Patrick Rey 
  
Jean Tirole 
  
Aleksandra Boutin 
  
Miaomiao Dong 
  
Georgy Egorov 
  
Emir Joseph Farrell 
  
Michael Katz 
  
Marc Lebourges 
  
Volker Nocke 
  
Bill Rogerson 
  
Carl Shapiro 
  
Yossi Spiegel 
  
Glen Weyl 
  
  
  
Price Caps as Welfare-Enhancing Coopetition

Keywords: Price caps, information-light regulation, tacit collusion, complements and substitutes, mergers, foreclosure, joint marketing agreements, coopetition. JEL Codes: D43, L24, L41, O34

come    

Introduction

Starting with the Sherman Act's Section 1 prohibition of any "contract, combination in the form of trust or otherwise, or conspiracy, in restraint of trade or commerce"(1890), the prevention of lessening of competition through agreements among potential competitors has been one of the two cornerstones of competition policy. 1 Major applications include the antitrust treatment of mergers and of joint marketing. [Under joint marketing, …rms co-sell their goods or licenses either through a joint subsidiary -as in the case of patent pools, through which intellectual property owners sell licenses on bundles of their patents -or through an independent entity]. If improperly structured, such cooperative practices have the potential to lessen competition and harm consumers.

Assessing whether a cooperative agreement is likely to reduce competition and raise price is a notably di¢ cult exercise. First, there is often a shortage of reliable price and demand data, leading to well-known di¢ culties in assessing the impact of, say, a merger. 2 For new technologies, there may even be no data at all, and yet antitrust authorities have to approve or block acquisitions of startups by incumbents or the formation of patent pools. Accordingly, authorities often have little information as to whether a merger will raise prices substantially; or even whether it will raise prices at all, that is, whether the merger involves substitutes or complements. 3 And, even if data availability permits rigorous econometric analysis, the time frame for merger approval can be an obstacle to its achievement.

Second, the pattern of substitutability/complementarity may change over time, and a merger that is desirable at the date of the approval may no longer be so later on. Products evolve, as do usages. For instance, product B may be a complement to product A today, but later become a substitute. Such an allegation was made for instance in the Microsoft case,4 in which the browser was de…nitely a complement to the operating system, but was alleged to have the potential to become an operating system itself through the writing of extra code. Similarly, molecules A and B may be jointly needed to cure disease C, but each may in the future su¢ ce to curing disease D. A proper merger assessment therefore may require not only past data, but also unavailable forward-looking ones.

Third, while economists and antitrust practitioners neatly distinguish between "substitutes" and "complements", in many industries products may exhibit dual patterns of complementarity and substitutability: They compete with each other for consumers having selected the technology or the platform to which the products are related; but they also have a joint interest in keeping prices low so as to make the technology or platform attractive against rival options (non-consumption or competing technologies and platforms). For instance, a technology built around multiple patents held by di¤erent owners becomes more attractive when licensing prices decrease, but these patents can also be substitutes in that they enable alternative implementations of given functionalities. 5 Products can be complements at low prices and substitutes at high prices, or the reverse. This means that local measurements of demand elasticities may mislead the observer as to the nature of competition. Existing data, even if available to the antitrust authority or the researcher, again may not tell the entire story.

The purpose of the paper is to add a regulatory instrument to the competition authorities'policy toolbox. The new cooperative arrangement would be an agreement among …rms on price caps for their various products. Unlike in a merger or an old-style patent pool, …rms would keep control -including over pricing -of their products or licenses and would only be constrained to charge no more than the agreed-upon caps. Also, unlike regulated price caps, the caps would be set by the …rms; the validation by competition agencies could take the form of guidelines combined with business review letters, approving the industry-initiated price cap arrangements.

Although economists have neither advocated voluntary price caps nor studied their social desirability, such caps have surreptitiously appeared in the competition policy landscape in at least four guises. Since 2014, European antitrust policy with regards to patent pools requires that patent owners keep ownership of their patent (and therefore can grant licences to them outside the pool) and that the pool unbundle its license o¤ering;6 thus, aside from a one-stop-shopping transaction-cost bene…t, patent pools amount to setting a cap on the price of individual licences. Second, and still in the realm of intellectual property (IP), most standard setting organizations require that IP owners commit to granting licenses either royalty-free or at a non-discriminatory, fair and reasonable (FRAND) price; thus IP owners who consent to such a standard setting process de facto collectively agree on capping their prices. In some cases (e.g., for standard setting organization VITA), …rms may even commit to explicit price caps prior to standard 5 Contents o¤ered by a cable or satellite television operator compete among themselves for the attention of the operator's subscribers but are also complements to the extent that increased operator membership bene…ts all content providers. Likewise, payment systems using a common point-of-sale terminal or interface at merchant premises compete for cardholder clientele and usage but share a common interest in merchants' adoption of the terminals. Health care providers who are members of a health insurance network vie for patients insured by the network but also depend on rival providers for the attractiveness of the insurance network -see Katz (2011). Supermarkets o¤er competing brands for many product categories, but one-stop shop bene…ts create complementarities across categories -See Thomassen et al. (2017) for a recent empirical analysis accounting for cross-category complementarities. Further illustrations include music performance rights (as, say, licensed by Pandora), alcoholic beverages (as in the Grand Met-Guinness merger), retail outlets (in department stores and commercial malls), intermodal transportation, airline alliances, or books, tickets and hotel rooms (on online platforms).

approval. Third, a …rm or group of …rms may release lines of codes under an open source license; they thereby commit to a price cap equal to zero on the basic software and decide to focus on complementary services. Finally, and relatedly, the supplier (e.g., a printer manufacturer) who commits to dual-or-multiple-sourcing for an add-on (e.g., cartridges) de facto caps the price of the add-on; industry incumbents that opt for an open standard behave similarly.

We argue that, when it is unclear whether products or services are substitutes or complements, and authorities feel hesitant about approving a merger or a joint-marketing alliance, they may well want to consider allowing price-caps agreements instead. To make such a case, and motivated by the lack of data that plagues merger analysis, we analyze the general properties of price-cap coopetition. The intuition for why price caps can be attractive is that they allow producers of complements to cooperate and solve Cournot's double marginalization problem, but do not allow competitors to collude and raise prices of substitutes.

For multiple reasons this intuition requires scrutiny, though. First, under strategic substitutes, imposing a cap on the price of one good may raise the price of another good to such an extent that consumer welfare is reduced. Second, demand may either involve a stable mix of complements and substitutes or exhibit a price-dependent pattern of complementarity/substitutability, and it is not a priori clear how such features a¤ect the desirability of price caps. Third, and from a longer-term perspective, price caps could be used either to monopolize the industry by inducing the exit of some incumbent …rms or by sti ‡ing their investment, or else to deter entry of new entrants. Fourth, we need to investigate the impact of price caps on the incentive to foreclose rivals. Fifth, under repeated interactions, price caps may change both the bene…t from deviating from a collusive path and the feasible punishments of such deviations. These …ve extensions will lead us to qualify our analysis and to propose concrete policy recommendations to limit potential harms of price caps.

Section 2 …rst sets up the model, which allows for asymmetry among …rms, for demand substitutability/complementarity, for strategic complementarity/substitutability, as well as for hybrid cases -it indeed provides two examples where these characteristics depend on price levels; in the …rst example (technology adoption) complementary patents become substitutes as prices rise, whereas in the second example (di¤erentiated goods with network externalities) substitutes become complements at higher prices.

Section 2 then characterizes the set of prices sustainable through price caps in the absence of repeated interaction. In duopoly settings and under an assumption that holds trivially for strategic complements and under reasonable conditions for strategic substitutes, price caps can only improve consumer welfare relative to independent and unconstrained price setting. Furthermore, letting …rms negotiate price caps bene…ts them (and consumers as well, from the previous result) when goods are complements and have no impact when goods are substitutes. So, unlike mergers, price-caps agreements are always socially bene…cial. Finally, these insights are extended to symmetric oligopoly settings, to oligopolistic competition with strategic complementarity, and to our examples of hybrid demands.

Section 3 steps back and considers the impact of price caps in the presence of investment, entry and exit decisions. This analysis leads us to issue several caveats for the encouraging results of Section 2 and associated policy recommendations. Section 3.1 …rst investigates how the prospect of price caps a¤ects the incentive to innovate and introduce products. For substitutes, price caps do not a¤ect pro…ts and thus have no impact on entry or investment either. For complements, price caps, when they bene…t all …rms, enhance product variety by encouraging entry.

Section 3.2 then looks at whether incumbent …rms could set price caps so as to reduce competition, either among themselves through a reduced incentive to invest or from rivals who would be discouraged by the prospect of low prices (a collective version of the Modigliani-Sylos Labini limit-pricing paradigm). We show that two conditions are necessary to preserve the bene…ts of price caps: a) consumers cannot ask courts to enforce the price-caps agreement among …rms; b) the agreement becomes void if none of the parties wishes to enforce it.

Section 3.3 then points out that price caps may dominate a merger even when the competition authority knows that products are complements. As is well-known, a merger between producers of complements may raise market power by facilitating foreclosure, that is, by deterring entry (or triggering exit) of competitors: The merged entity may practice technological or commercial (tari¤-based) bundling to preserve its dominance at the system level. Price caps, like a merger, solve the double-marginalization problem. But, unlike a merger, they preserve the component producers'autonomy; the latter individually have no incentive to reduce competition among complementary components through closed standards or to cross-subsidize external products to squeeze an entrant. We thus conclude that price caps may have bene…ts over mergers even in situations where there is no ambiguity about the complementarity pattern.

Price caps might facilitate tacit collusion (called "coordinated e¤ects"in merger analysis) by reducing the set of possible deviations on the equilibrium path or in punishment phases. Section 4 accordingly extends our study to allow …rms to coordinate tacitly through repeated interaction. Alas, even in the absence of price caps, the repeated-game literature has focused on the case of substitutes, and often on perfect substitutes. Before trying to assess the desirability of price caps, the paper must therefore start …lling the gap and study tacit collusion with arbitrary degrees of substitutability or complementarity. It obtains two sets of results.

Section 4.1 focuses on symmetric stationary paths in symmetric oligopoly settings. In this context, the lessons of the static analysis are con…rmed for both substitutes and complements, provided that substitutes are strategic complements (as is usually assumed in economic analysis). The intuition is as follows. What prevents …rms from achieving perfect coordination through repeated interaction is their incentives to deviate so as to increase their short-run pro…ts. In the case of substitutes, where collectively …rms wish to collude and raise prices, the pro…table individual deviations consist in undercutting the collusive prices, and price caps cannot be used to limit or better punish these deviations. By contrast, in the case of complements, …rms want to cooperate on lowering their prices so as to eliminate the double marginalization; in this case, price caps actually inhibit deviations from such low prices, both on-and o¤-equilibrium, and …rms'and consumers' interests are aligned in preventing such deviations.

Section 4.2 goes further in the study of tacit collusion for the above-mentioned technology adoption model in which individual users must select a) which licenses to purchase in the technological class and b) whether to adopt the technology at all. The …rst choice depends on the extent of patent substitutability within the class, while the second captures the complementarity dimension. We measure the "essentiality"of o¤erings through the reduction in the value of the technology when users forego an o¤ering -for the sake of tractability, users have the same preferences along this dimension, and only di¤er along another dimension: the cost of adopting the technology, or equivalently their opportunity cost of not adopting another technology. The model allows for a smooth transition between perfect substitutes and perfect complements.

Within this framework, we derive general results about the sustainability of "tacit collusion" (coordinated increase in price) or "tacit cooperation" (coordinated decrease in price), that is, about bad and good coordination through repeated interaction. We then note that price-caps agreements are equivalent to setting a joint-marketing entity combining two features, individual licensing and unbundling, and that both features are needed to ensure that consumer welfare always (weakly) increases under the agreement.

Finally, Section 4.3 discusses the issue of equilibrium selection, and Section 5 concludes.

Related literature. Our paper contributes to three literatures: static oligopoly, tacit collusion in oligopoly, and an emerging literature that looks for information-free (or -light) regulatory tools.

The literature on static oligopoly, well-reviewed by Vives (1999), is large, but has not emphasized the themes of this paper. The study of price-cap-constrained competition in particular is new. By contrast there is a large literature on the impact of mergers under non-repeated interaction. This line of research was initiated by the seminal paper of Farrell and Shapiro (1990), who consider Cournot, homogenous-goods competition, provide a necessary and su¢ cient condition for a merger to raise price, and warn against the hazards of using concentration indices.

Second, there is an extensive theoretical literature on repeated games, with and with-out observability of actions,7 as well as a large theoretical and empirical literature on collusion in oligopoly. 8 Less attention has been devoted to the role of substitutability and complementarity, however, despite the importance of these factors in the antitrust treatment of mergers or marketing alliances. The exception is a literature which, following Deneckere (1983) and Wernerfelt (1989), studies the impact of product di¤erentiation. The conventional view, pioneered by Stigler (1964), is that homogeneous cartels are more stable than non-homogeneous ones (Jéhiel (1992) calls this the principle of minimum di¤erentiation). In the context of symmetric horizontal di¤erentiation, Ross (1992) shows however that stability does not increase monotonically with substitutability, because product di¤erentiation both lowers the payo¤ from deviation and reduces the severity of punishments (if one restricts attention to Nash reversals; Häckner (1996) shows that Abreu's penal codes can be used to provide more discipline than Nash reversals, and …nds that product di¤erentiation facilitates collusion).9 Building on these insights, Lambertini et al. (2002) argue that, by reducing product variety, joint ventures can actually destabilize collusion. In a context of vertical di¤erentiation, where increased product di¤erentiation also implies greater asymmetry among …rms, Häckner (1994) …nds that collusion is instead easier to sustain when goods are more similar (and thus …rms are more symmetric). Building on this insight, Ecchia and Lambertini (1997) note that introducing or raising a quality standard can make collusion less sustainable.

Section 4 departs from the existing literature in several ways. First, it characterizes the scope for tacit coordination in settings with (varying degrees of) complementarity as well as substitutability. Second, it allows for explicit commercial cooperation, such as a price-caps agreement or a patent pool, and studies its impact on the scope for tacit coordination. Finally, it derives the regulatory implications.

Third, the paper contributes to a small but growing literature searching for regulatory rules that require little or no information from regulators; information-free regulatory rules have been studied primarily in the context of intellectual property, including guidelines for joint marketing agreements, with and without market power and vertical integration, and for standard-setting bodies (see Lerner-Tirole (2004, 2015), Boutin (2016) and Reisinger-Tarantino (2017)).

2 Impact of price caps on non-repeated interactions 2.1 Setting Demand and supply. We consider a classic oligopoly setting with n 2 single-product 10 …rms, indexed by i 2 N f1; :::; ng. Let C i (q i ) denote the cost of producing a quantity q i of good i, and D i (p) the demand for that good, as a function of the vector of prices p = (p i ) i2N 2 R n + . We will assume that, for i 2 N , D i ( ) and C i ( ) are both C 2 and: 11

C i (0) = 0 and C 0 i ( ) 0; D i ( ) > 0, @ i D i ( ) < 0 (individual demands are positive and downward sloping) and P j2N @ j D i ( ) 0 (a uniform increase in all prices reduces individual demands) 12 ;

the pro…t function

i (p) p i D i (p) C i (D i (p))
is strictly quasi-concave in p i ;

the best-response function 13 R i (p i ) arg max

p i i (p i ; p i ) ;
is well-de…ned, C 1 , and bounded above.

It will be useful to consider the following familiar environments:

(S) Substitutes: @ j D i ( ) > 0 for j 6 = i 2 N ;

(C) Complements: @ j D i ( ) < 0 for j 6 = i 2 N .

A given pair of goods are necessarily either substitutes or complements when demands are linear. With more general demands, however, the sign of @ j D i (p) may vary with p (see Section 2.6 for examples).

10 See Section 2.5 for a generalization to multi-product …rms. 11 In what follows, @ i F (p) denotes the …rst-order derivative of the function F (p) with respect to the price p i ; likewise, @ 2 ij F (p) denotes the second-order derivative with respect to the prices p i and p j . 12 This condition is automatically satis…ed when consumers have unit demands overall: if fv i g i2N is a consumer's valuation vector (drawn from a continuous distribution), then D i (p) = Pr [v i p i max fmax j6 =i (v j p j ) ; 0g]. It is also satis…ed if, for instance, consumers have unit demands for each good and idiosyncratic preferences v (#S) for any combination S N (with v (0) = 0); we then have:

D i (p) = Pr[ max fS N ji2Sg
fv (#S) X j2S p j g max fS N ji = 2Sg fv (#S) X j2S p j g];

which decreases when all prices increase uniformly (as this can only induce consumers to switch to smaller baskets). When n = 2, the condition is satis…ed for any preferences v (S) such that v (?) = 0.

13 As usual, it is sometimes convenient to express the price vector p = (p 1 ; :::; p n ) as p = (p i ; p i ), where p i = (p 1 ; :::; p i 1 ; p i+1 ; :::; p n ) denotes the vector of all prices but p i .

(SC) Strategic complementarity: @ j R i ( ) > 0 for j 6 = i 2 N .

(SS) Strategic substitutability: @ j R i ( ) < 0 for j 6 = i 2 N .

In our setting, strategic complementarity (resp., substitutability) amounts to @ 2 ij i ( ) > 0 (< 0), and is implied by (S) ((C)) for linear demand systems and non-increasing returns to scale. 14 More generally, under mild regularity conditions (and indeed, in all standard oligopoly models), prices are strategic complements (substitutes) when goods are substitutes (complements). 15 Throughout the paper, we assume that there exists a unique Nash equilibrium in the unconstrained pricing game, which we denote by p N = p N i i2N . We further suppose that, for j 2 N : 16

X i2N nfjg @ j R i (p i ) < 1: (1) 
Finally, we assume that the industry pro…t

(p) X i2N i (p)
is strictly quasi-concave in p and achieves its maximum at p M = p M i i2N ; let q M i D i p M denote the monopoly output of good i.

Unconstrained benchmarks. The following lemmas provide useful properties of the monopoly and Nash outcomes. The …rst lemma shows that the monopoly outcome lies above …rms' best-responses when goods are substitutes. When goods are complements instead, the monopoly outcome lies below at least one …rm's best-response, and below all …rms' best-responses in the absence of cross-subsidization, that is, if all marginal markups are non-negative. However, with complements, it may be optimal to sell some goods below cost in order to boost the demand for other goods; the prices of the latter goods may then lie above the best-responses. 17

Lemma 1 (monopoly prices)

(i) (S) =) 8i 2 N ; p M i > C 0 i q M i and p M i > R i p M i .
14 We then have Vives (1999) for a detailed analysis. 16 A stronger version, namely, P i2N nfjg j@ j R i (p i )j < 1, su¢ ces to guarantee the existence and uniqueness of the Nash equilibrium, and moreover ensures that it is stable under the standard tâtonnement process; see online Appendix A. However, our analysis does not rely on equilibrium stability in the case of strategic substitutes. 17 For instance, consider the case of two goods, produced at the same constant unit cost c > 0, and with demands respectively given by D 1 (p 1 ; p 2 ), with @ 2 D 1 < 0, and D 2 (p 1 ; p 2 ) = D 1 (p 2 ; p 1 ), with 2 (0; 1). The monopoly prices are then asymmetric, and involve cross-subsidization (namely, p M 2 < c < p M 1 ) for small enough (indeed, p M 2 tends to or is equal to 0 as goes to 0). Furthermore, as by construction

@ j i (p) = [p i C 0 i (D i (p))] @ j D i and thus @ 2 ij i ( ) = [1 C 00 i ( ) @ i D i ]@ j D i > 0. 15 See
p M 1 satis…es @ 1 1 p M = @ 1 2 p M = p M 2 c @ 1 D 2 p M < 0, it is such that p M 1 > R 1 p M 2 . (ii) (C) =) 9 (i; j) 2 N 2 such that p M i > C 0 i q M i and p M j < R j p M j ; furthermore, if n = 2, then p M i > C 0 i q M i =) p M j < R j p M i for j 6 = i.
Proof. See Appendix A.

The next lemma shows that …rms'best-responses always exceed their marginal costs:18 

Lemma 2 (best responses exceed marginal costs) For any …rm i 2 N and any

p i 2 R n 1 + , R i (p i ) > C 0 i (D i (R i (p i ) ; p i )).
Price-cap constrained game. Suppose now that, prior to setting their prices, …rms have agreed on a vector of price caps, p = ( p 1 ; :::; p 2 ) ("no price caps"means that p i = +1 for all i). They play a symmetric-information constrained game, which we denote by G p , in which they simultaneously set their prices, subject to the agreed-upon price caps. 19 The game G 1 in which all caps are in…nite is the unconstrained (no-price-cap) game.

We say that a vector of prices p is sustainable through price caps if there is some p such that p is an equilibrium of G p . We do not require the price-cap-constrained equilibrium to be unique; rather, we allow for an arbitrary equilibrium selection and will provide results that hold regardless of which equilibrium is played. However, we show in the next sub-section that price caps can indeed be chosen so as to induce a unique equilibrium when either n = 2 or either (SC) or (SS) holds.

Timing. The timing unfolds as follows:

1. The competition authority decides whether to allow …rms to enter into price-caps agreements.

2. Firms choose price caps if such agreements are allowed.

3. If price-caps agreements are forbidden, or no agreement was signed, then …rms play the unconstrained pricing game G 1 ; if instead …rms agreed on a price cap vector p, then they play the constrained pricing game G p .

This timing by itself does not de…ne a proper game. First, we have not described the information structure under which the competition authority will make its decision at stage 1. We assume that the authority has an arbitrary prior H (G 1 ) on possible unconstrained games (cost and demand functions). 20 Of course, the model is interesting only if H is not degenerate. If the stage-3 game does not have a unique equilibrium, we can augment H to include beliefs about which equilibrium will prevail. Our results will pertain to all prior beliefs, making the conclusions particularly robust.

Second, we assume that the competition authority's objective function is consumer welfare. This implies that when price caps are allowed, they a fortiori increase a broader notion of welfare if they raise industry pro…t. 21 Third, the green light given at stage 1 by the competition authority may introduce speci…c rules about the mechanisms that can be used to reach such an agreement (see in particular Section 3); however, in line with our information-free objective, we do not allow it to depend on actual levels of the price caps.

Finally, we voluntarily refrain from specializing the negotiation process underlying stage 2. The normative focus of our analysis focuses on stage 1 and asks whether pricecaps agreements can harm consumers, regardless of how they come about; we thus provide results that hold for any price caps. We therefore do not specify any extensive form for the negotiation; neither do we require that agreements be reached among all …rms, or for that matter even within a single coalition of …rms.

We also ask whether price-caps agreements can bene…t …rms themselves, which of course conditions the outcome of the stage-2 negotiation, regardless of the particular bargaining game that is implicit in that stage. The "existence of caps bene…tting …rms" requires some discussion, for several reasons. a) Reminiscent of the literature on cartel formation or merger negotiations, 22 an e¢ cient agreement may not be reached as some …rms try to free ride on the others. For example, with complements, a …rm may try to bene…t from the other …rms' agreement to reduce price through price caps without contributing to the public good themselves. b) Di¤erent coalitions may form, that have antagonistic interests. Section 2.7 notes that agreements between platforms and their apps may create a prisoner's dilemma. c) Firms may need to operate lump-sum transfers among themselves in order to reach agreement. For example, a …rm may bene…t from another …rm's lowering its price, but the converse may not hold, in which case some compensation is required.

To address this latter issue, when discussing …rms' incentives we will occasionally consider two scenarios, with and without lump-sum transfers at the time of agreement. Let i ( p) denote …rm i's pro…t in the price-cap-constrained game G p (so i (1) = N i ).

Assumption Consider a coalition I of …rms signing a price-cap-agreement at p I , when the remaining …rms face price caps p N =I . This price cap vector is

(i) individually rational if for all i 2 I, i ( p I ; p N nI ) i (1; p N nI )
21 A coalition of …rms may sign an agreement that increases the pro…t of its members but reduces total industry pro…t. 22 See, e.g., d 'Aspremont et al. (1982), d'Aspremont and Gabszewicz (1986), Deneckere and Davidson (1985), Donsimoni et al. (1986), and Rajan (1989).

(ii) collectively rational if

P i2I i ( p I ; p N nI ) P i2I i (1; p N nI ).
We assume that if (lump-sum) transfers are prohibited, agreed-upon caps are individually rational, and that if transfers are allowed, agreed-upon caps are collectively rational.

Of course we could make stronger assumptions: in the no-transfer case, that the caps not only be rational but also on the Pareto frontier; in the transfer case, that the Coasian outcome (which maximizes the coalition's total pro…t) be reached. But we do not need those stronger assumptions (with the exception of Proposition 5(ii)).

Given this, we denote by G the overall, three-stage game.

Price-cap implementable allocations

The following proposition shows that such price caps can sustain any prices lying below …rms'best responses, and only these prices:

Proposition 1 (price-cap implementable allocations)

(i)
The set of prices that are sustainable through price caps is:

P p 2 R n + j p i R i (p i ) for i 2 N :
(ii) In particular, the Nash price vector p N belongs to P and, for any other price vector p in P, p i < p N i for some i 2 N .

Proof. (i) We …rst show that price caps can sustain only prices in P. Consider a price vector p that is sustainable through price caps ( p i ) i2N . As i (p) is strictly quasi-concave in p i , we must have, for i 2 N : pi = arg max

p i p i i (p i ; p i ) = min fR i (p i ) ; p i g R i (p i ) :
Hence, p 2 P. Conversely, any price vector p 2 P is sustainable through the vector of price caps p = p. To see this, note that, for i 2 N :

p i = pi R i (p i ); the strict quasi-concavity of i (p) in p i then yields the result. (ii) See Appendix B.
This proposition already establishes that …rms cannot use price caps to raise all prices above their Nash levels. More generally, as price caps prevent …rms from charging high prices, they are intuitively unlikely to harm consumers. We explore this further in the next two subsections.

The proof of Proposition 1 shows that any p in P is sustainable through the vector of price caps p = p; however, the constrained game G p may exhibit other equilibria (in which case any other price cap vector p sustaining p would also exhibit other equilibria, as it would impose less stringent constraints on …rms'pricing decisions). The following proposition shows that unique implementation can actually be obtained in a wide range of settings:

Proposition 2 (unique implementation) In any of the following situations, any p 2 P is the unique equilibrium of the constrained game G p:

(i) duopoly; (ii) (SC); (iii) (SS). Proof. See Appendix C.1.
In other settings, however, price caps may not achieve unique implementation. Online Appendix C.2 provides an example with three …rms and strictly quasi-concave pro…t functions for which there is a unique Nash equilibrium, but multiple price-cap-constrained equilibria.

Duopoly

We focus here on the case of a duopoly. Recall the intuition that price caps do not allow competitors to collude and raise prices of substitutes, but allow producers of complements to cooperate and solve the double marginalization problem. Based on this intuition, one might expect that for any p and any demand system, if p is an equilibrium of G 1 and p 0 is an equilibrium of G p , then p 0 i p i for all i, but this is not true: a reduction in one price may induce other …rms to raise their prices; nonetheless, under the following regularity assumption, consumers are necessarily weakly better o¤ under p 0 than under p: Assumption A: For any i 6 = j 2 f1; 2g and any price

p i 2 [0; p N i ), if R j (p i ) > p N i , then: R 0 j (p i ) > D i (p i ; R j (p i )) D j (R j (p i ) ; p i ) :
Assumption A holds trivially when prices are strategic complements (as then R 0 j ( ) > 0), as is the case with standard theoretical and empirical models of price competition. It also follows from the usual stability condition R 0 j (p i ) < 1 when demand functions are "quasi-symmetric"in that p N 1 = p N 2 and p i < p j implies D i (p i ; p j ) D j (p j ; p i ). 23 It also holds for the hybrid demands considered in Section 2.6. 24 We have:

Proposition 3 (duopoly: price caps bene…t consumers) For any demand system that satis…es Assumption A, any price vector p 6 = p N that is sustainable through price caps yields a higher consumer surplus than p N . Therefore: (i) for any vector of price caps p, consumers are weakly better o¤ under G p than under G 1 ; and (ii) in G, it is optimal for the competition authority to allow price caps.

Proof. Consider a price vector p = (p 1 ; p2 ) in Pn p N . From Proposition 1, pi < p N i for some i 2 f1; 2g. If the price of the other …rm, j, satis…es pj p N j , then consumers clearly prefer p to pN . Suppose now that pj > p N j ; from Proposition 1 we then have R j (p i ) pj > p N j , let: 25

p i inf p i pi j R j (p i ) p N j : By construction, p i 2 (p i ; p N i ] and R j ( p i ) = p N j .
Letting S (p i ; p j ) denote total consumer surplus, we then have:

S (p i ; pj ) S (p i ; R j (p i )) > S ( p i ; R j ( p i )) S p N i ; p N j ;
where the …rst inequality follows from Proposition 1, the last follows from p i p N i and R j ( p i ) = p N j , and the strict one follows from p i > pi and Assumption A, which together imply:

S (p i ; R j (p i )) S ( p i ; R j ( p i )) = Z p i pi D i (p i ; R j (p i )) + D j (R j (p i ) ; p i ) R 0 j (p i ) dp i > 0:
This Proposition shows that, under Assumption A, …rms'use of price caps can only bene…t consumers. Consider now …rms'incentives to introduce price caps.

Intuitively, suppliers of substitutes wish to avoid competition and raise prices above the Nash level; in the light of Proposition 1, price caps are unlikely to help them. By 23 Fix p i < p N . As R 0 j (p i ) < 1, we then have:

R j (p i ) p i = Z pi p N R 0 j (p) 1 dp > 0:
Under "quasi-symmetry", we thus have

D j (R j (p i ) ; p i ) D i (p i ; R j (p i ))
, which, together with R 0 j (p i ) > 1, implies that Assumption A is satis…ed. 24 In online Appendix B, we provide a su¢ cient condition on demand ensuring that Assumption A holds, as well as a counter-example where this assumption does not hold; in the counter-example, price caps increase pro…ts and reduce consumer surplus. 25 The reasoning that follows relies on the range [p i ; p i ], because Assumption A is required to hold only for the prices

p i < p N i that satisfy R j (p i ) > p N i .
contrast, suppliers of complements wish to avoid double marginalization, and price caps can enable them to achieve that. The following Proposition con…rms this intuition:

Proposition 4 (duopoly: …rms'incentives to adopt price caps) (i) Under (S), …rms cannot use price caps to increase both of their pro…ts; if in addition (SC) holds, then …rms cannot use price caps to increase any of their pro…ts (and thus, a fortiori, their joint pro…t).

(ii) Under (C), …rms can use price caps to increase both pro…ts (and thus, a fortiori, their joint pro…t); any such price caps bene…t consumers as well.

Proof. We start with the observation that i (R i (p j ) ; p j ) increases (resp., decreases) with p j under (S), (resp., under (C)); to see this, note that:

d dp j f i (R i (p j ) ; p j )g = @ j i (R i (p j ) ; p j ) = [R i (p j ) C 0 i (D i (R i (p j ) ; p j ))] @ j D i (R i (p j ) ; p j ) ;
where the …rst equality follows from the envelope theorem. It follows from Lemma 2 that the last expression has the same sign as @ j D i ( ).

(i) Consider a price vector p = (p 1 ; p2 ) in Pn p N . From Proposition 1, pj < p N j for some j 2 f1; 2g. Under (S), we have, for i 6 = j 2 f1; 2g:

i (p i ; pj ) i (R i (p j ) ; pj ) < i R i p N j ; p N j = i p N i ; p N j ;
where the weak inequality stems from the de…nition of R i ( ) and the strict inequality follows from pj < p N j and i (R i (p j ) ; p j ) being strictly increasing in p j , as noted above. Therefore, …rms cannot use price caps (with or without transfers) to increase both of their pro…ts.

Furthermore, if prices are strategic complements, then any price vector p = (p 1 ; p2 ) in Pn p N is such that pi < p N i for i = 1; 2. 26 The above argument then implies that both …rms obtain strictly less pro…t than in the Nash equilibrium. Hence, in that case …rms cannot use price caps to increase any of their pro…ts.

(ii) By contrast, under (C), there exist prices in P that increase both …rms'pro…ts. To see this, note …rst that, from Lemma 2, both …rms'margins are positive at the Nash equilibrium. It follows that, starting from the Nash equilibrium prices p N 1 ; p N 2 , a small and uniform reduction in both prices increases both …rms'pro…ts, as reducing one …rm's price has only a second-order e¤ect on the pro…t of that …rm, and a …rst-order, positive e¤ect on the other …rm's pro…t (as it increases that …rm's demand). To conclude the 26 From Proposition 1, this has to be the case for at least one …rm i; Proposition 1 and strategic complementarity then together imply that, for the other …rm, j: pj

R j (p i ) < R j p N i = p N j .
argument, it su¢ ces to note that any (p 1 ; p 2 ) = p N 2 "; p N 2 " , with " > 0, belongs to P, as (using condition (1)):

R j (p i ) p j = Z " 0 1 R 0 j p N i x dx > 0:
Therefore, there are prices in P that give both …rms more pro…t than the Nash equilibrium prices, as is required for a price cap vector to be agreed upon in the absence of transfer.

