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An asymptotic approximation of the traveling salesman problem with
uniform non-overlapping time windows

Omar Rifki1, Thierry Garaix1, and Christine Solnon2

Abstract— We develop a continuous asymptotic approxima-
tion of the traveling salesman problem with time windows in the
Euclidean plane, constructing upon the well-known Beardwood-
Halton-Hemmersley theorem. The time windows are taken to be
a partition of a given time horizon. Computational experiments
on random TSP with time windows instances show that the
proposed asymptotic approximations of tour lengths and arrival
times are close to the actual optimal values.

I. INTRODUCTION

The computation of the shortest Hamiltonian cycle along
a number of points is an NP-hard problem, known as the
Traveling Salesman Problem (TSP). For a large number of
points, this operation becomes cumbersome even if heuristic
solving approaches are used. In a great number of situations,
only an approximation of the optimal tour length is needed.
Being able to quickly provide a reliable approximation with
reduced efforts is actually critical to the design of logistic and
distribution systems of several services. For instance, some
postal systems, which usually tend to have a large number of
deliveries, rely on continuous approximations of tour lengths
to partition the service territory [1], [2]. This has even led
the United States Postal Service to significant cost savings
[3]. Also, continuous approximations do not require precise
data about the points to visit. This could be shown to be
useful in several contexts where the locations are not known
in advance, such as in natural disasters or for deliveries in a
dynamic environment.

The contribution of this paper is to extend the continuous
asymptotic treatment to the TSP with time windows, specif-
ically for a model of time windows partition. Time windows
are critical components of the practical routing operations
in logistic and freight distribution. These constraints arise in
traffic restrictions to freight loading zones, to city centers,
or are merely imposed by clients and patients in logistic
operations and medical transport. We consider time windows
for macro-level planning, which are used by several delivery
services, wherein time slots are wide time intervals and
represent a partition of the day. Several services including
postal systems and courier and delivery companies could
benefit from the use of asymptotic approximations of routing
problems with time windows, when it is necessary to
estimate the cost of the routes before computing the routes
themselves. Such applications include districting, facility
location problem, and fleet sizing. Approximations have an
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advantage over heuristics and algorithms for the TSP to be
computed in constant time O(1).

The remaining of the article is organized as follows.
Section II presents a brief literature review on the topic of
continuous approximations in routing problems. Section IV
introduces the proposed asymptotic approximations account-
ing for the time windows, while the preliminaries of the
study are stated in Section III. The computational results
are provided in Section V. The paper is concluded thereafter.

II. BRIEF LITERATURE REVIEW

The approximation of the routing problem is grounded on
the famous formula of Beardwood, Halton, and Hammersley
(BHH), published in 1959 [4]. This result states that when
the number of points to visit goes to infinity on a compact
area, the optimal tour length approaches a constant value.
The theorem is stated in the preliminaries. Noting that
the BHH formula underestimates tour lengths in elongated
areas, Daganzo [5] proposed a strip strategy method, which
efficiently computes the optimal tour length in those types
of areas. These two models [4], [5] gave rise to several
extensions accounting for multiple vehicles, accommodating
to the area’s shape and size, and to the variants of the
transportation problem. BHH formula has also led to the
development of solving heuristics such as ‘Partition’ [6].
For a review of the overall extensions deriving from the
continuous asymptotic approximation of the TSP, see [1] and
[7].

Continuous approximations of the routing with time-
windows concern mainly the vehicle routing problem (VRP).
Daganzo [8], [9] has developed a model wherein the day
is divided into time periods and customers into rectangles.
Using a cluster-first route-second method, he obtained an
approximation for the total distance traveled by all vehicles
under these considerations. Figliozzi [10] tested several VRP
approximations, and proposed a probabilistic modeling of
the approximation such that the number of routes for a
given number of time windows is derived probabilistically.
Using similar assumptions to [8], [9], Carlson and Behzoodi
[11] studied the worst-case time window distribution in
terms of routing costs, and found that it corresponds to
a concentrated demand on a single time period when the
number of customers is low, or to a uniform distribution over
the time for a large number of customers. Although VRP
asymptotic approximations are intuitive and simple to use,
they are mainly grounded on empirical evidence as opposed
to the analytical derivation of the BHH theorem.



There has been several recent applications, whether for
districting [12], location problems [13], fleet sizing [14] or
for accounting for pickups and deliveries [15].

