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Abstract

Carbon clusters exhibit a broad diversity of topologies and shapes, encompass-

ing fullerene-like cages, graphene-like flakes, and more disordered pretzel-like and

branched structures. Here we examine computationally their infrared spectra in rela-

tion with these structures, from a statistical perspective. Individual spectra for broad

samples of isomers were determined by means of the self-consistent charge density

functional based tight-binding method, and an interpolation scheme is designed to

reproduce the spectral features by regression on a much smaller subset of the sample.

This interpolation proceeds by encoding the structures using appropriate descrip-

tors and selecting them through a principal component analysis, Gaussian regression

or inverse distance weighting providing the nonlinear weighting functions. Metric

learning is employed to reduce the global error on a preselected testing set. The in-

terpolated spectra satisfactorily reproduce the specific spectral features and their de-

pendence on size and shape, enabling quantitative prediction away from the testing

set. Finally, the classification of structures within the four proposed families is crit-

ically discussed through a statistical analysis of the sample based on iterative label

spreading.

Keywords: Infrared spectrum, carbon clusters, statistical analysis, machine learning,

density-functional tight-binding

1 Introduction

The interest in the formation of fullerenes in the gas phase dates back from their ex-

perimental discovery.1,2 Recently, the astronomical detection of neutral3 and cationic4

fullerenes in the interstellar medium has revived this topic and notably led to several pro-

posed formation mechanisms involving either smaller or larger building blocks.5,6 Such

astrophysical observations could be achieved by spectroscopy, for which the convenient

signature of the highly symmetric buckminsterfullerene was the key to its identification.

2



Spectroscopy is undoubtedly the method of choice on which astrochemists rely to better

understand the fullerene road under such harsh astrophysical conditions.

Until now, the traditional strategy for interpreting astrophysical spectra of complex

molecules, in both the infrared (IR) or optical ranges, has mostly rested on the compar-

ison with spectra usually obtained from electronic structure calculations offering a suf-

ficient trade off between accuracy and efficiency, density-functional theory (DFT) and

its time-dependent version representing the most popular methods of choice.7,8 In some

cases such as polycyclic aromatic hydrocarbons (PAHs), further refinements have been

attempted in order to account for anharmonicity or finite temperature effects in vibra-

tional spectra,9–11 or to model the IR emission cascade spectrum originating from a UV

excitation.12

Unraveling the molecular compounds responsible for the spectroscopic features ob-

served in astrophysical objects like planetary nebulae can also be tackled from a more

statistical perspective, without assuming specific molecular structures but focusing in-

stead on broad relevant samples generated by intuition or, in a much less biased way, by

means of high-throughput atomistic simulations.13 In particular, upon categorizing con-

formers into different structural families, their generic spectral features can be inferred

from the individual contributions of each member. Such an approach was found fruit-

ful in assisting the interpretation of astronomical spectra of planetary and protoplanetary

nebulae,14 highlighting in particular the potential role of compounds with a significant

aromatic content such as fullerenes. While such a statistical averaging washes away the

detailed spectroscopic information pertaining to individual conformers, it is consistent

with the relatively poor knowledge of such astrophysical regions and the likely presence

of many chemical species. However, extending such a bottom-up strategy to broader

classes of compounds having a larger size or containing heteroatoms is not straightfor-

ward, because of the very fast increase in the number of stable conformers and the diffi-

culty of sampling their potential energy landscape as exhaustively as possible. Moreover,
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for each conformer a suitable method is needed to determine their spectrum, which for

chemical accuracy requires either advanced (polarizable) force fields or schemes offering

an explicit description of electronic structure, even simplified.

While the two tasks of sampling the energy landscape and determining the individ-

ual spectra can be addressed successively along the lines of a multiscale description,

the computational effort associated with the spectral determination can be particularly

heavy for large samples, even with efficient methods such as density-functional based

tight-binding (DFTB). However, extracting the spectral features from a statistical sample

seems also naturally suited to be tackled by machine learning (ML) techniques, a broad

range of computational approaches that have become spectacularly popular in chemical

physics and physical chemistry in the recent years.15,16 Within the general context of relat-

ing properties to structure, several groups have recently shown the benefits of employing

ML for vibrational spectroscopy17–19 through a variety of approaches aiming to represent

potential energy and electric dipole moment surfaces within perturbative frameworks,20

to condense molecular information into topological descriptors,21 or to numerically solve

the quantum nuclear dynamics problem by better partitioning the various degrees of free-

dom.22

In the present contribution, we explore several ML ideas to reconstruct the infrared

spectrum of carbon clusters in a statistical sense, from a limited sample and using inter-

polation techniques in a multidimensional feature space, supervision being introduced

through metric learning. We notably show how such an interpolation scheme can pre-

dict the spectral trends for clusters that are not members of the initially chosen sample.

