
experiments are conducted on a desktop computer, embedding a 6-core CPU
clocked at 2.8 GHz and 32 GB of RAM.

In Table 3 the precise timings (in seconds) to solve the modified SDP for all
the proposed parameters of the Classic McEliece submission are given. Notice
that even for the 256 bit security level parameters, using ILP, we retrieve the
secret message in less than three seconds.

As highlighted in Section 3.4, only a fraction of the parity-check matrix rows
and syndrome entries are required to solve the linear programming problem.
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Table 3: Execution time for solving the modified SDP using the optimal number
of rows in the ILP (optimized version) for Classic McEliece parameters.

Parameters set 348864 460896 6688128 6960119 8192128

n 3488 4608 6688 6960 8192
k 2720 3360 5024 5413 6528
t 64 96 128 119 128

Equivalent bit-level security 128 192 256 256 256

Required number of rows 340 470 625 597 658

Execution time [s] 0.6925 1.2045 2.3865 2.1295 2.7625

This fraction depends on at least three parameters: the length of the code n,
the weight of the solution t, and the method used for adding extra rows to
the system. Here, we will limit our discussion to the case where the algorithm
randomly selects rows until a valid solution to the initial problem is found. Hence,
there is a threshold, a minimum number of rows required to solve the N-SDP.

In order to realize how efficient the ILP is at solving the N-SDP, and to sus-
tain our method for other potential sets of parameters, we simulate our attack
on a wider range of parameters. For that, we choose values of t of order

√
n and√

n log(n). One might argue that in the case of the Classic McEliece cryptosys-
tem, the value of t equals n−k

log(n) , which is different from what we propose here. No-

tice that in the Classic McEliece cryptosystem, the order of k is about 2n
3 , which

makes t approximately n
3 log(n) . At these orders, for any n ∈ {854, . . . , 29 448}

we have that
√
n ≤ n

3 log(n) ≤
√

n log(n). Hence, the two cases considered here

represent lower and upper bounds for any potential set of parameters of the
Classic McEliece cryptosystem. As we will detail in the next paragraph, for any
parameters within this range of values, the ILP solver will retrieve the secret
message from the faulty syndrome within minutes.

Required percentage of faulty syndrome entries for random sampling
Figure 8 shows how the percentage of required syndrome entries changes for
different values of n. The value of k equals as in the case of the Classic McEliece
n/3. This depends not only on n but also on the weight of the error-vector. Fig-
ure 8a shows the required percentage of syndrome entries for t =

√
n. Figure 8b

shows the required percentage of syndrome entries for t =
√

n log(n). As stated
before when the exact parameters or the McEliece are considered (see Figure 8c)
the percentage of required rows is in between t =

√
n and t =

√
n log(n), being

closer to the former for small security levels, an closer to the later for high se-
curity levels. For each value of n and every percentage we estimate the success
rate by solving the linear programming problem 20 times.

For t =
√
n log(n), as shown in Figure 8b, the required percentage of syn-

drome entries does not drop as fast. Moreover, this leads to an issue related to
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Fig. 8: Success rate of solving the linear programming problem for different values
of n and percentage of syndrome entries considered.

large values of t. For example, n = 10 000 leads to t =
√

n log(n) = 303. This is
already higher than the biggest value of t in Classic McEliece (see Table 2). At
this number of errors, since n is not so large, the linear programming problem
to solve is better satisfied by non-binary vectors. Therefore, it is necessary to
add bounds on the variables of the problem to make sure that they remain in
the [0, 1] interval. This dramatically increases the memory requirements of the
solver, thereby limiting the largest value of n to 2× 104 approximately. Note
that this is only dictated by the RAM available on the desktop computer we
used and is not an algorithmic limit.

When the precise parameters of the Classic McEliece are considered, about
n/10 rows were sufficient to solve the N-SDP when random sampling is used
in the optimizations (see Table 3). Further simulations show that this number
could be reduced to n/20 when the second optimization algorithm is used. Hence,
considering high-rate Goppa codes with k/n ≤ 0.90 leads to practical attacks on
the corresponding N-SDP.