To conclude the proof, it su¢ ces to note that increasing both …rms'pro…ts requires lowering prices below the Nash level. To see this, consider a price vector p that increases both …rms'pro…ts above their Nash levels; we then have, for i 6 = j 2 f1; 2g:

i (R i (p j ) ; p j ) i (p) N i = i R i p N j ; p N j ;
which, under (C), implies p j p N j . Hence, p p N .

Proposition 4 (which does not hinge on Assumption A) shows that: (i) …rms will not select price caps when they o¤er substitutable goods (case (S)) -…rms would like to raise prices, whereas price caps (which would bene…t consumers) can only be used to lower prices; and (ii) price caps enable the …rms to cooperate when they o¤er complements (case (C)), in which case …rms'interests are aligned with those of consumers -both long for lower prices. Furthermore, price caps bene…t consumers whenever they enhance both …rms'pro…ts. 27 Finally, it is interesting to compare the use of price caps with the impact of a merger on …rms' pricing policies (in the absence of merger-speci…c synergies). For the sake of exposition, it is useful to suppose that either:

(M S ) p M i p N
i for i = 1; 2, with at least one strict inequality, and Assumption A holds;

or:

(M C ) p M i p N i for i = 1;
2, with at least one strict inequality, and

p M i R i p M j for i 6 = j 2 f1; 2g.
The …rst situation (case (M S )) always arises under (S) and (SC). 28 However, it can also arise even when (S) does not hold. This can be the case, for instance, when goods are substitutes for some prices but complements for other prices. For instance, neither (S) nor (C) holds in the two examples discussed in Section 2.6, and yet one of (M S ) and (M C ) is satis…ed, depending on the speci…c values of some of the parameters. Note also that, when …rms are su¢ ciently asymmetric, then under (C) the monopoly price may lie above the Nash level for one …rm, and below it for the other …rm.29 Online Appendix F.3 provides a platform -(large number of) apps example in which, under monopoly pricing, applications are sold at cost (say 0, and thus, below Nash prices), which allows the platform to be priced at a price exceeding the Nash level.

The analysis above suggests that, in the absence of information about the situation at stake, and in the absence of merger-speci…c e¢ ciency gains, price caps constitute a socially safer alternative to mergers. Indeed, we have:

Proposition 5 (duopoly: price caps vs. mergers) (i) Under (M S ), a merger harms consumers, whereas price caps can only bene…t them.

(ii) Under (M C ), allowing a merger or a price cap agreement which maximizes total pro…t both yield perfect price cooperation, which bene…ts …rms and consumers.

Proof. (i) Under (M S ), consumers prefer the Nash prices to the monopoly prices, and thus a merger harms them. By contrast, from Proposition 3, price caps can only bene…t consumers.

(ii) Under (M C ), R i p M j p M i = p i for i 6 = j 2 f1; 2g; from Propositions 1 and 2, charging the monopoly prices thus constitutes the unique equilibrium of G p M . Thus, when …rms can operate transfers as part of the price caps agreement, they will agree on price caps p M , so as to generate the industry monopoly pro…t (as would a merger), and use transfers to share it appropriately.

Symmetric oligopoly

We now extend the analysis to an arbitrary number of …rms, and …rst focus on symmetric …rms and price caps. Speci…cally, we assume here that the n 2 …rms: face the same cost: C i (q i ) = C (q i ) for all i 2 N ; face symmetric demands, in the sense that other …rms'prices are interchangeable:

D i (p) = D (p i ; p i ), where D (p i ; p i ) = D (p i ; (p i ))
for any permutation ( ) of the prices p i , for all i 2 N and (p i ; p i ) 2 R n + .

It follows that all …rms have the same best-response R (p i ), which is moreover invariant under any permutation of the other …rms'prices. We further assume that @ 1 R ( ) > 1;

(2)

where @ 1 R ( ) denotes the partial derivative of R ( ) with respect to its …rst argument (by symmetry, the same condition applies to the other derivatives). 30 We maintain our general assumptions, which imply that the Nash equilibrium and the monopoly outcome are not only unique but symmetric: p N i = p N and p M i = p M ; let q M denote the monopoly quantity. Finally, it will be convenient to denote by s (p) (p; :::; p) the individual pro…t achieved when all …rms charge the same price p, and by R s (p) R (p; :::; p) the best-response to a uniform price charged by the other …rms. Condition (1) implies R s0 ( ) < 1. 31 Intuitively, …rms wish to raise prices above the static Nash level when their goods are substitutes, and to lower prices when their goods are complements. Indeed, we have: Lemma 3 (symmetric oligopoly: pro…table prices)

(i) Under (S), p M > p N and s (p) s p N =) p p N ; (ii) Under (C), p M < p N and s (p) s p N =) p p N .
Proof. See Appendix D.

From Proposition 1, …rms cannot use price caps to raise their prices uniformly above the Nash level. We now show that, conversely, symmetric price caps can only sustain prices below the Nash level, leading to: Proposition 6 (symmetric oligopoly: price caps bene…t consumers)

For any symmetric price caps p, consumers are weakly better o¤ under G p than under G 1 ; therefore, it is optimal for the competition authority to allow symmetric price caps.

Proof. See Appendix E. This Proposition extends Proposition 3 in that symmetric price caps can only result in lower prices and thus bene…t consumers. Using Lemma 3, it also implies that …rms have no incentives to introduce a price cap under (S), and can instead use them to increase their pro…ts under (C). Indeed, we have: Proposition 7 (symmetric oligopoly: …rms'incentives) (i) Under (S), …rms cannot use symmetric price caps to sustain a more pro…table symmetric outcome than that of the Nash equilibrium.

30 This condition is trivially satisfy under (SC); under (SS), it is implied by the standard stability assumption P i2N nfjg @ j R i (p i ) > 1. 31 Using symmetry and R s0 (p) = P j2N nfig @ j R i (p i ), we have:

R s0 (p) = 1 n X i2N X j2N nfig @ j R i (p i ) = 1 n X j2N X i2N nfjg @ j R i (p i ) < 1;
where the inequality stems from (1).

(ii) Under (C), …rms can use (symmetric) price caps to sustain the monopoly outcome, which increases their pro…ts and also bene…ts consumers, compared with the Nash outcome; furthermore, under (SS) or (SC), or when …rms face non-decreasing returns to scale, the monopoly outcome is the unique equilibrium of the constrained game G p M .32 

Proof. See Appendix F. Proposition 7 extends Proposition 4: symmetric price caps play no role when …rms o¤er substitutes, and enable …rms to achieve perfect cooperation when they o¤er complements, in which case this cooperation also bene…ts consumers.

Remark: price caps versus mergers. The above …ndings also extend the insight that, in the absence of merger-speci…c e¢ ciency gains, price caps constitute a safer alternative to mergers: (i) they both enable (perfect) socially desirable cooperation in case of complements; and (ii) in case of substitutes, price caps are innocuous whereas mergers harm consumers and social welfare.

Oligopolistic competition under strategic complementarity

Online Appendix C generalizes the analysis to multiproduct oligopolies when prices satisfy (SC) both within and across …rms. In the text, and as for the other accounts of online Appendix results, we provide an informal treatment of our analysis and its intuition, and refer the reader to the online Appendix for more detail.

We assume quasi-concave individual pro…t functions with product-by-product increasing reaction functions (a …rm's optimal price on a product is non-decreasing in all prices, its own prices on other products and those of rival …rms) and, in the absence of price caps, a unique Nash equilibrium.

Proposition 8 (multi-product …rms under (SC)) With multi-product …rms under (SC) and for any vector of price caps, there exists a unique Nash equilibrium, and the equilibrium prices weakly increase with the price cap vector. Therefore: (i) for any vector of price caps p, consumers are weakly better o¤ under G p than under G 1 ; and (ii) in G, it is optimal for the competition authority to allow price caps.

With a single product per …rm, the analysis follows from standard supermodularity reasoning. For given prices charged by the other …rms, a …rm's price reaction under a price cap lies weakly below its unconstrained level; under (SC) this induces in turn other …rms to charge lower prices and so on.

To extend the analysis to multi-product …rms, it is useful to interpret a …rm i with m i products as m i …rms with a single product each and the same objective function. Indeed, any (constrained) best-response of the multi-product …rm characterizes an individual best-response for each of these mono-product …rms. The only di¢ culty consists in ensuring that the reverse holds (that is, that any "Nash equilibrium"among these single-product …rms constitutes a best-response of the multi-product one), which is indeed the case when the pro…t of the multi-product …rms are quasi-concave in their prices.

Proposition 8 implies that …rms have no incentive to adopt price caps when products are substitutes, and bene…t from doing so when products are complements:

Corollary 1 (multi-product …rms'incentives to set price caps under (SC)) (i) If all goods are substitutes, then price caps cannot increase the pro…t of any …rm.

(ii) If instead all goods are complements, then price caps can be used to increase all …rms'pro…ts.

Remark: segmented markets. A speci…c case of a multi-product …rm arises when a …rm produces a single product and sells it in segmented markets. Under price discrimination, the analysis is the same as in the single product case, as each market is a separate market; so Proposition 8 applies. If the …rms set a uniform price across markets, the analysis is again unchanged, as aggregating demands across markets takes the analysis back to a single market, and the (SC) property is preserved under aggregation. So Proposition 8 applies and price caps lower prices.

In both cases, suppliers of substitutes would have no incentive to introduce price caps. By contrast, suppliers of complements can bene…t from the adoption of price caps under uniform pricing, and under discriminatory pricing as well if price caps, too, can be di¤erentiated across market segments; however, if …rms can price discriminate but price caps are restricted to be uniform, then it may be more di¢ cult to …nd pro…t-enhancing agreements. 33

Hybrid demands

We sketch here two environments exhibiting reversals of the complementarity/substitutability pattern. In the …rst, o¤erings are complements at low prices and substitutes at higher prices; the second exhibits the reverse pattern. 33 Consider for example the case where two …rms (1 and 2) are active in two markets (A and B), in such a way that …rm 1's product boosts the sales of …rm 2 in market A, and conversely in market

B. Speci…cally, D A1 (p A ) = d (p A1 ), D A2 (p A ) = (p A1 ) d (p A2 ), D B2 (p B ) = d (p B2 ) and D B1 (p B ) = (p B2 ) d (p B1 )
, where ( ) is increasing whereas d ( ) and d ( ) are both decreasing in their respective arguments; all costs are zero. In the absence of price caps, the equilibrium involves the "monopoly prices" p A1 = p B2 = p m = arg max pd (p) and p A2 = p B1 = p m = arg max p d (p). In order to increase both …rms' pro…ts, price caps should decrease p A1 and p B2 below p m , which would be costly if the same caps apply to both market segments and p m > p m and (p) = + "p, where " ! 0 (small complementarity) .

Technology adoption

Consider a nested model in which (a unit mass of) users …rst select among licenses to patents covering a technology and then choose between this technology and selected licenses and an outside option (adopting a competing technology or no technology at all). For tractability we assume a single-dimensional heterogeneity parameter: users di¤er in their opportunity cost or bene…t of adopting the technology, but not in their preferences for the bundles of licenses within the technology. In the context of two symmetrical patents held by two patent owners, the description goes as follows. The users obtain value V from acquiring the two licenses, and V e from a single one. So e 2 [0; V ] is an essentiality parameter: e = 0 for perfect substitutes and e = V for perfect complements.

A user with adoption cost is willing to adopt the complete technology, based on both patents, if and only if V + P , where P is the total licensing price; the demand is thus

D(P ) F (V P );
where F ( ) denotes the cumulative distribution function of the technology adoption cost . Similarly, the demand for the incomplete technology at price p is

D(p + e) = F (V e p):
That is, an incomplete technology sold at price p generates the same demand as the complete technology sold at price p + e; thus p + e can be interpreted as the "qualityadjusted price." For low prices (p i < e for i = 1; 2), users secure both licenses and (assuming a zero marginal cost) …rm i's pro…t is given by p i F (V p 1 p 2 ). So o¤erings are local complements: each patent holder wishes that the other owner reduce her price. By contrast, for high prices (p i > e for i = 1; 2), users do not acquire a second license and pick the lower price one if they adopt the technology at all. So o¤erings are local substitutes.

To ensure the concavity of the relevant pro…t functions, we will assume that the demand function is well-behaved: Assumption B: D ( ) is twice continuously di¤erentiable and, for any P 2 [0; V ], D 0 (P ) < 0 and D 0 (P ) + P D 00 (P ) < 0.

If users buy the two licenses at unit price p, each …rm obtains Consider the static game in which the two …rms simultaneously set their prices. When a …rm raises its price, either of two things can happen. First, technology adopters may keep including the license in their basket, but because the technology has become more expensive, fewer users adopt it. In reaction to price p j set by …rm j, …rm i sets price r(p j ) given by: r (p j ) arg max

p i p i D (p i + p j ) ;
which under Assumption B satis…es 1 < r 0 (p j ) < 0 and has a unique …xed point, which we denote by p: p = r (p) :

The two patents are then complements and their prices strategic substitutes. Furthermore, p > p M due to double marginalization. 34 Second, technology adopters may stop including the license in their basket; this occurs only when the …rm raises its price above e. It follows that the Nash equilibrium is unique and symmetric: 35 both …rms charge p N min fe; pg ; and face positive demand. We will denote the resulting pro…t by N p N . Along the lines of our previous results, it is easy to check that price caps can only be bene…cial: if p N < p M , the equilibrium prices under a cap cannot exceed e = p N (each p i is equal to the minimum of e and …rm i's cap), and so letting …rms agree on price caps has no e¤ect on the outcome; if instead p N > p M , then allowing price caps lead to the lower-price monopoly outcome.

Interestingly, a pool o¤ering the bundle at some pre-agreed price P , together with independent licensing, achieves here the same outcome. 36 Independent licensing means that the owners of the patents keep ownership of their patent and therefore can market it outside the pool. A price cap is equivalent to the combination of independent licensing and unbundling, where "unbundling" refers to the requirement that the pool sells individual licenses (at a total price below the bundle price) and not only the bundle; the pool's stand-alone prices then serve as price caps for the independent licensing pricing game. As we will see, independent licensing alone no longer provides a perfect screen under repeated interaction.37 

Di¤erentiated goods with network externalities

Online Appendix E studies the properties of the Hotelling model augmented with positive network externalities. 38 The one di¤erence with the familiar Hotelling model on a line is that the consumers'valuation is v + (q 1 + q 2 ) where > 0 is the club-e¤ects parameter. For low prices, the market is covered and there are no network externalities at the margin, as total demand is …xed and equal to the unit mass of consumers (q 1 + q 2 = 1). So o¤erings are imperfect substitutes. For high prices the market is not covered and the …rms choose their prices as local monopolies. So each locally would like the other …rm to lower its price and create more externalities. The reaction curves are represented in Figure 1, which illustrates some of the results obtained in the online Appendix: in particular, for v high enough, the o¤erings satisfy (S) and (SC), and the monopoly prices are greater than the Nash prices. By contrast, if v is small enough, then for low prices the o¤erings locally satisfy (S) and (SC), but around the Nash prices they satisfy (C) instead, and the monopoly prices are lower than the Nash prices.

It is straightforward to check that, in this setting as well, price caps can only bene…t consumers: if p N < p M (which occurs when v is high), prices are strategic complements, implying that price caps can only lower the equilibrium prices; if instead p N > p M , then allowing price caps leads to the lower-price monopoly outcome. 39 Figure 1: Di¤erentiated goods with network externalities Proposition 9 (price-dependent C=S pattern) The technology adoption and the differentiated goods with network externalities models both exhibit a pattern of price-dependent complementarity/substitutability: goods are complements for low (resp. high) prices in the former (resp. latter) case. In G, it is optimal for the competition authority to allow price caps.

Mixture of complements and substitutes

Online Appendix F …rst provides an example of a welfare-decreasing price-caps agreement in a mixed complement-substitute environment. Its gist is simple. Imagine that …rms 1 and 2 compete for a clientele on a Hotelling line with imperfect substitutes A 1 and A 2 , respectively. There are two other symmetric and captive clienteles, willing to pay some known amount for the combination of products A i and B i (viewed as perfect complements). Suppose now that the …rms agree on a price cap on goods B 1 and B 2 . The reduced price on good B i induces …rm i to increase its own price on good A i so as to keep capturing surplus from its captive clientele. This puppy-dog strategy softens price competition in the Hotelling market, and reduces consumer surplus.

To obtain a positive result, we add structure by capturing a familiar environment: a …nite number of platforms compete with each other. Each platform has a large number of applications, and each application is supplied by competing app suppliers. So there is competition at the platform and at the app level, and complementarity between platforms and applications. We make the standard regularity conditions (in particular strictly quasiconcave pro…t functions), and mainly assume that the prices charged by rival suppliers of an app are strategic complements, as are the prices charged by the platforms.

Consider price caps in the platform-apps model, with (SC) for platform app supplier prices and for platform prices. There exists a unique price-constrained equilibrium, and equilibrium prices weakly increase with the vector of price caps on platform prices and on consumers.

apps. Therefore: (i) for any vector of price caps p, consumers are weakly better o¤ under G p than under G 1 ; and (ii) in G, it is optimal for the competition authority to allow price caps.

With a large number of apps, app suppliers'prices are independent of platform prices. The (SC) assumption and Proposition 8 then imply that their prices move monotonically with the caps they face. Platforms compete among each other in quality-adjusted prices (the quality-adjusted price of a platform is its price minus the net consumer surplus derived from its apps). Caps on a platform's app prices lower their prices and improve platform users' experienced quality, leading platforms to charge lower quality-adjusted prices (although higher gross prices). Thus consumers bene…t from caps on apps even in the absence of caps on platform prices. Given the (SC) assumption on platform prices, this is a fortiori the case when platform prices are capped, following the logic of Proposition 8.

The online Appendix also looks at the incentives to adopt caps. Price caps on apps have two e¤ects on app suppliers' pro…ts: they increase the demand for the platform, which unambiguously bene…ts the app suppliers, at least if they single-home (i.e. produce apps for a single platform; under multi-homing, the gain is weaker or even nil, as a platform's membership gain may be another platform's loss). But enhanced competition among the suppliers of a given app reduces their pro…t (unless the app supplier is a monopolist in his market niche, in which case a slightly binding cap has only secondorder e¤ects). The e¤ect on the platform's pro…t is unambiguously positive.

Conversely, caps on platform prices bene…t app suppliers but do not bene…t the platforms themselves, unless the apps agree on su¢ ciently low caps. More interestingly, platforms face a prisoner's dilemma: each individually wants to agree with its apps suppliers on price caps for the apps and the platform so as to gain market share, reducing the pro…t of all platforms and all apps in the process.

Non-veri…able quality

We have assumed that the products are well-speci…ed and so price caps cannot be evaded indirectly through reductions in product quality. The practice of public utility regulation has taught us that the enforcement of a price cap may trigger such quality shedding, and a standard recommendation for regulators of public utilities is to complement price caps with some quality control.

Online Appendix G considers the opposite polar case of non-contractable quality and extends our main results to allow for such evasion. 40 Namely, it assumes that demand for product i takes the form D i (p i ; p i ), where pi = p i s i denotes …rm i's net price, adjusted for quality. The quality s i can be produced at convex unit cost c i (s i ). We …rst demonstrate that a …rm reduces its quality in reaction to a price cap (c 0 i (s i ) < 1), the more so the more stringent the price cap. We then show that a su¢ cient condition for our analysis to carry over to non-contractable qualities is that an increase in its price cap does not induce a …rm to reduce its net price. This condition is equivalent to the curvature of the net cost function (c i (s i ) s i ) exceeding the semi-elasticity of demand:41 

c 00 i (s i ) jc 0 i (s i ) 1j > j@ i D i (p i ; p i )j D i (p i ; p i ) :
Intuitively, the …rm cannot substitute too easily decreases in quality for price increases. Assuming this is the case, we show that the set of net prices that are implementable through a price cap is again the set of price vectors that lie below the reaction curves. Results then follow from this characterization. For example, under duopoly price caps cannot hurt consumers under Assumption A. Under (S), duopolists cannot increase their pro…t (or even their joint pro…t if (SC) obtains); under (C), …rms can use price caps to increase their pro…ts. This demonstrates the robustness of our analysis to situations in which the quality is not veri…able.

Investment and entry

This section analyses the impact of price caps on investment and entry incentives. We …rst consider the use of price caps from an ex post perspective, once investment or entry decisions have been made, before discussing their possible strategic use, from an ex ante perspective, as an instrument to sti ‡e investment or deter entry.

Post-investment price caps

Let I i denote the set of feasible investment decisions for …rm i, and I = (I 1 ; :::; I n ) 2 I = I 1 ::: I n denote the vector of these decisions. Firm i's total cost is now given by C i (q i ; I i ), and the demand for …rm i's goods is D i (p; I) = (D 1 i (p; I) ; :::; D m i i (p; I)). We assume that for any investment vector, there is a unique price equilibrium in the absence of price caps. We consider here a modi…ed version of the timing in which stage 2 comprises two steps:

1. The competition authority decides whether to allow …rms to enter into price cap agreements.

2. (a) Firms make investment or entry decisions; these decisions are observed by all …rms.

(b) Firms choose price caps if such agreements are allowed.

3. If price cap agreements are forbidden, or no agreement was signed, then …rms play the unconstrained pricing game G 1 ; if instead …rms agreed on a price cap vector p, then they play the constrained pricing game G p .

Online Appendix H …rst introduces investment decisions in the multiproduct oligopoly setting introduced in Section 2.5. These decisions may correspond to entering or staying in the market, developing new products, improving the quality or lowering the production cost of existing ones...; di¤erent …rms may moreover face di¤erent choices. We assume quasi-concavity and strategic complementarity in prices, as well as the existence of a unique continuation price equilibrium (for any investment decisions).

From Proposition 8, producers of substitutes have no incentive to set price caps in stage 2b, regardless of their investment decisions in stage 2a. Therefore, allowing price caps has no impact on the set of investment equilibria.

By contrast, in case of complements, price caps help …rms solve double marginalization problems; we would thus expect their use to enhance pro…tability and foster entry. To explore this, we consider a more restrictive entry/exit scenario in which each …rm must decide whether to be active or not. Active …rms can always sign a mutually pro…table agreement that bene…ts all of them.42 However, if only a subset of …rms agree to price caps, we must consider their impact on non-signing …rms. We focus here on the case where price caps bene…t non-signatories as well:

Assumption C: Any active unconstrained …rm is at least as well o¤ when other active …rms are constrained by price caps than when all active …rms are unconstrained. This condition is likely to hold when …rms are in a rather symmetric position. For example, the online Appendix shows that Assumption C holds under (SS) when investments impact the costs only and the demand for one …rm depends on other …rms'prices only through a symmetric aggregator:

D i (p) = D (p i ; A (p i )).
43 It also provides an example with very asymmetric impacts (namely, each product constitutes a complement for the next one) where a price-caps agreement can bene…t two …rms at the expense of a third, non-signing and therefore unconstrained one.

Another di¢ culty lies in the possible multiplicity of equilibria in stage 2a. To address this issue, we focus on the case where, as intuition suggests, the development of additional complementary products enhances …rms' pro…ts, and show that, for any given market structure that arises in the absence of price caps, allowing price caps yields an equilibrium where at least the same …rms are active. This leads to:

Proposition 10 (investment incentives) (i) Under (S) and (SC), the possibility of post-investment price-caps agreements has no impact on investment/entry/exit decisions.

(ii) Under (C) and Assumption C, for any entry/exit equilibrium without price caps, there is an equilibrium in which the same …rms (and possibly others) are active when price caps are allowed.

Pre-investment price caps

We now turn to "ex-ante" price caps. Such price caps could be used as a commitment device to induce exit, deter entry or sti ‡e investment, ultimately hurting consumers.

There are two types of concerns, which online Appendix I explores in more detail. First, incumbents might adopt price caps as a commitment to be tough toward a rival entrant, a collective version of the limit pricing model of Sylos Labini (1957) and Modigliani (1958). However, limit pricing can work only if it is credible (emphasizing this was an achievement of the early game-theoretic IO literature). One way of achieving credibility would be to involve customers, as they would then insist on enforcing the caps. 44 We thus propose a regulation requiring that customers are not part of the pricecaps agreement. They cannot sue -or ask for a money-back payment from -a …rm that charges a higher price than it promised. This recommendation applies to all customers, at all stages of the production and distribution chain, and not only to …nal consumers.

Second, …rms might set very low price caps (say, below minimum average cost) as a commitment to exit/not enter. When lump-sum monetary transfers are allowed, a …rm could monopolize the industry by bribing its rival(s) into accepting such a price cap. Even if lump-sum monetary transfers are disallowed (which precludes such self-mutilation by the exiting …rms), …rms could still allocate territories or market segments among themselves by agreeing to exit-inducing caps on the other's "turf". Intuitively, though, such commitments are not credible, as producers of substitutes have no incentive to enforce the price caps (or, equivalently, want to renegotiate them away). Taking advantage of these incentives leads us to propose a second recommendation, which is that the agreement becomes void if none of the parties wishes to enforce it.

Provided that these two regulations are in place, could price caps hurt consumers by a¤ecting entry, exit or more generally investment? To explore this, we consider the following modi…ed version of game G:

1. The competition authority decides whether to allow …rms to enter into price cap agreements.

2. (a) Firms choose price caps if such agreements are allowed.

(b) Firms make observable investment or entry decisions.

3. (a) If an agreement has been signed, …rms choose whether to con…rm it; the agreement is enforced if and only if at least one …rm con…rms it.

(b) Firms set their prices.

This timing allows …rms to sign price-caps agreements in order to in ‡uence investment decisions, but rules out non-credible threats by asking them to con…rm their willingness to enforce the agreement, once investment decisions have been made. Indeed, Proposition 4 and its variants show that price caps hurt the …rms under (S) and (SC); their incentive is thus to renegotiate away (not enforce) the initial agreement, which undermines any attempt to sti ‡e investment sti ‡ing, deter entry or trigger exit.

Suppose that: a) customers are not part of the price-caps agreements; b) the agreement becomes void if none of the parties wishes to enforce it. Then, when (S) and (SC) hold, price caps have no impact on investment/entry/exit and therefore no impact on consumers.

This result shows that, under (SC), suppliers of substitutes cannot strategically enter into price-caps agreements in order to deter entry or expansion, or induce the exit of a competitor. Coalitions involving producers of complements may however have an incentive to adopt price caps for such strategic reasons. For example, an incumbent …rm could enter into a price-caps agreement with the supplier of a complementary product, so as to commit itself to maintain lower prices and deter in this way the entry of a potential rival: that supplier would then play a role similar to that of a "customer", by opposing any later attempt to remove the price cap. Competition authorities should therefore remain cautious in such environments.

Foreclosure

Our analysis so far has been motivated by the observation that mergers between producers of substitutes increase market power. But so do mergers between producers of complements if the merger allows them to foreclose entry (or trigger exit) of competitors. A number of theoretical contributions noted that the Chicago school argument according to which, in a world of complements, favoring an internal division over external suppliers is self-defeating, no longer holds when entry or exit decisions are at stake. Notably, Carlton and Waldman (2002) and Choi and Stefanadis (2001) showed that bundling may allow an integrated incumbent to deter the development of rival systems; even though the development of a single alternative component bene…ts the incumbent by boosting the value of its other components (the Chicago school argument), the development of a full range of components, creating together an alternative system, destroys the monopoly position.

We will not develop a complete theory of how price caps can advantageously substitute for mergers in such environments, and content ourselves with showing, in the context of the Choi-Stefanadis and the Carlton-Waldman frameworks, that price caps have the potential to promote system expansion without facilitating the foreclosure of rival systems; see online Appendix J.

The instrument for foreclosure may be the choice of an incompatible technology over an open standard. Entrants can then make a pro…t if they develop an entire system alternative, but not through partial entry on a component. So entry is riskier (Choi-Stefanadis) or less pro…table if entry in the complementary segments cannot be synchronized (Carlton-Waldman). Independent incumbent producers of complementary goods by contrast are better o¤ picking the open standard, as they create more competition for the complementary product(s). Prohibiting the merger of incumbent producers of complementary products thus reduces the likelihood of foreclosure. To be certain, the merger may also eliminate double marginalization and lower the price of the complementary components. But this property is shared by both a merger and price caps, and price caps are a socially superior way of avoiding double marginalization, as they do not encourage foreclosure.

Alternatively, foreclosure may result from bundling through tari¤s: an incumbent can practice cross subsidies to squeeze an entrant in a speci…c segment. This too is precluded by the absence of merger: While an integrated …rm can o¤set a price reduction on a component by raising price on the other, an independent incumbent is not willing to lose money on its product.

In the Choi-Stefanadis and Carlton-Waldman frameworks, a merger of complements allows foreclosure while price caps do not. Accordingly, price caps are a socially superior way of handling double marginalization.

Impact of price caps on repeated interactions

We now study the scope for tacit coordination through repeated interaction. To do so, in stage 3 of G we replace the pricing game G 1 (in the absence of price caps) or G p (if price caps p have been adopted in stage 2 of G) with an in…nitely repeated game, G 1 or G p , in which: in each period t = 1; 2; :::, …rms set their prices fp t i g i2N for that period (subject to the price cap p i adopted in stage 2 of G, if any). each …rm i maximizes the discounted sum of its per-period pro…ts, P

t 1 t i (p t )
, where is the discount factor, common to all …rms.

To avoid technicalities, we focus on pure strategies and, in the case of substitutes, assume that prices are bounded above by an arbitrarily large bound: …rms' strategies are of the form fp t i ( )g t=1;2;::: , where p t i ( ) is a mapping from H t , the set of all possible histories at the beginning of period t, onto [0; p max ], where p max > max p N ; p M (> 0). 45 We also focus on the subgame-perfect equilibria of this game.

It is well-known that the repetition of the static Nash equilibrium constitutes a subgame-perfect equilibrium of this repeated game, and that multiple equilibria may exist when the discount factor is not too small. To study the overall impact of price caps on the scope for tacit coordination, we study the impact of price caps on the resulting equilibrium set. Price caps can a¤ect this equilibrium set in two ways: price caps limit feasible deviations from the equilibrium path; and they may enlarge the set of feasible punishments following a deviation, by constraining the deviator's possible actions.

Symmetric oligopoly outcomes

We consider here the symmetric oligopoly setting of Section 2.4 and focus on symmetric price caps and stationary equilibrium paths.

We …rst note that the static Nash outcome is sustainable, with or without price caps, and that the possibility for the …rms to enter into price-caps agreements can only enhance the scope for tacit coordination. Let P + denote the set of symmetric prices p that are weakly more pro…table than the static Nash equilibrium (i.e., s (p) s p N ) and can be sustained in the absence of price caps, and P + c similarly denote the set of weakly more pro…table symmetric prices p that can be sustained for some symmetric price caps. Note that p N 2 P + P + c : any price in P + remains sustainable when a "high-enough"price cap (e.g., p = p max ) is introduced. We denote by p and by p c the most pro…table prices in these sets: p arg max p2P + s (p) and p c arg max p2P + c s (p). From Lemma 3, p and p c both lie above p N when the two goods are substitutes, and below p N when they are complements. Furthermore, if …rms can achieve perfect coordination in the absence of price caps, they can do so as well with high enough price caps. The more interesting case is therefore when, in the absence of price caps, …rms cannot achieve perfect coordination through repeated interaction (i.e., p M = 2 P + ). We have:

Proposition 11 (screening through price caps under tacit coordination) For a symmetric oligopoly:

(i) Under (S) and (SC), P + c = P + : the possibility for …rms of setting price caps have no impact on the scope for tacit collusion.

(ii) Under (C), if p M 2 P + , then …rms can achieve perfect cooperation with and without price caps; if instead p M = 2 P + , then p N p > p M = p c : price caps enable the …rms to achieve perfect cooperation, which also bene…ts consumers and society. Furthermore, when …rms face non-decreasing returns to scale, a price cap p = p M yields a unique continuation equilibrium, in which …rms repeatedly charge p M .

Proof. See Appendix G.

The intuition underlying Proposition 11 is simple. Under (S), …rms want to raise prices. However, under (SC) the targeted prices lie above …rms' best-responses; as a result, price caps cannot be used to limit …rms' deviations from these targeted prices and, when prices are strategic complements, they cannot limit deviations from any other feasible price either. Hence, price caps do not facilitate tacit collusion. By contrast, under (C), …rms produce complements; they thus wish to lower their prices in order to eliminate double marginalization. In the absence of price caps, repeated interaction may not enable …rms to achieve perfect coordination, in which case the most pro…table sustainable price remains higher than the monopoly level. A symmetric price cap p = p M enables instead the …rms to achieve perfect coordination; furthermore, under non-decreasing returns to scale, each …rm can again secure its share of the monopoly pro…t by charging the monopoly price, ensuring that perfect coordination is the unique equilibrium.