We also use a clustering algorithm to further address the classification of conformers into

structural families.

In the next section, we briefly describe how the samples of conformers were obtained

and the infrared spectra reconstructed from these samples. In Sec. 3 we present several

statistical analyses of the spectra in terms of their convergence within the sample, their
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reconstruction by interpolation assisted by metric learning, and we discuss the typical

error of the method on individual and collective spectra. Sec. 5 discusses further the

classification of the structures into families based on iterative label spreading23 rather

than ad hoc order parameters alone. Finally, some concluding remarks are given in Sec. 6.

2 Sample generation

Our systems of interest are carbon clusters Cn of selected sizes n, which exhibit a great

diversity of structures that have been the specific subject of earlier contributions.13,24 Here

we summarize the main steps of the sample generation, and how the infrared spectra

were obtained from it.

2.1 Force field exploration

The samples of isomers for C24, C42, and C60 were originally produced by replica-exchange

molecular dynamics simulations based on the REBO potential,25 with details given in Ref.

13. For these simulations, the clusters were enclosed in spherical containers to prevent

dissociation at high temperature, and various simulations using different radii were per-

formed to enhance sampling, fixing the densities at ρ = 0.025, 0.15, 0.4, and 1.7 g.cm−3

for the three cluster sizes. These densities were chosen on a trial-and-error basis in or-

der to generate clusters with different structural trends. In particular, lower densities are

needed to favor the very extended branched conformers, while higher densities tend to

produce cages more efficiently.

New simulations were also performed for C33 and C52 to assess the performance of the

interpolation scheme introduced below, away from the testing set that only includes data

for C24, C42 and C60. For these additional clusters, we used a more efficient criterion based

on bond connectivity in a parallel tempering Monte Carlo framework: a configuration

was rejected if two subclusters are separated from each other by more than 3 Å. Except for
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this difference, the parameters were otherwise similar, with 28 temperatures distributed

in a geometrical fashion in the range 500–5500 K, and 4 additional temperatures around

the melting point.

The total numbers of distinct conformers obtained with the REBO potential are listed

in Table 1 for the five clusters.

Table 1: Numbers of distinct isomers in the samples produced by the simulations with the
REBO potential, and after local reoptimization at the DFTB level.

Cluster REBO DFTB
size sample sample
24 51 901 44 341
33 62 974 52 682
42 240 305 196 519
52 260 746 150 475
60 656 438 309 167

2.2 Reference infrared spectra

Because it lacks any information about the dipole moment surface, the REBO potential

energy surface used to generate the structures is not suited to infrared spectroscopy.

Instead we resorted to the self-consistent-charge density-functional-based tight-binding

method26 for this purpose, uusing the dispersion correction parameters of Ref. 14. The

individual absorption spectrum associated with each structure was determined in the

harmonic approximation after local reoptimization. Throughout this article (and in the

supplementary material), this method will be denoted simply as DFTB. Structures saved

periodically and locally reoptimized using the REBO potential were further refined us-

ing the DFTB method to calculate their IR absorption spectrum. The numbers of distinct

structures obtained after this reoptimization step, listed in Table 1, are always lower than

the initial sample size, because occasionally several starting points endded up into the

same minimum (a reduction in information and pool size would also naturally occur by

conducting the optimizations in the opposite way). Here we should also note that the
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loss of a significant fraction in the initial sample size could be partly alleviated using ML

techniques that screen the structure before deciding whether they are worth considering

for further optimization.27

A standard double harmonic approximation was employed to calculate the IR absorp-

tion spectrum with the DFTB method, without any scaling factor for the frequencies. This

choice is motivated by the methodological nature of the present study, rather than on any

intention of a direct comparison with existing experiments or observations. It should be

noted that, for the present systems, different scaling factors should also be applied in dif-

ferent spectral ranges for such a comparison,14 which also leads to narrow spectral ranges

being uncovered and appearing as spurious holes.

The spectra of entire structural families were determined as in Ref. 14 by simple ad-

dition over all contributions from individual members and no particular weighting. In-

dividual spectra were made smoother by Gaussian broadening with a 5 cm−1 width over

the 0–3000 cm−1 range with a 3 cm−1 bin size. Such parameters were necessary in order

to satisfactorily describe both the broad plateaus in the 500–1500 cm−1 range, as well as

the few narrow peaks occuring at various frequencies depending on the structural family.