Our model is based for the time windows considerations
on similar assumptions to [8], [9], [11] in the sense of
taking non-overlapping intervals. However, we differ from
all the previously mentioned approaches by approximating a
problem, although basic, but which has not been considered
yet, which is the TSP with time windows.

III. PRELIMINARIES

A. Definition of the TSP with Time Windows (TSP-TW)

The set of points to visit is denoted P , and is a finite set
|P| = n < ∞. For each point i ∈ P , we denote bi and ei
the begin and the end of the time window associated with
i. For each couple of points i, j ∈ P , we denote dij the
travel duration between i and j. The specifications of the
time windows, i.e. the values of bi, ei, and the durations dij
are discussed in the following subsection.

The goal is to choose a starting point s ∈ P and an order of
visit for the other points that minimise the total tour duration.
For a couple of points i, j ∈ P , let xij be a binary variable
equal to one if and only if j is visited after i. For all i ∈ P ,
let ti be the arrival time at i. A formulation is as follows:

min
∑
i,j∈P

dijxij (1)∑
j∈P\{i}

xij = 1 ∀i ∈ P (2)

∑
j∈P\{i}

xji = 1 ∀i ∈ P (3)

bi ≤ ti ≤ ei ∀i ∈ P \ {s} (4)
tj − ti ≥ dij +M(xij − 1) ∀i ∈ P \ {s}∀j ∈ P (5)
tj − bs ≥ dsj +M(xsj − 1) ∀j ∈ P (6)

s ∈ P (7)
bs ≤ bi ∀i ∈ P (8)
ti ≥ 0 ∀i ∈ P (9)

xij ∈ {0, 1} ∀i, j ∈ P (10)

Constraints (2) and (3) are the flow conservation con-
straints. Constraint (4) ensures that the arrival times satisfy
the time windows. Constraints (5) and (6) track the arrival
times, with M is a very large number. Both of them gen-
eralize the subtour elimination constraints of Miller, Tucker
and Zemlin for the TSP. Constraints (7) and (8) ensure that
the starting point belongs to the set P . Constraints (9) and
(10) represent the binary and the bounding restrictions for
the decision variables. Notice that the stop duration is null.

B. Random generation of TSP-TW instances

We consider instances of the TSP-TW that are randomly
generated. Input parameters of the model used to randomly
generate instances are: the size n of P , the number of time-
windows m, the time horizon h, and the side size a of the
square area. Given these input parameters, TSP-TW instances
are generated as follows:

- The n points in P are distributed uniformly on the
Euclidean plane R2 within a square area R, i.e. R =
{(x, y) ∈ R2 : 0 ≤ x < a, and 0 ≤ y < a}.
The random variables associated with these n points are
supposed to be independent and identically distributed
(i.i.d) and are denoted X1, . . . , Xn.

- The duration dij is the Euclidean distance between i
and j (i.e., we assume that the vehicle has a constant
speed of one unit of space per unit of time)1.

- m equally sized and non-overlapping time windows are
defined by partitioning the time horizon h. Hence, each
time window k ∈ {1, . . .m} begins at time bk = (k −
1)× h/m and ends at time ek = k × h/m.

- Points in P are uniformly distributed over the m time
windows in an i.i.d. fashion.

The reason for using the uniform distribution is its simplicity.
Giving an equal spatial treatment to each point is realistic
if the covered area is not large, and is uniform in terms
of land use. Additionally, this distribution is a base case
distribution for the worst case study. In fact, the uniform
distribution corresponds for both space and time to the worst
case distribution according to the principle of maximum
entropy in case no prior statistical information about the
demand of P is provided. This makes its study essential for
a first approximation.

C. BHH theorem

To approximate the tour durations of the routing problems,
we make use of the BHH theorem, stated below for any
probability spatial distribution in a planar region:

Theorem 1: For a set of n random variables {X1, ..., Xn}
(0 < n < ∞) independently and identically distributed and
a compact support R ⊂ R2, then the length Ltsp

n under the
Euclidean metric of the shortest Hamiltonian path linking Xi

satisfies
Ltsp
n√
n
−−−−→
n→∞

βtsp

∫
R

√
f(x, y) dx dy,

with f(.) the absolutely continuous part of the probability
distribution of the Xi, and βtsp a constant.
Under a uniform probability distribution of the random
variables {X1, ..., Xn}, the BHH formula becomes,

Ltsp
n√
n
−−−−→
n→∞

βtsp
√
|R|,

where |R| is the size of the planar area R. In theory, the
constant βtsp does not depend on the number of points n.
Several estimates are given for it. According to Arlotto and
Steele [16], βtsp varies in the interval: 0.62499 ≤ βtsp ≤
0.91996. Stein [17] uses the estimate βtsp = 0.765, while
Applegate et al. [18] and Lei et al. [12] give practical
estimates depending on the number n.
For the VRP, a similar empirical formula was provided by
Eilon et al.. [19] and subsequently considered by Daganzo

1The given approximations are valid for any cost function at the condition
to be proportional to the Euclidean distance metric.