The technology adoption model

To study more fully the impact of price caps on tacit coordination, let us return to the hybrid demand model introduced in Section 2.6.1. Unlike in Section 4.1, we provide a complete characterization of the prices that can be achieved through arbitrary price caps (and so in particular in the absence of any price cap). We also provide extensions to asymmetric demands and to an arbitrary number of …rms. 46 The comparison of p N , the Nash price, with p M , the monopoly price, drives the nature of the interaction between the …rms, and the coordination that they wish to pursue. 47 Under rivalry (p N < p M , which arises when the essentiality parameter e lies below the monopoly price: e < p M , implying p N = e), the …rms wish to collude by raising their prices above the static Nash level, which harms consumers and reduces social welfare. Charging a price above p N = e however induces users to buy at most one license. We will assume that …rms can share the resulting pro…t ~ (p) as they wish. 48 In this "incomplete-technology region", it is optimal for the …rms to raise the price up to pM (e) arg max p fpD (p + e)g, if feasible, and share the resulting pro…t, ~ M (e). Under complementors (p N > p M , which arises when e > p M ), the …rms wish to cooperate by lowering their prices below the static Nash level, which bene…ts users as well as …rms. Ideally, the …rms would reduce the per-patent price down to p M , and so as to obtain per-…rm pro…t M .

Repeated interaction without price caps

We …rst consider the scope for tacit coordination through repeated interaction, in the absence of price caps. Online Appendix K provides a complete characterization, the key results of which are summarized in Figure 2. Tacit coordination is easiest, and the gain from coordination highest, when the patents are close to being either perfect substitutes or perfect complements. Tacit coordination is impossible when patents are weak substitutes; raising price then leads users to adopt an incomplete version of the technology, and decreases overall pro…t. Collusion by contrast is feasible when patents are strong substitutes, and all the more so as they become closer substitutes. Likewise, the scope for cooperation increases as patents become more essential; …nally, some cooperation is always feasible when patents are strong complementors.

We now consider the impact of tacit coordination on consumers. To perform a welfare analysis we assume that, whenever equilibria exist that are more pro…table than the static Nash outcome, then …rms coordinate on one -anyone -of those equilibria. 49 Proposition 12 (welfare) Whenever …rms coordinate on an equilibrium that is more pro…table than the static Nash benchmark, such tacit coordination:

(i) harms users and reduces total welfare under rivalry (e < p M ).

(ii) bene…ts users and increases total welfare for complementors (e > p M ).

Proof. See online Appendix L.

Impact of price caps on repeated interaction

Let us now investigate tacit coordination under price caps. Let V + c denote the set of equilibrium payo¤s that are weakly more pro…table than Nash payo¤s when price caps can be introduced, and v c denote the maximal payo¤ in this set. We have:

Proposition 13 (bene…ts of price caps) Price caps:

(i) have no impact on pro…table collusion in case of rivalry: if e < p M , then V + c = V + ;
(ii) enable perfect cooperation, which bene…ts consumers as well, in case of complementors: if e p M , then v c = M ; in particular, introducing a price cap p = p M yields a unique continuation equilibrium, in which …rms repeatedly charge p M .

It is therefore optimal for the competition authority to allow price caps in G.

Proof. See online Appendix M.

Within the context of technology adoption, Proposition 13 extends Proposition 11 in that it considers the entire set of Nash-dominating equilibria (stationary or not, symmetric or not), with and without price caps. The …ndings can be illustrated by comparing Figure 2 with Figure 3: price caps can only bene…t consumers when …rms use them to increase their pro…ts; they do not allow for any additional undesired collusion in case of rivalry, and allow instead for perfect, desirable cooperation in case of complementors.

Remark: Independent licensing is no longer a perfect screen under repeated interaction. We saw that independent licensing provides a perfect screen under non-repeated interaction: it prevent pools from sustaining any collusion in case of rivalry, and does not prevent pools from achieving perfect cooperation in case of complementors. Alas, as shown in online Appendix N, this is no longer so under repeated interaction. A pool subject to independent licensing still improves cooperation and lowers price for complementors e > p M , and it also bene…ts consumers when (ine¢ cient) collusion would already arise in the absence of a pool, by allowing them to consume both o¤erings; however, a pool, even subject to independent licensing, may harm consumers by enabling collusion in case of weak rivalry. These insights are illustrated in Figure 4. Without independent licensing, a pool would enable the …rms to sustain the monopoly outcome which also bene…ts consumers in case of complementors but harms them in case of rivalry. Appending independent licensing does not prevent the pool from achieving the desired cooperation in case of complementors, and in case of rivalry, it enables the …rms to collude more e¢ ciently (by selling the complete technology), which again bene…ts consumers when …rms could already collude without the pool. However, the pool can also enable the …rms to collude when otherwise they could not, in which case it hurts consumers. This is because, by eliminating the ine¢ ciency from selling an incomplete technology (the corollary of an attempt to raise price in the absence of a pool), the pool makes high prices more attractive.

Thus, by relying on independent licensing alone, authorities run the risk of generating some welfare loss by approving a pool of weak substitutes. 50 By contrast, price caps (which, as already noted, amount to appending unbundling to independent licensing) provide a perfect screen.

Asymmetric o¤erings and oligopoly

Suppose now that essentiality di¤ers across …rms: The technology has value V e i if the user buys only patent j (for i 6 = j 2 f1; 2g); without loss of generality, suppose that e 1 e 2 . The following proposition shows that price caps still provide a perfect screen. As in Section 4.2.2, let V + c denote the set of pure-strategy equilibrium payo¤s that are weakly more pro…table than Nash when price caps can be introduced, and v c denote the maximal per …rm payo¤ in this set; we have: Proposition 14 (asymmetric o¤erings) Price caps:

(i) do not a¤ect the scope for pro…table collusion in case of rivalry: if e 1 + e 2 < P M arg max P P D (P ), then V + c = V + ;

(ii) enable consumer-welfare-augmenting perfect cooperation in case of complementors: if e 1 + e 2 P M , then v c = M ; in particular, any vector of price caps p = ( p 1 ; p 2 ) satisfying p 1 + p 2 = P M and p i e i induces p = p in every period as unique continuation equilibrium.

Proof. See online Appendix M. Suppose now that there are n 2 symmetric …rms: The technology has value V (m) if the user buys m n licenses, with 0 = V (0) V (1) ::: V (n) and V (n) > 0. The demand for the bundle of n patents at total price P becomes

D (P ) F (V (n) P ) ;
where the c.d.f. F ( ) satis…es the same regularity conditions as before (that is, Assumption B holds). Lerner and Tirole (2004) show that, in the unique symmetric static Nash outcome, users buy patents at price p N min fp; pg, where p is the unique price p satisfying V (n) np = max m<n fV (m) mpg, and where p is now de…ned as p arg max p fpD (p + (n 1) p)g.

As in a duopoly, multiple marginalization implies p > p M arg max p npD (np), leading to three relevant regimes: Rivalry when p < p M , implying p M > p N = p. Weak complementors when p M < p < p, implying p M < p N = p.

Strong complementors when p p, implying p M < p N = p. Our previous insights readily extend to any number of patents in the case of complementors. Likewise, in the case of rivalry, we show in online Appendix O that raising total pro…t above the static Nash level requires again selling an incomplete bundle. To go further, we focus for simplicity on the stationary symmetric outcomes that can be sustained by reversal to Nash; let P+ (resp., P+ c ) denote the set of prices that are weakly more pro…table than the static Nash equilibrium and can be sustained in the absence of price caps (resp., with price caps)51 . We have:

Proposition 15 (oligopoly) Price caps:

(i) do not a¤ect the set of pro…table prices that can be sustained by reversal to Nash in case of rivalry: if p N < p M , then P+ c = P+ ;

(ii) enable perfect cooperation, which bene…ts consumers as well, in case of complementors: if p N p M , then introducing a price cap p = p M yields a unique continuation equilibrium, in which …rms repeatedly charge p M .

Proof. See online Appendix O.

In the rivalry case, in order to increase pro…ts …rms must raise prices, which induces users to buy only a subset of patents. But then, a …rm cannot pro…tably deviate by raising further its price, as it would exclude itself from the basket. Price caps thus have no bite on pro…table deviations, and so cannot enhance the scope for collusion. By contrast, in the case of complementors, price caps enable the …rms to increase their pro…ts by reducing their prices down to the monopoly level, and preventing any pro…table deviation towards higher prices.

Focal points and market transparency

Proposition 13 and its extensions imply that price caps are always socially bene…cial even under repeated interaction, provided that …rms seize coordination opportunities when these exist. A potential objection to the policy of allowing price caps is that, if instead …rms fail to coordinate in the absence of price caps, the latter may provide focal points and facilitate collusion. Caution suggests neither dismissing this possibility nor viewing it as negating the bene…ts of price caps. First, while progress has lately been made on trying to understand how …rms coordinate, our knowledge of the matter is still scant, and the empirical evidence often involves additional features such as information sharing. Second, while communication seems to have an e¤ect on collusion, it is not clear that the type of communication involved in price-cap setting is the relevant channel. Let us elaborate brie ‡y on these two points.

Transparency. It is well-known that "transparency" (making data about prices, outputs, or costs publicly available) has the potential to facilitate tacit collusion: see, e.g., Green and Porter (1984) and Rahman (2014) 52 for formal analyses, 53 and Ivaldi et al. (2003), Kühn and Vives (1995), Vives (2007) and Whinston (2006) for policy discussions. Rules restricting information exchange, as they already exist for merger negotiations, could then be useful.

For instance, Albaek et al. (1997) study the impact of the Danish antitrust authority's 1993 decision to gather and publish …rm-speci…c transactions prices in the ready-mixed concrete market. Following initial publication, average prices of reported grades increased by 15-20 percent within one year. Similar …ndings were found in other industries, including for the episode in the US railroad industry when contract disclosure was mandated by the Congress.

Testing the impact of (regulatory, rather than negotiated price caps) price caps on collusion is made di¢ cult by the fact that price caps are often accompanied with information disclosure, and so it is di¢ cult to identify the e¤ect of price caps. For example, Genakos et al. (2017) study regulatory caps in the context of the Greek market for fresh fruits and vegetables. Using a di¤-in-di¤ approach (through the comparison with …ve unregulated fruit prices), they …nd that prices dropped by 6% when the regulation was lifted and argue convincingly that it facilitated collusion before. This interesting evidence however does not inform us on the impact of price caps per se. First, the focal prices had been in place between 1946 and 2011; so it would seem that they would not have disappeared overnight when caps were lifted,54 and yet most of the price reduction took place within a few weeks. Second, the Greek regulation was a (percentage) markup regulation, and so it involved information sharing about cost and possibly demand (if cost is computed as an average cost).

The …eld evidence on focal points is therefore di¢ cult to interpret, due to the lack of appropriate counterfactual. Knittel and Stango's classic paper (2003) however …nd evidence of a focal point e¤ect of regulatory price caps in the credit card industry, in which no information exchange happened. 55 During the sample period, most issuers set rates of interest that matched the ceiling in their states; and interest rates were higher in states with high ceilings than in states with no ceiling. Laboratory experiments have tried to circumvent this issue, but so far have failed to provide conclusive evidence of collusive, focal-point e¤ects. See, e.g., Engelmann-Müller (2011) for an experiment designed to make collusion easier than in previous attempts, as well as a review of that literature.

Communication of intentions. A potential argument against price caps is that they may 56 necessitate some communication among the parties to …x the caps. There is evidence that communication is the main driver of collusive coordination. 57;58 But again one needs to understand the channel in order to know whether the communication that is involved in price cap setting is the actual driver of collusive coordination. The discussion in Kühn and Tadelis (2017), which builds on Cooper and Kühn (2014), suggests that this may not be the case. They argue that "agreements on the collusive price are actually not decisive [. . . ]. What is central to collusion is that subjects have a clear view of the responses of the other parties to the agreement of reactions to possible cheating [. . . ]. First, the most reliable factor to achieve collusive outcomes is communication in which clear punishments are threatened when the explicit agreement on price is violated [. . . ]. The second mechanism that very strongly supports collusion is repeated conversation and feedback about past behavior. In particular, there is frequent and intense verbal punishment by players who complain about the cheating by their counterparts."

Finally, let us note that the advice given in the literature on communication is really about markets in which producers are clearly substitutes; in a sense, our contribution is of interest only when this is not the case. If one is concerned that price caps could facilitate tacit collusion by providing a focal point, screening out such straightforward 55 As explained carefully by Knittel and Stango, testing the existence of a focal point e¤ect is complex for multiple reasons. First, there were two prices (issuer annual fee and interest rate), one of which is not subject to a cap; the theory of tacit collusion is not well developed for such environments, let alone a theory of focal points. Second, the econometric speci…cation of the dynamic competition model is not straightforward. 56 In theory, this is not quite the case. On could for example imagine sealed-bid proposals of the type "I will not charge more than x if the other does not charge more than y", with the price caps being set by a computer or blockchain provided that demands are compatible (with a mechanism determining how to use the slack if they are strictly compatible, as in the Nash demand game). A direct negotiation, as it takes place for the formation of patent pools, seems more realistic. It may nonetheless be interesting to design schemes that would limit the amount of direct communication among the …rms.

57 Brandts and Cooper (2007) look at methods of coordination in a one-shot coordination game. They show that the most powerful way of communicating is directly giving instructions (rather than trying things like indirect incentives). In a repeated interaction environment, Fonseca and Normann (2012) show that absent communication collusion seems to be weak except under duopoly, while communication can have important e¤ects even with a reasonably large number of players. 58 Even cheap-talk communication can facilitate collusion by enhancing market transparency; see Harrington and Skrzypacz (2011) and Awaya and Krishna (2016).

cases before issuing a business review letter allowing price caps makes good sense.

Concluding remarks

Reviews of mergers and joint marketing agreements can be hindered by poor information associated with patchy or non-existent price and demand data as well as time-and price-dependent patterns of complementarity/substitutability. This suggests enriching the antitrust toolbox with new and less information-intensive regulatory instruments. This paper is a …rst attempt at meeting this challenge. It investigates price caps as a possible alternative to mergers.

We saw that voluntary price caps raise consumer welfare -for quite general demand and cost functions in the case of non-repeated interactions and for the more speci…c repeated-interactions environments we were able to analyze. We provided a novel analysis, of independent interest, of coordinated e¤ects in an industry in which goods are not necessarily substitutes, let alone perfect substitutes. We issued some caveats, and provided extensions for the cases in which demand may exhibit either a stable mix of complements and substitutes or a price-dependent pattern of complementarity/substitutability. We also analyzed whether price caps could be used either to monopolize the industry by programming some …rms' exit, or to sti ‡e the incumbents' investment, or else to deter entry of new entrants, and were led to formulate two policy recommendations to counter potential perverse e¤ects of price caps in this dimension of industry performance. Finally, we showed that price caps substitute advantageously for a merger of complements when the latter enables established …rms to foreclose rivals.

This paper is only a …rst step in an extensive research agenda. We conclude with six important lines for future research. First, the theory of repeated interaction with arbitrary degrees of substitutability and complementarity should be developed for general cost and demand functions. Second, while we have assumed that …rms take advantage of existing opportunities to coordinate tacitly, we know little about whether discussions such as those on price caps could enhance market transparency, or create a focal point that would help the …rms to indeed achieve tacit collusion. Further experimental work could inform us on this question. Third, we should think beyond mergers and pools. Other joint marketing arrangements, such as alliances for instance, ought to be considered; similarly, "indirect"joint marketing through platforms should receive more attention. Fourth, the analysis should incorporate cost synergies and look at agreements that might increase our con…dence in their competitive bene…ts.

Fifth, we could extend the analysis to competitive non-linear pricing and other forms of price discrimination, so as to unveil the proper counterparts of price caps in such settings. 59 It is known that for a monopolist non-linear pricing is mathematically equivalent to multi-product pricing, in which the individual products are "the k th unit of consumption". The challenge will consist in generalizing this insight to oligopoly, applying our results and making the recommendations operational. The analysis should also be extended to two-sided markets.

Finally, in the paper we consider only the wholesale acceptance of price-caps agreements by the antitrust authority. Section 3.2 quali…ed this approach by adding two requirements on party enforcement. The desirability of price-caps agreements might also be enhanced by eliciting more information from industry participants; for example, the authority could elicit the e¤ects of price caps set by a sub-coalition of parties on other parties by granting the latter an outright veto (giving non-participants formal authority), by letting the latter express opposition (possibly giving them real authority), or through more sophisticated mechanisms. This research would allow policy makers to run a better-informed horserace among mergers, price caps and more sophisticated collaborative agreements. We leave these and other fascinating aspects of coopetition to future research. coordination agreement covering schedules, frequencies and connection times, but also new fare products and frequent ‡yer programs -the airline industry is highly prone to yield management and loyalty programs. To accept the agreement, the ACCC imposed minimal quantity requirements (expressed in terms of seat capacity between Shanghai and Sydney, and of aggregate seat capacity between Shanghai and Australia). See ACCC decision N A91470, available at http://www.accc.gov.au. We thank Graeme Woodbridge for drawing our attention to this case. for all i 2 N , and consider a small and uniform increase in prices: dp i = dp > 0 for i 2 N . We then have dq j = P i2N @ i D j p M dp 0 for all j 2 N , and thus:

d = X j2N p M j C 0 j q M j dq j + X j2N q M j dp > 0; a contradiction. Therefore, p M i > C 0 i q M i
for some i 2 N . We now show that, under (S), p M i > C 0 i q M i for every i 2 N . To see this, suppose that there exists a non-empty subset of N , N , such that p M j C 0 j q M j for every j 2 N , and consider a small and uniform increase in these prices: dp j = dp > 0 for j 2 N . Under (S), we then have:

for i 2 N n N , dq i = P j2N @ j D i p M dp > 0, as @ j D i p M > 0 for j 6 = i. for i 2 N , dq i = P j2N @ j D i p M dp P j2N @ j D i p M dp 0.
Therefore:

d = X j2N nN p M j C 0 j q M j | {z } >0 dq j |{z} >0 + X j2N q M j |{z} >0 dp |{z} >0 + X j2N p M j C 0 j q M j | {z } 0 dq j |{z} 0 > 0; a contradiction. Therefore, under (S), p M i > C 0 i q M i
for every i 2 N . We now compare monopoly prices to …rms'best-responses. The monopoly prices satisfy, for i 2 N :

0 = @ i p M = @ i i p M + X j2N nfig @ i j p M ;
and thus:

@ i i p M = X j2N nfig @ i j p M = X j2N nfig p M j C 0 j q M j @ i D j p M : (3) 
Therefore:

(i) Under (S), the right-hand side of (3) is negative, as p M j > C 0 j q M j , from the …rst part of the lemma, and @ j D i ( ) > 0 for j 6 = i 2 N ; hence, for i 2 N , we have @ i i p M < 0, which, together with the quasi-concavity of i with respect to p i , implies

p M i > R i p M i .
(ii) Suppose that for all j 2 N , p M j R j p M j , implying @ j j p M 0. We then have, for j 2 N :

0 @ j j p M = D j p M + p M j C 0 j q M j @ j D j p M ;
and thus, under (C), p M j > C 0 j q M j for every j 2 N . But then, as @ j D i ( ) < 0 for j 6 = i 2 N under (C), (3) implies @ i i p M > 0, a contradiction. Hence, the monopoly outcome satis…es p M j < R j p M j for some …rm j. Finally, when n = 2, (3) implies, for j 6 = i 2 f1; 2g:

@ j j p M = p M i C 0 i q M i @ j D i p M : Under (C), @ j D i ( ) < 0 and thus p M i > C 0 i q M i implies p M j < R j p M j .

B Proof of Proposition 1(ii)

By construction, p N lies on …rms'best-responses, and thus belongs to P. Consider now a price vector p in Pn p N , and suppose that pi p N i for all i 2 N . For every i 2 N , we then have:

pi p N i R i (p i ) p N i ; = R i (p i ) R i p N i = Z 1 0 d d R i p i + (1 ) p N i d = Z 1 0 f X j2N nfig @ j R i p i + (1 ) p N i pj p N j gd :
Summing up these inequalities for i 2 N yields:

X i2N pi p N i X i2N Z 1 0 f X j2N nfig @ j R i p i + (1 ) p N i pj p N j gd = X j2N pj p N j Z 1 0 f[ X i2N nfjg @ j R i p i + (1 ) p N i ]gd < X j2N pj p N j ;
where the last inequality follows from (1). We thus obtain a contradiction, implying that pi < p N i for some i 2 N .

C On unique implementation C.1 Proof of Proposition 2

By assumption, p N is the unique equilibrium of game G 1 . Consider a price vector p 2 Pn p N and the associated price-cap-constrained game G p. As noted in the proof of Proposition 1, p is sustainable through the vector of price caps p = p: Strict quasiconcavity and the fact that each price must be below the …rm's reaction curve implies that p is an equilibrium of G p. So the question is whether there might exist another equilibrium p0 6 = p, in which necessarily at least one of the prices is strictly below the cap. We now show that this is never the case in the three settings described in the proposition.

C.1.1 Duopoly

Suppose that n = 2. If both prices in p0 are strictly lower than their cap, then, because of quasi-concavity, p0 is also an unconstrained equilibrium; but then, from Proposition 1, p N i > pi > p0 i for some i 2 N , and thus we have two equilibria of the unconstrained game, a contradiction.

Suppose instead that only one price, say p0 2 , is below the cap while the other, p0 1 , is at the cap; that is: p0 2 < p2 and p0 1 = p1 . From Proposition 1, p lies below the reaction curves; therefore, we have:

p0 2 < p2 R 2 (p 1 ) = R 2 (p 0 1 ) :
But then, strict quasi-concavity implies that, in the p0 equilibrium, …rm 2 could increase its pro…t by raising its price toward the cap p2 .

C.1.2 Strategic complementarity

Let { denote the …rm for which the di¤erence pi p0 i is the largest. From the implementability of p and strict quasi-concavity, we have

R { (p {) p{ and R { p0 { = p0 i . Furthermore, letting p { p { + (1 ) p0 
{, we have:

R { (p {) R { p0 { = Z 1 0 d d R { p { d = Z 1 0 X j2N nf{g @ j R { p { pj p0 j d Z 1 0 X j2N nf{g @ j R { p { (p { p0 {) d < p{ p0 {;
where the weak inequality stems from p{ p0 { pj p0 j for every j 6 = {, and the strict inequality follows from the assumption P j2N nf{g @ j R { ( ) < 1. But then, combining these conditions yields:

p{ p0 { > R { (p {) R { p0 { p{ p0 {;
a contradiction.

C.1.3 Strategic substitutability

Suppose that the reaction functions satisfy (SS). Then, for some i 2 N :

p0 i < pi R i (p i ) R i (p 0 i );
where the last inequality stems from the fact that, by construction, p0 i lies below the vector of price caps p i . But then, strict quasi-concavity implies that …rm i could increase its pro…t by raising its price toward the cap pi .

C.2 Example of multiplicity in the price-cap-constrained game

Take three …rms i = 1; 2; 3 with pro…ts 1 (p) = p 1 (p 1 ) 2 , 2 (p) = p 2 (p 2 ) 2 (1 p 1 )p 2 (2p 3 1) and 3 = p 3 (p 3 ) 2 (1 p 1 )p 3 (2p 2 1), respectively. The game G 1 , which has strictly concave payo¤ functions in own price, admits a unique Nash equilibrium:

p N 1 = p N 2 = p N 3 = 1=2.
But if …rm 1 faces a price cap p 1 = 0, then there is a continuum of equilibria, in which …rm 1 sets p 1 = 0 whereas …rms 2 and 3 charge any non-negative prices satisfying p 2 + p 3 = 1.

D Proof of Lemma 3

We have:

p M R s p M = Z p M p N [1 R s0 (p)] dp;
where the integrand of the right-hand side is positive. Hence, the sign of p M p N is the same as that of p M R s p M . Therefore, using Lemma 1, p M > p N under (S) and p M < p N under (C). The implication for pro…table prices follows from the strict quasiconcavity of the industry pro…t: n s (p) n s p N then implies p p N under (S), and p p N under (C).

E Proof of Proposition 6

Suppose that all …rms face the same price cap p. If p p N , then

R s ( p) p = Z p p N [R s0 (p) 1] dp 0;
where the inequality follows from R s0 < 1 and p p N . It follows that p = p constitutes an equilibrium of G p ; furthermore, any equilibrium p of G p satis…es p p p N , and thus consumers are weakly better o¤ under G p than under G 1 .

Consider now the case where p > p N . Obviously, p N constitutes an equilibrium of G p . Suppose now that there exists another equilibrium, p, in which some …rm charges strictly more than p N . By strict quasi-concavity, pi = min fR i (p i ) ; pg for all i 2 N . If

pi = p for all i 2 N , then p R s ( p) = Z p p N [1 R s0 (p)] dp > 0;
implying that each …rm would pro…tably deviate by cutting its price. Therefore, there exists { 2 N for which p{ = R (p {) < p. Conversely, if pi = R (p i ) for all i 2 N , then p = p N , contradicting the assumption that some …rm charges more than p N . Therefore, there exists { 2 N for which p { = p < R (p { ). But then, we have:

p p{ < R (p { ) R (p {) = R p{ ; p f{; {g R p; p f{; {g = Z p{ p @ 1 R p; p f{; {g dp < p p{ ;
where the second inequality follows from @ 1 R ( ) > 1 and p > p{ . We thus have a contradiction, implying there exists no equilibrium of G p in which a …rm charges strictly more than p N .

F Proof of Proposition 7

(i) From Proposition 6, price caps can only sustain prices below the Nash level; it follows from Lemma 3 that, under (S), …rms cannot use price caps to sustain more pro…table symmetric outcomes.

(ii) Under (C), R p M > p M from Lemma 1, and thus p M 2 P. Furthermore, under either (SS) or (SC), the monopoly outcome is the unique equilibrium of G p M . Suppose now that C 00 ( ) 0, and …rms agreed on price cap p = p M . By charging

p i = p M each …rm i 2 N can obtain i p M ; p i = s p M + Z D i( p M ;p i) q M p M C 0 (q i ) dq i s p M ;
where the inequality stems from the fact that (a) p j p = p M for every j 2 N implies D i p M ; p i D i p M ; :::; p M , as goods are complements, and (b) using Lemma 1 and C 00 ( ) 0, p M > C 0 q M C 0 (q i ) for q i q M ; hence, i p M ; p i s p M . As each …rm can secure s p M , it follows that the monopoly outcome constitutes again the unique continuation equilibrium.

G Proof of Proposition 11

(i) We already noted that P + P + c . Conversely, …x a price p 2 P + c and an equilibrium sustaining this price p thanks to a price cap p. Letting V i denote the lowest sustainable continuation value for …rm i 2 N , consider the alternative "bang-bang" strategies: (i) along the equilibrium path, …rms stick to p; and (ii) any deviation by …rm i 2 N (from the equilibrium path, or for any other history) is punished with the continuation value V i . These alternative strategies still sustain p, as any deviation (including from o¤-equilibrium) is punished at least as severely with the alternative strategies.

Thus, without loss of generality, consider an equilibrium sustaining p thanks to the price cap p, in which any deviation by any …rm i 2 N is punished with the continuation value V i . At any point in time, all deviations from the prescribed continuation path are punished in the same way; hence, the best deviation is the "myopic" deviation that maximizes the current pro…t. As …rms' individual pro…ts are moreover strictly quasiconcave with respect to their own prices, it follows that, for any t = 1; 2; :::, and any h t 2 H t , …rm i's best deviation from the prescribed price vector p t (h t ) consists in charging:

R i p t i h t ; p min R i p t i h t ; p :
By construction, p p; furthermore, as by assumption p is at least as pro…table as p N , and the goods are substitutes, p p N . We thus have p p N , which, using R s0 ( ) < 1 and R s p N = p N , yields:

p R s ( p) = Z p p N [1 R s0 (p)] dp 0:
We thus have p R ( p) for any …rm i 2 N . But by construction, any prescribed prices p t (h t ) must satisfy p t j (h t ) p for all j 2 N . Under (SC), we thus have:

R i p t i h t R s ( p) p:
It follows that the price cap p never limits …rms'deviations: in any period t = 1; 2; :::, and for any history h t 2 H t , …rm i's best deviation from the prescribed price vector p t (h t ), for any i 2 N , is the same as in the absence of any price caps:

R i p t i h t ; p = min R i p t i h t ; p = R i p t i h t :
Hence, the same strategies constitute an equilibrium in the absence of price caps, and thus p 2 P + .

(ii) We …rst establish that p M = 2 P + implies p > p M . Suppose instead that p < p M . To prevent a deviation by …rm i 2 N , there must exist a continuation payo¤ V i such that:

s (p ) (1 ) (R s (p ) ; p ) + V i : (4) 
However, note that, for p < p M :

d dp f s (p) (1 ) (R s (p) ; p)g = ( s ) 0 (p) (1 ) d dp f (R s (p) ; p)g > 0;
where the inequality stems from the fact that n s (p) increases with p for p < p M , and that, under (C), s i (R s (p) ; p) = max p i s i (p i ; p) decreases as p increases when the goods are complements:

d dp f (R s (p) ; p)g = [R s (p) C 0 (D (R s (p) ; p))] X j2N nfig
@ j D i (R s (p) ; p; :::; p) < 0;

where the equality follows from the envelope theorem and the inequality from the margins being positive, from Lemma 2, together with @ j D i ( ) < 0 under (C).

As p < p M by assumption, it follows from (4) that

s p M (1 ) R s p M ; p M + V i :
Hence, p M can be sustained as well, a contradiction. Therefore, p M = 2 P + implies p > p M ; as R s p M > p M = p from Lemma 1, it follows from the proof of Proposition 1 that charging p M in every period constitutes a continuation equilibrium when …rms agree on a price cap p = p M . This establishes the …rst half of part (ii).

Turning to the second part of (ii), suppose that the …rms agree on a price cap p = p M . As no …rm can charge more than p M , if C 00 0, then by charging p i = p M in every period, each …rm i 2 N can secure at least s p M = (1 ); hence, the monopoly outcome constitutes the unique continuation equilibrium. 

A Nash equilibrium

We establish here the existence of a unique Nash equilibrium in the setting considered in Section 2.1: Lemma 4 (Nash equilibrium) In the setting considered in Section 2.1, if in addition

8j 2 N ; X i2N nfjg j@ j R i (p i )j < 1;
then there exists a unique static Nash equilibrium, which is moreover "stable" under the standard tâtonnement process.

Proof. As it is never optimal for …rm i to charge a negative price, and R i ( ) is bounded above by some …nite B i (which obviously must satisfy B i > 0), we have, for

p i 2 R n 1 + : R i (p i ) 2 C i [0; B i ] ;
where C i is a non-empty compact interval of R + . Note that, by construction, any Nash equilibrium price vector 

p N = p N i i2N is such that p N i 2 C i . Next, de…ne (p) ( i (p)) i2N , where i (p) = R i (p i ).
k (p 0 ) (p)k = X i2N j i (p 0 ) i (p)j = X i2N R i p 0 i R i (p i ) = X i2N Z 1 0 d d R i p 0 i + (1 ) p i d X i2N Z 1 0 f X j2N nfig @ j R i p 0 i + (1 ) p i jp 0 j p j jgd = Z 1 0 f X j2N [ X i2N nfjg @ j R i p 0 i + (1 ) p i ] jp 0 j p j jgd X j2N k jp 0 j p j j = k kp 0 pk ;
where:

k = max p2C;j2N X i2N nfjg j@ j R i (p i )j < 1:
It follows from the Banach …xed point theorem that (p) has a unique …xed point in C, p N , and that any sequence fp n g n2N satisfying p n+1 = (x n ) converges to this …xed point. Hence, p N is the unique Nash equilibrium of the static game, and it is stable under the standard tâtonnement process.

B On Assumption A B.1 A su¢ cient condition

We show here that Assumption A holds under the following condition:

Assumption A' : For any i 6 = j 2 f1; 2g and any prices p i 2 [0; p N i ) and p j > p N j :

D j (p j ; p i ) @ 2 11 D j (p j ; p i ) < 2 (@ 1 D j (p j ; p i )) 2 C 00 j (D j (p j ; p i )) (@ 1 D j (p j ; p i )) 3 ;
and:

D j (p j ; p i ) @ 1 D j (p j ; p i ) @ 2 D j (p j ; p i ) D j (p j ; p i ) @ 2 12 D j (p j ; p i ) < D i (p i ; p j ) 2 (@ 1 D j (p j ; p i )) 2 D j (p j ; p i ) @ 2 11 D j (p j ; p i ) +C 00 j (D j ) (@ 1 D j ) 2 [D j (p j ; p i ) @ 2 D j (p j ; p i ) D i (p i ; p j ) @ 1 D j (p j ; p i )] :
The …rst part of this assumption amounts to say that, for any given price of the other …rm, the pro…t of a given …rm is concave with respect to the price of that …rm. It is satis…ed, for instance, when the cost function is weakly convex (i.e., C 00 i ( ) 0) and the elasticity of the inverse of the residual demand is lower than 2, as is the case for the demand functions usually considered in oligopoly theory -in particular, it holds whenever the residual demand is log-concave (or equivalently, that the elasticity of its inverse is lower than 1), or it is exponential (and thus log-convex) with an elasticity higher than 1.

The second part of the assumption holds, for instance, when the goods are close to being perfect complements. 1 Firm j's best-response, R j (p i ), is characterized by the …rst-order condition:

R j (p i ) C 0 j (D j (R j (p i ) ; p i )) @ 1 D j (R j (p i ) ; p i ) + D j (R j (p i ) ; p i ) = 0;
which yields (dropping the argument (R j (p i ) ; p i )):

R 0 j (p i ) = @ 1 D j @ 2 D j D j @ 2 12 D j C 00 j (D j ) (@ 1 D j ) 2 @ 2 D j 2 (@ 1 D j ) 2 D j @ 2 11 D j C 00 j (D j ) (@ 1 D j ) 3 ;
where the denominator of the right-hand side is positive under Assumption A'. Therefore, Assumption A amounts to (dropping the argument (R j (p i ) ; p i )):

D i 2 (@ 1 D j ) 2 D j @ 2 11 D j C 00 j (D j ) (@ 1 D j ) 3 > D j @ 1 D j @ 2 D j D j @ 2 12 D j C 00 j (D j ) (@ 1 D j ) 2 @ 2 D j ;
which follows from Assumption A'.