Finally, and following our earlier work,14 the high-frequency part of all IR absorp-

tion spectra was further attenuated using the blackbody radiation law at 300 K in order

to make comparison with IR emission astrononomical spectra more realistic. All DFTB

calculations were performed with the deMonNano software package.28

2.3 Structural classification

At the sizes n covered here of n = 24, 42, and 60, carbon clusters exhibit a broad variety

of structures that can be categorized using order parameters. Following our earlier analy-

sis13,14 we use the fraction of sp2 atoms and a dimensionless asphericity shape parameter

β to sort these structures into four main families: (i) the cages family, which includes the

archetypal fullerenes, consists of a high sp2 content and a low asphericity; (ii) the flakes
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family, notably including graphene cuts, also has a high fraction of sp2 atoms but a sig-

nificant asphericity; (iii) pretzel-like structures,24 containing several chains of sp1 atoms

but not necessarily associated with marked deformations from the sphere; (iv) branched

structures also dominated by long chains of sp1 atoms but significantly aspherical.

The shape parameter β is one of the three quantities that can be obtained by assigning

the three principal momenta of inertia Ik of the conformer following the Hill-Wheeler

representation as

Ik =
2

3
r2c

[
1 + β sin

(
γ +

(4k − 3)π

6

)]
, k = 1, 2, 3, (1)

where rc is the gyration radius and the angle γ measures the cluster triaxiality. With such

a definition, β lies in the range 0–1, small values indicating nearly spherical shapes while

high values are typical of prolate ellipsoids. The fraction of sp2 atoms is straightforwardly

obtained in the DFTB scheme from the orbital populations.14 In the REBO model, it is

simply estimated from the relative number of carbon atoms with exactly three nearest

neighbors.

With such dimensionless order parameters at hand, all conformers were categorized

into either of the four families, with sizes that are given in Table 2 for each of the five

clusters.

Table 2: Sizes of the configurational samples for all carbon clusters considered in this work,
as described by the DFTB method.

System cages flakes pretzels branched
C24 11 740 6312 37282
C42 27350 40740 36013 92416
C60 82111 78182 38141 110733
C33 13 4764 202 47703
C52 20331 56067 741 73336

This partitioning of isomers between structural classes was initially introduced with-

out reference to their spectroscopic response, and in the following we challenge this clas-
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sification using additional tools.

3 Statistical analyses

3.1 Convergence of global spectra

For each cluster size, the IR spectra associated with each of the four structural families

result from the combination of all individual spectra from each member of the family,

and we first discuss how the resulting spectra are sensitive to the diversity among the

corresponding sample. Individual IR spectra are generally highly resolved, because the

clusters are not very large and display at most 172 fundamental modes, of which only

a subset are IR active. However, the combination of many such spectra into an average

spectrum for the corresponding family will likely yield much smoother features all the

more than the family is large and diverse.

Here we introduce an error measure to quantify the discrepancy between a reference

spectrum Iref(ω) and an estimated spectrum I(ω), from the average sum of the integrated

difference between them on the relevant interval of interest:

E =
1

ωmax − ωmin

∫ ωmax

ωmin

|Gref(ω)− G(ω)| dω, (2)

Gref(ω) =
∫ ω

ωmin

Iref(x)dx

G(ω) =
∫ ω

ωmin

I(x)dx

with ωmin = 0, ωmax = 2500 cm−1. This error measure is not as sensitive to spectral shifts

as the more standard least square error in which the first integral operates directly on

|Iref −I| or its square, and this was notably recognized recently by Kovacs and coworkers

in the ML approach to the IR spectroscopy of polyaromatic hydrocarbons.21 Here the

reference spectrum is simply defined for each family as the spectrum obtained from the

full corresponding sample.
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To analyse the sensitivity of the spectra towards the structural diversity among the set,

Monte Carlo simulations have been performed in which the spectra were reconstructed

from a random limited subset. For each structural family, 1000 random subsets of con-

formers were chosen and the spectra averaged from their specific contributions.

The average errors obtained for the four families of C60 isomers are shown in Fig. 1

as a function of sample size. The converged spectra obtained from the full samples are
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Figure 1: Average error in describing the IR spectra of the four structural families of C60 clusters,
by selecting only a subset of the entire corresponding sample, with error bars that indicate the
standard fluctuations around the average. The insets show the reference IR spectra obtained for
the full samples for each family. Next to each panel corresponding to a specific family, a typical
structure is also depicted.

themselves also shown as insets for subsequent reference, together with representative

conformers of each family for visual identification.