[20], which states that for l = dn/qe vehicles with capacity
q, the optimal length Lvrp

n is approximated by the formula,

Lvrp
n = 2 d̄ l + 0.57

√
n |R|,

where d̄ is the average distance of the n points from a unique
depot.

IV. ASYMPTOTIC APPROXIMATIONS

In this section, we derive an asymptotic approximation
of the TSP-TW tour length, waiting time and arrival time.
Let us first note that it may be possible that time windows
cannot be satisfied in some cases. A feasibility condition is
first given in Proposition 1 in order to give the boundaries
of the feasible solution set. Thereafter, the approximations
are stated in Proposition 2.

Proposition 1: For the TSP-TW random generation model
defined in Section III.B, the Pareto front (n,m) of feasible
tours linking the realisations of Xi under the Euclidean
metric satisfies on average,

n×m =
h2

|R| (βtsp)2
(11)

Proof: If Ntw is the random variable of the number
of customers by time window, its expected value under the
uniform distribution is equal to E(Ntw) = n/m.
In order to have at least a feasible tour of the realizations of
Xi, the duration of the shortest path linking the points within
a time window and reaching the first point of the next time
window, which is a path of dn/me arcs on average, must be
at most equal to the size of the time window, thus,

Ltsp
n/m ≤

h

m
=⇒ βtsp

√
n m |R| ≤ h

=⇒ n×m ≤ h2

|R| (βtsp)2
.

In the asymptotic domain, a path of n/m arcs can be
approximated by a tour of n/m points, since BHH formula
does not require specific positions of the points to visit.

If the number of time windows m is fixed, the number
of customers that can be served asymptotically is limited
by the area’s size |R| and the time horizon h, i.e. n ≤
nmax = h2/(m |R| (βtsp)2). Similarly, if the number of
customers to be served n is fixed, the upper bound of the
number of time windows in the asymptotic domain is given
by m ≤ mmax = h2/(n |R| (βtsp)2). Hence, the equation
(11) defines a Pareto front curve of the feasible region of
tours linking the realisations of Xi under the expected value
operator of Ntw.

Since the repartition of points to visit on time windows
follows an i.i.d uniform distribution, then for a chosen time
window j, the affectation of a point i can be seen as a
Bernoulli trial with a probability pb = 1/m. Therefore, the
random variable Ntw follows a binomial distribution with the
parameters n and pb. Asymptotically and under the central
limit theorem, Ntw converges to a normal distribution. Being
symmetric for a large n, half of the realizations of Ntw are
over E(Ntw), and half are below. Following this argument,

the formula of the feasibility (11) of the TSP-TW tours is
given on average.

Proposition 2: For the TSP-TW random generation model
defined in Section III.B, the asymptotic length Ltsptw

n,m , total
waiting time W tsptw

n,m , and arrival time Ztsptw
n,m of the shortest

Hamiltonian path tour linking Xi under the Euclidean metric
and the feasibility condition (11) satisfy,

Ltsptw
n,m = βtsp

√
n m |R|+ O

(√
n m

)
.

W tsptw
n,m =

m− 1

m

(
h− βtsp

√
n m |R|

)
+ O

(√ n

m
(m− 1)

)
.

Ztsptw
n,m =

m− 1

m
h+ βtsp

√
n

m
|R|+ O

(√ n

m

)
.