B.2 A counter-example

We provide here an example where Assumption A does not hold.

B.2.1 Setting

There are two goods 1 and 2, produced at no cost by two di¤erent …rms 1 and 2, and a unit mass of consumers, indexed by x, where x is uniformly distributed on [0; 1]:

1 Remember that Assumption A holds trivially when prices are strategic complements, as is usually the case for substitutable goods. Hence, considering Assumption A' is useful only when prices are strategic substitutes, which in turn is mostly relevant when the goods are complements. But for perfect complements, demands are of the form D i (p i ; p j ) = D (p 1 + p 2 ), and Assumption A'then boils down to

D ( ) h (D 0 ( )) 2 D ( ) D 00 ( ) i < D ( ) h 2 (D 0 ( )) 2 D ( ) D 00 ( ) i +C 00 j ( ) (D 0 ( )) 2 [D ( ) D 0 ( ) D ( ) D 0 ( )] ;
or D ( ) (D 0 ( )) 2 > 0, which is trivially satis…ed. By continuity, this strict inequality still holds when the above demands are only slightly modi…ed. each consumer is willing to buy 1 units of good 1, and the per-unit valuation of consumer x is v 1 (x) = x; hence, the demand for good 1 is given by:

q 1 = D 1 (p 1 ) = ( (1 ) (1 p 1 ) if p 1 1; 0 if p 1 > 1:
each consumer x is willing to buy units of good 2, and the per-unit valuation of consumer x is v 2 (x) = 1 x + xn 1 , where n 1 = q 1 = (1 ) denotes the number of consumers buying good 1; hence, in the relevant range p 1 2 [0; 1] (so that n 1 = 1 p 1 and v 2 (x) = 1 xp 1 ), the demand for good 2 is given by:

q 2 = D 2 (p 1 ; p 2 ) = 8 > > < > > : if p 2 1 p 1 ; 1 p 2 p 1 if 1 p 1 p 2 1; 0 if p 2 1: B.2.

Nash equilibrium

The …rms'best-responses are as follows:

…rm 1 always charges the monopoly price for its product:

R 1 (p 2 ) = p M 1 = 1 2 :
in the relevant range p 1 2 [0; 1], …rm 2 never charges a price below 1 p 1 (as all consumers are buying at that price) and thus:

R 2 (p 1 ) = 8 < : 1 p 1 if p 1 1 2 ; 1 2 if p 1 1 2 :
Therefore, in equilibrium, …rm 1 charges the monopoly price:

p N 1 = p M 1 = 1 2 ;
leading to:

n N 1 = n M 1 = 1 2 ;
and thus:

q N 1 = q M 1 = 1 2 :
In response, …rm 2 charges :

p N 2 = R 2 p M 1 = 1 2 ;
leading to n N 2 = 1 (that is, all consumers buy good 2) and:

q N 2 = :
Consumers thus obtain a surplus equal to:

S N = (1 ) 1 8 + Z 1 0 1 x 2 1 2 dx = 1 + 8 ;
whereas …rms'pro…t are given by:

N 1 = M 1 = 1 4 ; N 2 = p N 2 = 2 :
Industry pro…t and total welfare are thus respectively equal to:

N = 1 + 4 ; W N = N + S N = 3 8 (1 + ) : B.2.

Price caps

Suppose now that a price cap p 2 [0; 1=2] is imposed on …rm 1: that is, …rm 1's price must satisfy p 1 p. As …rm 1's pro…t is quasi-concave in its price and maximal for p 1 = p M 1 = 1=2 p, in equilibrium …rm 1 …nds it optimal to charge a price just satisfying the constraint; that is, it charges: 1) (1 p) :

p1 ( p) = p; leading to n1 ( p) = 1 p and q1 ( p) = (
In response, …rm 2 sells to all consumers (that is, n 2 = 1 and q 2 = ) by charging a price:

p2 ( p) = R 2 ( p) = 1 p:
Firms'pro…ts are now given by:

^ 1 ( p) = (1 ) p (1 p) N 1 ; ^ 2 ( p) = p2 ( p) = (1 p) :
If transfers are feasible, the …rms will set the price cap so as to maximize the industry pro…t, equal to:

^ ( p) = (1 ) p (1 p) + (1 p) = (1 p) [ + (1 ) p] ;
leading to:

p = max 1 2 1 2 1 ; 0 :
In particular, p = 0 for > 1=2; in that case, …rm 1 sets its price to 0: p 1 = 0, whereas …rm 2 extracts all the surplus generated by its good: p 2 = 1. As a result:

Price caps enable the …rms to increase their joint pro…ts: 2

^ = (1 ) 0 + 1 = > N = 1 + 4 :
This harms consumers when is large enough:

Ŝ = (1 ) 1 2 + 0 = 1 2 ;
which is lower than

S N = (1 + ) =8 whenever > 3=5 (> 1=2). 3
C Multi-product oligopoly under (SC)

We extend here the analysis to multi-product oligopolies where prices are strategic complements (both within and across …rms). We show that, under that assumption, price caps cannot generate higher equilibrium prices (regardless of whether goods are complements or substitutes). It follows that price caps can only bene…t consumers, and are useful for suppliers of complements, but not for competitors o¤ering substitutes.

C.1 Setting

We consider a multi-product …rm oligopoly setting with n 2 multi-product …rms, indexed by i 2 N f1; :::; ng, each producing m i products, indexed by j 2 M i f1; :::; m i g; there are thus in total m P i2N m i prices. Let C i (q i ), where q i = q j i j2M i , denote …rm i's cost of producing each good j 2 M i in quantity q j i , and D i (p) = (D 1 i (p) ; :::; D m i i (p)) denote the demand for these goods, as a function of the vector of prices p = (p i ) i2N 2 R m + , where p i = p j i j2M i 2 R m i + denotes the vector of …rm i's

2 The inequality holds whenever > 1=3, which is implied by > 1=2.

3 It can however be checked that total welfare is increased:

Ŵ = (1 ) 1 2 + 1 = 1 + 2 > W N = 3 8 (1 + ) :
prices. We will assume that, for i 2 N , D i ( ) and C i ( ) are both C 2 and that, for every i 2 N : the pro…t function

i (p) X j2M i p j i D j i (p) C i (D i (p))
is strictly quasi-concave in p i ;

for every j 2 M j , the "product-by-product"best-response function4 

r j i p M i nfjg i ; p i arg max p j i i p j i ; p M i nfjg i ; p i ;
where p M i nfjg i

; p i denotes the vector of all prices but p j i , is well-de…ned and bounded above.

Remark: Note that we consider here …rm i's price decision for one of its products, taking as given not only the other …rms'prices, but also …rm i's own prices for its other products. Furthermore, as the best-response is bounded, it is interior and thus, given the strict quasi-concavity assumption, uniquely characterized by the …rst-order condition

@ p j i i r j i p M i nfjg i ; p i ; p M i nfjg i ; p i = 0.
We still focus on strategic complementarity, both "within …rms"and "across …rms":

(SC) Strategic complementarity: for every i 2 N and every j 2 M i , r j i ( ) strictly increases in p k h for any h 2 N and any k 2 M h such that (h; k) 6 = (i; j).

Finally, we assume again that there exists a unique Nash equilibrium, and denote by p N = p N i i2N the equilibrium prices.

C.2 Price caps

Suppose now that each …rm i 2 N faces a price cap p j i for each product j in M i . Any resulting equilibrium price vector p = (p i ) i2N satis…es pi = R i (p i ; p i ) for i 2 N , where:

R i (p i ; p i ) = R j i (p i ; p i ) j2M i arg max p i p i i (p i ; p i )
denotes …rm i's best-response, constrained by the price caps it faces. We …rst show that multiple price deviations cannot be more pro…table for a …rm than isolated ones, so that a …rm best responds to its rivals if and only if each of its prices best responds individually to all other prices, including its own. That is, letting

r j i p M i nfjg i ; p i ; p j i arg max p j i p j i i p j i ; p M i nfjg i ; p i
denote …rm i's constrained product-by-product best-response for good j 2 M i , given all other prices (including its own) and the price cap it faces for that good, we have:

Lemma 5 (constrained best-responses) For any i 2 N , rivals'prices p i and price caps p i = p j i j2M i , …rm i's constrained best-response function R i (p i ; p i ) can be characterized as the unique …xed point in M i of …rm i's constrained product-by-product bestresponses; that is:

pi = R i (p i ; p i ) () n pj i = r j i pM i nfjg i ; p i ; p j i for every j 2 M i o :
Proof. Consider …rm i, for given price caps p i = p j i j2M i and given rivals' prices p i . Obviously, each price in …rm i's (constrained) best-response is also a (constrained) product-by-product best-response: pi = R i (p i ; p i ) implies p j i = r j i p M i nfjg i

; p i ; p j i for every i 2 N and every j 2 M i ; uniqueness then follows from the strict quasi-concavity of the pro…t function. We now show that, conversely, any …xed point of the (constrained) product-by-product best-responses constitutes a best-response for …rm i.

Thus, consider a price vector pi = pj i j2M i satisfying pj i = r j i pM i nfjg i ; p i ; p j i for every j 2 M i , and suppose that pi 6 = p i R i (p i ; p i ). By construction, both pi p i and p i p i , and so " p i + (1 ") pi p i for any " 2 (0; 1). Furthermore, as pi consists of product-by-product best responses, for every j 2 M i either @ p j i i (p i ; p i ) = 0 (if pj i = r j i pM i nfjg i ; p i , i.e., the price cap p j i is not binding for pi ) or @ p j i i (p i ; p i ) p j i pj i < 0; furthermore, the latter must hold for some j 2 M i : otherwise, pi would be …rm i's unconstrained best-response (i.e., pi = R i (p i ) p i ), implying p i = R i (p i ) = pi , a contradiction. Therefore, for " positive but small we have:

i (" p i + (1 ") pi ; p i ) i (p i ; p i ) ' X j2M i @ p j i i (p i ; p i ) " p j i pj i < 0: Hence, i (p i + " ( p i pi ) ; p i ) i (p i ; p i ) < i ( p i ; p i ),
contradicting the strict quasi-concavity of the pro…t function i . 5 Lemma 5 allows us to treat the present n-player game, where each …rm i 2 N has m i products, as a m player game among single-product …rms. Building on this, we now show that price caps cannot be used to raise equilibrium prices:

Proposition 8 (incidence of price caps for multi-product …rms under (SC)) With multi-product …rms under (SC) and for any vector p = ( p i ) i2N of price caps, there exists a unique Nash equilibrium, and the equilibrium prices weakly increase with the price cap vector. Therefore: (i) for any vector of price caps p, consumers are weakly better o¤ under G p than under G 1 ; and (ii) in G, it is optimal for the competition authority to allow price caps.

Proof. Fix a vector of price caps p = ( p i ) i2N . From Lemma 5, a price vector p = (p i ) i2N = pj

i j2M i i2N
constitutes a Nash equilibrium for these price caps if and only if it constitutes a Nash equilibrium of the m player game in which each price p j i is chosen by a distinct player (subject to the price cap p j i ) so as to maximize the pro…t i p j i ; p M i nfjg i

; p i , taking as given …rm i's other prices, p

M i nfjg i
, as well as the other …rms'prices, p i . In the absence of price caps, this player's behavior is given by the best-response function

r j i p M i nfjg i
; p i , which is bounded above by some B j i . Without loss of generality, we can thus restrict the price p j i to belong to S j i = 0; B j i , and can also restrict attention to price caps such that each p j i belongs to S j i (as higher price caps would have no e¤ect). From strict quasi-concavity, when facing the price cap p j i the constrained best-response can be expressed as:

r j i p M i nfjg i ; p i ; p j i = arg max p j i p j i i p j i ; p M i nfjg i ; p i = min n r j i p M i nfjg i ; p i ; p j i o ;
and is thus increasing in all arguments. Let S = S j i j2M i i2N

denote the (bounded) relevant set of prices and consider the best-response function r (p; p) : S S ! S, where each price p j i is given by the constrained best-response r j i p M i nfjg i

; p i ; p j i . Knaster-Tarski's Lemma ensures that, for each p, there exists a pure-strategy Nash equilibrium of this m player game. To show that this equilibrium is unique, suppose instead that there are two equilibria, p and p0 ; one of them, say p0 , must have a lower price for at least one product. Applying the same argument as in the proof of Proposition 2 then leads to a contradiction. 6 That the unique equilibrium prices increase with every price cap follows from Theorem 2.5.2 of Topkis (1998). The last conclusion follows from the fact that the unconstrained Nash equilibrium prices is sustainable through high enough price caps (e.g., such that

p j i B j
i for every i 2 N and every j 2 M i ).

Remark: bundling. The above analysis carries over when …rms engage in pure or mixed bundling. For instance, consider a case of pure bundling in which …rm i offers goods j 2 B i M i as a bundle, and only as a bundle. Let p B i denote the price charged for the bundle, and

D B i p B i ; p M i nB i i
; p i the demand for the bundle,

D j i p B i ; p M i nB i i
; p i denote the demand for every other good o¤ered by …rm i, for j 2 M i n B i , and

D k h p B i ; p M i nB i i
; p i the demand for the other …rms' products, for h 2 N n fig and k 2 M h ; …rm i's cost function remains the same as before, with the 6 See Section C.1.2 of the Appendix, using …rm { for which the di¤erence between pi and pi is the largest, and noting that strict quasi-concavity and p0

{ < p{ ( p {) together imply p0

{ = R { p0 { and p{ R { (p {).
caveat that each unit of the bundle requires the production of one unit of each good j 2 B i . The previous analysis then remains valid as long as the reaction functions derived from these adjusted demand and cost functions exhibit strategic complementarity. In the case of mixed bundling, where …rm i o¤ers the bundle as well as each product j 2 B i on a stand-alone basis, a similar reasoning applies, interpreting the bundle as an additional good in …rm i's product set.

C.3 Firms'incentives

It follows from the above that, again, …rms have an incentive to agree on price caps when they o¤er complements, but not when they o¤er substitutes:

Corollary 1 (multi-product …rms'incentives to set price caps under (SC)) Let P denote the set of prices that are sustainable through price caps.

(i) If all goods are substitutes, then price caps cannot increase the pro…t of any …rm; that is, p 2 P implies i (p) i p N for every i 2 N .

(ii) If instead all goods are complements, then price caps can be used to increase all …rms' pro…ts; that is, there exists p 2 P such that i (p) > i p N for every i 2 N .

Proof. If goods are all substitutes, then for any p 2 P and any i 2 N we have:

i (p) max

p i i (p i ; p i ) max p i i p i ; p N i = i p N ;
where the …rst inequality re ‡ects the fact that …rm i may be constrained by its price caps p i , and the second inequality stems from the fact that price caps can only sustain prices that are lower than p N . If goods are all complements, the reasoning used in the proof of Proposition 4 extends to the case of an oligopoly: starting from the Nash equilibrium prices p N , reducing all prices by a small amount " increases all …rms'pro…ts, as …rms'margins are positive from Lemma 2, and reducing one …rm's price has only a second-order e¤ect on the pro…t of that …rm, and a …rst-order positive e¤ect on the other …rms' pro…ts. To conclude the argument, it su¢ ces to show that the new price vector, p (") = pj i (") j2M i i2N , where pj i (") = p jN i ", belongs to P; indeed, we have, for i 2 N and j 2 M i :

R j i (p i (")) p j i (") = Z " 0 [1 X h2N nfig X k2M h @ p k h R j i (p i (x))]dx > 0;
where the inequality stems from (1). From Propositions 1 and 2, p (") is the unique equilibrium of G p(") . When instead p j > e, then …rm i faces no demand if p i > p j (as users buy only the lower-priced license), and faces demand D (p i + e) if p i < p j . Competition then drives prices down to p 1 = p 2 = e. Hence, the Nash equilibrium is unique and such that both …rms charge p N min fe; pg.

Figure 5 summarizes this analysis.

E Hotelling with club e¤ects E.1 Model

Consider the following symmetric duopoly setting, in which for notational simplicity costs are zero (i.e., C i (q i ) = 0 for i = 1; 2) and:

As in the standard Hotelling model, a unit mass of consumers is uniformly distributed along a unit-length segment; the two …rms are located at the two ends of the segment, and consumers face a constant transportation cost per unit of distance, which is here normalized to 1.

Unlike in the Hotelling model, however, consumers enjoy club e¤ects: their gross surplus is v + Q, where v > 0, 2 (0; 1=2) re ‡ects the magnitude of these positive externalities and Q = q 1 + q 2 denotes the total number of consumers.

For low enough prices, the entire market is covered (i.e., Q = 1), and as long as prices are not too asymmetric, each …rm faces the classic Hotelling demand given by:

D H i (p 1 ; p 2 ) 1 p i + p j 2 :
This case arises as long as jp 1 p 2 j < 1 (to ensure that the market is shared) and v + (1 + p 1 + p 2 ) =2 (to ensure that the market is covered). The two goods are then substitutes: @ 2 D i = 1=2 > 0.

By contrast, for high enough prices, …rms are local monopolies and each …rm i faces a demand satisfying:

q i = v + Q p i ;
where now Q = q 1 + q 2 < 1. As long as both …rms remain active, their demands are then given by:

D m i (p 1 ; p 2 ) v (1 ) p i p j 1 2 :
This case arises as long as Q < 1 and q i 0, which amounts to p 1 + p 2 > 2v (1 2 ) and (1 ) p i + p j v for i 6 = j 2 f1; 2g. The goods are then complements: @ j D i = = (1 2 ) < 0.

E.2 Best-responses

We now study …rm i's best-response to the price p charged by …rm j. For the sake of exposition, we will focus on the range p 2 [0; v]. 7 Consider …rst the case where …rm j charges a price p j 2 [0; v (1 )], so that it would serve the entire market if …rm i were to charge a prohibitive price. 8 In this case, the market remains fully covered whatever price …rm i chooses to charge, and it is optimal for …rm i to obtain a positive share of that market. Firm i will thus seek to maximize p i D H i (p 1 ; p 2 ) and choose to charge:

p i = R H (p j ) arg max p i p i D H i (p i ; p j ) = 1 + p j 2 :
Consider now the case where …rm j charges a price p j 2 (v (1 ) ; v]; the market is then covered only if …rm i charges a su¢ ciently low price, namely, if

p i p (p j ) 2v (1 2 ) p j :
In this range, …rm i seeks to maximize p i D H i (p 1 ; p 2 ), which is maximal for p i = R H (p j ). If instead …rm i chooses to charge a higher price, the …rms are local monopolies; furthermore, as p j v, …rm j's market share remains positive, whatever price …rm i chooses to charge.9 As it is optimal for …rm i to maintain a positive market share as well, the demand will be given by D m i (p i ; p j ). In this range, …rm i will thus seek to maximize p i D m i (p i ; p j ), which is maximal for: 1) :

p i = R m (p j ) arg max p i fp i D m i (p i ; p j )g = v p j 2 (
Note that:

The pro…t functions p i D H i (p 1 ; p 2 ) and p i D m i (p 1 ; p 2 ) are concave with respect to p i in their respective relevant ranges.

p (v (1 )) = v + > R m (v (1 )) = R H (v (1 )) = (v + ) =2. p0 = 1 < (R m ) 0 = =2 (1 ) < 0 < R H 0 = 1=2.
It follows that R H (p j ) > R m (p j ) in the range p j 2 (v (1 ) ; v], and p (p j ) > R H (p j ) in the beginning of that range. This, in turn, implies that …rm i's best response is given by:

p i = R (p j ) min R H (p j ) ; max fp (p j ) ; R m (p j )g : More precisely: If p (v) R H (v), which amounts to v 3 4 , then (R m (p j ) <) R H (p j ) < p (p j ), and thus R (p j ) = R H (p j ); If R H (v) > p (v)
R m (v), which amounts to 3 4 > v 2 4 , then there exists p = 4 (v + ) =3 1 such that R H ( p) = p ( p), and thus:

-For p j p, we have again (R m (p j ) <) R H (p j ) p (p j ); hence, R (p j ) = R H (p j ); -For p j > p, R m (p j ) < p (p j ) < R H (p j ); hence, R (p j ) = p (p j ); Finally, if R m (v) > p (v), which amounts to 2 4 > v, then there also exists p = [(3 4 ) v 2 ( 1) (1 2 )] = (2 3 ) such that R m ( p) = p ( p), and thus:

-For p j p, we still have (R m (p j ) <) R H (p j ) p (p j ); hence, R (p j ) = R H (p j );

-For p < p j < p, we still have R m (p j ) < p (p j ) < R H (p j ); hence, R (p j ) = p (p j );

-For p j p, we now have

p (p j ) R m (p j ) < R H (p j ); hence, R (p j ) = R m (p j ).
It follows that for low prices (namely, for p j < min f p; vg), goods are substitutes and prices are strategic complements: @ j D i = @ j D H i > 0 and R 0 = R H 0 > 0. By contrast, whenever v < 2 4 (implying p < v), then for high enough prices (namely, for p j > p), goods are complements and prices are strategic substitutes: @ j D i = @ j D m i < 0 and R 0 = (R m ) 0 < 0.

E.3 Monopoly prices

Conditional on covering the entire market, it is optimal to raise prices until the marginal consumer is indi¤erent between buying or not: indeed, starting from a situation where q 1 + q 2 = 1, and the marginal consumer strictly prefers buying, increasing both prices by the same amount does not a¤ect the …rms quantities, q 1 and q 2 , but increase both of their margins. Hence, without loss of generality, we can focus on situations such that, for some q 1 2 [0; 1]: q 2 = 1 q 1 and p i = v + q i for i = 1; 2. Total pro…t, as a function of q 1 , is then given by:

H (q 1 ) = (v + q 1 ) q 1 + [v + (1 q 1 )] (1 q 1 ) = v + q 2 1 (1 q 1 ) 2 :
This pro…t is concave in q 1 and reaches its maximum for q 1 = 1=2, where it is equal to

M H v + 1 2 :
Alternatively, the …rms may choose to cover only part of the market, in which case they are both local monopolies. For any Q = q 1 + q 2 2 [0; 1) and any q 1 2 [0; Q], the associated quantity for …rm 2 is then q 2 = Q q 1 and the associated prices are p i = v + Q q i ; the resulting industry pro…t is therefore given by:

= (v + Q q 1 ) q 1 + [v + Q (Q q 1 )] (Q q 1 ) = (v + Q) Q q 2 1 (Q q 1 ) 2 :
For any Q 2 [0; 1), it is thus optimal to choose q 1 = q 2 = Q=2, which yields an industry pro…t equal to:

m (Q) = (v + Q) Q Q 2 2 :
This pro…t is concave in Q and coincides with M H for Q = 1; furthermore, ignoring the constraint Q 1, it is maximal for Q = v= (1 2 ). Therefore, the monopoly outcome is q M i = q M = Q M =2, where:

Q M = min v 1 2
; 1 ;

and the associated prices are p M 1 = p M 2 = p M , where:

p M = v + Q M q M = v (1 2 ) q M = ( v 2 if v < 1 2 v 1 2 if v 1 2 = max v 2 ; v 1 2 :

E.4 Nash equilibrium

We …rst note that, in equilibrium, both …rms must obtain a positive market share. Starting from a situation where all consumers are inactive, each …rm could pro…tably attract some consumers by charging a price slightly below v. Furthermore, in a candidate equilibrium in which only one …rm attracts consumers, this …rm must charge a non-negative price, otherwise it would have an incentive to raise its price in order to avoid making a loss; but then, the other …rm could pro…tably deviate, as charging a price only slightly higher would attract some consumers. It can also be checked that, when one …rm charges p v, then the pro…t of the other …rm is globally quasi-concave in the relevant price range [0; v + ]. To see this, note that the pro…t functions p i D H i (p i ; p j ) and p i D m i (p i ; p j ) are both strictly concave in their relevant ranges; the conclusion then follows from the fact that, at the boundary between these two ranges,

D H i (p 1 ; p 2 ) = D m i (p 1 ; p 2 ) and @ i D H i (p 1 ; p 2 ) > @ i D m i (p 1 ; p 2 ).
Suppose …rst that, at the Nash equilibrium prices, the market is fully covered and the marginal consumer strictly prefers buying (from either …rm) to not buying. As both …rms must be active, their demands are given by D H i ( ), and remain so around the Nash prices. Therefore, their best-responses are given by R H ( ). It follows that the Nash equilibrium price is then symmetric, with both …rms charging the standard Hotelling price p H = 1:

Conversely, both …rms charging p H is indeed an equilibrium if and only if the consumer that is at equal distance from the two …rms (thus facing a transportation cost equal to 1=2) then strictly prefers to be active, that is, if and only if p H + 1=2 < v + Qj Q=1 , which amounts to:

v > 3 2 > 1 = p H :
When instead the market is not fully covered at the Nash equilibrium prices, …rms' best-responses are given by R m ( ). It follows that the Nash equilibrium price is again symmetric, with both …rms charging

p m = v 2 (< v) :
Conversely, both …rms charging p m is indeed an equilibrium if and only if the market is not fully covered at these prices, that is, if and only if p m + 1=2 > v + Qj Q=1 , which amounts to:

v < 2 1 1 2 :
Finally, the Nash equilibrium can also be such that the entire market is "barely" covered, in that the marginal consumer is just indi¤erent between buying or not. The prices are then such that p N i = v + q N i and satisfy (as q N 1 + q N 2 = 1):

p N 1 + p N 2 = 2 (v + ) 1: (5) 
Furthermore, no …rm i = 1; 2 should bene…t from a small deviation; as the market would remain covered if …rm i lowers its price, but not so if it increases its price, we must have:

@ i i (p 1 ; p 2 )j p j =p N j ;p i =p N i = @ @p i p i D H i (p 1 ; p 2 ) p j =p N j ;p i =p N i = q N i p N i 2 0; @ i i (p 1 ; p 2 )j p j =p N j ;p i =p N + i = @ @p i fp i D m i (p 1 ; p 2 )g p j =p N j ;p i =p N i = q N i 1 1 2 p N i 0: (6)
Summing-up these conditions for i = 1; 2, and using q N 1 + q N 2 = 1 and (5), yields:

2 1 1 2 v 3 2 :
Figure 1 from Section 2.6 illustrates three possible con…gurations.

In the …rst situation, v is su¢ ciently high (namely, v > 3 4 (> 3=2

)) that …rms always compete for consumers in the relevant price range [0; v]. The goods are thus substitutes @ j D i = @ j D H i = 1=2 > 0 , and their prices are strategic complements (R 0 i = R H 0 = 1=2 > 0). Furthermore, the monopoly prices lie above the Nash level:

p M = v + 1=2 > p N = p H = 1.
In the second, intermediate situation, …rms compete again for consumers when prices are low, as in the previous situation. However, for higher price levels, …rms best-respond to each other so as to maintain full participation; as a result the goods are at the boundary between substitutes and complements 10 and their prices become strategic substitutes (R 0 i = p0 = 1 < 0). While there are multiple Nash equilibria, they all involve the same total price, and the symmetric Nash equilibrium coincides with the monopoly outcome. As …rms are symmetric, it is natural to focus on the symmetric Nash equilibrium, which moreover maximizes industry pro…t: p M = p N = v + 1=2. Finally, in the last situation v is su¢ ciently low (namely, v < 2 4 ) that …rms become local monopolies for high enough prices. The goods then become complements (@ j D i = @ j D m i = = (1 2 ) < 0) and their prices are again strategic substitutes (R 0 i = (R m ) 0 = =2 (1 ) < 0); the monopoly prices then lie below the Nash level:

p M = v=2 < p N = v= (2
).

E.5 Price caps

We now study the impact of price caps on the equilibrium prices and pro…ts. As already noted, in the relevant price range each …rm's pro…t function is quasi-concave with respect to the price of that …rm. It follows that …rms' constrained best responses are of the form R i (p j ; p i ) = min fR (p j ) ; p i g. Building on this insight, we now consider the three con…gurations identi…ed above. When v is high enough (namely, v > 3=2 ), the monopoly price lies above the Nash level and, for prices below the Nash level, the goods are substitutes and their prices are strategic complements. It follows that …rms have no incentives to adopt price caps, as they can only result into (weakly) lower prices and pro…ts for both …rms.

For intermediate levels of v, …rms best-respond to each other so as to maintain full participation. Compared with symmetric Nash equilibrium, which coincides with the monopoly outcome, price caps can only result into lower and more asymmetric prices. Indeed, for any prices (p 1 ; p2 ) lying below …rms'best responses: the average is lower than the Nash level: p (p 1 + p2 ) =2 < p N ; there is asymmetry: p1 6 = p2 .

It follows that, compared with the symmetric Nash equilibrium without price caps, these price caps can only bene…t consumers; to see this, it su¢ ces to decompose the move from p N ; p N to (p 1 ; p2 ) as: a …rst move from p N ; p N to (p; p), which obviously bene…ts consumers, as p p N ; an additional move from (p; p) to (p 1 ; p2 ), which also bene…ts consumers -keeping the total price constant maintains participation, and among those outcomes 10 Namely:

@ j D i (p N i ; p N j ) = @ j D H i p N i ; p N J = 1=2 > 0 > @ j D i (p N i ; p N + j ) = @ j D m i p N i ; p N J = = (1 2 ).
consumers favor asymmetry. 11

Finally, when v is low enough (namely, v < 2 4 ), the monopoly price lies below the Nash level and, for prices below the Nash level, the goods are complements and their prices are strategic substitutes. Introducing price caps then lowers the higher of the two equilibrium prices and, while this may be partially compensated by a limited increase in the other price, consumers are always (weakly) better o¤ than in the absence of price caps. 12 Furthermore, …rms can use price caps to maintain the monopoly outcome, which, compared with the outcome in the absence of price caps, strictly increases both …rms' pro…ts and strictly enhances consumer surplus.

F Complements and substitutes

F.1 Welfare-reducing price caps: an example We provide here an example with both complements and substitutes, in which the prices of complements exhibit strategic substitutability, in such a way that capping the prices of some of the goods may induce undesirable price increases for other goods -thus violating the spirit of Assumption A.

There are two …rms, each producing (costlessly) two goods: …rm 1 produces goods A 1 and B 1 ; …rm 2 produces goods A 2 and B 2 .

Let p A 1 , p A 2 , p B 1 , p B 2 denote the prices of the four goods. Consumers are atomless and divided into three groups:

A mass " of consumers are only interested in goods A 1 and B 1 , which are perfect complements and worth v to them: that is, consumers are willing to buy one unit of both goods as long as

p A 1 + p B 1 v.
A mass " of consumers are only interested in goods A 2 and B 2 , which are perfect complements and worth v to them: that is, consumers are willing to buy one unit of both goods as long as p A 2 + p B 2 v.

11 Among the prices that satisfy p 1 + p 2 = 2p, the symmetric outcome (p 1 = p 2 = p) is the one that maximizes consumer surplus -to see this, note that consumer surplus can be expressed as

R x 0 tydy + R 1 x t (1 y) dy = tx 2 =2 + t (1 x) 2 =2
, where x denotes the location of the marginal consumer that is indi¤erent between buying or not, and this expression is maximal for x = 1=2.

12 To see this, note that price caps can only reduce the total price (which increases total participation and enhances consumer surplus among symmetric price con…gurations) and moreover result into asymmetric prices, which, keeping total price constant, generates higher consumer surplus than the symmetric con…guration.

A unit mass of consumers are only interested in goods A 1 and A 2 , which are imperfect substitutes for them: the two goods are at the end of a Hotelling segment, along which consumers are uniformly distributed; that is, the demand from these consumers for good A i is given by, for i 6 = j 2 f1; 2g:

D A i p A i ; p A j = 1 2 p A i p A j 2t ;
where t denote the transportation parameter re ‡ecting the degree of di¤erentiation between the two goods, and satis…es t < v.

The two …rms are therefore competing with goods A 1 and A 2 for consumers of the third group; we will refer to these goods as "competitive". In addition, each …rm i o¤ers good B i as a perfect complement to its competitive good to a distinct group of consumers, over which it has monopoly power; we will refer to goods B 1 and B 2 as "non-competitive".

F.1.1 Nash equilibrium

In the absence of price caps, and as long as the prices of the competitive goods do not exceed v, each …rm can charge a total price of v to the consumers interested in its noncompetitive good (by charging them p B i = v p A i ); hence, …rm i's pro…t is given by:

i = p A i D A i p A i ; p A j + "v:
It follows that the standard Hotelling result prevails: each …rm i o¤ers its competitive product at a price equal to t; hence,

p N A 1 = p N A 2 = p N A = t; p N B 1 = p N B 2 = p N B = v t:
Each …rm earns a pro…t equal to

N = t 2 + "v;
whereas consumers obtain an aggregate surplus equal to:

S N = 2 Z 1=2 0 V p N A tx dx + 0 + 0 = V 5t 4 ;
where V denotes consumers'value for the competitive good, and is supposed to be large enough to ensure that all the market is always served.