Clearly the IR spectra obtained for the cages and flakes do not depend as much on the

underlying sample as the more disordered pretzels and branched conformers, for which

the average error is about one order of magnitude larger. The spectral features of cages

and flakes are reasonably converged already with a few thousands of the corresponding

structures, while this number is closer to tens of thousands for pretzels, and exceeds it for

branched structures.
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Similar results are obtained for C42, but for C24 the numbers of cages and flakes are

much smaller and the resulting spectra show a much greater dependence on the subset

selection. The corresponding spectra and their statistical convergence are given as Sup-

plementary information.

3.2 An interpolation scheme for IR spectra

The previous statistical analysis revealed that the spectral features associated with struc-

tural families are differently robust depending on the diversity within each family. We

now attempt to use this information to reduce the amount of conformers needed to re-

produce the global spectra in a more systematic and automated fashion that could also

make it transferable to other systems.

More precisely, we use interpolation to relate the spectrum IR(ω) of an arbitrary con-

former R to the known spectra Ik(ω) from reference conformers Rk of a fixed sample,

much smaller than the complete set of conformers generated by simulation. In a first

natural approach, linear interpolation is employed as

ĨR(ω) =
∑
k

gR,kIk(ω). (3)

where the weight gR,k measures the degree of similarity between structures R and Rk,

and is a simple but nonlinear function of a distance dR,k. Here we considered two kernels,

namely Gaussian regression (GR) g(d) = g0 exp(−γd2) with g0 a normalization factor, as

well as inverse distance weighting (IDW) g(d) = 1/d2 if all d > 0, or, if d = 0 for some

member of the set, then g(d) = 1 for this member and g(d) = 0 for all other members.

The distance dR,k is defined by a metric based on N descriptors that we collectively

denote as q(R) = {qj, j = 1, . . . , N}. These descriptors were chosen to cover various

molecular features of relevance in vibrational spectroscopy, and they are detailed below.

Next we select a reduced sample of conformers on which to interpolate the spectra for
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arbitrary structures. In a first approach, we mesh the order parameter space in β and sp2

fractions and only include those conformers that fall near the regular positions on this 2D

grid, within the grid resolution for each system, namely 10×10 for C24 and C42, and 8×8

for C60.

Structures selected for C24, C42 and C60 are all depicted onto the corresponding maps

in Fig. 2. This sample of the totally available set of conformers amounts to about 2.4%
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Figure 2: Distributions of locally optimized structures of carbon clusters Cn projected onto the
plane of sp2 fraction and asphericity shape parameter β, in logarithmic scale. The full blue and
empty green circles mark the location of the interpolation sample and the testing sets members,
respectively.

members only, or 13314 distinct structures.

Once descriptors are known, a metric can be chosen for d and the interpolation method

can be applied straightforwardly to predict the IR spectra from the reference spectra on

the reduced sample. However, the quality of the prediction can be improved using ideas

from machine learning methods, and here metric learning will be employed.

3.3 Descriptors encoding molecular structures

Twenty features or descriptors were chosen to characterize the various isomers generated

by molecular simulation. In the context of vibrational spectroscopy we have primarily

used descriptors involved in the local bond properties involving between 2 and 4 con-
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nected atoms, as well as more global properties related to the overall shape of the entire

configuration or its bond topology seen as a graph. The descriptors are detailed and num-

bered as follows. As they should, they are all invariant over global translations, rotations,

and permutations among atoms.

For a N -atom cluster, and from the gyration tensor S = {Sαβ},

Sαβ =
1

N

∑
i

rαi r
β
i ,

where rαi is the component α = x, y, z of atom i, we can extract its trace, giving the square

gyration radius R2
g, while the higher moments give insight into the so-called asphericity

and prolateness parameters A and P .29 Introducing the traceless tensor D we thus define

the three first descriptors as

R2
g = TrS (D1)

A = 3
Tr (D2)

2R4
g

(D2)

P = 3
Tr (D3)

2R6
g

(D3)

D = S−
R2

g

3
I,

where I is the 3×3 identity matrix. Note that only R2
g is size sensitive, A and P being

both dimensionless quantities. Also note that the asphericity parameter A is not strictly

identical to the parameter β used to classify the structures into the four families, for which

Eq. (1) was used.