Proof: Since time windows are non-overlapping inter-
vals, the Hamiltonian path linking the realizations of Xi can
be seen as a summation of three terms. The first one is a
sum over the open TSP tour lengths (without returning to
the starting point) of the first (m− 1) time windows. It has
a value of (m − 1) (1 − m

n )Ltsp
n/m, as each open tour has

E(Ntw) = n/m points, and subsequently n
m−1 edges. Note

that a closed tour of x points has x edges, thus the average
length of one tour edge can be seen as Lx/x where Lx is
the length of the tour, and the path length without returning
to the depot can be considered to be equal to (1 − 1

x ) Lx.
The second term represents the connections between time
windows. Similarly to Proposition 1, we consider that each
connection is equal to one edge of a TSP tour. The term
has then a value of (m − 1) m

n Ltsp
n/m. The final term is a

complete tour of n/m points for the last time window, which
mimics returning to the starting point. Hence,

Ltsptw
n,m = (m−1) (1−m

n
)Ltsp

n/m+(m−1)
m

n
Ltsp
n/m+Ltsp

n/m.

(12)
The freedom concerning the positions of the points to visit in
the BHH theorem allows us to pin down this expression. An
tour example is displayed in Figure 1. According to Theorem
1, the asymptotic approximation Ltsp

n/m is equal to

Ltsp
n/m = βtsp

√
n

m
|R|+ O

(√ n

m

)
, (13)

which leads to the following expression equivalent to (12),

Ltsptw
n,m = βtsp

√
n m |R|+ O

(√
n m

)
.

The total waiting time W tsptw
n,m is the summation of the

durations the transporter has to wait in the current time
window before serving the customers of the following time
window. It can pinned down as

W tsptw
n,m = (m− 1) (

h

m
− (1− m

n
) Ltsp

n/m +
m

n
Ltsp
n/m)

= (m− 1) (
h

m
− Ltsp

n/m). (14)

The arrival time Ztsptw
n with a start time equals to zero is

computed as

Ztsptw
n,m = (m− 1)

h

m
+ Ltsp

n/m. (15)



By substituting Ltsp
n/m of (13) into (14) and (15) we obtain

the expressions of W tsptw
n,m and Ztsptw

n,m .
The approximations of Proposition 2 for one time window

m = 1 are equal to,

W tsptw
n,1 = 0,

Ltsptw
n,1 = Ztsptw

n,1 = βtsp
√
n |R|+ O

(√
n
)

= Ltsp
n ,

which corresponds to the result of the BHH Theorem. Under
the feasibility condition (11), we obtain,

Ltsptw
n,m = Ztsptw

n,m = h, W tsptw
n,m = 0,

which is consistent with the limiting behavior of a feasible
TSP-TW tour for a maximum number of customers and time
windows. Considering distributions other than the uniform
one is naturally possible. The spatial distribution only inter-

venes in the computation of the integral
∫
R

√
f(x, y) dx dy,

and the temporal distribution in the expected value E(Ntw).

V. COMPUTATIONAL RESULTS

In this section, we provide results of a computational ex-
periment comparing the asymptotic approximations to actual
realized tours of the random TSP-TW problem.

A. Label Setting Algorithm

We use dynamic programming (DP) for the solving ap-
proach [21], which can be easily extended to handle con-
straints such as time windows [22], [23]. In the presence
of time windows, i.e., constraint (iii), the states of DP are
not all explored. Our objective function is the shortest travel
duration linking the set of points P . We consider a square R
of a diameter equal to one hour duration, i.e. a = 3600/

√
2,

and a time horizon set to ten hours, h = 10 × 3600. The
constant βtsp is fixed to βtsp = 0.765, according to Stein
[17]. One hundred TSP-TW instances are randomly gener-
ated for each (n,m) value, where n ∈ {30, 32, ..., 58, 60}
and m ∈ {2, 3, 4, ..9, 10}. The uniform distribution is used
for the random generation of both the temporal and the
spatial demand distributions. Some combinations (n,m) are
very difficult to solve to optimality, thus the corresponding
results are not reported. They consist of instances where
m = 2 and n ≥ 38, and instances where m = 3 and

Fig. 1. A TSP-TW toy example with n = 12 and m = 3. The starting
point s is designated by the black dot and the remaining points by red dots.
The blue edges represent connections between the TSP open tours for the
first m− 1 = 2 time windows.

n ≥ 52. Figure 2 shows the average running time of a DP
resolution for the (n,m) combinations. A low value of n
or/and a high value of m induces a reduction of the number
of states explored by DP. This is reflected in the average
running times. The experiments are performed on an Intel(R)
Core(TM) i7-8750H CPU @ 2.20GHz processor with 32 GB
RAM memory machine.

Fig. 2. The average running time to solve each combination of (n,m)
instances, for both feasible and unfeasible cases. The white area corresponds
to instances that cannot be solved within our CPU time limit.

Fig. 3. The percentage of feasible instances for each combination (n,m).
The white area corresponds to instances that are difficult to solve.

Fig. 4. The feasibility region in green delimited by the feasibility condition
(11) in the plane (n,m) for square value and the horizon set in the
experiment. The red area corresponds to the region of unfeasible instances.



B. Feasibility

Figure 3 shows the percentage of feasible instances. For
example, for m = 8 the percentage is equal to 39%, 21%
6%, 0% when n = 30, 34, 38, 42, respectively. This suggests
that instances generated for m = 8 and n ≥ 40 lie outside
the feasible region. By drawing the feasibility condition
established in Equation (11) in Figure 4, we could indeed
confirm this observation. Most instances with 6 ≤ m ≤ 10
lie outside the feasibility region, which explains the results
obtained in Figure 3. In the subsequent, we only consider
feasible instances and, therefore, we restrict the number of
time windows to m = 2, 3, 4 and 5.

C. Quality gap of the approximations

An important aspect of the proposed approximation is
to assess the error term to the realized tours, which is
a quality indicator of how close the approximations can
be to the actual values under the assumption of uniform
demand and Euclidean distances. More precisely, the quality
gap for the tour duration of a given instance is equal to
|Ltsptw

n,m −Ln,m|/Ln,m where Ln,m is the actual optimal tour
duration for this instance. Similarly, we define the quality
gaps for the total waiting time W tsptw

n,m and the arrival time
Ztsptw
n,m . Figure 5 shows the average quality gaps across

instances of each (n,m), for the three approximated values.
For Ltsptw

n,m , the gap varies from a maximum of 8.15% to
a minimum of 2.95%, with a standard deviation of 1.04.
Most average absolute gaps lie between the percentages
4% and 6%. For a fixed number of time windows, the
average gaps tend to decrease for an increase of the number
of points to visit n. For instance, the average gap for
m = 4 is equal to 6.30, 4.11, 4.70, and 3.39% when n =
30, 40, 50, and 60, respectively. Concerning waiting times
W tsptw

n,m , the average gaps have overall high percentages. The
approximation W tsptw

n,m provides one value for each (n,m)
couple, while we observe much variations in the real waiting
times across instances, especially for a large values of n
and m. For instance, the average gap for m = 4 is equal
to 14.04, 17.20, 25.54, and 33.0% when n = 30, 40, 50,
and 60, respectively. This variation is due to the fact that
the optimization criterion is solely based on tour duration
and does not account for waiting times. The gaps of the
arrival times Ztsptw

n,m are quite small. This is expected since
variations are solely due to the tour length of last time
windows, i.e. Equation (15). Absolute averages alone can
be misleading. To understand the variations for a fixed value
m, we draw the distribution of the gaps without the absolute
value for n = 30, 50 and 60, and m = 2, 3, 4 and 5, in
Figure 6. These boxplots show that the distribution of the
gaps tends to narrow with an increase of the points to visit
n centering around a value close to the zero gap. For n = 60,
all the gaps are comprised in the interval [−13, 10.7%]. We
draw also Figure 7 to have a sense of the regions where
the approximation over- and underestimate the actual tour
lengths. The figure shows that the approximation tends to
overestimate (resp. underestimate) the tour length for a large
(small) number of time windows.

VI. CONCLUSIONS

We propose a continuous asymptotic approximation for the
TSP with time windows, which up to our best knowledge
has not been considered yet. The approximation concerns
the value of the tour length, the total waiting time and
the arrival time. Computational results on random TSP-TW
instances on a square area show a low range of the gap of the
approximation of travel times to the actual values, with only
one digit for most cases. For a larger number of points the
distribution of these gaps tend to even narrow. The proposed
continuous approximation seems to be accurate under the
assumption of non-overlapping time windows, Euclidean
distances and a uniform distribution for the demand, in the
same fashion of the Beardwood-Halton-Hemmersley formula

Fig. 5. The average quality gap between the approximations Ltsptw
n,m ,

W tsptw
n,m Ztsptw

n,m of Proposition 2 and the realized travel duration Ln,m,
waiting time Wn,m, and arrival time Zn,m for feasible instances of (n,m)
combinations. The white area corresponds to instances that are not solved
within our CPU time limit.



for the TSP [18]. For future work, we intend to study in
more details the theoretical and the empirical implications
of relaxing the assumption of the uniform distribution of the
customers’ demand distributions, in terms of both space and
time, which is the main limitation of our study.
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