F.1.2 Price caps

Suppose now that the …rms face a price cap set to zero on their non-competitive goods:

p B 1 = p B2 = 0.
As long as their still compete for consumers of the third group, …rm i's

pro…t is now given by:

i = p A i D A i p A i ; p A j + "p A i = p A i 1 2 p A i p A j 2t + "p A i ;
leading to:

pA 1 = pA 2 = pA = (1 + 2") t;
and:

1 = 2 = ^ = (1 + 2") 2 t 2 = N + " [2t (1 + ") v] :
This constitutes indeed an equilibrium as long as:

Consumers are still buying the non-competitive goods, which requires:

v (1 + 2") t:
Firms do not prefer to focus on the demand for the non-competitive goods, which requires:

"v (1 + 2") 2 t 2 :
As total welfare remains unchanged, in this equilibrium consumers obtain a surplus equal to:

Ŝ = S N 2" [2t (1 + ") v] : (7) 
Therefore, if

(1 + 2") t v < min 2 + 2" 1 + 2" ; 1 + 2" 2" (1 + 2") t;
price caps enable the …rms to increase their pro…ts at the expense of consumers. As " goes to zero, these conditions boil down to to t v < 2t and thus characterize a non-empty set of parameters.

Remark: welfare. Total welfare is here una¤ected because total demand is inelastic; making the aggregate demand of the last group of consumers (for whom the goods A 1 and A 2 are substitutes) slightly elastic13 would yield a reduction in total welfare as well.

Remark: bundling. Allowing the …rms to engage in (mixed) bundling would not a¤ect the analysis. In the absence of price caps, each …rm i can (and does) extract all the surplus from consumers interested in buying both of its goods by charging them an adequate price on good B i ; hence, o¤ering goods A i and B i as a bundle, in addition to o¤ering them on a stand-alone basis, could not increase …rm i's pro…ts. When instead a price cap prevents …rm i from charging a positive price on good B i , the …rm derives all of its pro…t from selling good A i (both to consumers interested in buying A i only, and to those interested in the bundle A i B i ); o¤ering A i and B i as a bundle could not increase this pro…t, as consumers'arbitrage would prevent …rm i from charging more for the bundle than it does for good A i alone.

F.2 Platforms and apps

We show here that the main insights carry over to a class of situations involving both complements and substitutes. Speci…cally, we consider a setting in which platforms seek to attract developers for a variety of applications.

F.2.1 Setting

There are n platforms, indexed by i 2 N f1; :::; ng. Each platform i charges a price P i and hosts a continuum of applications, indexed by x 2 [0; 1]; for each application x, there are m i;x developers, indexed by j 2 M i;x f1; :::; m i;x g. The per-user demand for application j is given by d j i;x (p i;x ), where

p i;x = p j i;x j2M i;x 2 R m i;x +
denotes the vector of prices for the application, and @ p k i;x d j i;x (p i;x ) > 0 for any k 2 M i;x n fjg -that is, developers o¤er (imperfect) substitutes. Let s i;x (p i;x ) denote the consumer net surplus generated by application x on platform i, as a function of the prices p i;x , and

S i (p i ) = Z 1 0 s i;x (p i;x ) dx
denote the aggregate net surplus that consumers can derive from the applications running on platform i. Letting Pi = P i S i (p i ) denote platform i's quality-adjusted price, the demand for that platform is then given by D i P , where P = Pi i2N and @ Ph D i P > 0 for any h 2 N n fig. 14 All costs are normalized to zero.

Remark: application multi-homing. For the sake of exposition, we will suppose that applications single-home -that is, each particular app is present on a single platform. However, given our assumption of atomistic apps, the pricing analysis (with or without price caps) does not depend on whether they multi-home or single-home (as long as they can charge platform-speci…c prices). By contrast, as discussed in Section F.2.4 of this online Appendix, applications'multi-homing decisions may a¤ect their incentives to set price caps.

Remark: complements and substitutes. This setting exhibits substitution among platforms, as well as among the developers of any given application; by contrast, it features complementarity between a platform and its applications, as well as among these applications (and thus, among their developers). Furthermore, the analysis that follows applies unchanged if some of the "applications" are actually (atomistic) "components" of a given (non-atomistic) application. For example, for any given (…nite or in…nite) partition X = fX l g l2L of [0; 1], we could interpret L as the set of applications running on a given platform (with possibly di¤erent sets across platforms); in this interpretation, for any l 2 L and any x 2 X l , the developers in M i;x are working on component x of application l. Developers then o¤er substitutes if they work on the same component of an application, and complements if they work on di¤erent components or di¤erent applications.

We maintain the following assumptions:

Applications. For every x 2 [0; 1], every i 2 N and every j 2 M i;x :

-The pro…t function

j i;x (p i;x ) p j i;x d i;x (p i;x )
is strictly quasi-concave in p j i;x ; -The reaction function

r j i;x p j i;x arg max p j i;x j i;x p j i;x ; p j i;x
is uniquely de…ned for any prices p j i;x of the rival application developers; it is moreover di¤erentiable and bounded above, and satis…es:

(sc) Strategic complementarity across developers: @ p h i;x r j i;x ( ) > 0 for any h 2 M i;x n fjg :

-Equilibrium: strategic complementarity yields the existence of a …xed point of the function p i;x ! r i;x (p i;x ) r j i;x p j i;x j2M i;x

, for every platform i and every application x. For the sake of exposition we assume that this …xed point is unique, and denote it by p N i;x .

Platforms. For every i 2 N and any net surplus S i 2 R + :

-The pro…t function15 

i P; S i Pi + S i D i P is strictly quasi-concave in Pi ;

-The reaction function

R i P i ; S i = arg max Pi i P; S i
is uniquely de…ned, di¤erentiable and bounded above, and satis…es:

(SC) Strategic complementarity across platforms: @ Ph R i P i ; S i > 0 for any h 2 N n fig :

-Equilibrium: strategic complementarity yields the existence of a …xed point of the function P ! R P; S R i P i ; S i i2N

, for any S = (S i ) i2N ; for the sake of exposition, we assume that for S N S i p N i i2N this …xed point is unique, and denote it by PN .

The timing is as follows:

Stage 1: platforms and application developers all set their prices simultaneously; all prices are public.

Stage 2: consumers learn their private bene…ts for the various platforms and choose which platform to join, if any; they also choose whether to buy the applications developed for the chosen platform.

Remark: Decomposing stage 1 into two distinct stages, where platforms set their prices before application developers do, would not a¤ect the analysis. Likewise, decomposing stage 2 into two distinct stages, where consumers …rst choose among platforms, before buying the apps, would not a¤ect the analysis either.

F.2.2 Nash equilibrium

As applications are atomistic, a single developer's price has no impact on platform adoption; therefore, for every platform i and every application x, in stage 2 each developer j 2 M i;x seeks to maximize j i;x p j i;x ; p j i;x D i , taking D i = D i P as …xed, and thus chooses p j i;x = r j i;x p j i;x . The above assumptions then imply that the equilibrium prices are uniquely given by p N i;x . It follows that joining platform i 2 N gives a consumer a net surplus given by S N i S i p N i , where p N i = p N i;x x2[0;1] denotes the vector of equilibrium prices for the applications running on the platform.

Given its rivals'prices, the pro…t of platform i can be expressed as:

P i Di (P) = Pi + S N i D i P = i P; S N i :
As the platform's price has no incidence on the surplus generated by the applications, we can take the quality-adjusted price as the relevant decision variable. It follows from the above that platform i will choose P i so as to induce a quality-adjusted price equal to 16 Pi = R i P i ; S N i . The above assumptions then imply that the equilibrium prices are uniquely given by P N = PN + S N .

F.2.3 Price caps

Suppose now that each …rm faces a price cap. Let P = P i2N denote the vector of price caps for the platforms; likewise, for every platform i and every application x on that platform, let p i;x = p j i;x j2M i;x denote the vector of price caps for that application, and p i = ( p i;x ) x2[0;1] denote the vector of price caps for all applications running on that platform. The next proposition shows that these price caps can only bene…t consumers.

Proposition 16 (platforms and apps) For any price caps P = P i i2N and p = ( p i ) i2N , there exists a unique price-constrained equilibrium, and equilibrium prices weakly increase with the vector of price caps on platform prices and on apps. Therefore: (i) for any vector of price caps P; p , consumers are weakly better o¤ under G ( P; p) than under G 1 ; and (ii) in G, it is optimal for the competition authority to allow price caps.

Proof. It is straightforward to check that the equilibrium prices of any given application x on any given platform i depend only on p i;x , and not on the other price caps. From Proposition 8, there exists a unique Nash equilibrium, and the equilibrium prices weakly increase with p i;x . It follows that the equilibrium net surpluses that consumers derive from the applications decrease with p i;x -in particular, they are all (weakly) larger than the Nash levels.

Let p = (p i;x ) i2N ;x2[0;1] denote a Nash equilibrium sustainable through the applications'price caps p, and Ŝ = Ŝi

i2N

, where

Ŝi = Z 1 0 s i;x (p i;x ) dx;
denote the associated equilibrium net surpluses. The quality-adjusted prices P = Pi i2N are now equal to: Pi = P i Ŝi :

Using again these quality-adjusted prices as strategic decision variables, platform i therefore seeks to solve: max

P i P i P i D i P = max Pi P i Ŝi i Pi ; P i ; Ŝi :
16 That is, it will choose

P i = R i P i ; S N i + S N i .
From quasi-concavity, platform i will thus choose:

Pi = R i P; Ŝi ; P i min n P i Ŝi ; R i P; Ŝi o : (8)
This reaction function still exhibits strategic complementarity across platforms: rivals' prices only a¤ect the second term, which satis…es @ Pk R i P; Ŝi > 0 for h 2 N n fig.

Furthermore, the …rst term in the right-hand side of (8) increases with P i , and both terms decrease with Ŝi : this is obvious for P i Ŝi , and for R i P; Ŝi this follows from @ 2 Pi S i i P; S i = @ Pi D i P < 0:

The best-response function R i ( ) of each platform i is therefore increasing in P i and decreasing in Ŝi . Strategic complementarity then yields the result:

For any equilibrium net surpluses Ŝ = Ŝi i2N sustainable through the application price caps p, and any platform price caps P, there exist a unique Nash equilibrium for the platforms'quality-adjusted prices, and the equilibrium quality-adjusted prices weakly increase with P.

As the set of equilibrium net surpluses Ŝ = Ŝi i2N weakly decrease with p, the overall equilibrium quality-adjusted prices weakly increase with both P and p.

F.2.4 Firms'incentives

Other things equal, introducing caps on platforms'prices increases applications'pro…ts, by increasing the number of platforms' users, but reduces platforms' pro…ts, both by constraining their pricing decisions and by making their rivals more aggressive: for any P PN ,

max Pi P i S N i i Pi ; P i ; S N i max Pi i Pi ; P i ; S N i max Pi i Pi ; PN i ; S N i = N i ;
where the second inequality is strict whenever P PN . By contrast, introducing caps on applications'prices can increase not only platforms' pro…ts, by boosting their demands thanks to the greater net surplus that consumers derive from the apps, but it can also bene…t the apps, by increasing the number of users. More precisely, consider the introduction of price caps p i on the applications running on platform i:

This increases the net surplus S i generated by these apps, which increases platform i's pro…t by expanding its demand.

As noted in the proof of Proposition 16, @ S i R i P i ; S i 0; therefore, the increase in the net surplus S i expands the equilibrium number of users on platform i.

The extent to which this increase in user participation can o¤set the direct negative impact of the price caps p i on applications' per-user pro…tability depends on several factors: Consider …rst the polar case where: 17 there is a single developer for each application, so that

p N i;x = p M i;x arg max p i;x p i;x d i;x (p i;x ) ;
applications single-home -that is, the applications running on platform i run only on that platform.

In this case, the increase in platform i's user participation can indeed bene…t the applications running on that platform. In particular, introducing price caps p i that are slightly below p M i is likely to have only a second-order e¤ect on applications' per user pro…t (as these pro…ts are maximal under monopoly), but a …rst-order e¤ect on platform i's quality-adjusted price, and thus on the number of its users; hence, the applications are likely to bene…t from the introduction of such caps.

The potential bene…t of users' greater participation is however diluted for multihoming applications. For example, if the applications are present on all platforms, then this demand expansion e¤ect arises only if users' aggregate participation is elastic. Otherwise, the number of users would remain unchanged, and the negative e¤ect of price caps on per user pro…ts would prevail. This potential bene…t of users'greater participation is also lower in case of competition among developers; in particular, introducing a price cap slightly lower than the Nash level would then have a …rst-order e¤ect on applications'per-user pro…tability as well as on user participation.

The elasticity of users' aggregate demand for platforms is also a key factor for the pro…tability of price caps at the industry level. For example, if total platform participation is inelastic, then a platform may still bene…t unilaterally from capping the prices of its applications, but this would be at the expense of the other platforms: the industry as a whole would not bene…t from introducing price caps.

Consider for instance the following example, where a unit mass of consumers consider joining one of the platforms -and only one: consumers do not derive any bene…t from 17 See for instance the monopoly example studied in the next section.

joining additional platforms, and thus single-home; 18 each user obtains a bene…t i from joining platform i, and these private bene…ts are randomly drawn from a common distribution, with cumulative distribution F ( ) and density f ( ) over some , with independent drawn across both platforms and consumers. The demand for platform i is then given by:

D i P = Pr h i Pi > j Pj for every j 2 N n fig i = Z Y j2N nfig F h i Pi + Pj i f ( i ) d i ;
and satis…es, for any symmetric prices Ps = P s ; :::; P s :

D i Ps = Z F n 1 ( ) f ( ) d = 1 n ; @ Pi D i Ps = Z Y j2N nfig F n 2 ( ) f 2 ( ) d = ;
where the constant is positive and does not depend on the actual level of the qualityadjusted price P s . Suppose now symmetric caps on the applications result in the same equilibrium net surplus S for each platform. Any resulting symmetric price equilibrium Ps = P s ; :::; P s satis…es the …rst-order condition:

0 = @ Pi i Ps ; S = D i Ps + P s @ Pi D i Ps = 1 n P s ;
and thus:

P s = 1 n :
It follows that any increase in the net surplus generated by the applications is entirely passed on to consumers; introducing such price caps would thus bene…t consumers at the expense of the applications' pro…ts, without any impact on the pro…tability of the platforms. Such a situation generates a prisoners'dilemma: each platform would have an incentive to introduce price caps on its own applications (and would be willing to compensate the applications, in case this negatively a¤ect their pro…ts), but the bene…t to that platform would come at the expense of the other platforms and their own applications, so that the industry pro…t would be reduced as a result. 18 For example, joining the platform may involve substantial …xed costs (learning how to use it, set-up costs, and so forth), accounted for in the de…nition of the private bene…t from single-homing, but making multi-homing undesirable. In some cases, multi-homing may be infeasible (e.g., for broadband Internet access, consumers may choose among alternative suppliers, but only one at a time can operate the local connection to the home).

F.3 Platform & apps: the monopoly case

We consider here a particular case of the setting considered in the previous section, which is used in Section 2.3 of the main text to illustrate the possibility that, even with complements, a monopoly price may lie above the Nash level for one of the products (cf. Figure 6). To see this, we suppose here that there is a single platform as well as a single developer per application. We further assume for simplicity that all applications face the same demand d (p), which is downward-sloping (i.e., d (p) < 0). It follows that, in the absence of any price caps, all applications will charge the same price. To be consistent with the notation used in Section 2.3, we will denote the price of the platform by p 1 and that of the applications by p 2 .

F.3.1 Complementarity between the platform and the applications

We …rst check that the platform and the applications are indeed complements. Letting

s (p 2 ) Z +1 p 2 d (p) dp
denote the additional surplus that platform users derive from applications, the demand for the platform is then given by:19 

D 1 (p 1 ; p 2 ) D (p 1 s (p 2 )) ;
where D (p) denotes the demand for the platform, as a function of the quality-adjusted price p = p 1 s (p 2 ). The demand for each application is thus given by:

D 2 (p 2 ; p 1 ) D (p 1 s (p 2 )) d (p 2 ) ;
and it satis…es:

@ 2 D 1 (p 1 ; p 2 ) = @ 1 D 2 (p 2 ; p 1 ) = D 0 (p 1 s (p 2 )) d (p 2 ) < 0: F.3.

Best-responses

We now turn to …rms' reaction functions, and …rst note that the applications' bestresponse is ‡at (i.e., R 2 (p 1 ) = 0); indeed, each application wishes to maximize its per-user pro…t, which amounts to choosing a price equal to:

p N 2 arg max p 2 p 2 d (p 2 ) :
Note that p N 2 > 0: the applications could not obtain any pro…t by charging a non-positive price, whereas they can secure a positive pro…t by charging any positive price. 20 Consider now the platform's best-response to the application price p 2 . The pro…t of the platform can be expressed as:

1 (p 1 ; p 2 ) p 1 D 1 (p 1 ; p 2 ) = p 1 D (p 1 s (p 2 )) :
Maximizing this pro…t amounts to

log ( 1 (p 1 ; p 2 )) = log (p 1 ) + L (p 1 s (p 2 )) ;
where L (p) log (D (p)) denotes the logarithm of the demand for the platform, and:

@ 2 p 1 p 2 log ( 1 (p 1 ; p 2 )) = L 00 (p 1 s (p 2 )) d (p 2 ) :
Hence, from the platform's standpoint, prices are strategic substitutes (i.e., R 0 1 ( ) < 0) whenever the demand for the platform is log-concave (i.e., L 00 ( ) < 0).

It follows from the above that, in equilibrium, the applications charge p N 2 > 0 whereas the platform charges p N 1 R 1 p N 2 , as illustrated by Figure 6. Finally, we check that Assumption (A) is satis…ed. It is obvious for the applications, as R 0 2 (p 1 ) = 0, and for the platform it follows from the fact that, as noted in Section F.2, the platform's optimal quality-adjusted price is increasing in the net surplus generated by the applications; hence, in response to a decrease in the application price p 2 , and thus to an increase in the surplus s, the platform increases its own price -as R 0 1 (p 2 ) < 0but not so as to o¤set entirely the consumers'bene…t from the reduction in the price p 2 .

F.3.3 Monopoly outcome

We now characterize the monopoly outcome. We start with the observation that, in order to maximize the industry pro…t, it is optimal to sell the applications at cost. To see this, let us again index the applications by x 2 [0; 1]; for a given platform price p 1 and given application prices (p 2x ) x2[0;1] , the industry pro…t can then be expressed as:

(p 1 ; (p 2x ) x ) = p 1 + Z 1 0 p 2x d (p 2x ) dx D (p 1 s) ; where s = Z 1 0 s (p 2x ) dx
denotes consumers'expected surplus from the applications. Replacing these prices with p2 = 0 and p1 = p 1 + s (0) s does not a¤ect the number of platform users (the qualityadjusted price remains equal to p 1 s), and thus the impact on industry pro…t is equal to:

= s (0) s Z 1 0 p 2x d (p 2x ) dx D (p 1 s) = Z 1 0 [s (0) s (p 2x ) p 2x d (p 2x )] dx D (p 1 s) > 0;
where the inequality stems from the fact that the total surplus from the applications, s (p) + pd (p), is maximal under marginal cost pricing, i.e., for p = 0.

The monopoly prices are thus p M 2 = 0 and

p M 1 arg max p 1 f (p 1 ; p 2 = 0)g = arg max p 1 fp 1 D (p 1 s (0))g = R 1 (0) :
The monopoly outcome therefore lies (weakly) below …rms' best-responses (more precisely,

p M 2 < R 2 p M 1 and p M 1 = R 1 p M 2 )
. However, as p M 2 = 0 < p N 2 , the application price is (strictly) lower than its Nash level p M 2 < p N 2 , but the opposite holds for the platform: as R 0 1 ( ) < 0, we have:

p M 1 = R 1 (0) > R 1 p N 2 = p N 1 :
Figure 6 illustrates these insights.

F.4 Discussion

The two situations considered in Section F.1 and in Sections F.2-F.3 both exhibit a combination of complements and substitutes. In both instances, capping the prices of substitutes would bene…t consumers, but is not appealing to the …rms. 21 By contrast, capping the prices of (some of the) complements has a more ambiguous e¤ect on …rms and consumers: the pro…t may be reduced on the goods for which a cap is introduced, but it increases for their complements, thanks to an expansion in their demands. Consumers also bene…t from the lower prices on the goods for which a cap is introduced, but may face higher prices for their complements.

In the example studied in Section F.1, consumers and …rms have indeed perfectly con ‡icting interests, and introducing price caps on the non-competitive goods can bene…t either the consumers or the …rms. In essence, price caps bene…t the …rms (at the expense of consumers) when the spirit of Assumption A is not satis…ed, namely, when22 

p A p B < D B D A ; (9) 
where, for L = A; B, D L denotes the aggregate demand for good L (i.e., the sum of the demands for L 1 and L 2 ), whereas p L denotes the variation in the prices of these goods, following the introduction of a uniform price cap on B 1 and B 2 . 23 By contrast, the spirit of Assumption A is automatically satis…ed in the platforms and apps settings: as the applications are atomistic, each individual application price has no in ‡uence on platform participation, and so each application seeks to maximize its per-user pro…t, which does not depend on platforms'prices; hence, platforms'prices have no impact on applications' prices, that is, applications' best-responses are " ‡at", and Assumption A is trivially satis…ed. More generally, we would expect the spirit of Assumption A to hold as long as there are multiple applications, so that their pricing decisions are primarily driven by competition among developers, rather than by the impact of their prices on platform participation (and thus, indirectly, by platforms'prices).

G Non-veri…able quality G.1 Setting

We consider an oligopoly with n 2 single-product …rms; each …rm i 2 N f1; :::; ng can choose to o¤er at any price p i 2 R + any quality s i 2 R + of good i, which it can produce at constant unit cost c i (s i ); the demand for that good is then given by D i (p), where p = (p i ) i2N is the vector of net quality-adjusted prices: pi p i s i . We assume that, for i 2 N , D i ( ) and c i ( ) are both C 2 and: c i (0) = 0, c 0 i ( ) > 0 and c 0 i (s i ) > 1 for s i large enough; D i ( ) > 0, @ i D i ( ) < 0 (individual demands for a good are positive and downward sloping, as a function of the net price of that good) and P j2N @ j D i ( ) 0 (a uniform increase in all net prices reduces individual demands); the pro…t function

i (p; s) [p i c i (s i )] D i (p 1 s 1 ; :::; p n s n ) is strictly quasi-concave in (p i ; s i ).
It will be convenient to use net prices rather than prices as strategic variables; we thus de…ne:

^ i (p; s i ) [p i + s i c i (s i )] D i (p) :
The quasi-concavity of the individual pro…t functions i implies that the pro…t functions ^ i , too, are quasi-concave:

Lemma 6 (Quasi-concavity of ^ ) For i 2 N , the pro…t function ^ i (p; s) is strictly quasi-concave in (p i ; s i ).
Proof. For i 2 N , we have, for any (p i ; s i ), any (p 0 i ; s 0 i ) 6 = (p i ; s i ) and any 2 (0; 1) (with p 0 i p0 i + s 0 i and p i pi + s i ):

^ i ( p0 i + (1 ) pi ; p i ; s 0 i + (1 ) s i ) = i ( (p 0 i + s 0 i ) + (1 ) (p i + s i ) ; p i ; s 0 i + (1 ) s i ; s i ) > min f i (p 0 i + s 0 i ; p i + s i ; s 0 i ; s i ) ; i (p i + s i ; p i + s i ; s i ; s i )g = min f^ i (p 0 i ; p i ; s 0 i ) ; ^ i (p i ; p i ; s i )g ;
where the equalities stem from the de…nitions of i ( ) and ^ i ( ), whereas the inequality follows from the strict quasi-concavity of the pro…t function i ( ) with respect to (p i ; s i ).

These assumptions imply that maximizing its pro…t ^ i (p; s i ) leads each …rm i 2 N to choose

s i = s M i c 0 1 i (1)
and a unique best-response

Ri (p i ) arg max pi ^ i pi ; p i ; s M i :
We assume that this best-response is well-de…ned, C 1 , and bounded above.

As the pro…t of one …rm depends on other …rms' decisions only through their net prices, we can readily extend our de…nitions of substitutes and complements as follows:

Ŝ Substitutes: @ j D i (p) > 0 for j 6 = i 2 N ; Ĉ Complements: @ j D i (p) < 0 for j 6 = i 2 N .
Finally, we still assume that: there exists a unique Nash equilibrium in the unconstrained pricing game, which we denote by pN = pN i i2N (together with

s N = s M i i2N );
the best-responses satisfy, for j 2 N :

X i2N nfjg @ j Ri (p i ) < 1; (10) 
the industry pro…t

(p; s) X i2N i (p; s) = X i2N ^ i (p; s i ) ^ (p; s)
is strictly quasi-concave in p and achieves its maximum at pM = p M i i2N (together with (s N = s M i i2N ).

As the monopoly outcome and the individual best-responses both involve s i = s M for every i 2 N , the proofs of …rst two Lemmas readily carry over; that is, letting

ĉM i c i s M i s M i
denote the net cost corresponding to the optimal quality s M i , we have:

Lemma 7 (unconstrained net prices) For any …rm i 2 N and any

p i 2 R n 1 + , Ri (p i ) > ĉM i . (i) Ŝ =) 8i 2 N ; pM i > ĉM i and pM i > Ri pM i . (ii) Ĉ =) 9 (i; j) 2 N 2 such that pM i > ĉM i and pM j < Rj pM j ; furthermore, if n = 2, then pM i > ĉM i =) pM j < Rj pM i for j 6 = i.
Proof. We …rst show that (net) best-responses exceed (net) marginal costs. Starting from s i = s M i and p = (p i ; p i )j pi = Ri (p i ) , the impact of a slight increase in pi on …rm i's pro…t ^ i is given by pi ĉM i @ i D i (p)+D i (p). If …rm i's margin were non-positive, this impact would be positive (as @ i D i ( ) < 0 < D i ( )), a contradiction. Hence, Ri (p i ) > ĉM i . Next, we show that monopoly prices exceed marginal costs for at least one …rm. Suppose instead that pM i ĉM i for all i 2 N , and consider a small and uniform increase in net prices: dp i = dp > 0 for i 2 N . We then have dq j = P i2N @ i D j pM dp 0 for all j 2 N , and thus:

d ^ = X j2N pM j ĉM j dq j + X j2N q M j dp > 0;
a contradiction. Therefore, pM i > ĉM i for some i 2 N . We now show that, under Ŝ , pM i > ĉM i for every i 2 N . To see this, suppose that there exists a non-empty subset of N , N , such that pM j ĉM j for every j 2 N , and consider a small and uniform increase in these net prices: dp j = dp > 0 for j 2 N . Under Ŝ , we then have:

for i 2 N n N , dq i = P j2N @ j D i pM dp > 0, as @ j D i pM > 0 for j 6 = i. for i 2 N , dq i = P j2N @ j D i pM dp P j2N @ j D i pM dp 0.
Therefore:

d ^ = X j2N nN pM j ĉM j | {z } >0 dq j |{z} >0 + X j2N q M j |{z} >0 dp |{z} >0 + X j2N pM j ĉM j | {z } 0 dq j |{z} 0 > 0;
a contradiction. Therefore, under Ŝ , p M i > ĉM i for every i 2 N . We now compare monopoly prices to …rms'best-responses. The monopoly prices satisfy, for i 2 N :

0 = @ i ^ pM = @ i ^ i pM ; s M i + X j2N nfig @ i ^ j p M ; s M j ;
and thus:

@ i ^ i pM ; s M i = X j2N nfig @ i ^ j pM ; s M j = X j2N nfig pM j ĉM j @ i D j pM : (11) 
Therefore:

(i) Under Ŝ , the right-hand side of (11) is negative, as pM j > ĉM j , from the …rst part of the lemma, and @ j D i pM > 0 for j 6 = i 2 N ; hence, for i 2 N , we have @ i ^ i pM ; s M i < 0, which, together with the quasi-concavity of ^ i with respect to pi , implies pM i > Ri pM i .

(ii) Suppose that for all j 2 N , pM j Rj pM j , implying @ j ^ j pM ; s M j 0. We then have, for j 2 N :

0 @ j ^ j pM ; s M j = D j pM + pM j ĉM j @ j D j pM ;
and thus, under Ĉ , pM j > ĉM j for every j 2 N . But then, as @ j D i pM < 0 for j 6 = i 2 N under Ĉ , (11) implies @ i ^ i pM ; s M i > 0, a contradiction. Hence, the monopoly outcome satis…es pM j < Rj pM j for some …rm j. Finally, when n = 2, (11) implies, for j 6 = i 2 f1; 2g:

@ j ^ j pM ; s M j = p M i ĉM i @ j D i pM :
Under Ĉ , @ j D i pM < 0 and thus pM i > ĉM i implies pM j < Rj pM j .

G.2 Constrained net best-responses

Suppose now that caps p = ( p i ) i2N are imposed on the prices of the goods. Each …rm i 2 N then chooses p i and s i so as to maximize:

max p i ;s i i (p; s) s.t. p i p i :
Let p i = i (p i ; p i ) and s i = i (p i ; p i ) denote the constrained best-responses in terms of price and quality, and ^ i (p i ; p i ) the resulting best-response in terms of net price. These best-responses can equivalently be expressed as:

(^ i (p i ; p i ) ; i (p i ; p i )) = arg max pi ;s i ^ i (p; s i ) [p i + s i c i (s i )] D i (p) s.t. pi + s i p i : ( P )
For the sake of comparative statics, we will assume:

Assumption D: For any i 2 N , any p i , any (p i ; s i ) satisfying s i s M i and pi + s i Ri (p i ) + s M i : c 00 i (s i ) jc 0 i (s i ) 1j > j@ i D i (p i ; p i )j D i (p i ; p i ) :
This condition asserts that the curvature of the "net cost"function c (s) s exceeds the semi-elasticity of demand. It is trivially satis…ed when the price cap is close to the best-response price (i.e., p i close to Ri (p i ) + s M i ), as then s i is close to s M i and thus c 0 i (s i ) is close to 1.

We have:

Lemma 8 (constrained net best-responses) For any i 2 N and any p i , as long as p i Ri (p i ) + s M i , the price cap is not binding:

^ i (p i ; p i ) = Ri (p i ) ; i (p i ; p i ) = s M i and thus i (p i ; p i ) = Ri (p i ) + s M i :
When instead p i < Ri (p i ) + s M i :

(i) the price cap is binding (i.e., i (p i ; p i ) = p i ) and the constrained optimal quality is strictly lower than the unconstrained optimum: i (p i ; p i ) < s M i ;

(ii) in addition, under Assumption D the constrained optimal net price ^ i (p i ; p i ) strictly increases with p i , from 0 for

p i = 0 to Ri (p i ) for p i = Ri (p i ) + s M i .
Proof. It follows from Lemma 6 that the optimization program P has a unique solution. As long as p i Ri (p i ) + s M i , the price cap is not binding and the …rm sticks to pi = Ri (p i ) and s i = s M i , and thus to p i = Ri (p i ) + s M i . Part (i). It also follows from Lemma 6 that, when p i < Ri (p i ) + s M i , the price cap is binding: pi + s i = p i . Letting i > 0 denote the Lagrangian multiplier associated with the constraint, the constrained best-response s i = i (p i ; p i ) is then characterized by the …rst-order condition:

[1 c 0 i (s i )] D i (p) = i ;
which implies c 0 i (s i ) < 1. It follows from the strict quasi-concavity of the pro…t function ^ with respect to s i that s i = i (p i ; p i ) < s M i . Part (ii). When p i < Ri (p i ) + s M i , the price cap is binding and thus p i = p i . It follows that strict quasi-concavity of the pro…t function i (p; s) with respect to s i that the constrained optimal quality s i = i (p i ; p i ) is the unique solution to (with a slight abuse of notation, noting that, for j 6 = i, i depends on p j and s j only through pj = p j s j ): max

s i i ( p i ; s i ; p i ) = [ p i c i (s i )] D i ( p i s i ; p i ) ;
and is characterized by the …rst-order condition:

c 0 i (s i ) D i ( p i s i ; p i ) + [ p i c i (s i )] @ i D i ( p i s i ; p i ) = 0: (12) 
Di¤erentiating this condition with respect to s i and p i shows that the net price ^ i (p i ; p i ) = p i i (p i ; p i ) increases with the price cap p i (i.e., @ i =@ p i < 1) if and only Assumption D is satis…ed.

From the above, ^ i (p i ; p i ) is equal to Ri (p i ) for p i Ri (p i ) + s M i , and strictly increases with p i in the range p i 2

h 0; Ri (p i ) + s M i i .
To conclude the argument, it su¢ ces to note that s i = 0 constitutes the constrained optimal quality when p i = 0, as …rm i's pro…t is then given by c i (s i ) D i (p); hence, ^ i (p i ; 0) = 0 i (p i ; 0) = 0.

G.3 Price-cap implementable net prices

The following proposition shows that, as in our baseline setting, price caps can sustain any net prices lying below …rms'best responses, and only these prices:

Proposition 17 (price-cap implementable net prices) Under Assumption D:

(i) The set P of net prices that are sustainable through price caps is:

P = n p 2 R n + j 0 pi Ri (p i ) for i 2 N o :
(ii) In particular, the Nash price vector pN belongs to P and, for any other price vector p in P, pi < pN i for some i 2 N .