From the structure we then define bond connectivities using a cut-off radius of 1.85 Å,

the average bond length and the fluctuations around this average providing our next

descriptors

r̄ = ⟨rij⟩nn, (D4)
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δr =
[
⟨r2ij⟩nn − ⟨rij⟩2nn

]1/2
, (D5)

where the subscript nn indicates that average is taken over nearest neighbors. Likewise,

for any triplet i, j, k of connected atoms we define the average angle θ̄ and the fluctuation

around this average as

θ̄ = ⟨θijk⟩nn (D6)

δθ =
[
⟨θ2ijk⟩nn − ⟨θijk⟩2nn

]1/2
, (D7)

and similarly torsion angles ϕijkℓ are identified and included in the set for all quadruplets

i, j, k, ℓ of connected atoms:

ϕ̄ = ⟨ϕijkℓ⟩nn (D8)

δϕ =
[
⟨ϕ2

ijkℓ⟩nn − ⟨ϕijkℓ⟩2nn
]1/2

. (D9)

From the global connectivity we also calculate the adjacency matrix Aij , which we

diagonalize into the set of eigenvalues {αk} from which the next descriptors are extracted

as

αmin = min
k

αk (D10)

αmax = max
k

αk (D11)

ᾱ+ = ⟨α+
k ⟩ (D12)

In the above equations, ⟨α+
k ⟩ denotes the average over all strictly positive eigenvalues (the

trace and average over all eigenvalues being strictly zero for any adjacency matrix).

The four next descriptors are also related to bond connectivity but in more direct con-

nection with the chemical nature of the carbon bonds. More specifically, the numbers

of atoms that are singly (N1), doubly (N2), triply (N3), and quadruply (N4) connected to
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other carbon atoms are identified and their fractions define the descriptors as

f1 = N1/N (D13)

f2 = N2/N (D14)

f3 = N3/N (D15)

f4 = N4/N (D16)

In a first approximation, these fractions measure the relative amounts of carbon atoms

that terminate a chain or are hybridized as sp1, sp2, and sp3, respectively. In particular, f3

is used together with β to assign the REBO structures into the four families.

The next descriptor is also topological and defined as the normalized meshedness χ of

the graph made by carbon atoms.30 It is defined from the numbers of edges N and bonds

Nb as

χ =
Nb −N + 1

2N − 5
(D17)

Finally, in relation with the aromatic nature of many carbon nanostructures, we have

considered the numbers Nk of cycles of length k = 5–7 and normalized them to yield

three more descriptors

N̄5 = N5/N (D18)

N̄6 = N6/N (D19)

N̄7 = N7/N. (D20)

3.4 Principal components analysis

Each structure in the samples generated for C24, C42 and C60 was assigned a point in 20-

dimensional space using the above listed descriptors. Because the various dimensions

possibly cover quite different numerical ranges, we further standardize the dataset by
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shifting each value with respect to the average, and dividing it by the mean square fluc-

tuation. To assess the quality of the dataset and remove possible redundancies among

descriptors, we next analyze the data in terms of their principal components (PCs).

After diagonalization of the PC matrix, the eigenvalues are ordered by decreasing

value, and the eigenvectors corresponding to the highest eigenvalues are employed to

determine the number of dimensions needed to capture the greatest amount of the data

and their dispersion. Such an analysis is performed independently for the three datasets

corresponding to C24, C42 and C60 samples. The percentage of explained variance ob-

tained from the eigenvectors of the PC matrix is given as an inset in Fig. 3 for the lowest

10 dimensions that correspond to the highest eigenvalues. Most of the variance can thus
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Figure 3: Quality of the description provided by using only the principal components correspond-
ing to the 5 highest eigenvalues of the PC matrix, for the three samples of C24, C42, and C60. The
inset shows the percentage of variance explained by the successive principal components ordered
by decreasing eigenvalue, up to dimension 10.

be explained with only 5 principal components, especially for the samples corresponding

to the two larger clusters, the data being somewhat more widespread for C24. We inter-

pret this difference as reflecting the poorer ability of this small cluster to form regular

cages, which contribute significantly to the other samples but are only very few (eleven)

in this case.

The quality of the representation of the data by the 5 principal components associ-
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ated with the highest eigenvalues of the PC matrix was determined from the sum of the

corresponding square eigenvector coefficients. It is shown in the main part of Fig. 3 for

the three samples against descriptor number, and reveals the different contributions of

these descriptors to the set of 5 principal components. While the results for C24 are again

slightly different from the two other systems, we find some common patterns that were

not anticipated when the descriptors were originally designed: the angular terms for

triplets of connected atoms essentially do not contribute, as is the case for the normalized

numbers of 6- and 7-atom rings. In contrast, we find the shape parameters of asphericity

and prolateness, and the fractions of atoms with 2 and 3 neighbors to be quite well rep-

resented in those principal components. These results are consistent with our initial but

empirical choice of order parameters to sort the structures into the four families of cages,

flakes, pretzels, and branched isomers.13

3.5 Metric learning

The previous PC analysis indicates that 10 descriptors are sufficient to capture the struc-

tural diversity amont the available set, and we thus discard those contributing the least

to the 5 highest components, namely the average bond length and its fluctuation, the av-

erage bond angle and its fluctuation, the fluctuation in torsion angles, the maximum and

average of positive eigenvalues of the adjacency matrix, and the fractions of 5-, 6-, and 7-

rings.