It is worth mentioning that, for any t <
√
n log(n), the ILP solver finds

the binary solution directly, which makes it really efficient. However, for larger
values of t, we need to bound the solution to the [0, 1] interval in order to
be able to practically solve the ILP. In addition, when parameters grow, the
required percentage is reduced. This contradicts the common sense that larger
cryptographic parameters offer better security.

Execution time Figure 9 shows how the execution time of the linear program-
ming solver changes for different values of n. Two cases are displayed. In the
”Full” case, the whole faulty syndrome is fed to the solver. In the ”Optimal”
case, only the required percentage of syndrome entries are used.

We can observe that considering only the required percentage of syndrome
entries drastically reduces the computation time. For n = 9000, and t =

√
n,
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Fig. 9: Execution time of the linear programming solver for different values of n.
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more than one order of magnitude of computation time is saved. For the Classic
McEliece parameters, less than three seconds of computation are necessary in
the 256-bit security case. For 128 bits of security, the problem is solved in one
second approximately.

We can empirically observe on Figure 9 that the slope is different for the
”Full” and the ”Optimal” cases, having respectively O(n3) and O(n2) time com-
plexities. We do not have an explanation for this behaviour at the moment. This
could be the subject of future works.

6 Conclusion

We have shown in this paper that, using laser fault injection, we are able to
modify one of the building blocks of code-based cryptosystems, i.e., the well-
known syndrome decoding problem. We modeled the modified instance by means
of an integer linear programming problem, and further solve it experimentally in
polynomial time. We have provided real-time attacks against all the parameters
of the Classic McEliece proposal.

Furthermore, we have shown that the number of fault injected can be dras-
tically reduced if we focus on only a few percent of the number of rows of the
matrices involved. Combining laser fault injection to obtain an easier problem
such as the syndrome decoding problem over N instead of F2 and then using
linear programming to solve this problem is an interesting combination that po-
tentially could be applied to other interesting problems, such as the Shortest
Integer Problem or the Shortest Vector Problem.

We can identify several research perspectives to continue this work. First,
finding a better attack path for the packed version would be an advantage. This
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would make the attack more practical. Hardware implementations of Classic
McEliece could also be targeted. On a more theoretical side, studying the com-
plexity of the problem discussed here would also be interesting. In particular,
the drop from cubic to quadratic complexity when considering only the optimal
number of syndrome entries is particularly intriguing.
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A Other instruction sets

Here are a few examples of possible corruptions of the exclusive-OR instruction
in other instruction sets than the one we considered in the article.

ARMv7 In the ARMv716 instruction set, the exclusive-OR instruction (EORS.W)
can be corrupted into a saturated addition instruction (QADD) as shown in Fig-
ure 10.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic EORS.W: Rd = Rm ^ Rn
1 1 1 0 1 0 1 0 1 0 0 0 Rn 0 imm3 Rd imm2 type Rm

Generic QADD: Rd = Rm + Rn
1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

Fig. 10: Fault by bit-sets on the ARMv7 exclusive-OR instruction

PIC In the PIC17 instruction set, the exclusive-OR instruction (XORWF) can be
corrupted into an addition instruction (ADDWF) as shown in Figure 11.

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic XORWF: W = W ^ Rf
0 0 0 1 1 0 d Rf

Generic ADDWF: W = W + Rf
0 0 0 1 1 1 d Rf

Fig. 11: Fault by bit-set on the PIC exclusive-OR instruction

RISC-V compressed In the RISC-V compressed18 instruction set, the exclusive-
OR instruction (C.XOR) can be corrupted into an addition instruction (C.ADDW)
as shown in Figure 12.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic C.XOR: Rd = Rs1 ^ Rs2
1 0 0 0 1 1 Rs1/d 0 1 Rs2 0 1

Generic C.ADDW: Rd = Rs1 + Rs2
1 0 0 1 1 1 Rs1/d 0 1 Rs2 0 1

Fig. 12: RISC-V encoding of the exclusive-OR instruction and a possible fault
feasible by bit-set

16 https://static.docs.arm.com/ddi0403/e/DDI0403E_B_armv7m_arm.pdf
17 http://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf
18 https://riscv.org/specifications/isa-spec-pdf/
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