Proof. (i) We …rst show that price caps can sustain only prices in P. Consider net prices and qualities (p i ; s i ) i2N that are sustainable through price caps ( p i ) i2N ; that is, they satisfy pi = ^ i (p i ; p i ) and s i = i (p i ; p i ) for every i 2 N ). It follows from Lemma 8 that p 0. Suppose now that pi > Ri (p i ) for some i 2 N . This, in turn, implies p i < Ri (p i )+s M i -otherwise, the price cap p i would not be binding, and …rm i could thus pro…tably deviate to its unconstrained best-responses p0 i = Ri (p i ) and

s 0 i = s M i . But from Lemma 8, in the range p 0 i 2 h 0; Ri (p i ) + s M i i the constrained best-response ^ i (p i ; p 0 i ) increases with p 0 i from 0 up to Ri (p i ); it follows that pi = ^ i (p i ; p 0 i ) < Ri (p i ), a contradiction.
Conversely, for any net price vector p 2 P and every i 2 N , there exists p i 2 h 0; Ri (p i ) + s M i i such that pi = ^ i (p i ; p i ). But then, the net price vector p is sustainable through the price caps p = ( p i ) i2N .

(ii) By construction, pN lies on …rms'unconstrained best-responses, and thus belongs to P. Consider now a price vector p in Pn pN , and suppose that pi p N i for all i 2 N . For every i 2 N , we then have:

pi p N i Ri (p i ) p N i ; = Ri (p i ) R i p N i = Z 1 0 d d n Ri p i + (1 ) p N i o d = Z 1 0 f X j2N nfig @ j Ri p i + (1 ) p N i pj p N j gd :
Summing up these inequalities for i 2 N yields:

X i2N pi p N i X i2N Z 1 0 f X j2N nfig @ j Ri p i + (1 ) p N i pj p N j gd = X j2N pj p N j Z 1 0 f[ X i2N nfjg @ j Ri p i + (1 ) p N i ]gd < X j2N pj p N j ;
where the last inequality follows from (10). We thus obtain a contradiction, implying that pi < pN i for some i 2 N .

G.4 Duopoly

We now focus on the case of a duopoly: N = f1; 2g. We …rst consider the impact of price caps and consumers. We start with the observation that, like the demand, consumer surplus only depends on net prices, p1 and p2 ; indeed, letting S (p 1 ; p 2 ; s 1 ; s 2 ) denote consumer surplus, we have:

@S @p i ( ) = D i (p i s i ; p j s j ) = @S @s i ( ) :
Hence, consumer surplus can be expressed as Ŝ (p i ; pj ). We therefore adapt the previous baseline Assumption A, introduced to ensure that price caps can only bene…t consumers, as follows:

Assumption Â: For any i 6 = j 2 f1; 2g and any net price pi 2 [0; pN i ), if Rj (p i ) > pN i , then:

R0 j (p i ) > D i pi ; Rj (p i ) D j Rj (p i ) ; pi :
Assumption  holds again trivially when net prices are strategic complements (i.e., R0 j ( ) > 0). We have:

Proposition 18 (non-veri…able quality: price caps -duopoly) Under Assumptions D and Â, any vector of net prices p 6 = pN that is sustainable through price caps yields a higher consumer surplus than pN . Therefore: (i) for any vector of price caps p, consumers are weakly better o¤ under G p than under G 1 ; and (ii) in G, it is optimal for the competition authority to allow price caps.

Proof. 

Ŝ pi ; Rj (p i ) Ŝ p0 i ; Rj (p 0 i ) = Z p0 i pi h D i pi ; Rj (p i ) + D j Rj (p i ) ; pi R0 j (p i ) i dp i > 0:
Hence, under Assumption Â, …rms' use of price caps can only bene…t consumers. Consider now …rms'incentives to introduce price caps. The following Proposition extends our previous insights:

Proposition 19 (non-veri…able quality: …rms'incentives -duopoly) (i) Under Ŝ and Assumption D, …rms cannot use price caps to increase both of their pro…ts; if in addition net prices are strategic complements (i.e., if R0 i ( ) > 0 for i = 1; 2), then …rms cannot use price caps to increase any of their pro…ts (and thus, a fortiori, their joint pro…t).

(ii) Under Ĉ , …rms can use price caps to increase both pro…ts (and thus, a fortiori, their joint pro…t); any such price caps bene…t consumers as well.

Proof. (i) Consider a price vector p = (p 1 ; p2 ) in Pn pN and let s = (s 1 ; s 2 ) denote the associated qualities. From Proposition 17, pj < p N j for some j 2 f1; 2g. Under Ŝ , we have, for i 6 = j 2 f1; 2g:

^ i (p i ; pj ; s i ) max pi ;s i ^ i (p i ; pj ; s i ) < max pi ;s i ^ i pi ; pN j ; s i = ^ i pN i ; pN j ; s M i ;
where the strict inequality follows from pj < p N j and

d dp j max pi ;s i ^ i (p i ; pj ; s i ) = @ j ^ i Ri (p j ) ; pj ; s M i = h Ri (p j ) ĉM i i @ j D i Ri (p j ) ; pj ; (13) 
where, from Lemma 7, the last expression is positive under Ŝ . Therefore, …rms cannot use price caps (with or without transfers) to increase both of their pro…ts. Furthermore, if prices are strategic complements, then any price vector p = (p 1 ; p2 ) in Pn pN is such that pi < pN i for i = 1; 2. 25 The above argument then implies that both …rms obtain strictly less pro…t than in the Nash equilibrium. Hence, in that case …rms cannot use price caps to increase any of their pro…ts.

(ii) By contrast, under Ĉ , there exist prices in P that increase both …rms'pro…ts. To see this, note …rst that, from Lemma 7, both …rms' margins are positive at the Nash equilibrium. It follows that, starting from the Nash equilibrium prices pN 1 ; pN 2 , a small and uniform reduction in both prices increases both …rms' pro…ts, as reducing one …rm's price (and adjusting the quality accordingly) has only a second-order e¤ect on the pro…t of that …rm, and a …rst-order, positive e¤ect on the other …rm's pro…t (as it increases that …rm's demand). To conclude the argument, it su¢ ces to note that any (p 1 ; p2 ) = pN 2 "; pN 2 " , with " > 0, belongs to P, as: using condition (10), we have:

Rj (p i ) pj = Z " 0 h 1 R0 j pN i x i dx > 0:
Assumption D is trivially satis…ed in the neighborhood of pN , as c 0 i (s i ) is then close to 1; hence, in this neighborhood, the constrained net best-responses are increasing with price caps as long as these are binding, and are equal to unconstrained bestresponses otherwise. It follows that, for " small enough, there exists appropriately chosen price caps that sustain (p 1 ; p2 ) = pN 2 "; pN 2 " .

Therefore, there are prices in P that give both …rms more pro…t than the Nash equilibrium prices, as is required for a price cap vector to be agreed upon in the absence of transfer.

To conclude the proof, it su¢ ces to note that increasing both …rms'pro…ts requires lowering prices below the Nash level. To see this, consider a price vector p 2 P that increases both …rms' pro…ts above their Nash levels, and let ŝ = (ŝ 1 ; ŝ2 ) denote the 25 From Proposition 1, this has to be the case for at least one …rm i; Proposition 1 and strategic complementarity then together imply that, for the other …rm, j: pj Rj (p i ) < Rj pN i = pN j .

associated qualities; we then have, for i 6 = j 2 f1; 2g:

max pi ;s i ^ i (p i ; pj ; s i ) ^ i (p; ŝi ) ^ N i = max pi ;s i ^ i pi ; pN j ; s i ;
which, using (13) and Lemma 7, implies pj pN j under Ĉ . Hence, p pN .

Proposition 19 (which does not hinge on Assumption Â) con…rms that: (i) …rms will not select price caps when they o¤er substitutable goods (case Ŝ ); and (ii) price caps enable the …rms to cooperate when they o¤er complements (case Ĉ ), in which case …rms'interests are aligned with those of consumers -both long for lower net prices. Furthermore, price caps then bene…t consumers whenever they enhance both …rms'pro…ts. It is worth noting that the pro…tability of price caps for complements does not depend on any speci…c assumption on (the curvature of the net) cost function or (on the semielasticity of) demand. This is because the argument relies on net prices that are in the neighborhood of the unconstrained Nash outcome, where Assumption D is automatically satis…ed (as s i is close to s M i , c 0 i (s i ) is close to 1).

Remark: Mergers versus price caps. It would be straightforward to extend condition (M S ) and show that, under this condition, a merger harms consumers whereas price caps can only bene…t them. However, under the alternative condition (M C ), a merger and joint-pro…t maximizing price caps would produce di¤erent results: the merger would lead to monopoly prices and qualities, whereas price caps would lead to lower qualities and, thus, to di¤erent prices.

G.5 Symmetric oligopoly

We now extend the analysis to an arbitrary number of …rms, n 2, and …rst focus on symmetric …rms and outcomes; speci…cally, …rms:

face the same constant unit cost: c i (s i ) = c (s i ) for all i 2 N ; face symmetric demands, in the sense that other …rms'prices are interchangeable:

D i (p) = D (p i ; p i ),
where pj = p j s j denotes …rm j's net price, adjusted for quality, and D (p i ; p i ) = D (p i ; (p i )) for any permutation ( ) of the net prices p i , for all i 2 N and (p i ; p i ) 2 R n + .

We maintain the strict quasi-concavity assumption for the individual pro…t functions. Our symmetry assumption implies that all …rms have the same best-responses:

Ri (p i ) = R (p i ) ;
which is moreover invariant under any permutation of the other …rms'prices. We further assume that @ 1 R ( ) > 1;

( 14) where @ 1 R ( ) denotes the partial derivative of R ( ) with respect to its …rst argument (by symmetry, the same condition applies to the other derivatives).

We further assume that the unique Nash equilibrium and monopoly outcome are symmetric: pN i = pN and pM i = pM . We have:

From Proposition 17, …rms cannot use price caps to raise their prices uniformly above the Nash level. Therefore:

Proposition 20 (non-veri…able quality: price caps -symmetric oligopoly) Under Assumption D, any symmetric vector of net prices p 6 = p N that is sustainable through price caps yields a higher consumer surplus than p N .

Proof. This follows directly from Proposition 17, which ensures that any such symmetric vector of price caps is such that pi = p < p N . This Proposition extends our previous insights in that price caps can only result in lower symmetric net prices that bene…t consumers. It also implies that …rms have no incentives to introduce a price cap under (S), and can instead use them to increase their pro…ts under (C):

Proposition 21 (non-veri…able quality: incentives -symmetric oligopoly) (i) Under Ŝ and Assumption D, …rms cannot use price caps to sustain a more profitable symmetric outcome than that of the Nash equilibrium.

(ii) Under Ĉ , …rms can use price caps to generate a symmetric outcome that increases their pro…ts, compared with the Nash equilibrium outcome; any such use of price caps bene…ts consumers as well.

Proof. (i) From the above analysis, any symmetric vector of net prices that is sustainable through price caps lies below the Nash level: pi = p < pN . It follows that, under Ŝ , any such vector of net prices is less pro…table than the Nash equilibrium outcome; letting s denote the associated (symmetric) level of quality,26 we have:

^ i (p; s) = max pi ;s i [p i + s i c i (s i )] D (p i ; p i ) s.t. pi + s i p max pi ;s i [p i + s i c i (s i )] D (p i ; p i ) max pi ;s i [p i + s i c i (s i )] D pi ; pN i = ^ i pN ; s M :
(ii) As for Proposition 19, it su¢ ces to note that, under Ĉ , a small and uniform reduction in all prices: increases all …rms'pro…ts, as reducing one …rm's price (and adjusting the quality accordingly) has only a second-order e¤ect on the pro…t of that …rm, and a …rstorder, positive e¤ect on all other …rms'pro…ts (as it increases their demands); and generates a symmetric vector of net prices that belongs to P as (Assumption D is trivially satis…ed in the neighborhood of pN , so that constrained net best-responses strictly increase with relevant price caps, and): R (p; :::

; p) p = Z " 0 " 1 n 1 X j=1 @ j R pN x # dx > 0;
where the inequality follows from condition (10).Using symmetry, we have:

n 1 X j=1 @ j R (p) = 1 n X i2N X j2N nfig @ j Ri (p) = 1 n X j2N X i2N nfjg @ j Ri (p) < 1;
where the inequality stems from (10).

Hence, there are symmetric net prices in P that give all …rms more pro…t than the Nash equilibrium outcome, as is required for price caps to be agreed upon in the absence of transfer. To conclude the proof, it su¢ ces to note that increasing all …rms' pro…ts requires lowering the symmetric net price below the Nash level. To see this, consider a symmetric price vector p that increases all …rms'pro…ts above their Nash levels; letting s denote the associated (symmetric) quality, we then have, for i 6 = j 2 N :

max pi ;s i ^ i (p i ; p i ; s i ) ^ i (p; s) ^ N i = max pi ;s i ^ i pi ; pN i ; s i ;
which, using (13) and Lemma 7, implies p pN under Ĉ . Hence, p pN .

G.6 Oligopoly under strategic complementarity

We extend here the analysis to oligopolies where net prices are strategic complements: c SC Strategic complementarity: for every i 2 N , Ri (p i ) increases in pj for any j 2 N n fig.

We show that, under this assumption (together with our previous assumptions on the quasi-concavity of pro…t functions, the regularity of best-responses and Nash equilibrium uniqueness), price caps cannot generate higher equilibrium net prices (regardless of whether goods are complements or substitutes). It follows that price caps can only bene…t consumers, and are useful for suppliers of complements, but not for competitors o¤ering substitutes.

Suppose that each …rm i 2 N faces a price cap p i . Any resulting equilibrium price vector p = (p i ) i2N satis…es pi = ^ i (p i ; p i ) for i 2 N , where:

^ i (p i ; p i ) = (^ i (p i ; p i )) j2M i arg max p i p i i (p i ; p i )
denotes …rm i's best-response, constrained by the price caps it faces.

We now show that price caps cannot be used to raise equilibrium prices:

Proposition 22 (non-veri…able quality: price caps bene…t consumers under c SC )

Under c SC and Assumption D, any vector of net prices p = (p i ) i2N that is sustainable through price caps satis…es p pN . Therefore, price caps can only bene…t consumers.

Proof. From Proposition 17, the set of net prices p = (p i ) i2N that are sustainable through price caps is

P n p 2 R n + j 0 pi Ri (p i ) for i 2 N o ;
where by assumption the best-response function Ri (p i ) is bounded above by some Bi . Hence, without loss of generality, we can restrict the net price pi to belong to Ŝi

h 0; Bi i .
Note that, by construction, the Nash equilibrium net price vector pN = pN i i2N is such that pN

i 2 Ŝi . Next, de…ne ^ (p) ^ i (p) i2N
, where ^ i (p) = Ri (p i ). The Nash equilibrium vector of net prices, pN , obviously constitutes a …xed point of ^ ( ). Furthermore, using the same reasoning as in the proof of Lemma 4, it can be checked that ^ is a contraction mapping from Ŝ Ŝ1 ::: Ŝn to Ŝ, endowed with the `1 norm: for any p 2 Ŝ, ^ (p) 2 Ŝ and, in addition, for any p0 2 Ŝ:

^ (p 0 ) ^ (p) = X i2N ^ i (p 0 ) ^ i (p) = X i2N Ri p0 i Ri (p i ) = X i2N Z 1 0 d d n Ri p0 i + (1 ) p i o d X i2N Z 1 0 f X j2N nfig @ j Ri p0 i + (1 ) p i j p0 j pj jgd = Z 1 0 f X j2N [ X i2N nfjg @ j Ri p0 i + (1 ) p i ] j p0 j pj jgd X j2N k j p0 j pj j = k kp 0 pk ;
where the fourth equality uses c SC and:

k max p2 Ŝ;j2N X i2N nfjg @ j Ri (p i ) < 1;
where the inequality stems from (10). It follows from the Banach …xed point theorem that pN is the unique …xed point in Ŝ, and that any sequence fp k g k2N satisfying pk+1 = ^ (p k ) converges to pN . Next, we show that any p 2 P is such that ^ (p) 2 P. Thus, …x p 2 P and i 2 N . Using the constrained net price best-response ^ i (p i ; p i ) de…ned by P , it follows from Lemma 8 that

^ i (p) = Ri (p i ) ^ i (p i ; p i = 0) = 0:
It remains to show that ^ i (p) Ri ^ i (p i ) ; using pj ( ) = Rj ^ j (p) + ( 1) ^ j (p), we have:

Ri ^ i (p) ^ i (p) = Ri ^ i (p) Ri (p i ) = Ri ^ i (p) + (1 ) p i =1 Ri ^ i (p) + (1 ) p i =1 = Z 1 0 d d n Ri ^ i (p) + (1 ) p i o d = Z 1 0 d d Ri Rj (p j ) j2N nfig + (1 ) (p j ) j2N nfig d = Z 1 0 8 < : X j2N nfig @ j Ri Rj (p j ) j2N nfig + (1 ) (p j ) j2N nfig Rj (p j ) pj 9 = ; d 0;
where the inequality stems from c SC (which implies @ j Ri 0 for all i 6 = j 2 N ) and p 2 P (which implies Rj (p j ) pj for all j 2 N ). It follows that the sequence fp k g k2N de…ned by p0 = p and pk+1 = ^ (p k ) not only converges to pN , but remains within P and is therefore such that pk+1 pk . Hence, pN = p1 p0 = p.

It follows from the above that, again, …rms have an incentive to agree on price caps when they o¤er complements, but not when they o¤er substitutes:

Corollary 2 (non-veri…able quality: …rms'incentives under c SC )

(i) Under Ŝ and Assumption D, price caps cannot increase the pro…t of any …rm.

(ii) Under Ĉ , price caps can be used to increase all …rms'pro…ts.

Proof. If goods are all substitutes, then for any p 2 P and associated qualities s, and any i 2 N , we have:

^ i (p; s i ) max p0 i ;s 0 i ^ i (p 0 i ; p i ; s 0 i ) max p0 i ;s 0 i ^ i p0 i ; pN i ; s 0 i = ^ N i ;
where the …rst inequality re ‡ects the fact that …rm i may be constrained by its price cap p i , and the second inequality stems from the fact that price caps can only sustain net prices that are lower than pN .

If goods are all complements, the reasoning used in the proof of Proposition 19 extends to the case of an asymmetric oligopoly: starting from the Nash equilibrium prices pN , reducing all net prices by a small amount " (and adjusting the qualities accordingly) increases all …rms' pro…ts, as …rms' margins are positive from Lemma 7, and reducing one …rm's price has only a second-order e¤ect on the pro…t of that …rm, and a …rst-order positive e¤ect on the other …rms'demands. To conclude the argument, it su¢ ces to show that the new price vector, p (") = pN i " i2N , belongs to P; indeed, for i 2 N we have pi (") = pN i " > 0 for " small enough and:

Ri (p i (")) pi (") = Z " 0 [1 X j2N nfig @ j Ri (p i (x))]dx > 0;
where the inequality stems from (10). As Assumption D is trivially satis…ed in the neighborhood of pN , it follows from the proof of Proposition 17 that p (") 2 P for " small enough.

H Post-investment price caps H.1 Substitutes

Consider the multi-product …rm oligopoly setting developed in online Appendix C, in which each …rm i 2 N can o¤er a set M i f1; :::; m i g of products, and now suppose that in addition …rms must make investment decisions. These decisions may correspond to entering or staying in the market, developing new products, improving the quality or lowering the production cost of existing ones; di¤erent …rms may moreover be facing di¤erent choices.

Let I i denote the set of feasible investment decisions for …rm i, and I = (I 1 ; :::; I n ) 2 I = I 1 ::: I n denote the vector of these decisions. Firm i's total cost is now given by C i (q i ; I i ), and the demand for …rm i's goods is D i (p; I) = (D 1 i (p; I) ; :::; D m i i (p; I)). As before, we will assume that, for all I 2 I and i 2 N , D i ( ) and C i ( ) are both C 2 and that, for every i 2 N : the pro…t function i (p; I) P j2M i p j i D j i (p; I) C i (D i (p; I) ; I i ) is strictly quasi-a price cap p 1 slightly below p N 1 then induces …rm 1 to set p 1 = p 1 , which in turn leads …rm 2 to raise p 2 slightly above p N 2 and …rm 3 to reduce p 3 slightly below p N 3 . As a result, …rms 1 and 2 bene…t from the introduction of the cap (as their demands are boosted by the reductions in p 1 and p 3 , respectively, and because they either best-respond or are close to their best-response), whereas …rm 3 is hurt (as its demand is harmed by the increase in p 2 ).

The fact that price caps may bene…t a coalition at the expense of outsiders need not imply that they will be adopted by the coalition, however; other agreements may be more pro…table and bene…t others as well. For example, in the above example, introducing the price cap p 1 led to small reductions 1 = p N 1 p 1 and 3 in the prices of …rms 1 and 3, and to a small increase in the price of …rm 2; a uniform slight reduction in all three prices, by max f 1 ; 3 g, would instead bene…t …rm 3 as well, while giving at least the same bene…ts to …rms 1 and 2. We will not develop here a full- ‡edged model of negotiations over price caps, and simply assume that any price-caps agreement bene…ts non-signatories:

Assumption C: Any active unconstrained …rm is at least as well o¤ when other active …rms are constrained by price caps than when all active …rms are unconstrained.

Intuitively, this Assumption is likely to hold when …rms are in a rather symmetric position. For example, under (SS) it holds for symmetric demands with an "aggregative" nature, that is, when there exist an aggregator A (p 1 ; :::; p n 1 ), which is symmetric and increasing in all prices, and a function D (p; A), which decreases with both p and A, such that

D i (p) = D (p i ; A (p i )) :
A classic example is the linear demand D i (p) = d ap i b P j2N nfig p j (with d > 0 and a > b > 0). 28 Suppose for simplicity that all …rms are active. 29 In the absence of price caps, the resulting equilibrium is symmetric (p i = p N for all i 2 N ) and satis…es p N = R p N i ; we will assume that the symmetric best-response satis…es @ 1 R ( ) 2 ( 1; 0);30 that is, prices are strategic substitutes (SS), but they do not respond excessively to each other -the latter condition is implied by the usual stability condition which requires P j2N nfig @ j R (p i ) > 1.

Suppose now that …rms are constrained by price caps f p i g i2N , where p i = +1 for at 28 For substitutes, such demand systems include multinomial logit (D i (p) = d exp (a bp i ) = P j2N exp (a bp j ), with a; b; d > 0) and CES (D i (p) = dp i = P j2N ap 1 j , with a; d > 0 and > 1). See Nocke and Schutz (2017) for a recent analysis of such aggregative demand systems. least one …rm, and let p and ^ denote the resulting equilibrium prices and pro…ts. We …rst note that all unconstrained …rms charge the same price p. To see this, suppose that two unconstrained …rms i and j charge di¤erent prices, e.g., pi > pj . Using symmetry, we then have:

pi pj = R (p i ) R (p j ) = R pj ; p fi;jg R pi ; p fi;jg = Z pj pi @ 1 R p; p fi;jg dp < pi pj ; a contradiction.
Next, we show that the symmetric unconstrained price p lies above the highest binding price cap. To see this, let C denote the set of …rms for which the price cap is binding, { denote the …rm with the highest binding price cap (that is, p { = max i2C f p i g), and suppose that p < p { . We then have p { R (p { ) and p = R (p i ) for any i 2 N n C; therefore:

p { p R (p { ) R (p i ) = R p; p fi; {g R p { ; p fi; {g = Z p p { @ 1 R p; p fi; {g dp < p { p;
a contradiction. We thus have p i = p i p for all i 2 C, and p i = p for all i 2 N n C. From (SS), p < p N would then imply pi < p N i for all i 2 N and thus, for any j 2 N n C: p = R (p i ) > R p N i = p N , a contradiction. Therefore, p p N . Finally, for aggregative games the best-response R ( ) is of the form R (p i ) = R (A (p i )), where R0 < 0 from (SS). Therefore, for any unconstrained …rm i 2 N n C:

A (p i ) = R 1 (p) R 1 p N =
A p N i , implying that …rm i obtains at least as much pro…t as in the unconstrained Nash equilibrium.31 

H.2.2 Entry/exit game

Consider a setting in which each …rm i 2 N must decide whether to enter (or stay in) the market and suppose further that Assumption C holds. We …rst note that this assumption implies that, as intuition suggests, the development of complementary products boosts demand and enhances pro…ts. To see this, consider two situations which only di¤er in that one …rm (…rm i, say), is either active or not, and let pi denote …rm i's (unconstrained) equilibrium price when it is active. From the standpoint of the other …rms, the entry of …rm i has the same impact as imposing a price cap p i = pi on a …rm producing the same good as …rm i but with a very large marginal cost: that …rm would thus charge +1 in the absence of a cap, and pi when facing the cap.

Let A denote the set of active …rms in an equilibrium that arises in the absence of price caps; each …rm in A is thus better o¤ being active (given the presence of the others), and it would bene…t from the presence of any additional …rms. Hence, if price caps are now allowed, each …rm in A …nds it pro…table to be active if the others do, regardless of the decisions of …rms outside A, and regardless of any price caps that the other …rms may agree to. The possibility of price caps can moreover be used to increase all active …rms'pro…ts (as noted at the beginning of Section H.2.1), and from Assumption C this may induce some of the outsiders to enter.

Summarizing this discussion yields Proposition 10.

I Pre-investment price caps

A potential concern is the use of (arti…cially low) price caps as a way of softening competition, by inducing exit, deterring entry or sti ‡ing investment.

A …rst issue is the possible use of price caps as a commitment to maintain low prices, so as to deter entry or discourage investment. This is indeed a serious concern if …rms can sign long-term contracts with their customers: …rms could then credibly commit themselves to maintain low prices, for example, by adopting most favored nation clauses promising a compensation for any price increase: this would de facto allow customers to buy at the initially agreed price caps, even if these caps are then renegotiated away. In such a case, incumbent …rms could adopt low price caps so as to deter entry, as in the limit pricing model of Sylos Labini (1957) and Modigliani (1958). Ruling out this possibility leads to:

Policy recommendation 1 : Customers are not part of the price-caps agreements.

Second, a low price cap (possibly against compensation) may act as a commitment to exit the market. Indeed, if …rm i accepts a price cap p i that is too low for operating pro…tably (e.g., lower than its minimum average cost), it will then choose to leave the market. Firms could therefore use such price-caps agreements so as to bribe some rivals out of the market; likewise, incumbent …rms could induce potential entrants to stay out of the market. 32 These commitments are not credible, however, as the …rms would have no incentive to enforce the price caps. Taking advantage of these incentives leads to: 32 Consider for example a symmetric duopoly in which each …rm faces a constant marginal cost c and a …xed cost f > 0, and obtains a gross pro…t D > f . If either …rm were alone, it would instead obtain the monopoly pro…t M , where, due to competition M > 2 D . Firm 1, say, would then have an incentive to "bribe"…rm 2 into a price-caps agreement of the form p 1 p M ; p 2 c : this would induce …rm 2 to exit, and enable …rm 1 to increase its pro…t by

1 = M D ; as 1 > 2 = D f , these price caps,
Policy recommendation 2 : The agreement becomes void if none of the parties wishes to enforce it. This requirement implies that, in order to remain in place, a price-caps agreement must be "con…rmed"by at least one party to the agreement; this contributes to undermine the credibility of the "threats"discussed above.

We now show that these policy recommendations indeed alleviate the above concerns about the use of price caps as a way to deter entry or sti ‡e investment.

Consider the same setting as in Section H.1 (with quasi-concavity, strategic complementarity and unique continuation price equilibria), but modify the overall game G as follows:

2. (a) Firms choose price caps if such agreements are allowed.

(b) Firms make observable investment or entry decisions.

3. (a) If an agreement has been signed, …rms choose whether to con…rm it; the agreement is enforced if and only if at least one …rm con…rms it.

(b) Firms set their prices.

This timing allows the …rms to sign price-caps agreements in order to in ‡uence investment decisions, but rules out non-credible threats by asking …rms to con…rm their willingness to enforce the agreement, once investment decisions have been made. To avoid coordination issues, we rule out weakly dominated strategies.

From Proposition 8, for any vector of investment decisions I 2 I made in stage 2b, in stage 3a …rms have no incentive to enforce any price-caps agreement, regardless of what they may have agreed to in stage 2a; therefore, in stage 3b the continuation price equilibrium is p I , as when price caps are not allowed. It follows that allowing price caps in stage 1 has no impact on the set of investment and price equilibria in stages 2 and 3.

Summarizing the above analysis yields:

Proposition 23 (commitment e¤ects of price caps) Consider the following two prerequisites to setting price caps: a) customers are not part of the price-caps agreements; b) the agreement becomes void if none of the parties wishes to enforce it. Then, when (S) and (SC) hold, price caps have no impact on investment/entry/exit and therefore no impact on consumers.

together with any transfer T 2 ( 2 ;

J Foreclosure

Let us …rst recall the jest of the Choi-Stefanadis foreclosure model.

Integration and foreclosure. There are two …rms: an incumbent and a potential entrant. An integrated incumbent costlessly produces two perfect complements, A and B. We …rst assume an inelastic demand for the system: A and B together bring value v to consumers. An entrant can invest I to develop with probability 2 (0; 1) product A 0 , which is an alternative to A and brings extra surplus 2 (I= ; min fI= 2 ; vg); and similarly with product B 0 (A 0 and B 0 combined thus deliver consumer value v + 2 ). The two R&D processes are independent.

Prior to the entrant deciding whether to undertake R&D on A 0 , B 0 or both, the incumbent makes a technological choice: it can choose an open standard, in which case consumers can mix and match developed products as they like (e.g., combine A and B 0 , for value v + ); alternatively, it can choose a closed standard, in which case A and B can only be consumed together (combining A and B 0 , say, thus brings no value). The technological choice is costless. It is easy to check that the entrant always invests in both markets or none.

The entrant obtains no pro…t when both R&D projects fail, and 2 when both succeed. When a single R&D project succeeds, under a closed standard the entrant obtains again no pro…t. Under an open standard, the incumbent and the entrant are in a Nash demand game. As Nash observed, introducing a small noise on consumer valuation would deliver equal sharing (v + ) =2, except that the incumbent can secure v (regardless of the entrant's price) by charging v for the monopolized component and o¤ering the other one at cost. As < v, the resulting outcome is that the incumbent obtains the base value v and the entrant obtains its added value .

It follows that, under an open standard, the entrant invests and obtains a pro…t equal to 2 (2 ) + 2 (1 ) ( ) + ( 1) 2 (0) 2I = 2 ( I) > 0;

and the incumbent thus obtains:

2 (0) + 2 (1 ) v + (1 ) 2 (v) = 1 2 v:
Under a closed standard, entry becomes riskier and the entrant does not invest, as

2 (2 ) 2I = 2 2 I < 0:
The incumbent's pro…t is then v > (1 2 ) v. So the incumbent is better o¤ preventing investment by choosing the closed standard, as entry may lead to full system competition.

Absence of merger. Suppose now that A and B are produced by two distinct incumbent …rms, a and b, and each can choose an open or closed standard. It is then a dominant strategy for the incumbent …rms to choose the open standard. For example, if A 0 is developed but not B 0 , then with an open standard b can appropriate the entire surplus v: the entrant charges , a charges 0, and b can charge v as consumers are willing to pay v+ for the pair fA 0 ; Bg; with a closed standard, b can only appropriate v=2.33 If A 0 is not developed, or both A 0 and B 0 are developed, then b's choice of technology is irrelevant. We thus conclude that no foreclosure occurs under separate ownership. Furthermore, allowing price-caps agreements does not enable the incumbents to deter entry, as the adoption of price caps can only boost the demand for the alternative components. Downward sloping demand. An elastic demand creates a private and social bene…t from either a merger or price caps: the elimination of the double marginalization. However, price caps are a socially superior way of avoiding double marginalization, as they do not enable foreclosure.

To illustrate this, suppose that:

There are two types of consumers: a fraction f have value v H , whereas the others have value v L , where 0 < v L < v H and there is double marginalization by independent producers:

v L > f v H > 1 + f 2 v L : (15) 
The R&D cost can take two values, 0 (with probability ) and I (with probability 1 ).

We consider three scenarios: (i) in the benchmark case, the two components are initially produced by independent …rms; (ii) in case of a merger, these incumbents are integrated; (iii) in the price caps scenario, the independent incumbents can enter into price-caps agreements. The timing is as follows.

Stage 0: incumbent …rms choose between open and closed standards.

Stage 1: the entrant decides whether to invest.

Stage 2: R&D outcomes are observed by all …rms; in the last scenario, they can moreover agree on price caps Stage 3: …rms set their prices.

From the above analysis, when both alternative components are developed, price competition drives the incumbent …rms'prices down to 0 (note that incumbents would never agree on negative price caps). When a single alternative component is developed and the monopolized component opted for an open standard (which is the case in the absence of a merger), price competition drives again the price of the incumbent component down to 0. The producer of the monopolized component (or the integrated …rm, in case of a merger) charges v L as, from …rst inequality in (15) ; the corresponding pro…t, v L , exceeds the pro…t derived from targeting the high-end segment, f v H . The entrant obtains under an open standard, and 0 otherwise. In the absence of any alternative component, the equilibrium prices vary across scenarios. In the benchmark case, each incumbent charges v H =2 and thus obtains a pro…t equal to f v H =2. This indeed constitutes an equilibrium, as serving the low-end segment would require charging v L v H =2 and thus generate a pro…t v L v H =2, which, from the second inequality in (15), is lower than f v H =2. To see that each incumbent charging v L =2 and obtaining a pro…t v L =2 is not an equilibrium, 34 it su¢ ces to note that deviating and targeting the high-end segment would generate a pro…t equal to f (v H v L =2), which under (15) is higher than v L =2.