Distances are thus evaluated in the remaining 10-dimensional set, and for each kernel

g(d) we introduce a specific metric d(R) as a set of strictly positive numbers aj such that

d2R,k =
N∑
j=1

aj[qj − q
(k)
j ]2,

where qj and q
(k)
j denote the corresponding descriptors for conformers R and Rk, respec-

tively.
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To improve the quality of the interpolation scheme, we then introduce some degree of

supervision to the algorithm by training the metric so the spectra predicted for a specific

set of structures (a testing set) mimics as best as possible their true IR absorption spectra

determined by the DFTB method. The testing set was chosen by randomly selecting 300

conformers among the totally available sample, 100 for each of the C24, C42 and C60 sys-

tems, only ensuring none of them also belongs to the interpolation sample as this would

make error evaluation non differentiable with the IDW kernel. The testing sample is also

depicted on the density plots in Fig. 2.

For a given kernel, the metric is then optimized by minimizing a global error E over

the whole testing set using again a Monte Carlo procedure, following here a zero temper-

ature Metropolis acceptance rule in which random moves that do not decrease the error

are rejected, alternating with steps of gradient-based local minimizations.

From a practical perspective, all statistical computations were performed with home-

made codes.

4 Performance of the interpolation scheme

4.1 Individual IR spectra

The general behavior of the interpolation scheme can be first discussed on the example

of individual structures. Figure 4 shows the reference and interpolated IR spectra ob-

tained for members of the testing set that contribute the most and the least to the final

error obtained after metric learning, using the GR and IDW kernels. The corresponding

conformers are also shown on this figure. As already mentioned, the IR spectra of spe-

cific conformers are highly resolved for such relatively small clusters. By combining the

contribution of various individual spectra, the interpolated spectrum is expected a priori

to be much smoother and convey the statistically dominant features. For the two ker-

nels, the best prediction is obtained for cage isomers of C60, whose spectra exhibit rather
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Figure 4: Most similar (’best’) and dissimilar (’worst’) individual IR absorption spectra, as defined
from their lowest and highest contribution to the global error among the testing set, obtained for
the GR (left panels) and IDW (right panels) kernels after metric learning (blue lines), or without
(red lines). The DFTB reference spectra are shown as thick brown lines, and the corresponding
conformers are depicted next to the spectra.

large absorption bands near 700 cm−1 and a main peak, as well as in the 1000–1700 cm−1

range with a broader bump. Here the interpolated spectrum manages to reproduce these

features and especially the low intensity parts.

In contrast, the most dissimilar spectra are obtained for much more disordered, branched-

type structures exhibitting fewer but highly intense IR active modes. The same conformer

is responsible for this highest contribution to the error for both kernels. Interestingly, the

Gaussian weight manages to preserve this highly resolved character, but the most intense

peak near 1150 cm−1 is not reproduced. This suggests that none of the reference spec-

tra in the interpolation sample matches this specific spectrum well enough to be able to

produce anything similar in output. In turn, it suggests excessive structural dissimilari-

ties between this specific conformer and all members from the sample. Inverse distance

weighting produces an excessively smooth spectrum lacking intense features, as the re-

sult of multiple conformers from the sample producing similar weights.

These results indicate that the interpolation scheme can produce very different types
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of spectra, typically smoother but not necessarily always smooth either since the weight-

ing scheme is highly nonlinear. For comparison, we have also shown in Fig. 4 its pre-

diction without carrying the metric learning stage, i.e. including all 20 descriptors in the

metric and not optimizing its coefficients aj . The most similar spectra are weakly altered,

except at high frequency where spurious peaks are found near 2000 cm−1. With inverse

distance weighting, the interpolated spectrum is also even smoother and the error to the

reference spectrum is increased by about 25%. Concerning the most dissimilar spectra, the

absence of supervision produces an even worst prediction for Gaussian regression, with

spurious peaks near 550 cm−1 and 2000 cm−1, without improving on the most intense

peak at 1150 cm−1. However, the much broader averaging achieved by inverse distance

weighting is preserved without metric learning, the predictions being very similar.

4.2 Global IR spectra

The global spectra predicted for the four structural families of C60 after averaging on all

their members are shown in Fig. 5, in comparison with the reference DFTB spectra and

for the two interpolation schemes employing the GR or IDW kernels. The corresponding

spectra predicted for the families of C24 and C42 are given as supplementary information.

Overall, the spectral features are fairly well reproduced by both interpolation schemes,

in the entire relevant spectral range. In agreement with the purely statistical analysis of

Fig. 1, the greater discrepancies are found for the pretzels and branched families, for

which convergence of the global spectrum is the slowest with set size. The most signif-

icant deviation occurs for the flakes, in the 1000–1200 cm−1 range, where interpolation

with inverse distance weighting notably underestimates the IR intensity by a few per-

cents, while the narrow peak at 2150 cm−1 is overestimated.

Without metric learning, the spectrum obtained for cages is barely affected, but more

significant differences are found for the other families, especially with inverse distance

weighting where the broad region 1200–2200 cm−1 is notably underestimated.
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Figure 5: IR spectra of the four structural families of C60 clusters, obtained from DFTB electronic
structure calculations (thick brown lines) and from sample interpolation employing the GR and
IDW kernels (red and blue lines, respectively). The dashed lines show the corresponding predic-
tions of the interpolation method without metric learning.

It is also quite striking that the spectral features of the pretzels and branched families

are very similar, except for minor intensities differences in the broad band at 600 cm−1.

This spectroscopic similarity obviously results from structural similarities that can be as-

cribed to the predominance of sp1 carbon chains in both cases, as discussed further below.

The performance of the interpolation scheme was also tested on a more challenging case,

namely a carbon cluster different from any member of the sample and testing sets. The

energy landscape of C52 explored using a combined REBO-DFTB methodology provided

broad samples of cages, flakes, and branched structures, although pretzels are fewer, their

numbers being given in Table 2. Their IR spectra were determined for each conformer in-

dividually using DFTB, and accumulated to yield a global spectrum for each of the four

families, serving again as reference.

The interpolation schemes were also applied to predict the IR spectra from the sole

information of the conformers provided by their descriptors. These spectra are depicted

in Fig. 6. For this cluster the main features of the IR spectra are reproduced very satisfac-

torily for the four families, the main deviations being found again in the 1000–1200 cm−1
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Figure 6: IR spectra predicted for structural families of C52 by sample interpolation using the GR
and IDW kernels (red and blue lines, respectively), compared to the DFTB reference spectra (thick
brown lines).

range for the flake conformers, Gaussian regression performing somewhat better than

inverse distance weighting. The spectrum for the pretzels is more resolved owing to the

much smaller size of this family, but the trends are again correctly described by both inter-

polation schemes. For the cages, the reference spectrum is mostly in error near 1000 cm−1,

while the spectrum for the branched family is remarkably described.

The interpolation schemes were also applied to the structures directly produced at the

initial REBO level of modeling, without refining them using DFTB. The results, given as

supplementary information, remain satisfactory for the more ordered cages and flakes

families but for the disordered structures several spurious peaks are produced upon in-

terpolation, especially when employing Gaussian regression, indicating that some con-

formers are not correctly recognized from their descriptors. This issue could probably

be addressed by training the metric on a set made from REBO structures, rather than

the DFTB conformers presently used. For the smaller cluster C33, the number of cages

and pretzels is rather reduced (see Table 2) and the resulting spectra are not particularly

smooth. Yet the trends predicted by the interpolation schemes are again rather good, the

main discrepancy appearing once again for the main band of the flakes family spectrum
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near 1000–1200 cm−1, which further indicates that not enough representative members of

these specific conformers are included in the sample. As was the case for C52, the interpo-

lation scheme for this smaller cluster performs not as well when the descriptors are those

of the REBO structures (see supplementary information), although it is worth noting that

the smoothest spectrum, obtained for the flakes family, is not affected to such an extent.

5 Clustering analysis by iterative label spreading

The above analysis has shown that interpolation on a much reduced sample of represen-

tative data can reproduce the structural trends of collective but also individual spectra,

especially with metric learning. It was also found that the IR spectra obtained for two

of the four families are very similar, namely the pretzels and the branched structures.