In case of a merger, the integrated incumbent charges v L as, from …rst inequality in (15) ; the corresponding pro…t, v L , exceeds the pro…t derived from targeting the high-end segment, f v H . For the same reason, in the price caps scenario, the incumbents agree on price caps equal to v L =2.

Building on these insights:

In the benchmark scenario, the entrant invests and consumers obtain an expected surplus equal to:

S = 2 (1 ) f (v H v L ) + 2 [f v H + (1 f ) v L ] :
In the merger scenario, the integrated incumbent opts for a closed standard and the entrant does not invest; the merger however eliminates double marginalization and consumers thus obtain an expected surplus equal to:

S m = f (v H v L ) = S + (1 ) 2 f (v H v L ) 2 v L :
In the price caps scenario, the entrant again invests and price caps eliminate double marginalization when R&D projects fail; as a result, consumers obtain an expected surplus equal:

S p = (1 ) 2 f (v H v L ) + 2 (1 ) f (v H v L ) + 2 [f v H + (1 f ) v L ] = S + (1 ) 2 f (v H v L ) = S m + 2 v L :
Whether the merger bene…ts consumers depend on the balance between the ex- 34 The same argument as before allows us to focus on symmetric equilibria.

pected gain from eliminating double marginalization in case of failed R&D projects,

(1 ) 2 f (v H v L ), and the harm resulting from the loss of competition in case of successful projects, 2 v L . By contrast, allowing price caps enables the …rms to eliminate double marginalization without giving them incentives to opt for closed standards and deter entry in the other component. Hence, price caps do bene…t consumers, and constitute a better alternative to mergers.

Bundling and price squeezes.

Finally, let us ignore technological choices (that is, the only standard is an open one) but assume that the incumbent can commit to speci…c pricing policies. 35 A …rst option it to engage in pure bundling (i.e., to sell the two products only as a bundle). This is irrelevant when the entrant develops 0 or 2 products, but forces consumers to buy the bundle fA; Bg when the entrant develops only one product; contrary to the case of a closed standard, the entrant can still sell its component (which consumers can use as a replacement of the bundled component), but the pro…tability of doing so however depends on the level of production costs. To see this, suppose now that all goods are produced at the same constant unit cost c, and interpret the above values as "net" of this cost. Absent entry, the incumbent sells the bundle at price 2c + v; when instead the entrant develops both products, it sells them at total price 2c + . Consider now the case when A 0 , say, is developed but not B 0 . Absent bundling, the incumbent sells B at price c + v and the entrant sells A 0 at price c + . In case of bundling, the incumbent sells A and B at bundled price 2c + v; the entrant can then sell A 0 at price , but earns a pro…t of c (instead of , absent bundling). Thus, when c is high (e.g., c > ), bundling plays the same role of a closed standard: it deprives the entrant of a pro…t when it develops a single product, and therefore deters entry.

Another option for the incumbent is to commit to (entry-contingent) prices. Even if it is constrained by a system-wide no-loss condition (e.g., if regulators can demonstrate the existence of a …nancial loss, although not on a given product line, cross-subsidies being hard to monitor), it can use this instrument to extract (all of part of) the added value brought by the entrant when a single R&D project succeeds. For example, when A 0 is developed but not B 0 , o¤ering A at below-cost price c s, where s 2 [0; ], forces the entrant to sell A 0 at price s. Opting for s close to thus acts like bundling or the choice an incompatible technology: the price squeeze deprives the entrant of any pro…t when it develops a single product and not the entire system itself, which deters entry. However, as entry is welfare-enhancing, a better option consists in setting s so as to induce the entrant to invest, and appropriate all or most of the expected pro…t. 36 Sequential entry. Carlton and Waldman (2002) consider a related setting, and show that an integrated incumbent may again deter entry when it is sequential rather than Proof. To establish part (i), note that …rm i can secure its presence in the users'basket by charging e, thus obtaining eD(e + p j ) if p j e and eD(2e) if p j > e. Either way it can secure at least (e) = eD(2e). Because for e p this lower bound is equal to the static Nash pro…t, we have = N = (e).

We now turn to part (ii). If …rm j sets a price p j e, …rm i can obtain at most max p p j pD (e + p) = ~ M (e) (as pM (e) = r (e) < p < e p j ). Setting instead a price p j < e allows …rm i to obtain at least max p e pD (p j + p) > max p e pD (e + p) = ~ M (e). Therefore, setting any price above e minmaxes …rm i, which then obtains ~ M (e).

Hence, when e p, the static Nash equilibrium (e; e) yields the minmax pro…t; it thus constitutes the toughest punishment for both …rms. When instead e > p, each …rm can guarantee itself the incomplete-technology monopoly pro…t ~ M (e), which is then lower than the pro…t of the static Nash equilibrium (p; p); Abreu (1988)'s optimal penal codes can then be used to sustain the toughest punishment.

We now characterize the scope for tacit coordination in the case of rivalry and of complementors.

a) Rivalry: p N < p M This case arises when e < p M , implying p N = e and = N = (e); collusion then implies selling the incomplete technology, and the loss in demand due to partial consumption grows with essentiality. In particular, if e is close to p M , the Nash equilibrium payo¤ (e) approaches the highest possible pro…t M , whereas pricing above e substantially reduces the demand for the patents; as each …rm can guarantee itself (e), there is no collusion. Speci…cally, this occurs when patents are weak substitutes, namely, when e e, where e is the unique solution to ~ M (e) = 2 (e):

By contrast, for e close to 0, this loss in demand is small and the Nash pro…t is negligible; and so collusion, if feasible, is attractive for the …rms. Because users then buy only one license, each …rm can attract all users by slightly undercutting the collusive price. Like in standard Bertrand oligopolies, maximal collusion (on pM (e)) is sustainable whenever some collusion is sustainable. As symmetric collusion is easier to sustain, and deviations are optimally punished by reverting to static Nash behavior, such collusion is indeed sustainable if:

~ M (e) 2 (1 ) ~ M (e) + (e) () R (e) 1 2 1 1 (e) ~ M (e) ; (16) 
where R (e) is increasing in e and exceeds 1 for e e. Building on these insights, we have: some total price P < 2e is easiest when it is symmetric (i.e., when p i = P=2). As p N = min fe; pg, we can distinguish two cases:

Weak complementors: e < p, in which case p M < p N e. The static Nash equilibrium p N = e still yields minmax pro…ts and thus remains the toughest punishment in case of deviation. As p j e < p = r (p) < r (p j ), …rm i's best deviation then consists in charging e. In particular, perfect cooperation on p M is sustainable if and only if:

M (1 ) eD p M + e + (e) ; (19) 
which is satis…ed for close enough to 1.

The following proposition characterizes the scope for tacit coordination in this case:

Proposition 26 (weak complementors) When p M < e p:

(i) Perfect cooperation on price p M is feasible (i.e., v = M ) if and only if

C (e) eD p M + e M eD (p M + e) (e) 
;

where C (e) lies strictly below 1 for e > p M , and is decreasing for e close to p M .

(ii) Furthermore, if D 00 0, then pro…table cooperation is sustainable (i.e., v > N ) if and only if C (e);

where C (e) lies below C (e), is decreasing in e, and is equal to 0 for e = p. The set of sustainable Nash-dominating per-…rm payo¤s is then V + = [ (e) ; v (e; )], where v (e; ) 2 ( (e) ; M ] is (weakly) increasing in .

Proof. (i) That perfect cooperation (on p t i = p M for i = 1; 2 and t = 0; 1; :::) is sustainable if and only if For e 2 (p M ; p], M > (e) and eD p M + e > M (as r p M > r (e) p e); therefore,

C (e) < 1. Also, for " positive but small, we have:

C p M + " ' 1 1 00 (p M ) D(2p M )+p M D 0 (2p M )
" 2 ; which decreases with ", as 00 p M < 0 and

D 2p M + p M D 0 2p M = p M D 0 2p M > 0:
(ii) Suppose that collusion enhances pro…ts: v > N = (e). In the most pro…table collusive equilibrium, there exists again some period in which the average pro…t is at least v . And as v > (e) > ~ M (e) =2,39 users must buy the complete technology in that period; thus, each …rm i must charge a price p i not exceeding e, and the average price p = p 1 +p 2 2 must moreover satisfy

(p ) = 1 + 2 2 v :
As p j e p = r (p) r(p j ), …rm i's best deviation consists in charging e. Hence, to ensure that …rm i has no incentive to deviate, we must have:

(1

) i + v +1 i
(1 ) eD p j + e + :

Combining these conditions for the two …rms yields, using (p ) = 1 + 2 2 and = (e):

( Hence, D 00 0 and Assumption A (which implies that P D 0 (P ) decreases with P ) ensure that @ 2 H @p 2 (p; e; ) < 0:

Therefore, if J (e; ) 0, where:

J(e; ) @H @p (e; e; ) = D(2e) + (1 + ) eD 0 (2e) ; then no cooperation is feasible, as then H (p; e; ) < 0 for p < e. Conversely, if J (e; ) < 0, then tacit cooperation on p is feasible for p 2 p (e; ) ; e , where p = p (e; ) is the unique solution (other than p = e) to H (p; e; ) = 0. Note that @J @ (e; ) = eD 0 (2e) < 0; and J (e; 0) = D(2e) + eD 0 (2e) 0;

as e p r (e), whereas J (e; 1) = D(2e) + 2eD 0 (2e) < 0;

as e > p M . Therefore, there exists a unique C (e) such that tacit cooperation can be pro…table for > C (e). Furthermore, Assumption A implies that eD 0 (2e) is decreasing and so @J @e (e; ) = 2D 0 (2e) + (1 + ) d de (eD 0 (2e)) < 0:

Hence the threshold C (e) decreases with e; furthermore, C (p) = 0, as J (p; 0) = D(2p)+ pD 0 (2p) = 0 (as p = r (p)).

Finally, when > C (e), the set of sustainable Nash-dominating per-…rm payo¤s is

[ (e) ; v (e; )], where v (e; ) max p M ; p (e; ) , and p (e; ) is the lower solution to H (p; e; ) = 0; as H increases in , 40 p (e; ) decreases with and thus v (e; ) weakly increases with .

Strong complementors: e > p, in which case p M < p N = p. Starting from a symmetric price p 2 p M ; p N , the best deviation pro…t is then given by max p e pD (p + p). The static Nash equilibrium (p; p) however no longer yields the minmax payo¤, equal here to the incomplete-technology monopoly pro…t:

= ~ M (e); Abreu (1988)'s optimal penal codes then provide more severe punishments than the static Nash outcome. If …rms are su¢ ciently patient, these punishments can be as severe as the minmax pro…ts, 41 in which case perfect cooperation on p M is sustainable if in addition: In order to characterize the scope for tacit coordination in this case, we …rst show that Abreu's penal codes (even when restricting attention to symmetric on-and o¤-equilibrium paths) can sustain minmax pro…ts when …rms are su¢ ciently patient: where the last equality stems from p = r (p) = arg max p pD (p + p).

The following proposition now characterizes the scope for tacit coordination in case of strong complementors:

Proposition 27 (strong complementors) When e > p:

(i) v > N : some pro…table cooperation is always sustainable. Perfect cooperation on price p M is feasible (i.e., v = M ) if C (e), where C (e) continuously prolongs the function de…ned in Proposition 26, lies strictly below 1, and is decreasing for e close to V .

(ii) Furthermore, if D 00 0, then there exists v (e; ) 2 ( N ; M ], which continuously prolongs the function de…ned in Proposition 26 and is (weakly) increasing in , such that the set of Nash-dominating sustainable payo¤s is V + = [ (p); v (e; )].

Proof. (i)

We …rst show that, using reversal to Nash as punishment, …rms can always sustain a stationary, symmetric equilibrium path in which they both charge constant price p < p, for p close enough to p. This amounts to K (p; e; ) 0, where Conversely, minmax punishments can be sustained using Abreu's optimal symmetric penal code whenever

(1 ) (e) + M ~ M (e) ; (ii) As in the case of weak complementors, selling the incomplete technology cannot be more pro…table than the static Nash: Therefore, if collusion enhances pro…ts (v > N ), there must exist some period 0 in which each …rm i charges a price p i not exceeding e, and the average price p = p 1 +p 2 2 moreover satis…es

(p ) = 1 + 2 2 v :
To ensure that …rm i has no incentive to deviate, and for a given punishment payo¤ v, we must have:

(1

) i + v +1 i
(1 ) D p j ; e + v:

Combining these conditions for the two …rms yields: Furthermore, K is concave in p if D (p; e) is convex in p, which is the case when D 00 0. Thus, there exists p(e; ) 2 [p M ; p) such that cooperation at price p is feasible if and only if p(e; ) p < p, and the set of sustainable Nash-dominating per-…rm payo¤s is then [ (e) ; v (e; )], where v (e; ) max p M ; p (e; ) . Furthermore, using pM (e) = 42 In the range where r (p) < e, @ D @p (p; e) = r (p) D 0 (p + r (p)) and thus (using 1 < r 0 < 0): @ 2 D @p 2 (p; e) = r 0 D 0 + rD 00 (1 + r 0 ) > 0:

In the range where r (p) > e, @ D @p (p; e) = eD 0 (p + e) and thus D is convex if D 00 0. Furthermore, the derivative of D is continuous at p = p e r 1 (e): -pro…table cooperation is sustainable (i.e., v > N ) whenever C (e).

(ii) Furthermore, if D 00 0, then there exists v (e; ) 2 ( N ; M ], which is (weakly) increasing in , such that the set of Nash-dominating sustainable payo¤s is V + = N ; v (e; ) .

By contrast with the case of rivalry, where collusion ine¢ ciently induces users to adopt the incomplete technology, avoiding double marginalization unambiguously raises pro…ts here. It follows that some cooperation (and even perfect cooperation) is always sustainable, for any degree of essentiality, when …rms are su¢ ciently patient; furthermore, in the case of strong complementors (i.e., e > p), …rms can always sustain some cooperation on a price p < p N = p, regardless of their discount factor: this is because starting from the static Nash price p, a small reduction in the price then generates a …rst-order increase in pro…ts, but only a second-order incentive to deviate. i 6 = j 2 f1; 2g.

This, in turn, implies that reducing prices below their Nash levels would reduce both …rms'pro…ts: for any p p N = e = (e 1 ; e 2 ), we have p i e i r (e j ) for i 6 = j 2 f1; 2g, and thus: i (p) i (p i ; e j ) i (e i ; e j ), where the …rst inequality stems from p j e j , and the second one from p i e i r (e j ) and quasi-concavity. Furthermore, o¤ering a price p i > V would be irrelevant. Thus, without loss of generality, suppose now that a price cap p i 2 [e i ; V ] is introduced for each patent i = 1; 2.

Next, we show that the minmax pro…ts: (a) are the same as without price caps, and (b) can be sustained by the repetition of the (unconstrained) static Nash outcome, p N = e. To establish (a), it su¢ ces to note that the minmaxing strategy p j = e j ( p j ) remains available to …rm i's rival, and …rm i's best response, p i = e i ( p i ), also remains available. To establish (b), it su¢ ces to note that the static Nash outcome p N = e remains feasible, and that deviations are only more limited than in the absence of price caps.

We now show that any pro…table collusion that is sustainable through price caps is also sustainable without them. Recall that the set of pure-strategy equilibrium payo¤s can be characterized as the largest self-generating set of payo¤s, where, as minmax pro…ts are sustainable, a self-generating set of payo¤s W (where W = W in the absence of price caps, and W = W c with price caps) is such that, for any payo¤ ( 1 ; 2 ) in W , there exists a continuation payo¤ ( 1 ; 2 ) in W and a price pro…le (p 1 ; p 2 ) 2 R1 R2 , where Ri is the set of relevant prices for …rm i (more on this below), that satisfy, for i 6 = j 2 f1; 2g: i = (1 ) i p i ; p j + i max p i 2 Ri i p i ; p j + i :

To establish that the equilibrium payo¤s that are weakly more pro…table than Nash under price caps are also equilibrium payo¤s without price caps, it su¢ ces to show that any self-generating set with price caps ( p 1 ; p 2 ) satisfying p i 2 [e i ; V ] for i = 1; 2, is also a self-generating set in the absence of price caps.

In the absence of price caps, without loss of generality the set of relevant prices for …rm i is R i [0; V ]; when a price cap p i is introduced, then the set of relevant prices becomes R c i [0; p i ]. Consider now a self-generating set W c for given price caps ( p 1 ; p 2 ) satisfying p i 2 [e i ; V ] for i = 1; 2, and given payo¤s ( 1 ; 2 ) 2 W c , with associated payo¤s ( 1 ; 2 ) 2 W c and prices p 1 ; p 2 2 R c 1 R c 2 satisfying, for i 6 = j 2 f1; 2g, p i p i and i = (1 ) i p i ; p j + i max

p i 2R c i i p i ; p j + i : (26) 
By construction, the associated price pro…le p 1 ; p 2 also belongs to R 1 R 2 . However, the gain from a deviation may be lower than in the absence of price caps, as the set of relevant deviating prices is smaller. To conclude the proof, we now show that, for any as min p j + e i e j ; p M i p j + e i e j < p i .

Case c: 0 < p i e i = p j e j . In that case, we can pick (p 1 ; p 2 ) = p 1 ; p 2 , as best deviations consist in undercutting the other …rm, and this is feasible with or without price caps.

Case d: 0 < p i e i < p j e j , for i 6 = j 2 f1; 2g. In that case, the same payo¤ could be sustained through p i = p i and p j = p i + e j e i < p j , with the convention that technology adopters, being indi¤erent between buying a single license from i or from j, all favor i: the pro…le (p 1 ; p 2 ) yields the same pro…ts as p 1 ; p 2 , j = 0 and i = p i D e j + p i , but reduces the scope for deviations, which now boil down to undercutting the rival: where min p j ; p M j 2 R j \ R c j , as min p j ; p M j p j < p j 2 R c j ( R j ), and likewise min p i ; p M i 2 R i \ R c i , as min p i ; p M i p i = p i 2 R c i ( R i ).

max p j 2R

N Screening through independent licensing

Let us introduce a pool subject to independent licensing in the repeated game considered in Section 4.2.1. The pool sets the price of the bundle44 and speci…es a sharing rule for its dividends: some fraction i 0 (with 1 + 2 = 1) goes to …rm i. In addition, each pool member can o¤er licenses on a stand-alone basis if it chooses to. The game thus operates as follows:

1. At date 0, the …rms form a pool and …x a pool price P for the bundle, as well as the dividend sharing rule.

2. Then at dates t = 1; 2; :::; the …rms non-cooperatively set prices p t i for their individual licenses; the pro…ts of the pool are then shared according to the agreed rule.

For e 2 (e; e) (in which case, without a pool, ine¢ cient collusion at pM (e) is sustainable if and only if R (e)), R (e) R 1 (e) < R (e).

Finally, for e 2 [e; p M ], no collusion is sustainable in the absence of a pool, whereas a pool enables the …rms to collude on some price p P 2 (e; p M ] whenever R (e),

where R (e) R 2 (e) < 1.

Remark: If D 00 0, then L is concave in p. 48 Hence, in that case, some collusion is feasible if and only if R 2 (e), where R 2 (e) lies strictly below R (e) for e 2 0; p M and increases from R (0) = 1=2 to 1 as e increases from 0 to p M .

N.2 Weak or strong complementors: p M e

In case of complementary patents, a pool enables the …rms to cooperate perfectly:

Proposition 31 (pool with complements) With weak or strong complementors, a pool allows for perfect cooperation (even if independent licensing remains allowed) and gives each …rm a pro…t equal to M .

Proof. Suppose that the pool charges P M = 2p M for the whole technology and shares the pro…t equally. No deviation is then pro…table: as noted above, the best price for an individual license is then p = 2p M e (that is, the pool price minus a discount re ‡ecting the essentiality of the foregone license), which is here lower than p M (since p M e) and thus yields a pro…t satisfying:

2p M e D 2p M < p M D 2p M = M :

N.3 Impact of a pool subject to independent licensing

Comparing the most pro…table equilibrium outcomes with and without a pool (subject to independent licensing) yields the following observations:

In the rivalry region, a pool can only bene…t users whenever some collusion would already be sustained in the absence of a pool (i.e., when R (e)). In this case, a pool enables the …rms to sustain a more e¢ cient collusion, which is more pro…table but also bene…ts users: they can then buy a license for the complete technology at a price

  (p) pD (2p) ; which is strictly concave under Assumption B; let p M 2 [0; V ] and M denote the per-patent monopoly price and pro…t: p M arg max p (p) ; and M p M = p M D(2p M ): If instead users buy a single license at price p, industry pro…t is ~ (p) pD (p + e) ; which is also strictly concave under Assumption B; let pM (e) denote the monopoly price and ~ M (e) the total monopoly pro…t for the incomplete technology: pM (e) arg max p pD (p + e) ; and ~ M (e) ~ pM (e) = pM (e) D(p M (e) + e): Like ~ (p), ~ M (e) is decreasing in e: the pro…t derived from the incomplete technology decreases as each patent becomes more essential.
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 2 Figure 2: Tacit coordination without price caps in the technology model

Figure 3 :

 3 Figure 3: Tacit coordination under price caps in the technology model

Figure 4 :

 4 Figure 4: Impact of a pool with Independent Licensing (relative to no pool)

  is a contraction mapping from C C 1 ::: C n to C, endowed with the `1 norm: for any p 2 C, (p) 2 C and, in addition, for any p 0 2 C:

Figure 5 :

 5 Figure 5: Nash equilibrium in the technology model

Figure 6 :

 6 Figure 6: Platform & apps

  eD(p M +e) M derives directly from (19).

  1 ) e D (p 1 + e) + D (p 2 + e) If the demand function is (weakly) convex (i.e., D 00 0 whenever D > 0), then this condition implies H (p ; e; ) H (p ; e; ) 0, then the stationary path (p ; p ) is an equilibrium path.Summing-up, when D 00 0, v > N if and only if there exists p < e satisfying (p ) > N and H (p ; e; ) 0. By construction, H (e; e; ) = 0. In addition, @H @p (p; e; ) = D(2p) + 2pD 0 (2p) (1 ) eD 0 (p + e) :

  p) + ~ M (e) :

40

  For any p < e: @H @ (p; e; ) = e [D (p + e) D (2e)] > 0: 41 See Lemma 10 below. which amounts to (e). Finally: (e) 2 (0; 1) for any e 2 (p; V ), as then: (p) = max p pD (p + p) > ~ M (e) = max p pD (e + p) > (e) = eD (2e) ; (V ) = 0, as ~ M (V ) = (V ) = 0, and lim

  D (p + r (p)) if r(p) e; eD (p + e) if r(p) > e: Because D (p; e) = (p), K (p; e; ) = 0 for any e; . Furthermore: @ K @p (p; e; ) = 0 (p) (1 ) pD 0 (2p) ; which using 0 (p) = pD 0 (2p), reduces to: e; ) = pD 0 (2p) < 0: Hence, for p close to p, K (p; e; ) > 0 for any 2 (0; 1]. If follows that cooperation on such price p is always sustainable, and thus v > N . We now turn to perfect cooperation. Note …rst that it can be sustained by the minmax punishment = ~ M (e) whenever M (1 ) D p M ; e + ~ M (e) ; M ; e) ~ M (e) :

  for e close to p and for e close to V . Furthermore, as ~ M (e) is continuous and coincides with (e) for e = p, and D p M ; e = eD p M + e as long as e < r p M (where r p M > p), C 1 (e) continuously prolongs the function C (e) de…ned in Proposition 26. Finally, both C 1 (e) and C 2 (e) lie below 1 (as ~ M (e) ~ M (p) = (p) < M = p M ). Finally, we note that for e r p M : D p M ; e = r p M D p M + r p M does not vary with e whereas ~ M (e) = max p pD (e + p) decreases with e; and so C 1 (e) decreases with e.

~

  M (e) = max p pD (e + p) < 2 N = 2 (p) = 2 max p pD (p + p) :

  But the deviation pro…t D (p; e) is convex in p when D 00 0, 42 and thus condition (23) implies K (p ; e; ; v) 0, where K (p; e; ; v) K (p ; e; ; v) 0, then the stationary path (p ; p ) is an equilibrium path. For any , from Lemma 10 the minmax ~ M (e) can be used as punishment payo¤ for e close to p; the sustainability condition then amounts to K (p; e; ) 0, where K (p; Using ~ M (e) = max p pD (e + p) and noting that p = r (p) < e implies (p) = max p pD (p + p) = max p e pD (p + p) for > 0, we have: K (p; e; ) = max p pD (p + p) max p pD (e + p) > 0:

  lim p!pe p<pe @ D @p (p; e) = lim p!pe eD 0 (p + e) = eD 0 (p e + e) = lim p!pe r (p) D 0 (p + r (p)) = lim p!pe p>pe @ D @p (p; e) :r (e) < p < e; we have, for p < p < e: @K @ (p; e; ) = D (p; e) ~ M (e) = max p e pD (p + p) max p pD (e + p) > 0: Therefore, p (e; ) decreases with , and thus v (e; ) weakly increases with . Finally, note that K (p; p; ) = H (p; p; ), where H is de…ned by (20); hence the function v (e; ) de…ned here prolongs that of Proposition 26. The function v (e; ) = max p M ; p (e; ) remains relevant as long as the minmax ~ M (e) is sustainable. When this is not the case, then v can be replaced with the lowest symmetric equilibrium payo¤, which, using Abreu's optimal symmetric penal code, is of the form (1 ) (p p )+ (p ), where p p is the highest price in [p; e] satisfying D (p p ; e) (p p ) [ (p ) (p p )], and p is the lowest price in p M ; p satisfying D (p ; e) (p ) [ (p ) (p p )]; we then have v (e; ) = (p ) and the monotonicity stems from p and p p being respectively (weakly) decreasing and increasing with .Together, Propositions 26 and 27 lead to: Proposition 28 (complementors) When p M < p N : (i) There exists C (e) < 1 and C (e) < C (e), where C (e) is decreasing for e close to p M , close to p and close to V , and C (e) is decreasing in e, and equal to 0 for e = p, such that perfect cooperation on price p M is feasible (i.e., v = M ) whenever C (e);

  

  Consider a price vector p = (p 1 ; p2 ) in Pn pN . From Proposition 17, pi < pN If the price of the other …rm, j, satis…es pj pN j , then consumers clearly prefer p to pN . Suppose now that pj > pN j ; from Proposition 17 we then have Rj (p i ) pj > pN j , let: 24

		p0 i	inf	n	p00 i	pi j Rj (p 00 i ) pN j	o	:
	By construction, p0 i 2 (p i ; pN i ] and Rj (p 0 i ) = pN j . Letting Ŝ (p i ; pj ) denote total consumer surplus, we then have:
	Ŝ (p i ; pj )	Ŝ pi ; Rj (p i ) > Ŝ p0 i ; Rj (p 0 i )		Ŝ pN i ; pN j	;
	where the …rst inequality follows from Proposition 17, the last follows from p0 i	pN i and
	Rj (p 0 i ) = pN j , and the strict one follows from p0 i > pi and Assumption Â, which together
	imply:						

i for some i 2 f1; 2g.

  p 1 ; p 2 2 R c 1 R c2 satisfying (26), there exists (p 1 ; p 2 ) 2 R 1 R 2 satisfying i = (1 ) i p i ; p j + i maxp i 2R i i p i ; p j + i :(27)For this, it su¢ ces to exhibit a pro…le (p 1 ; p 2 ) 2 R 1 R 2 yielding the same pro…ts (i.e., i p i ; p j = i p i ; p j for i = 1; 2) without increasing the scope for deviations (i.e., max p i 2R i i p i ; p j max p i 2R c i i p i ; p j for i = 1; 2). We can distinguish four cases for the associated price pro…le p 1 ; p 2 : Case a: p 1 e 1 ; p 2 e 2 . In that case, we can pick (p 1 ; p 2 ) = p 1 ; p 2 ; as …rm i's pro…t from deviating to p i is then given byi p i ; p j = ( p i D p j + p i if p i e i i e i p i D p j + p i = e i ;which belongs to both R i and R c i . Hence, max p i 2R c i i p i ; p j = max p i 2R i i p i ; p j . Case b: p i e i 0 < p j e j , for i 6 = j 2 f1; 2g. In that case, the pro…le p 1 ; p 2 yields pro…ts j p j ; p i = 0 and i p i ; p j = p i D e j + p i , and best deviations are respectively given by: As e j 2 R j \R c j , max p j 2R c j j p j ; p i = max p j 2R j j p j ; p i . Therefore, if min n p j + e i e j ; p M \R c i ), we can pick (p 1 ; p 2 ) = p 1 ; p 2 , as then we also have max p i 2R c i i p i ; p j = max p i 2R i i p i ; p j . If instead min n p j + e i e j ; p M i o > p i , then we can pick p i = p i and p j 2 (e j ; e j + p i e i ): 43 the pro…le (p 1 ; p 2 ) yields the same pro…ts as p 1 ; p 2 , and, as the best deviations are the same, with or without price caps:

			;
			0 otherwise
	the best deviation is	
			arg max
	arg max p j	j p j ; p i	= arg max
	arg max p i	i p i ; p j	= arg max
				o
		n	o	i
	p i (and thus min 2 R i arg max p j + e i e j ; p M i p j j (p j ; p i ) = arg max p j j p j ; p i = e j 2 R j \ R c j ;
	arg max p i		

p p j e j p j D p i + p j = e j ; p i p j +e i e j p i D (e j + p i ) = min n p j + e i e j ; p M i o : i p i ; p j = arg max p i p j +e i e j p i D (e j + p i ) = min p j + e i e j ; p M i 2 R i \ R c i ;

  j j (p j ; p i ) = max p j 2R c j j p j ; p i = max p j p i +e j e i p j D (e i + p j ) ;max p i 2R i i p i ; p j = max p i p j +e i e j p i D (e j + p i ) max p i 2R c i i p i ; p j = max p i p j +e i e j p i D (e j + p i ) :This moreover implies that, as in case c above, these best deviations were already feasible with price caps. Indeed, as p k = p h + e k e h , for h 6 = k 2 f1; 2g, we have:

	arg max p j

j (p j ; p i ) = arg max p j j p j ; p i = arg max p j p i +e j e i p j D (e i + p j ) = min p j ; p M j ; arg max p i i p i ; p j = arg max p i p j +e i e j p i D (e j + p i ) = min p i ; p M i ;

Article 101 of the European Treaty provides a similar prohibition in the EU. The other cornestone is the monitoring of abuses of dominant positions (Section

of the Sherman Act, Article 102 of the European Treaty).2 See, e.g., https://en.wikipedia.org/wiki/Small_but_signi…cant_and_non-transitory_increase_in_ price.

Mergers of complements fall in the category of "conglomerate mergers" in antitrust circles.

Technically, this was an abuse of dominant position case, but the same concerns would have emerged in a merger case.

The European Commission's guidelines on technology transfer agreements has been requiring independent licensing since 2004 and unbundling since 2014. Other juridictions, including the US and Japan, only require independent licensing.

See Mailath and Samuelson (2006) for an excellent overview of this literature up to the mid 2000s.

For surveys of this literature, see, for instance,[START_REF] Jacquemin | Cartels, Collusion, and Horizontal Merger[END_REF] and[START_REF] Marshall | The Economics of Collusion: Cartels and Bidding Rings[END_REF].

[START_REF] Raith | Product Di¤erentiation, Uncertainty and the Stability of Collusion[END_REF] emphasizes another feature of product di¤erentiation, namely, the reduced market transparency that tends to hinder collusion.

Starting from p = (p i ; p i )j pi=Ri(p i) , the impact of a slight increase in p i on …rm i's pro…t is given by[p i C 0 i (D i (p))] @ i D i (p)+D i (p).If …rm i's margin were non-positive, this impact would be positive (as@ i D i ( ) < 0 < D i ( )), a contradiction. Hence, R i (p i ) > C 0 i (D i (R i (p i ) ; p i )).

This of course assumes that the products are well-speci…ed and so price caps cannot be evaded indirectly through reductions in product quality. We will later extend some of our results to allow for such evasion.

Constrained games G p are derived from G 1 by keeping the same payo¤ functions i (p) for p i p i and setting i (p) = 1 for p i > p i :

Which prices …rms actually choose to sustain depends on factors such as …rms'relative bargaining power or the feasibility of side transfers.

From Lemma 1, under (S) the monopoly outcome lies above both …rms'best-responses; under (SC), this in turn implies that monopoly prices strictly exceed Nash levels.

Furthermore, as noted at the end of Subsection 2.2, with complements it may be useful to price one good below cost, in which case the price of the other good lies above the best-response.

It can be checked that this result also holds as long as costs are not too convex, namely, as long as C 0 D p M ; 0 < p M .