They were arbitrarily distinguished from one another based on the asphericity parameter,

pretzel conformers being more spherical, hence having a lesser tendency for exhibitting

terminating carbon chains. Here were return to this issue of structural partitioning but ig-

noring now such intuitive criteria and turning instead to the purely statistical analysis of

iterative label spreading (ILS).23 ILS is a semisupervised clustering method chosen for its

ability to handle dense sets of points. Briefly, ILS proceeds by reordering all members of

the set, labelling them each after the other, picking the next labelled member as the closest

from the already labelled set. Once all members are labelled, groups of points within the

set forming families are expected to be separated by peaks in the minimum distance. ILS

requires a metric for distance evaluation between two arbitrary members of the set, and

we naturally use the metrics optimized for the interpolation scheme for either Gaussian

regression or inverse distance weighting. As in Ref. 23 we chose the starting points as the

set barycenters. Fig. 7 shows the resulting partitioning for the structural database of C60,

as emerging from ILS with the metric optimized for Gaussian regression. Similar results

are obtained with the other metric optimized for inverse distance weighting. To relate
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Figure 7: Clustering analysis for the isomers of C60 by iterative label spreading, from the metric
optimized for the GR kernel. The various minima are numbered (abscissa) by increasing minimum
distance (ordinate) to the set of already labelled members. Each line is colored according to its
fraction of sp2 atoms.

these partitionings with our initial sorting into the four families of cages, flakes, pretzels

and branched structures, we further tag each labelled member with the value of its sp2

fraction, which is the most discriminating of the two order parameters with the aspheric-

ity β. The corresponding graph tagged with the value of β is given as supplementary

information. While there is no obvious jump in the minimum distance, the structures are

clearly ordered within the four families identified empirically. The first ones lying closer

to the set barycenter are the cages (highest sp2, lowest β content) and are followed by

the flakes (medium sp2, higher β). The more disordered structures follow, first with the

branched structures (lowest sp2 values, highest β) and finally the pretzels (low to medium

sp2, low β).

These results, and especially the proximity between pretzels and branched structures,

are fully consistent with their spectroscopic similarities already noted in Figs. 5 and 6

which themselves originate from the common chemical motifs of long sp1 carbon chains.

However, the ILS analysis also suggests the possibility of subgroups inside some of the

four main families, particularly for the more disordered pretzels and especially branched

cases. Further partitioning among these families would require additional order parame-

ters for a more complete characterization.

24



6 Concluding remarks

Unravelling the relation between structure and vibrational or electronic spectra is one

of the important issues in modern chemical physics in the gas phase. The interpolation

scheme explored in this work attempts to address this issue from an automated statistical

perspective. In this respect it is part of the broad current effort to use machine learning

techniques to assist spectral determination. The interpolation scheme developed here is

relevant for extracting spectroscopic trends over a statistical set of structures, and can-

not claim chemical accuracy for individual conformers. Its main appeal resides in its

systematic nature and in not being limited to chemically similar structures such as pure

aromatics. While it can be used as a nonsupervised method, optimization of the metric

was found to improve the performance especially in the cases where the structural diver-

sity was the highest among the set. As with conventional machine learning approaches,

the performance of the present method is naturally limited by the existence of sufficiently

similar members in the sample on which interpolation is performed.

With respect to neural networks, the present approach involves far fewer parameters

but requires a conformational sample. Its main computational interest was motivated

in the need to bypass the heaviest numerical effort associated with the determination of

numerous individual IR spectra, structural optimization itself being mostly achieved at a

lower level of theory (here, the REBO force field).

Classification of the structures into the four families of cages, flakes, pretzels and

branched conformers was also confirmed by performing independently a clustering anal-

ysis based on iterative label spreading. Here it could be interesting to compare the predic-

tions of this method with deep learning approaches that are also becoming more widespread

in physical chemistry as a classification tool.

In the future the interpolation scheme could be extended and improved along several

directions. For pure computational efficiency, the k-nearest neighbor algorithm could be

used to limit the number of members in the sample to be included for each newly pre-
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dicted spectrum, even though the number of neighbors and the metric should be both

optimized themselves self-consistently as hyperparameters. Another natural improve-

ment could be in the selection of the interpolating sample, which was here taken from

a systematic mesh of conformers based on dedicated order parameters. A Monte Carlo

procedure could be introduced to further optimize the members of this sample in their ca-

pability to describe the spectra of the testing set. Alternatively, Bayesian inference could

be envisaged as well for even smaller samples.

From the physical chemistry perspective, the interpolation method could also be ap-

plied to systems exhibiting even greater chemical diversity, such as hydrogen-, oxygen-

or nitrogen-containing compounds, for which REBO or other reactive potentials31,32 could

be employed. The inverse problem of finding pools of structures that match observational

data could also be tackled stochastically, under given constraints of available samples in

terms of sizes, compositions, and individual conformations. Here also, ML techniques

appear as naturally suited to such a purpose.33
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