By revealed preference, p M D 2p M pD (2p) p M D p + p M and thus D 2p M D p + p M , implying p p M . Assumption B moreover implies that this inequality is strict.

See online Appendix D for a detailed exposition. The symmetric reaction function exhibits a kink, but satis…es Assumption A whenever it is di¤erentiable, as well as for both right-and left-derivatives at the kink.

See[START_REF] Lerner | E¢ cient Patent Pools[END_REF]. Current antitrust guidelines in Europe, Japan and the US require patent pools to allow independent licensing.

When n > 2, a pool with independent licensing still always admits an equilibrium with prices below the Nash prices; but[START_REF] Boutin | Screening for Good Patent Pools through Price Caps on Individual Licenses[END_REF] shows that it may also admit equilibria that raise prices, and that unbundling destroys these bad equilibria.

For related work, see[START_REF] Stahl | Di¤erentiated Products, Consumer Search, and Locational Oligopoly[END_REF] and[START_REF] Grilo | Price Competition when Consumer Behavior is Characterized by Conformity or Vanity[END_REF].

In the intermediate case where there exist multiple equilibria, we assume that …rms coordinate on the symmetric one, which allows them to share the monopoly pro…t. Price caps can then only reduce prices and bene…t consumers. However, within the set of equilibrium outcomes, moving away from the symmetric one bene…ts consumers, although this reduces …rms' joint pro…t, and may even lower both of their pro…ts. Thus, if …rms were somehow (mis-)coordinating on a highly asymmetric equilibrium, then price caps might be used to induce a less asymmetric outcome that bene…ts both …rms but harms

One result that does not necessarily carry over is the equivalence of mergers and price caps for complements. Both lead to lower prices for consumers, but price caps lead to some production ine¢ ciency (suboptimal qualities) while mergers do not.

Note that this condition is automatically satis…ed if the cap is close to the best reaction price, and therefore near the Nash price vector, as in the absence of a cap c 0 i (s i ) = 1.

As in Proposition 4 for a duopoly, a uniform small reduction in prices below the Nash level is both implementable and mutually pro…table.

See, e.g., Corchón (1994),[START_REF] Acemoglu | Aggregate Comparative Statics[END_REF], and[START_REF] Nocke | Multiproduct Firm Oligopoly: An Aggregative Games Approach[END_REF].

This arrangement would also be analoguous to the use of long-term contracts as a barrier to entry, in the spirit of[START_REF] Aghion | Contracts as a Barrier to Entry[END_REF].

This upper bound ensures the existence of a worst punishment, which we use for the case of substitutes.

This section builds on an earlier Discussion Paper entitled "Cooperation vs. Collusion: How Essentiality Shapes Co-opetition".

 47 It is tempting to refer to "substitutes" in case of rivalry and to "complements" in case of complementors. However, in this hybrid demand model, patents are always local complements for low prices, and local substitutes for high prices. For instance, in the case of "weak complementors" (namely, when p N = e > p M ), patents are complements at prices below the Nash level (e.g., at monopoly prices), and local substitutes at higher

prices.48 In our setting, they can do so by charging the same price p > e and allocating market shares among themselves; more generally, introducing a small amount of heterogeneity in users'preferences would allow the …rms to achieve arbitrary market shares by choosing their prices appropriately.

We remain agnostic about equilibrium selection, as the conclusions hold for any pro…table coordination.

This occurs only when no collusion is sustainable in the absence of a pool (i.e., < R ) and the pool enables some collusion (e.g., R ); the pool is instead bene…cial when ine¢ cient collusion was already sustainable (i.e., R ) and is neutral when collusion remains unsustainable (i.e., for low enough).

We allow for asymmetric price caps; however, given the symmetry of the environment, symmetric price caps are as e¤ective as asymmetric ones.

Rahman studies a repeated Cournot game with i.i.d. price shocks. He shows that privy messages on the possible existence of a "monitoring phase" that is later made public can enable the …rms to better detect deviations and therefore may facilitate tacit collusion. As in the conventional wisdom, ex-post exchange of information may discipline …rms.

In a recent paper,[START_REF] Sugaya | Maintaining Privacy in Cartels[END_REF] however challenge this common wisdom and show that maintaining privacy may help …rms collude by refraining to compete in each other's markets, while better information may make deviations more pro…table and thereby hinder collusion.

Given that cost information was no longer collected after 2011, one would expect that in the longer term, the focal prices would become irrelevant.

For instance, China Eastern Airlines and Qantas (which are substitutes on the Shanghai-Sydney route and complements on connecting ‡ights) submitted to the Australian competition agency (the ACCC) a

In what follows, p S denotes the projection of the vector p on the subset S; that is: p S = p j j2S .

We use here the characterizing property that a function f (x) is strictly quasi-concave if and only if, for any x

= y and 2 (0; 1): f ( x + (1 ) y) > min ff (x) ; f (y)g.

It can be checked that the Nash prices and the monopoly prices lie indeed in this range.

To see this, note that under full participation (i.e., Q = 1), the consumer who the farthest away from …rm j is willing to pay v + 1 p j for …rm j's product.

To see this, note that even if q i = 0, the consumer who's the nearest to …rm j is willing to pay at least v p for …rm j's product.

Following Bénabou and Tirole (2016), a simple way is to introduce outside options, Ã1 and Ã2 , also located at the two ends of the segment and giving consumers a random value.

The demand for application x on platform i is therefore given by D i P d j i;x (p i;x ).

As will become clear, platform i's pricing decision amounts to choosing the quality-adjusted price Pi = P i S i ; its pro…t can thus be expressed as P i D i P = (P i + S i ) D i P .

As all applications are charging the same price p 2 , s (p 2 ) represents both the per-application net surplus, and the total net surplus that consumers derive from the applications.

Note that d ( ) 0 and d 0 ( ) < 0 together imply d ( ) > 0.

In the example considered in Section F.1, capping the prices of the competitive goods, A 1 and A 2 , would reduce the pro…ts derived from the consumers of the third group (for which these goods are substitutes), without any o¤-setting increase in the pro…ts derived from the other consumers (for which these goods are complements to the non-competitive goods).

Because of the inelasticity of the demand, the condition involves discrete rather than marginal price changes.

In the example, D A = 1 + 2" and D B = 2", whereas p A = 2"t and p B = t v. Condition (9) thus amounts to v < 2 (1 + ") t, the condition under which price caps reduce consumer surplus (see (7)).

The reasoning that follows relies on the range [p i ; p0 i ], because Assumption A is required to hold only for the prices pi < pN i that satisfy Rj (p i ) > pN i .

Firm i's associated quality level is given by s i = arg max s ^ i (p; s) and is thus symmetric: s i = s for all i 2 N .

The reasoning applies to any smaller set of active …rms, with the convention that p i = +1 for any inactive …rms.

@ 1 R denotes here the partial derivative of R ( ) with respect to its …rst argument; by symmetry, it applies to the other arguments as well.

To see this, note that the price at which …rm i can sell any quantity q i is decreasing with A (p i ).

), would make both …rms better o¤. Furthermore, transfers may no longer be needed when several markets are involved, as price caps could then be used to divide these markets in a mutually pro…table way.

The two incumbents are again in a Nash demand game, and introducing a small noise on consumer valuation then delivers equal sharing.

One may have in mind an incumbent facing repeated entry in new segments and developing a reputation for these practices.

That is, s should be set to that (1 ) s = I.

See footnote 38.

This interval is not empty, as p i e i by assumption.

It can be checked that the …rms cannot gain from asking the pool to o¤er unbundled prices as well.

As pD (2p) is concave from Assumption B and > 1=2, we have: @ 2 L @p 2 (p; e; ) = (21)(pD(2p)) 00 + 4(1 )eD 00 (2p) < 0:
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Appendix

A Proof of Lemma 1

We …rst show that monopoly prices exceed marginal costs for at least one …rm. Suppose instead that p M i C 0 i q M i concave in p i ; for every j 2 M j , the "product-by-product"best-response function r j i p M i nfjg i

; p i ; I arg max p j i i p j i ; p M i nfjg i

; p i ; I is well-de…ned and bounded above.

We further focus on substitutes and strategic complementarity, and assume price equilibrium uniqueness:

For every i 2 N and any I 2 I:

-(S) products are substitutes: @ p j D i ( ) < 0 for j 6 = i 2 N .

-(SC) prices are strategic complements: @ p j R i ( ) > 0 for j 6 = i 2 N .

For any investment decisions I 2 I, in the absence of price caps there exists a unique Nash equilibrium in prices, which we denote by p I = p I i i2N .

Suppose that investment decisions are publicly made in stage 2a, and …rms can then agree on price caps in stage 2b, before setting prices in stage 3. From Proposition 8, for any vector of investment decisions I 2 I made in stage 2a, …rms have no incentive to adopt price-caps agreements in stage 2b; therefore, in stage 3 the continuation price equilibrium is p I , as in when price caps are not allowed. It follows that thus allowing price caps in stage 1 has no impact on the set of investment and price equilibria in stages 2 and 3.

H.2 Complements H.2.1 On Assumption C

Suppliers of complements can always sign a mutually pro…table agreement that bene…t all of them: as shown in the proof of Corollary 1, starting from the Nash equilibrium prices p N , reducing all prices by a small amount " is sustainable through price caps, and it increases all …rms'pro…ts, as …rms'margins are positive from Lemma 2, and reducing one …rm's price has only a second-order e¤ect on the pro…t of that …rm, and a …rst-order positive e¤ect on the other …rms'pro…ts.

Other agreements may not share this feature: The price-caps agreement signed by a coalition of …rms may bene…t them, but hurt others. For example, suppose that there are three …rms i = 1; 2; 3 producing at no cost products 1; 2; 3 respectively, and facing demand D i (p) = d i (p i 1 ) p i (with the convention that 0 = 3), where d i ( ) > 0 > d 0 i ( ) (that is, product i is a complement for product i + 1). It is easy to show that this leads to best-responses R i (p i ) = d i (p i 1 ) =2 and to a unique Nash equilibrium p N . 27 Introducing 27 To see this, it su¢ ces to note that

Therefore, there exists a unique p N 1 satisfying (p 1 ) = 0; the price vector

uncertain. To see this, consider a two-period (t = 1; 2) variant of the above setting in which: (i) R&D is always successful (i.e., = 1); and (ii) developing B 0 is possible in both periods, at cost I B , whereas developing A 0 can only take place in period 2, at cost I A . In this case, if the development costs satisfy I A = < 1 and I B = < 1 + , then with an open standard E develops B 0 in period 1 and A 0 in period 2, but if in addition

then, with a closed standard, E does not develop any product. By contrast, in case of independent incumbents, b's choice of standard is irrelevant, and a opts for an open standard, inducing entry, in order to appropriate the full value v in the …rst period: in this way, a obtains a pro…t equal to v, which exceeds its total discounted pro…t under foreclosure, which is equal to (1 + ) v=2.

Proposition 24 (price caps versus mergers: foreclosure concerns) In the Choi-Stefanadis and Carlton-Waldman frameworks, a merger of complements allows foreclosure while price caps do not. Accordingly, price caps are a socially superior way of handling double marginalization.

K Repeated interaction in the technology adoption model

Suppose that the …rms play the technology adoption game repeatedly, with discount factor 2 (0; 1). Let v (1 ) t 0 t t 1 + t 2 2 denote the average of …rms'discounted pro…ts over a pure-strategy equilibrium path, V + denote the set of these equilibrium payo¤s that are weakly more pro…table than Nash (i.e., such that v N ), and v denote the maximal equilibrium payo¤. 37 Tacit coordination raises pro…ts only if v > N .

The location of e a¤ects not only the nature of tacit coordination, but also the minmax pro…t:

Lemma 9 (minmax) Let denote the minmax pro…t.

(i) If e p, the static Nash equilibrium (e; e) gives each …rm the minmax pro…t: = N = (e).

(ii) If e > p, the minmax pro…t is the incomplete-technology per-period monopoly pro…t:

37 This maximum is well de…ned, as the set V + of Nash-dominating subgame perfect equilibrium payo¤s is non-empty (it includes N ) and compact (see Mailath and Samuelson (2006), chapter 2). Also, although we restrict attention to pure-strategy subgame perfect equilibria here, the analysis could be extended to public mixed strategies (where players condition their strategies on public signals) or, in the case of private mixed strategies, to perfect public equilibria (relying on strategies that do not condition future actions on private past history); see Mailath and Samuelson (2006), chapter 7.

Proposition 25 (rivalry) When e < e and R (e), V + = N ; v , and v = ~ M (e) =2: tacit collusion is feasible and the most pro…table collusion occurs at price pM (e); otherwise, the unique equilibrium is the repetition of the static Nash one.

Proof. Let i (p i ; p j ) denote …rm i's pro…t. Prices such that min fp 1 ; p 2 g e cannot yield greater pro…ts than the static Nash:

If p 1 ; p 2 e, total price P is below 2e; as the aggregate pro…t P D (P ) is concave in P and maximal for P M = 2p M > 2e, total pro…t is smaller than the Nash level.

If instead p i e < p j , then

where the …rst inequality stems from the fact that the pro…t ~ (p) = pD (e + p) is concave in p and maximal for pM (e) = r (e), which exceeds e in the rivalry case (as then e < p M < p = r (p)).

Therefore, to generate more pro…ts than the static Nash pro…t in a given period, both …rms must charge more than e; this, in turn, implies that users buy at most one license, and thus aggregate pro…ts cannot exceed ~ M (e). It follows that collusion cannot enhance pro…ts if ~ M (e) 2 N = 2 (e). Keeping V and thus p M constant, increasing e from 0 to p M decreases ~ M (e) = max p pD (p + e) but increases (e); as ~ M (0) = 2 p M = 2 M , there exists a unique e < p M such that, in the range e 2 0; p M , ~ M (e) < 2 N if and only if e > e.

Thus, when e > e, the static Nash payo¤ N constitutes an upper bound on average discounted equilibrium payo¤s. But the static Nash equilibrium here yields minmax pro…ts, and thus also constitutes a lower bound on equilibrium payo¤s. Hence, N is the unique average discounted equilibrium payo¤, which in turn implies that the static Nash outcome must be played along any equilibrium path.

Consider now the case e < e, and suppose that collusion raises pro…ts: v > N , where, recall, v is the maximal average discounted equilibrium payo¤. As v is a weighted average of per-period pro…ts, along the associated equilibrium path there must exist some period 0 in which the aggregate pro…t, 1 + 2 , is at least equal to 2v . This, in turn, implies that users must buy an incomplete version of the technology; thus, there exists p such that:

By undercutting its rival, each …rm i can obtain the whole pro…t ~ (p ) in that period; as this deviation could at most be punished by reverting forever to the static Nash behavior, a necessary equilibrium condition is, for i = 1; 2:

(1

where v +1 i denotes …rm i's continuation equilibrium payo¤ from period + 1 onwards. Combining these conditions for the two …rms yields:

where the second inequality stems from v +1 1

which requires 1=2 (with a strict inequality if e > 0). This, in turn, implies that (17) must hold for ~ M (e) = max p ~ (p):

Conversely, if (18) is satis…ed, then the stationary path pM (e); pM (e) (with equal market shares) is an equilibrium path, as the threat of reverting to the static Nash behavior ensures that no …rm has an incentive to deviate: Hence, greater essentiality hinders collusion, which is not feasible if e e; furthermore, as the threshold R (e) increases with e, for any given 2 (1=2; 1), in the entire rivalry range e 2 0; p M there exits a unique ê ( ) 2 (0; e) such that collusion is feasible if and only if e < ê ( ). This is because the toughest punishment, given by the static Nash pro…t, becomes less e¤ective as essentiality increases; although the gains from deviation also decrease, which facilitates collusion, this e¤ect is always dominated. b) Complementors: p M < p N This case arises when e > p M . Like when e 2 [e; p M ], selling the incomplete technology cannot be more pro…table than the static Nash outcome. 38 Firms can however increase their pro…t by lowering their price below the Nash level. Furthermore, when demand is convex, it can be checked that cooperation on where (e) 2 (0; 1) for e 2 (p; V ), and (V ) = lim e !p (e) = 0.

Proof. In order to sustain the minmax pro…t = ~ M (e), consider the following twophase, symmetric penal code. In the …rst phase (periods t = 1; :::; T for some T 1), both …rms charge e, so that the pro…t is equal to (e). In the …rst period of the second phase (i.e., period T + 1), with probability 1 x both …rms charge e, and with probability

x they switch to the best collusive price that can be sustained with minmax punishments, which is de…ned as: 

Then, in all following periods, both …rms charge p C . Letting = (1 ) x T + T +1 2 (0; ) denote the fraction of (discounted) time in the second phase, the average discounted per-period punishment pro…t is equal to p = ( 1) (e) + p C ; which ranges from (e) < = ~ M (e) (for T = +1) to (1 ) (e) + p C (for T = 1 and x = 1). Thus, as long as this upper bound exceeds ~ M (e), there exists T 1 and x 2 [0; 1] such that the penal code yields the minmax: p = ~ M (e) = .

As p C satis…es (21), the …nal phase of this penal code (for t > T + 1, and for t = T + 1 with probability x) is sustainable. Furthermore, in the …rst T + 1 periods the expected payo¤ increases over time (as the switch to p C comes closer), whereas the maximal pro…t from a deviation remains constant and equal to max p e pD (e + p) = ~ M (e) (as pM (e) = r (e) < e for e > p). Hence, to show that the penal code is sustainable it su¢ ces to check that …rms have no incentive to deviate in the …rst period, which is indeed the case if deviations are punished with the penal code:

There thus exists a penal code sustaining the minmax whenever the upper bound (1 ) (e)+ p C exceeds ~ M (e); as by construction p C N = (p), this is in particular the case whenever

(1 ) (e) + (p) ~ M (e) ;

L Proof of Proposition 12

When users acquire both licenses at total price P , welfare has the familiar expression: This expression identi…es the two facets of the collusive cost. First, the total price, p + e, exceeds the competitive price 2e as p > e. Second, there is a foregone surplus e on actual consumption D(p + e) due to incomplete consumption. Collusion harms consumers and reduces total welfare under rivalry.

In the case of complementors, tacit coordination is pro…table when …rms cooperate in o¤ering the complete technology at a price lower than the static Nash price; it then bene…ts users and increases total welfare.

M Proof of Propositions 13 and 14

We prove Proposition 14 in the extended setting described in Section 4.2.3, in which …rms may have asymmetric o¤erings; this, in turn, establishes Proposition 13 for the case of symmetric o¤erings.

The case of complementors (part (ii), where e 1 + e 2 P M = 2p M ) is straightforward, as any vector of price caps p = ( p 1 ; p 2 ) satisfying p 1 + p 2 = P M and p i e i induces p = p as unique continuation equilibrium: starting from any price vector p p, any …rm o¤ering p i < p i would have an incentive to increase its price towards p i , as (using

We now turn to the case of rivalry (part (i), where e 1 + e 2 < P M ). We …rst show that, as noted in the text, this implies that both …rms are constrained in the static Nash equilibrium. Indeed, if both …rms were unconstrained, then we would have p

e 2 e 1 and thus e 1 + e 2 2p > P M , a contradiction. If instead …rm i is unconstrained whereas …rm j is constrained, for some i 6 = j 2 f1; 2g, then p N j = e j and p N i = r (e j ) e i ; hence, e i + e j r (e j ) + e j > 0 + r (0) = P M , again a contradiction. Therefore, it must be the case that both …rms are constrained:

We characterize below the set of equilibria that are sustainable through a pool subject to independent licensing; comparing it to the equilibria without a pool, or sustainable through a pool not subject to independent licensing, leads to the following proposition:

Proposition 29 (screening through independent licensing) Independent licensing provides a useful but imperfect screen:

(i) Appending independent licensing to a pool is always welfare-enhancing.

Relative to the absence of a pool:

(ii) In case of complementors, a pool with independent licensing enables the …rms to achieve perfect cooperation, which is welfare-enhancing.

(iii) In case of rivalry, if some collusion is already sustainable without a pool, then a pool with independent licensing enables the …rms to collude more e¢ ciently, which results in lower prices and is thus welfare-enhancing; however, there exists R (e), which increases from R (0) = 1=2 to 1 as e increases from 0 to p M , and lies strictly below R (e) for e 2 0; p M , such that, for 2 [ R (e) ; R (e)), the pool raises prices by enabling the …rms to collude.

To establish this Proposition, we …rst characterize the scope for tacit coordination for rival and complementary patents, before drawing the implications for the impact of a pool subject to independent licensing.

N.1 Rivalry: e < p M

The …rms can of course collude as before, by not forming a pool or, equivalently, by setting the pool price P at a prohibitive level (P V , say); …rms can then collude on selling the incomplete technology if R (e). Alternatively, they can use the pool to sell the bundle at a higher price:

Lemma 11 In order to raise …rms'pro…ts, the pool must charge a price P P > 2p N = 2e.

Proof. Suppose that the pool charges a price P P 2e, and consider a period t, with individual licenses o¤ered at prices p t 1 and p t 2 . Let p t = min fp t 1 ; p t 2 g denote the lower one. Users buy the complete technology from the pool only if P P p t + e; the industry pro…t is then P P D P P 2 N = 2 (e), as the aggregate pro…t function P D (P ) is concave and maximal for 2p M > 2e P P .

Users buy the complete technology by combining individual licenses only if p i e for i = 1; 2, in which case p 1 + p 2 2e and the industry pro…t is (p

Finally, users buy an incomplete version of the technology only if p t +e P P , which in turn implies p t e (as then p t P P e, and by assumption P P 2e); the industry pro…t is then p t D (p t + e) (p t + e) D (p t + e) 2 N , as p t + e 2e.

Therefore, the industry pro…t can never exceed the static Nash level.

Thus, to be pro…table, the pool must adopt a price P P > 2e. This, in turn, implies that the repetition of static Nash outcome through independent licensing remains an equilibrium: If the other …rm o¤ers p t j = e for all t 0, buying an individual license from …rm j (corresponding to quality-adjusted total price 2e) strictly dominates buying from the pool, and so the pool is irrelevant (…rm i will never receive any dividend from the pool); it is thus optimal for …rm i to set p t i = e for all t 0. Furthermore, this individual licensing equilibrium, which yields (e), still minmaxes all …rms, as in every period each …rm can secure eD e + min e; p t j (e) by undercutting the pool and o¤ering an individual license at price p t i = e. Suppose that tacit coordination enhances pro…ts: v > N = (e), where v denotes the maximal average discounted equilibrium per …rm payo¤. In the associated equilibrium, there exists some period 0 in which the aggregate pro…t, 1 + 2 , is at least equal to 2v . If users buy an incomplete version of the technology in that period, then each …rm can attract all users by undercutting the equilibrium price; the same reasoning as before then implies that collusion on p t i = pM (e) is sustainable, and requires R (e).

If instead users buy the complete technology in period , then they must buy it from the pool, 45 and the per-patent price p P P P =2 must satisfy:

implying p P > e. In order to undercut the pool, a deviating …rm cannot charge more for its individual license than p D , the price that leaves users indi¤erent between buying the incomplete technology from the …rm and buying the complete technology from the pool; that is, the price p D is such that:

or p D = 2p P e (> e); by o¤ering its individual license at this price, the deviating …rm obtains a pro…t equal to: D = 2p P e D 2p P = p P + p P e D 2p P > p P :

(28) 45 Users would combine individual licenses only if the latter were o¤ered at prices not exceeding e; hence, the total price P would not exceed 2e. But P D (P ) = 1 + 2 2v > 2 (e) implies P > 2e.

Thus, for the price p P to be sustainable, there must exist continuation payo¤s v +1 1 ; v +1 2 such that, for i = 1; 2:

(1

Combining these two conditions and using

= p P yields: V for all t 0), ensures that no …rm has an incentive to undercut the pool, and each …rm obtains p P . To see this, it su¢ ces to note that the expression of D given by (28) represents the highest deviation pro…t when p P p M , as the deviating pro…t pD (p + e) is concave and maximal for pM (e) = r (e), and e + pM (e) = e + r (e) 0 + r (0) = 2p M implies pM (e) > 2p M e 2p P e. Building on this insight yields:

Proposition 30 (pool in the rivalry region) Suppose e p M . As before, if R (e) the …rms can sell the incomplete technology at the monopoly price pM and share the associated pro…t, ~ M . In addition, a per-license pool price p P , yielding pro…t p P , is stable if (29) holds. As a result:

(i) Perfect collusion (i.e., on a pool price p P = p M ) is feasible if

;

where the threshold P (e) is increasing in e.

(ii) If the …rms can already collude without a pool (i.e., if R (e)), then the pool enables them to sustain a more pro…table collusion, which bene…ts consumers as well.

(iii) There exists R (e), which coincides with R (e) for e = 0, and lies strictly below R (e) for e > 0, such that some collusion (i.e., on a stable pool price p P 2 (e; p M ])

is feasible when R (e).

Proof. (i)

We have established that a pool price p P is stable if and only if L p P ; e; 0, where

In the particular case of perfect substitutes (i.e., e = 0), this expression reduces to

(2 1) (p) 0. Therefore, any pool price p P 0 is stable -including the monopoly price p M -if and only if 1=2. For e > 0, sustaining a price p P 2 (e; p M ] requires > 1=2:

where the second term is negative and, in the …rst term, (p) > (e).

In particular, collusion on p M is feasible if L p M ; e; 0, or:

; where d P de e; P (e) = @L @e p M ; e; P (e) @L @ p M ; e; P (e)

:

Clearly @L=@ > 0. Furthermore @L @e p M ; e; P (e) = [1 P (e)]D(2p M ) P (e) 0 (e):

Using the fact that L p M ; e; P (e) = 0, @L @e p M ; e; P (e) / [ M (e) (p M e) 0 (e)] < 0;

from the concavity of . And so d P de > 0:

(ii) In the absence of a pool, collusion is ine¢ cient (users buy only one license) and is therefore unpro…table (and thus unsustainable) when ~ M (e) 2 N = 2 (e) (i.e., e e). When instead

then (i) ine¢ cient collusion on p 2 (e; pM (e)] is pro…table for p close enough to pM (e); in this case, maximal collusion (on pM (e)) is sustainable whenever some collusion is sustainable, and it is indeed sustainable if R (e). We now show that the pool then enables the …rms to sustain a more e¢ cient and more pro…table collusion, which bene…ts consumers as well as the …rms. To be as pro…table, the pool must charge a price P P satisfying:

Let P (e) denote the lowest of these prices, which satis…es P D P = ~ M (e). 46 The pool price p (e) = P (e) =2 is stable if and only if L (p (e) ; e; ) 0, which amounts to: In the case of perfect substitutes, this condition boils down again to 1=2. Therefore, when collusion is sustainable without the pool, the pool enables the …rms to sustain perfect e¢ cient collusion. Furthermore, for e > 0, G (e; ) G (e; ) = ( 1) eD P (e) > 0 and thus, if some collusion is sustainable without a pool, then the pool enables again the …rms to sustain a more e¢ cient and more pro…table collusion: as G (e; ) > 0 in this case, it follows that a pool price p P slightly higher (and thus more pro…table) than p is also 46 In the rivalry region, we have that e < p M < p < r (e) = pM (e); hence, the left-hand side increases from stable. Finally, note that the (quality-adjusted) price is lower when collusion is e¢ cient: the most pro…table sustainable price lies below P M , 47 and P M = 0 + r (0) < e + r (e) = pM (e) + e:

(iii) Note that L (e; e; ) = 0 for all e. Therefore, some collusion is sustainable (i.e., there exists a stable pool price p P 2 (e; p M )) whenever I(e) > 0, where I(e; ) @L @p (e; e; ) = (2 1)D(2e) + 2 eD 0 (2e):

We have: @I @ (e; ) = 2 [D(2e) + eD 0 (2e)] > 0;

where the inequality follows from e < r (e) (as here e < p M (< p)); as I (e; 1=2) = eD 0 (2e) < 0 < I (e; 1) = D(2e) + 2eD 0 (2e) ;

where the last inequality stems from e < p M , then some collusion is feasible if is large enough, namely, if 

Furthermore: @I @e (e; ) = 2(3 1) D 0 (2e) + 3 1 2eD 00 (2e) :

But D 0 (2e) + 2eD 00 (2e) < 0 from Assumption B and =(3 1) < 1 from > 1=2; and so @I @e (e; ) < 0;

implying that the threshold R 2 (e) increases with e; it moreover coincides with R (0) = 1=2 for e = 0, and is equal to 1 for e = p M (in which case D(2e) + 2eD 0 (2e) = 0, and thus I(p M ; ) = ( 1) D(2p M )). To conclude the argument, it su¢ ces to note that the statement of part (iii) holds for R (e) = min R 1 (e) ; R 2 (e) :

For e = 0, perfect collusion is sustainable for 1=2, which coincides with the range where ine¢ cient collusion at pM (e) would be sustainable without a pool. 47 A price P P > P M cannot be the most pro…table stable price: L p M ; e; L p P ; e; = (2 1) M p P + (1 ) e D P M D P P ;

which is positive for P P > P M , as M P P and D P M > D P P . Hence, whenever a pool price P P > P M is stable, then P = P M is also stable.

P P M = 2p M , which is preferable to buying a license for the incomplete technology at price pM (e): as r 0 ( ) > 1, e + pM (e) = e + r (e) > 0 + r (0) = P M = 2p M : By contrast, when collusion could not be sustained in the absence of a pool (i.e., when < R (e)), then a pool harms users whenever it enables the …rms to sustain some collusion, as users then face an increase in the price from p N (e) = e to some p > e. This happens in particular when 2 [ R (e) ; R (e)) (if D 00 ( ) 0, it happens only in this case), where R (e) increases from R (0) = 1=2 to 1 as e increases from 0 to p M , and lies strictly below R (e) for e 2 0; p M .

With weak or strong complementors, a pool enables perfect cooperation and bene…ts users as well as the …rms: in the absence of the pool, the …rms would either not cooperate and thus set p = p N (e) = min fp; eg > p M , or cooperate and charge per-license price p 2 [p M ; p N ), as opposed to the (weakly) lower price, p M , under a pool.

Finally, note that, in the absence of the independent licensing requirement, a pool would always enable the …rms to achieve the monopoly outcome. Appending independent licensing is therefore always welfare-enhancing, as it can only lead to lower prices in the case of rivalry, and does not prevent the …rms from achieving perfect cooperation in the case of complementors.

O Proof of Proposition 15

We start by noting that, if all patents are priced below p, then technology adopters acquire all licenses: Lemma 12 O¤ering each license i at a price p i p induces users to acquire all of them.

Proof. Without loss of generality, suppose that the patents are ranked in such a way that p 1 ::: p n . If users strictly prefer acquiring only m < n licenses, we must have:

From from the de…nition of p, we also have:

Combining these conditions yields:

implying that some licenses are priced strictly above p. Conversely, if all licenses are priced below p, users are willing to acquire all of them.

To establish part (i) of Proposition 15, suppose that p N < p M (which implies p N = p and N = pD (np)), that each …rm faces a given price cap p i , and consider a stationary symmetric path in which all …rms repeatedly charge the same price p (which thus must satis…es p p i for i 2 N ), and obtain the same pro…t > N = pD (np). We …rst note that this last condition requires selling an incomplete bundle:

Lemma 13 When p N < p M , generating more pro…t than the static Nash level requires selling less than n licenses.

Proof. Suppose that a price pro…le (p 1 ; :::; p n ) induces users to acquire all n licenses. The aggregate pro…t is then (P ) = P D (P ), where P = P n k=1 p k denotes the total price. But this pro…t function is concave in P under Assumption B, and thus increases with P in the range P P M = np M . From Lemma 12, selling all n licenses require P np, where by assumption np < P M ; therefore, the aggregate pro…t P D (P ) cannot exceed that of the (unconstrained) static Nash, npD (np).

From Lemma 13, > N implies that users must buy m < n patents; Lemma 12 then implies p > p; the per-…rm equilibrium pro…t is then:

Furthermore, as p i p > p for all i 2 N , the price caps do not a¤ect the static Nash equilibrium, in which all …rms still charge p N = p. The price p can therefore be sustained by reversal to Nash if and only if:

(1 ) D (p ) + N ;

where N = pD (np) and D (p ) denotes the most pro…table deviation from p , subject to charging a price p D p i . But as the deviating price must lie below p (otherwise, the member's patent would be excluded from users'basket), it is not constrained by the price cap p i p ; therefore, the deviation cannot be less pro…table than in an alternative candidate equilibrium in which, in the absence of price caps, all members would charge p . Hence, price caps cannot sustain higher symmetric prices than what the …rms could already sustain in a symmetric equilibrium in the absence of price caps.

To establish part (ii) of the Proposition, suppose that all …rms face the same price cap p = p M < p N = min fp; pg. As no …rm can charge more than p < p, Lemma 12 implies that, by charging p i = p M , each …rm i can ensure that technology adopters acquire its license, and thus secure a pro…t at least equal to: As each …rm can secure M , and the industry pro…t is maximal for P M , it follows that the unique candidate equilibrium is such that each …rm charges p = p M . Conversely, all …rms charging p M indeed constitutes an equilibrium: a deviating …rm can only charge a price p < p = p M , and the deviating pro…t is thus given by: pD p + (n 1) p M :

The conclusion then follows from the fact that this pro…t is concave in p, and maximal for (using r 0 ( ) < 0 and p M < p): r (n 1) p M > r ((n 1) p) = p > p M = p: