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A novel sparse reduced order formulation for modeling 
electromagnetic forces in electric motors

Abel Sancarlos1,2,3  · Elias Cueto3 · Francisco Chinesta1,2 · Jean‑Louis Duval1

Abstract

A novel model order reduction (MOR) technique is presented to achieve fast and real-time predictions as well as high-
dimensional parametric solutions for the electromagnetic force which will help the design, analysis of performance and 
implementation of electric machines concerning industrial applications such as the noise, vibration, and harshness in 
electric motors. The approach allows to avoid the long-time simulations needed to analyze the electric machine at dif-
ferent operation points. In addition, it facilitates the computation and coupling of the motor model in other physical 
subsystems. Specifically, we propose a novel formulation of the sparse proper generalized decomposition procedure, 
combining it with a reduced basis approach, which is used to fit correctly the reduced order model with the numerical 
simulations as well as to obtain a further data compression. This technique can be applied to construct a regression model 
from high-dimensional data. These data can come, for example, from finite element simulations. As will be shown, an 
excellent agreement between the results of the proposed approach and the finite element method models are observed.

Keywords  NVH analysis · Electromagnetic force computation · Model order reduction · Reduced-order model · Proper 
generalized decomposition · sPGD · RB · Electric motor · Noise and vibration in electric motors · Hybrid electric vehicle · 
Electric vehicle

1  Introduction

The electric powertrain is drastically growing its impor-
tance in industry, specifically in the automotive one, 
because of different reasons. One of them is the environ-
mental and energy regulations laid out in United Nations 
Climate Change Conference held in Paris in 2015 [1, 14]. In 
addition, the development of technologies such as electric 
vehicles (EVs), hybrid electric vehicles (HEVs) or self-driving 
cars encourages even more the research and development 
in this area.

Furthermore, an important effort of research in this 
direction of both companies and national governments 
(such as USA or China) is carried out in the last years. For 

example, in Europe, the creation of The European Tech-
nology & Innovation Platform (ETIP) on batteries, named 
BatteRIes Europe [2], clarifies and envisages even more the 
importance of the electric powertrain and the EVs in our 
next years.

Due to this interest, it is mandatory to analyze the vehi-
cle noise, vibration and harshness (NVH) because contrary 
to popular costumers’ belief, EVs are not silent at all. It is 
true that they can present lower overall levels compar-
ing to internal combustion engines (ICEs) but unfortu-
nately, they have high-frequency and tonal content that 
makes the electric motor noise annoying if this issue is not 
addressed correctly [8, 15].
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The noise in the EV can be divided in 4 main sources: 
powertrain noise, wind noise, tire/road noise, and ancil-
lary noise (where the first is one of the most significant). 
For this reason, it is so important to analyze the elec-
tric powertrain, specially, the electric motor in the NVH 
studies.

As it is shown in different sources [3, 9] , vibration and 
noise produced by electrical machines can be divided into 
three categories [10] : electromagnetic vibration and noise, 
mechanical noise (related to the mechanical assembly, 
in particular bearings) and aerodynamic noise (they are 
mainly caused by aerodynamic forces in ventilation com-
ponents of the motor).

Adding complexity to the analysis, the electromagnetic 
vibration and noise of electric motors is a multi-physics 
problem, involving multiple fields including electromag-
netism, structural dynamics and acoustics.

Electromagnetic-induced vibration and noise of an 
electric motor is mainly caused by radial force waves [3] on 
the stator surface as said in [10] and [7, 11, 24] also agree 
on this. In addition, this calculation is one of the most 
highly-time consuming and challenging. Consequently, 
reduced order models (ROMs) are an appealing alternative 
to compute these force waves which will be the input for 
the other stages of the NVH analysis, as illustrated in Fig. 1.

Contemporary electric motors are designed with higher 
magnetic flux density in the air gap which produces higher 
radial magnetic forces acting on the stator. This can lead to 
a rise of vibration and acoustic problems [3, 10, 24].

Even worse, the relatively small-size and lightweight 
design for motors, the large electromagnetic forces as 
well as the poor rigidity of motor structures increase this 
serious problem of electromagnetic vibration and noise 
which will affect the riding comfort. Therefore, it is clearly 
justified to incorporate in the design the requirements of 
noise and vibration to avoid large retrofit expenses when 
the overall performance is being optimized/balanced as 
said in [10] and [7, 9, 14] also agree on this.

A possible gateway for enabling more efficient designs 
could be the simulation of complex models of the electric 
machine. However, although it is a valid option in some 
cases, it can be problematic when a detailed analysis of 
the machine is being carried out or the machine is beeing 
simulated with the other physical systems which interact 
with it.

The reasons are the following ones. On the one hand, a 
lot of simulations are needed to analyze the NVH behavior 
of a motor, thus being required faster simulations with-
out losing excessively accuracy. On the other hand, these 
complex models cannot be used to analyze the whole EV 
system because of the difficulties to couple the machine 
model with the other subsystems. Nevertheless, this sys-
tem simulation is important in the analysis because the 
real inputs for the motor are computed and the entire 
vehicle system is modeled (within the so-called system 
engineering) obtaining the predictive responses of the 
different subsystems when interacting with each other.

Therefore, the main aim of this paper is to pave the 
way towards the use of simple, accurate and fast ROMs to 
predict the electromagnetic forces on the stator surface 
which is one of the most challenging and highly time con-
suming steps of the NVH analysis. For this reason, the pro-
posed methodology can be used to compute these force 
waves in almost real-time (because of the simple algebraic 
expression to be manipulated) and with accuracy respect 
to the finite element model (FEM) where it is based.

Concretely, the methodology proposed in this work 
is a novel formulation of the sparse proper general-
ized decomposition (sPGD) [12, 19], combining it with a 
reduced basis (RB) approach, which is used to fit correctly 
the ROM with the numerical simulations and to perform a 
further data compression. This procedure is described in 
Sect. 3.3 and can be extended and used in other industrial 
problems without issues when appropriate.

The proposed technique can be applied to construct 
a regression model constructed from data. This data can 

Fig. 1   Conversion of electric 
energy into acoustic energy



come for example from a finite element method (FEM) 
software. Moreover, it is perfectly suitable to create a high-
dimensional function to give us the electromagnetic force 
or pressure considering many parameters, including the 
geometric ones.

One of the main advantages of this technique is that 
it deals with the well-known course of dimensionality 
issue allowing to have good results with only few snap-
shots, that is, high fidelity solutions. This way, given some 
snapshots, the regression model can be constructed 
using mainly polynomials, therefore once the model is 
constructed the responses are computed immediately 
because of the simple expression obtained.

Moreover, the accuracy of the regression model will 
be strongly related to the data from which the regression 
is carried out. For example, if the data comes from a 3D 
model, the regression results will be better than the results 
obtained from a 2D model. Furthermore, the methodology 
proposed in this paper can easily be extended to other 
type of motors and modeling frameworks.

To illustrate the process, the sPGD-RB procedure is 
applied to construct 3 regression models from the 2D FEM 
models of an induction and synchronous motor presented 
in Sect. 2. The open source software finite element method 
magnetics (FEMM) [16] is used to obtain the pseudo 
experimental data. In Sect. 3, the proposed approach is 
presented and discussed.

The results obtained as well as a comparison study 
between the sPGD and FEMM predictions are presented 
in Sect. 4 to evaluate the accuracy of the ROM.

Finally, in Sect. 5 the general conclusions of the present 
work are discussed as well as works in progress.

2 � Analyzed motor

2.1 � Induction motor

We focus on a 2D current-based formulation for a squirrel-
cage induction motor. According to [4, 18], the 2D problem 
is given by the following PDE:

where A⃗ is the magnetic vector potential, v⃗ is the velocity, 
Az is the z-component of the magnetic vector potential, 
J0 is the applied density current source, � is the electric 
conductivity and � represents the permeability.

Considering J0(t) = Re(Ĵ0e
j𝜔t) , Az(t) = Re(Âze

j𝜑tej𝜔t) 
and Ãz = Âze

j𝜑t (where � is the phase angle between Az(t) 
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and J0(t) ) as well as the assumptions and mathematical 
procedure shown in [4, 18], the above problem can be 
simplified to the following expression for an harmonic 
analysis:

where Ãz is a complex number, j is the unit imaginary num-
ber, � = 2�f  , f is the supply frequency, �eq is an equivalent 
conductivity computed as �eq = �s and s is the slip. The slip 
in induction motors is defined as s = ns−nr

ns
 , where ns is the 

synchronous speed and nr is the rotor speed.
This formulation transforms the magneto-dynamic field 

problem expressed by Eq. (1) to a magnetostatic com-
plex field problem with induced currents. In the chosen 
approach the rotor is fixed in the stator reference frame 
and an equivalent conductivity is assigned to the rotor 
bars to take into consideration the motional term of the 
current density, that is, the induced current density due 
to the movement.

Therefore, we can represent the motor at any operation 
point by multiplying the rotor conductivities by the slip. 
This is similar to the procedure used in the standard motor 
equivalent circuit where the rotor resistance is divided by 
the slip.

It is true that solving Eq. (1) is more accurate than solv-
ing Eq. (2) but we did this choice to adapt us to the free 
FEMM software and its capabilities

To take into consideration the nonlinear relationship 
B-H in Eq. (2), FEMM includes a nonlinear time harmonic
solver that it is used in this work.

This nonlinear time harmonic analysis seeks to include 
the effects of nonlinearities like saturation and hysteresis 
on the fundamental of the response, while ignoring higher 
harmonic content.

There are several subtly different variations of the 
formulation that can yield slightly different results, so 
documentation of what has actually been implement is 
important to the correct interpretation of the results from 
this solver. An excellent description of this formulation is 
contained in [13, 16].

2.2 � Synchronous machine: brushless motor

In this machine, a two-dimensional steady state analysis is 
carried out to adapt us to the capabilities of the open source 
FEMM. In three-phase motors, as in the other polyphase 
configurations of the synchronous machines, the stator-pro-
duced magnetomotive force (MMF) rotates at synchronous 
speed. Since the rotor is also rotating at synchronous speed 
in the steady state, an observer on the rotor experiences a 
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constant field ( �B
�t

= 0 ), and therefore, there are no eddy cur-
rents on the rotor.

On the other hand, an observer on the stator experiences 
a time varying field whose fundamental is at the system fre-
quency. Since the stator is laminated and the stator windings 
are stranded and transposed, the eddy currents are resist-
ance limited and can be neglected in the field computation. 
Hence the term ( � �Az

�t
 ) in the diffusion equation is neglected 

also in this frame since � can be considered zero.
If we take into consideration the above assumptions in 

Eq. (1) as well as adding the modeling term for the perma-
nent magnets, it will lead us to the Poisson’s equation for a 
magnetostatic analysis:

where Br,x and Br,y are respectively the x and y components 
of the remanent flux density.

A fixed reference frame is used in the above equation 
where the PDE is solved for each rotor position. To further 
details in electric machine modeling, we kindly suggest the 
reading of [4, 18]. Note also that Eqs. (2) and (3) are solved in 
Cartesian coordinates.

2.3 � Post‑processing step: computation of the radial 
force waves

Once the PDE is solved, the B field must be obtained from 
the expression:

and then, the Maxwell stress tensor is used to compute 
the forces.

In this work we use, for the sake of simplicity, the 
approach applied to the path at constant radius in the mid-
dle of the air gap [21]. Other possibilities can be envisaged. 
For example, in [17], the Maxwell stress tensor is used and 
compared under different paths. However, it is important 
to highlight that using a more complicated post-processing 
will not affect the fast computational features of the final 
ROM obtained in this work.

The normal and tangential components of magnetic pres-
sure are:
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(4)B⃗ = ∇ × A⃗,

(5)Pn(�, t) =
1

2�

(
B2
n
(�, t) − B2

�
(�, t)

)
,

(6)P�(�, t) =
1

�
Bn(�, t)B� (�, t),

where � is the angle of a polar coordinate system point-
ing to the selected air-gap point, subscript n refers to the 
radial component in the air-gap midline and the sub-
script � refers to the tangential component in the air-gap 
midline.

In the vibro-acoustic context, simplifying assumptions 
are often added neglecting the tangential terms. The rea-
son is that the tangential component of the flux density 
is much smaller than the normal component [11, 17, 24]. 
This leads to:

2.4 � Motor parameters

2.4.1 � Units used

We introduce the units used in the present work in the 
following table (Table 1).

2.4.2 � Induction motor

We employed an example from FEMM website [16], where 
geometry and further details can be found. Main param-
eters/features of the motor:

• 2 HP motor, 50 Hz, 3-phase supply. It is a 4-pole
machine (i.e., p = 2).

• The winding configuration for one pole of the machine
is: A+, A+, A+, C−, C−, C−, B+, B+, B+ (the nine slots
from 0 to 90 geometrical degrees).

• There are a total of 36 slots on the stator and 28 slots on
the rotor. A total of 44 turns sit inside each stator slot.

• The rotor’s diameter is 80 mm, and the air gap between
the rotor and stator is 0.375 mm. The length of the
machine in the into-the-page direction is 100 mm.

Materials used:

(7)Pn(�, t) =
1

2�
B2
n
(�, t),

(8)P�(�, t) ≈ 0.

Table 1   Units used

Unit Symbol Unit Symbol

Millimeters mm Meters m
Degrees deg. Radians rad
Horsepower HP Ampere A
Hertz Hz Revolutions per minute rpm
Tesla T Megasiemens MS
Pascal N/m2 = Pa – –



• Aluminum for rotor bars ( � = 34.45 MS/m)
• Air ( �r = 1)
• Stator Winding ( �r = 1)
• For the Case 1. Linear B–H relationship.

• Silicon Core Iron for the ferromagnetic materials ( �r

= 7000)
• For the Case 2. Nonlinear B–H relationship.

• Carpenter Silicon Core Iron “A”, 1066C Anneal (B–H
curve taken from FEMM library)

2.4.3 � Brushless motor

We employed an example from FEMM website [16] where 
geometry and further details can be found. Main param-
eters/features of the motor:

• 3-phase supply. It is a 8-pole machine (i.e. p = 4)
• The winding configuration for one pole of the machine

is: A+, B−, C+ (the three slots from 0 to 45 geometrical
degrees).

Geometry:

• Rotor inner diameter: 22.8 mm.
• Rotor iron outer diameter: 50.5 mm.
• Rotor outer diameter: 55.1 mm.
• Air gap length: 0.7 mm.
• Stator outer diameter: 100 mm.
• Angle spanned by tooth: 11.9 deg.
• Turns/slot: 46.
• The complete geometry of the machine is recon-

structed in Fig. 2.

Materials:

• Winding wire: 4X20AWG copper wire
• Magnet material: Sm2Co17 24MGOe
• Stator material: 24 Gauge M19 NGO Steel @ 98% fill
• Rotor material: 1018 steel

3 � Reduced order model

3.1 � Introduction

As already mentioned in Sect. 1, this paper aims at pro-
posing a new methodology to obtain accurately the elec-
tromagnetic forces on the stator surface (specifically the 
magnetic pressure) in almost real-time for any choice of 
a given set of parameters. The reason is that this is one of 
the most challenging steps of the vibro-acoustic analysis 
as it was discussed in Sect. 1.

In fact, the proposed approach allow us to obtain the 
force or magnetic pressure immediately when changing 
different parameters of the problem such as conductivi-
ties or the operation point of the motor, for instance. This 
methodology opens the door to a more efficient vibro-
acoustic analysis during the design and optimization 
process of the electric machine as well as to improve the 
prediction capacities when the whole vehicle system is 
considered.

The ROM’s accuracy will depend on the data used for 
the regression technique. In the cases analyzed here, the 
models described in Sect. 2 are used but without loss of 
generality of the foregoing, the proposed approach in this 
paper can easily be extended to more complex models 
increasing more the ratio between accuracy and computa-
tional efficiency. But not only that, the proposed approach 
also can be extended and used to other type of problems 
and modeling frameworks.

As it was introduced in Sect. 1, the ROM is made of a 
regression combining both the sPGD and the RB tech-
niques. In Sect. 3.2, the sPGD technique is exposed. This 
methodology will allow us to achieve excellent results 
when dealing with high-dimensional spaces and sparse 
data. This technique is specially convenient because only 
sparse data is available when dealing with high-dimen-
sional problems [12, 19]. This allows us to cope with the 
curse of dimensionality.

Then, as it will be discussed in Sect. 3.3, because of the 
presence of localized behaviors and discontinuities in the 
computed solutions, more than interpolating the solution 

Fig. 2   Brushless machine: complete geometry drawn in FEMM soft-
ware



itself, we consider the construction of a RB which will be 
used for the regression procedure. The RB is inserted in the 
sPGD formulation, creating the ROM described in Sect. 3.3.

3.2 � Sparse PGD

If needed, standard references concerning the Proper Gen-
eralized Decomposition (PGD) method for solving PDEs 
can be reviewed in [5, 6, 20]. In this section a brief exposi-
tion of the sPGD is presented based on a more detailed 
work [19]. After discussing this basis, we will present the 
novel approach in Sect. 3.3. First, we are going to define 
the following function

which depends on nd different variables, considered as 
dimensions of the state space sk , k = 1,… , nd.

The sparse PGD (sPGD) technique is based on approxi-
mating this unknown function f employing a separated 
(tensor) representation. As in standard PGD procedures, 
the function f is decomposed using a sum of products of 
one-dimensional functions each one involving one inde-
pendent variable. Each sum is called a mode.

In the context of non-intrusive ROMs, the main objec-
tive is to find a function f̃  which minimizes the distance to 
the sought function

and that takes the separated form

where M is the number of modes and �k
m

 is the one-dimen-
sional function for the dimension k and mode m. nt is the 
cardinality of the training set used to construct the model 
and s⃗i are the different vectors which contain the data 
points to perform the regression. ‖⋅‖ is the chosen norm 
to measure the distance between two points.

The other goal is that the model f̃  has to perform as 
well in the training set as in other unseen scenarios. This 
second target is more difficult to reach, yet is more crucial 
because this indicates the predictive ability of the ROM f̃  , 
that is, the prediction accuracy when it is fed with unseen 
data. Tis is specially challenging to achieve when facing a 
high-dimensional problem, which provides sparse data.

As previously introduced, the sPGD technique expresses 
the function f̃  with the separated form expressed by (10). 
Then, the functions {�k

m
}M
m=1

 for each k are formed by a 
linear combination of a set of basis functions:

f (s1,… , snd ) ∶ 𝛺 ⊂ ℝ
nd

→ ℝ,

(9)f̃ = argmin f ∗

nt∑

i = 1

‖‖f (s⃗i) − f ∗(s⃗i)
‖‖,

(10)f̃ (s1,… , snd ) =

M∑

m = 1

nd∏

k=1

𝜓k
m
(sk),

where D represents the degrees of freedom of the selected 
approximation. Moreover, N⃗k

m
 is a column vector with the 

set of basis functions for the k dimension and the m-th 
mode and a⃗k

m
 is a column vector with the coefficients for 

the k dimension and the m-th mode. The important ques-
tion here is which type of basis functions are the most 
convenient at hand. For instance, a polynomial basis or a 
Kriging basis can be chosen.

The computation of the coefficients in each one-dimen-
sional function for each mode m = 1,… ,M is done by 
employing a greedy algorithm such that, once the approxi-
mation up to order M − 1 is known, the new M-th order 
term is found using a non-linear solver (Picard, Newton, 
for instance):

A standard choice is to select the same basis for each one 
of the modes:

This choice may seem reasonable, however it may not be 
appropriate when dealing with non-structured sparse 
data.

It is known that the cardinality of the interpolation basis 
must not exceed the maximum rank provided by the train-
ing set. Indeed, this constraint, which provides an upper 
bound to build the interpolation basis, only guarantees 
that the minimization is satisfied by the training set, with-
out saying anything of the other points. Hence, if there is 
not an abundance of sampling points in the training set, 
in the low-data limit, high oscillations may appear out of 
these measured points because of the increased risk of 
overfitting. Usually, this is an undesirable effect because 
it affects the predictive ability of the constructed regres-
sion model.

To deal with this problem, the sPGD uses the modal 
adaptivity strategy (MAS) to take advantage of the greedy 
PGD algorithm. The idea is to minimize spurious oscilla-
tions out of the training set by starting the PGD algo-
rithm looking for modes with low order degree. When it is 
observed that the residual decreases slowly or stagnates, 
higher order approximation functions are introduced. 
By following this procedure, undesired oscillations are 
decreased, since a higher-order basis will try to capture 
only the remaining residual.

It is strongly recommended to define an indicator and 
a stopping criterion to design the above strategy. Many 
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m
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Nk
j,m
(sk)ak

j,m
= (N⃗k

m
)⊤a⃗k

m
,

(12)f̃ M =

M−1∑

m = 1

nd∏

k=1

𝜓k
m
(sk) +

nd∏

k=1

𝜓k
M
(sk).

(13)N⃗k
1
= N⃗k

2
= … = N⃗k

M
, for k = 1,… , nd .



different procedures can be thought. Here, we employ that 
defined in references [12, 19], where the methodology of 
the sPGD is deeply described. Following that reference, the 
following norm is used for the PGD residual in the present 
work:

where RM
T

 is the residual of the PGD solution of M modes 
in the training set T and f̃ M is the PGD solution composed 
of M modes.

Therefore, we define for each enrichment step, f̃ M as:

where �r is a parameter defining the resilience of the sPGD 
to increase the number of elements of the interpolation 
basis.

3.3 � Constructing a novel ROM by combining sPGD 
and RB

Regarding the compactness, robustness and simplicity of 
the PGD models obtained by the sPGD technique, global 
polynomial basis are usually selected to use the sPGD 
explained in Sect. 3.2.

As it is well known, polynomials are differentiable 
functions for all arguments. Therefore, trying to capture 
a differentiable function using polynomials is, above all, 
a consistent idea because the function which wants to be 
captured has the same properties that the basis where is 
projected.

In fact, according to the Weierstrass approximation 
theorem, if f is a continuous real-valued function on [a, b], 
for a given � , then there exists a polynomial p on [a, b] such 
that:

for all x ∈ [a, b] . In words, any continuous function on a 
closed and bounded interval can be uniformly approxi-
mated on that interval by polynomials to any degree of 
accuracy. However, sometimes the function which is try-
ing to be captured is not a differentiable function in some 
points or even presents discontinuities.

In this case, global polynomials are far away to be the 
best choice to approach this type of functions because 
they are, in fact, very poor at interpolating discontinui-
ties. To demonstrate this, Fig. 3 shows the interpolation of 
the unit step function with 16 points using a 15th-degree 
polynomial.

(14)RM
T
=

1√
nt

�����
nt�

i = 1

�
f (s⃗i) − f̃ M(s⃗i)

�2

,

(15)𝛥RM
T
= RM

T
−RM−1

T
< 𝜖r ,

(16)∣ f (x) − p(x) ∣< 𝜖,

Two different solutions to the problem can be envis-
aged. The first one is to use piecewise polynomial inter-
polation. This way, we can use different polynomials to 
approach the function at the right and at the left of the 
discontinuity. For example, the step function of the pre-
vious example will be composed of:

which are zero degree polynomials. However, an issue of 
this type of approaches is its rank deficiency when com-
bined with the sparsity used in the sPGD [12].

Other possible solution is to use a basis (which can 
contain discontinuous functions) whose linear combina-
tion produces the class of discontinuities of our problem 
in the right places.

For instance, a basis composed of different step func-
tions can be used to approximate the unitary step func-
tion discussed during this example.

In the industrial problem that this work is dealing 
with, discontinuities change their place in space when 
changing some values in the parameter space. Therefore, 
the previous discussed basis approach is prefered to deal 
with the discontinuity problem.

Other issue is that if we try to capture a non-regular 
function of this type without having preliminary knowl-
edge of the system, a lot of nodes are needed to detect 
where and how these singular points are present in the 
dimension where this behaviour happens.

Therefore, to deal with the previous discussed issues, 
we propose the following approach: 

(1) Find the spatial dimension(s) where singular points
are placed.

(2) Detect parameter(s) which can change location of the 
singular points along spatial dimension/s.

(3) Construct a RB considering the non-regular dimen-
sions found in steps one and two. Not sparse sam-
pling will be used along the dimension/s contained
in the RB.

To insert the RB in the PGD procedure, we propose to 
reformulate the regression problem in the following way 
(where without loss of generality only one dimension—s1

—is assumed causing troubles):

where:

(17)f (x) =

{
0 x ∈ [−1, 0],

1 x ∈ (0, 1],

(18)
f̃ (s1,… , snd ) = 𝛽1(s2,… , snd ) ⋅ N1(s

1)

⋯ + 𝛽T (s2,… , snd ) ⋅ NT (s
1),



N1(s
1),… ,NT (s

1) form the RB obtained with the SVD (see 
“Appendix”) along the s1 dimension, the �p(s2,… , snd ) 
terms represent the unknown functions for the sPGD prob-
lem for a given Np , Ip is the number of modes used to 
decompose �p and 

∑T

p=1
Ip is the total number of modes 

of the ROM.
The training set is then used to obtain the reduced 

basis as well as the value of the �p coefficients in the 
training points. In addition, once these points are 
obtained, the sPGD procedure is used to obtain the sepa-
rated representation of these functions using polynomial 
basis according to Eq. (19). To obtain the RB, we consider 
the SVD, revisited in “Appendix”, according to the discus-
sion that follows.

Defining z⃗i as a point in the dimensions (s2,… , snd ) then, 
the set Y  of one-dimensional functions, created by the 
points belonging to the training set T  , can be defined as:

(19)�p(s2,… , snd ) =

Ip∑

i = 1

nd∏

k=2

�k
i,p
(sk), p = 1, 2,… , T .

Therefore, the set Y is created collecting the one-dimen-
sional functions for the different points which are selected 
for the training set T  to do the regression via sPGD.

Consequently, the snapshots in Y are the ones used to 
construct the matrix � (see “Appendix”). Then, the SVD 
can be used to extract a reduced basis {N⃗i}

T
i=1

 , which best 
approximates the set Y .

To end up, an important issue is the choice of argu-
ments of the parametric model. They must be inde-
pendent or poorly correlated to avoid increasing the 
redundancy and the complexity of the model without 
necessity.

Industrial and technical knowledge can be used to 
determine the appropriate choice of variables as it is the 
case in this work.

If not, a manifold learning (such as kernel-PCA, [22]) or a 
dimensionality reduction technique (viz. topological data 
analysis, [23]) can be applied to reduce unnecessary vari-
ables. In addition, the ANOVA analysis can also be carried 

(20)Y = {f (s1, z⃗i) ∶ z⃗i ∈ T}

Fig. 3   Approximating a unitary step function using global polynomials. In the first case, Chebyshev nodes are used to fit the polynomial. In 
the second case, equidistant nodes are used



out to determine the importance of each input to keep the 
most relevant ones.

4 � Results

In this section, the results of the proposed ROMs for each 
motor are presented.

In addition, to illustrate some of the advantages con-
cerning the separated representation of the PGD, a sensi-
tivity analysis is carried in Sect. 4.3 to measure the impact 
of each variable.

Furthermore, a study comparing the error between the 
ROM and the FEM software FEMM is carried out to check 
the accuracy of the proposed approach.

4.1 � Induction motor

4.1.1 � Linear B–H

The approach shown is based on a current-based model 
where a balanced three-phase system is supposed for both 
the fundamental and the harmonic component of the cur-
rent. The searched PGD function is:

where � refers to an angle pointing to a node in the air-gap 
midline, f is the supply frequency, s is the slip, Ip is the cur-
rent peak value of the fundamental frequency of the 
source, fh is the harmonic frequency of the source, 
sh =

fh−(1−s)f

fh
 is a redefined slip concerning the harmonic 

component, Iph is the current peak value of the harmonic 
component, and � is the relative rotor position in relation 
to stator.

In this section, the problematic dimensions discussed 
in Sect. 3.3 are � and � . Therefore, the RB procedure will be 
applied in these dimensions as explained in the reformula-
tion of Sect. 3.3.

To obtain the above function, a multi-PGD procedure 
is used to decompose the function in more than one PGD 
solution. Consequently, the searched function is now:

where the sPGD technique will be used first for f̃1 and then 
for f̃2.

The first PGD search will focus on the range of param-
eters of the fundamental component of the source and the 
second one regarding the harmonic one.

Considering the extraction of snapshots the following 
remark must be considered to approach the problem.

(21)Bn(�, f , s, Ip, fh, sh, Iph, �); Bn ∈ ℂ,

(22)
Bn(𝛼, f , s, Ip, fh, sh, Iph, 𝛾) = f̃1(𝛼, f , s, Ip, 𝛾)

+ f̃2(𝛼, fh, sh, Iph, 𝛾),

As the system is considered linear (Linear B–H rela-
tionship), the total response is the sum of the responses 
obtained from each source considered separately (super-
position theorem). Therefore, the chosen approach is to 
analyse harmonic content separately, considering each 
source component independently and then adding 
each time response to Bn . Finally, when the total Bn(t) is 
obtained, the post-processing of Eq. (7) must be carried 
out.

To compare the results for different z⃗i along the � 
dimension, the following expressions are used:

where the superscript PGD denotes the results obtained 
by the sPGD and the superscript “ exp ” denotes the exper-
imental measurements (pseudo-experimental results 
obtained in this case by the FEMM software).

Furthermore, to sample the training set, different latin 
hypercubes (LHs) are taken using a grid composed of Che-
byshev nodes along dimensions f , s, Ip, fh, sh, Iph . In addi-
tion, eight hours are used to obtain the training set in the 
offline stage.

In Fig. 4, a comparison between the expperimental and 
PGD results for a z⃗i ∉ T  . For this plot, the error measured 
as Eq.  (23) is errreal

i
= 0.000355 , errimag

i
= 0.000341 ; and 

errreal
i

= 0.000037 , errimag

i
= 0.000029 for the induction 

component caused by the harmonic. On the other hand, 
the error in the training set measured as Eq. (23) is always 
lower than 10−5.

In addition, the alternating force (specifically, the alter-
nating magnetic pressure) for the selection of parameters 
used in Fig. 4 is shown in Fig. 5. This force is obtained 
combining the different sine/cosine waves of the B-field 
in Eq. (7).

In Figs. 6 and 7, the error for Eq. (21) for some z⃗i ∉ T  
can be seen. As it can be noticed, an excellent agreement 
between FEMM and PGD results is achieved even outside 
the training set. The main advantage is that the PGD model 
computes induction and force for a given z⃗i in less than 
0.2 s independently of the computational cost of the finite 
element solutions used for the snapshots.

4.1.2 � Nonlinear B–H

The approach shown here is also based on a current based 
model. In addition, perfect sine wave current functions are 
supposed for the balanced three-phase system. In this 
case, the searched PGD function is:

(23)

errreal
i

=

‖‖real(BPGDn
(𝛼, z⃗i)) − real(B

exp
n (𝛼, z⃗i))

‖‖2
‖‖real(B

exp
n (𝛼, z⃗i))

‖‖2
,

err
imag

i
=

‖‖imag(BPGD
n

(𝛼, z⃗i)) − imag(B
exp
n (𝛼, z⃗i))

‖‖2
‖‖imag(B

exp
n (𝛼, z⃗i))

‖‖2



where � is the bar conductivity and � is the air gap of the 
electric machine.

In this section, the problematic dimensions described 
in Sect. 3.3 are � and � . Therefore, the RB procedure will be 
applied in this dimension as explained in the reformula-
tion of Sect. 3.3.

Furthermore, to sample the training set, different Latin 
Hypercubes (LHs) are taken using a grid composed of 
Chebyshev nodes along dimensions f , s, Ip, �, � . In addi-
tion, nine hours are used to obtain the training set in the 
offline stage.

In Fig. 8, a comparison for Eq. (24) is shown for a z⃗i 
belonging to the training set. For this plot, the error meas-
ured as Eq. (23) is errreal

i
= 0.0008 and errimag

i
= 0.001.

In Fig. 9, a comparison between the FEMM and PGD 
results for a z⃗i ∉ T  . For this plot, the error measured as 

(24)Bn(�, f , s, Ip, �, �, �); Bn ∈ ℂ, Eq. (23) is errreal
i

= 0.009 and errimag

i
= 0.012 . In addition,

the alternating magnetic pressure related to this B-field 
can be seen.

In Figs. 10 and 11, the error for Eq. (24) for some z⃗i ∉ T

can be observed.
As it can seen in these figures, excellent agreement 

between FEMM and PGD results is achieved outside the 
training set.

The main advantage is that the PGD model computes 
induction and force for a given z⃗i in less than 0.2 s inde-
pentently of the computational cost of the Finite Ele-
ment solutions used for the snapshots.

It is important to highlight that the computational 
cost of the PGD model is independent of the one of the 
FEM software used for the snapshots. Hence, if the com-
putational cost of the FEM software was some days, the 
time needed for the PGD still would be less than 0.2 s.

Fig. 4  Comparison between 
the sPGD and FEMM model 
(linear B–H relationship) for the 
parameters f = 40 Hz, s = 2.5 
%, Ip = 3 A, fh = 5 × 40 Hz, 
sh = 80.50 %, Iph = 3∕5 A, � = 1 
degree



4.2 � Synchronous motor

The approach shown is based on a current based 
model. In addition, perfect sine wave current functions 

are supposed for the balanced three-phase system. In 
addition, a nonlinear B–H relationship is used for the 
materials.

The searched PGD function is:

Fig. 5   Alternating force components obtained with the parameters f = 40 Hz, s = 2.5 %, Ip = 3 A, fh = 5 × 40 Hz, sh = 80.50 %, Iph = 3∕5 A, 
� = 1 degre (linear B–H model)

Fig. 6   Relative error of the 
sPGD model (linear B–H 
relationship) to determine 
the real part of Bn for different 
untrained z⃗i . Error criteria of 
Eq. (23) is used



where � refers to an angle pointing to a node in the air-
gap midline, � is the relative rotor position in relation to 
stator, Ip is the current peak value of the fundamental fre-
quency of the source, � is the torque angle, namely, the 

(25)Bn(�, � , Ip, � , �); Bn ∈ ℝ,

phase difference between rotor and stator magnetic fields 
and � is a parameter defining the dynamic eccentricity of 
the machine ( � =

DOs ,Or

�
 ; where Os is the stator symmetry

center which in this eccentricity is equals to the rotor rota-
tion center Ow , Or is the rotor symmetrical axis, DOs ,Or

 is the 
distance between Os and Or and � is the uniform air-gap 
length when there is no eccentricity). The above eccentric-
ity parameters can be seen in Fig. 12.

In this section, the problematic dimensions described 
in Sect. 3.3 are � and � . Therefore, the RB procedure will 
be applied in these dimensions as explained in the refor-
mulation of Sect. 3.3.

Furthermore, to sample the training set, different 
Latin Hypercubes (LHs) are taken using a grid composed 
of Chebyshev nodes with the exception of � (where it is 
preferred to use equidistant nodes for each parameter 
combination to complete a 180-degree turn). In addi-
tion, eight hours are used to obtain the training set in 
the offline stage.

In Figs. 13 and 14, the induction and the magnetic pres-
sure are depicted for two points z⃗1, z⃗2 ∉ T  . The error asso-
ciated according to Eq. (23) is respectively errreal

1
= 0.01 and 

errreal
2

= 0.009.
In Fig. 15, we can see the time evolution of the magnetic 

pressure of figure 14 supposing a rotor and synchronous 
speed of N = 2000 rpm in steady state.

In Fig. 16, a comparison of the results between FEMM 
and the PGD are shown to analyze the error of the pro-
posed ROM.

As it can be seen, the error analysis for this PGD solution 
has similar results to the other PGD functions obtained for 
the induction motor.

Fig. 7  Relative error of the 
sPGD model (linear B–H 
relationship) to determine the 
imaginary part of Bn for differ-
ent untrained z⃗i . Error criteria 
of Eq. (23) is used

Fig. 8   Comparison between the sPGD and FEMM model (nonlin-
ear B–H relationship) for a z⃗i belonging to the training set. Param-
eters f = 10.4772  Hz, s = 5 %, Ip = 3.3858 A, � = 47.6537 MS/m, 
� = 0.4876 mm, � = 0 degrees. The alternating force obtained dur-
ing the post-processing step is also shown



Fig. 9   Comparison between 
the sPGD and FEMM model 
(nonlinear B–H relationship) for 
a z⃗i ∉ T  . Parameters f = 50 Hz, 
s = 3 %, Ip = 3.5 A, � = 40 
MS/m, � = 0.5 mm, � = 0 
degrees. The alternating force 
obtained during the post-pro-
cessing step is also shown

Fig. 10   Relative error of the sPGD model (nonlinear B–H relation-
ship) to determine the real part of Bn for different untrained z⃗i . Error 
criteria of Eq. (23) is used

Fig. 11   Relative error of the sPGD model (nonlinear B–H relation-
ship) to determine the imaginary part of Bn for different untrained 
z⃗i . Error criteria of Eq. (23) is used



Finally, as in the other cases, the big advantage is that 
the PGD model computes induction and force for a given 
z⃗i in less than 0.2 s and with accuracy indepentently of the 
computational cost of the Finite Element solutions used 
for the snapshots.

4.3 � Sensitivity analysis of the parametric solutions

Sensitivity analysis is often interesting in parametric mod-
els because of:

• the need to characterize how sensitive the response
is with respect to uncertainties in the input data; for
example, manufacturing tolerances or material proper-
ties.

• the need to characterize how sensitive the response is
in function of the operation point of the system.

• the need to make changes to improve the performance 
of a design and want to find out which changes that are 
most efficient for attaining the expected goals.

As a result, it seems evident that the importance of doing 
this type of analysis arises in industrial applications like the 
one treated in this paper. The most appealing point is that 
the ROMs constructed with the separated representation 

Fig. 12   Sketch to visualize the parameters Os ,Ow ,Or and DOs ,Or

Fig. 13   Induction obtained with the sPGD model for the param-
eters: � = 0 degrees, Ip = 3 A, � = �∕2 rad, � = 0

Fig. 14   Radial force wave obtained with the sPGD model for a set 
of parameters: � = 0 degrees, Ip = 13 A, � = �∕2 rad, � = 0.5

Fig. 15   Time evolution of the magnetic pressure wave obtained 
with the sPGD supposing N = 2000 rpm. Set of parameters: � = 0 
degrees, Ip = 13 A, � = �∕2 rad, � = 0.5



proposed in this work make easier performing this analy-
sis. The reason is that computing partial derivatives in the 
separated representation is translated to compute the 
derivatives of one-dimensional functions. As the vast part 
of the one-dimensional functions used in the ROMs are 
polynomials, the computation remains quite simple and 
with low-computational cost enabling online real-time 
calculations.

To illustrate the procedure, imagine a PGD solution con-
cerning 3 parameters:

where we want to analyze the how sensitive is the solution 
around the nominal point �1 = a1, �2 = a2, �3 = a3 . Then, 
the partial derivatives 𝜕f̃

M

𝜕𝜃1
(x, a1, a2, a3) , 

𝜕f̃ M

𝜕𝜃2
(x, a1, a2, a3) and

𝜕f̃ M

𝜕𝜃3
(x, a1, a2, a3) are computed as:

f̃ M =

M∑

m = 1

Xm(x)𝛩
1
m
(𝜃1)𝛩

2
m
(𝜃2)𝛩

3
m
(𝜃3),

where the magnitude of the partial derivative indicates the 
sensitivity of the solution for the given parameter in the 
analysed point (higher magnitude corresponds to higher 
sensitivity). In addition, the sign of the partial derivative 
indicates the direct or indirect relationship between the 
function value and the parameter.

Higher-order derivatives and also derivatives concern-
ing different parameters are also possible. It is important 
to note that the sensitivities are a field, offering large 

𝜕f̃ M

𝜕𝜃1
(x, a1, a2, a3) =

M∑

m = 1

Xm(x)
𝜕𝛩1

m

𝜕𝜃1
(a1)𝛩

2
m
(a2)𝛩

3
m
(a3),

𝜕f̃ M

𝜕𝜃2
(x, a1, a2, a3) =

M∑

m = 1

Xm(x)𝛩
1
m
(a1)

𝜕𝛩2
m

𝜕𝜃2
(a2)𝛩

3
m
(a3),

𝜕f̃ M

𝜕𝜃3
(x, a1, a2, a3) =

M∑

m = 1

Xm(x)𝛩
1
m
(a1)𝛩

2
m
(a2)

𝜕𝛩3
m

𝜕𝜃3
(a3),

Fig. 16   Comparison between sPGD and FEMM results. Set of the parameters (top plot): � = 0 degrees, Ip = 3 A, � = �∕2 rad, � = 0 . Set of the 
parameters (bottom plot): � = 0 degrees, Ip = 13 A, � = �∕2 rad, � = 0.5



information, beyond the behavior around the operat-
ing point.

Since the ROMs are based in the B-field, the sensitivity 
relation between magnetic pressure and the B-field for a 
given parameter �i is [using Eq. (7)]:

Now, as an example of use, we show some analysis that 
can be carried out with the extracted ROMs in different 
regions of the domain. In the first example, we are going 
to focus on the synchronous machine. Here, the sensitivity 
of the solution for the parameters Ip and � is explored in 
an area of interest � ∈ [134.7, 224.8] deg. under the condi-
tions: high current and no eccentricity, high current and 
eccentricity, low current and no eccentricity, and low cur-
rent and eccentricity.

In Figs. 17, 18, 19 and 20 the sensitivity is compared 
with two operating points changing its Ip from 0.5 A to 
20 A. Here, we can observe how much a little change in 
the eccentricity or in the current peak value affects the 
magnetic pressure as well as the B-field for both cases. 
In this operating points, adding eccentricities in the 
order of 0–0.25 mm does not change a lot the sensitiv-
ity behavior.

The second example is reported in Fig. 21 concerning 
the induction motor. Here, the sensitivity of the solution 
for five parameters is explored under a nominal opera-
tion point. Also, the sensitivity of the conductivity when 
its value is not well known was studied concluding that 
this uncertainty does not affect strongly the variables 
of interest.

(26)
�Pn
��i

(�) =
1

�
⋅ Bn

�Bn
��i

(�).

5 � Conclusions

In this paper a ROM is developed combining both the 
sPGD and RB techniques. It can be observed that the 
results of the FEMM software are reproduced with a high 
accuracy using the proposed ROM model. A reduction in 
the computational time and resources needed to obtain 
parametric electromagnetic forces is achieved. In fact, 
the computational cost can be carried out by a standard 
laptop in less than 0.2 s.

The saving in computational time and resources 
opens a door for design, analysis, optimization and 

Fig. 17   Sensitivity of Bn and Pn for small changes in Ip . Operating 
point: � = 0 degrees, Ip = 0.5 A, � = �∕2 rad, � = 0

Fig. 18   Sensitivity of Bn and Pn for small changes in DOs ,Or
 . Operating 

point: � = 0 degrees, Ip = 0.5 A, � = �∕2 rad, � = 0

Fig. 19   Sensitivity of Bn and Pn for small changes in Ip . Operating 
point: � = 0 degrees, Ip = 20 A, � = �∕2 rad, � = 0



simulation of NVH in electric motors under this rationale 
in the electromagnetic step.

In addition, the proposed ROM facilitates the integra-
tion and coupling of the force computation in electric 
motors to other systems (such as the EV system) because 
of the simplicity of the obtained algebraic expression.

The extremely low computational cost of the pro-
posed ROM is independent of the complexity of the 
model used to offline obtain the snapshots. In this paper 
the two-dimensional models presented in Sect. 2 are 
used through formulation available in the free software 
FEMM.

Furthermore, richer finite element models can be 
used to obtain the electromagnetic forces to construct 
the ROM without major difficulties. For example, a tran-
sient three-dimensional model taking into consideration 
motion.

Although it is true that using these models to obtain 
the snapshots for the offline stage is more time consum-
ing, the computing time needed for the ROM once it is 
constructed still would not be affected (as it discussed in 
the results, the computing time of the ROM is less than 
half a second).

Our works in progress address more complex models 
such as a transient 3-dimensional model as well as the cou-
pling of the numerical model with circuit equations. Thus, 
the computational cost reduction would be more drastic 
allowing to deal with the NVH problem with high-accurate 
models which can be computationally prohibitive.

In addition, while analysing these cases, it would 
be interesting to add other type of faults as a param-
eters in the sPGD model to see its effect under different 
circumstances.
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Appendix

Obtaining the RB from the singular value 
decomposition (SVD)

Let us consider � as the matrix containing the n 
snapshots collected for our problem. Therefore, 
� = [y⃗1,… , y⃗n] ∈ ℝ

m×n is a matrix with rank d ≤ min(m, n) , 
where y⃗1,… , y⃗n are column vectors. Further, let
� = ���⊤ be its singular value decomposition, where
� = [u⃗1,… , u⃗m] ∈ ℝ

m×m  ,  � = [v⃗1,… , v⃗n] ∈ ℝ
n×n  a r e

orthogonal matrices and the matrix � ∈ ℝ
m×n has the form 

given by Eq. (28). Then for any l = {1,… , d} the solution to
following constrained optimization problem:

with the Kronecker Delta tensor defined as

is given by the singular vectors {u⃗i}
l
i=1

 , i.e., by the first l 
columns of � . Moreover, the maximum value of Eq.(27) is 
given by the sum of the first l singular values of the diago-
nal matrix �,

(27)
max

⃗̃u1,…,⃗̃ul∈ℝ
m

l�

i=1

n�

j=1

���⟨y⃗j ,
⃗̃ui⟩ℝm

���
2
,

subject to ⟨⃗̃ui , ⃗̃uj⟩ℝm = 𝛿ij for 1 ≤ i, j ≤ l,

�ij =

{
1, if i = j,

0, if i ≠ j,

Fig. 20   Sensitivity of Bn and Pn for small changes in DOs ,Or
 . Operating 

point: � = 0 degrees, Ip = 20 A, � = �∕2 rad, � = 0

http://creativecommons.org/licenses/by/4.0/
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In Eq. (28), the diagonal entries are sorted in descending 
order.

The problem (27) consists in approximating all spatial 
coordinate vectors y⃗i of � by a linear combination of normal-
ized vectors as well as possible. The constraint of the prob-
lem serves to normalize the functions u⃗i and thus ensure 
the uniqueness of the solution. It also adds the property of 

(28)
� =

(
� �

� �

)
∈ ℝ

m×n,

� =diag(�1,… , �d) ∈ ℝ
d×d .

orthonormality between the l functions which solves the 
problem.

The choice of l is usually based on heuristic considerations 
combined with observing the ratio between the modeled 
energy to the total energy contained in the system � , which 
is expressed by:

Note also that �2
i
= �i.

(29)�(l) =

∑l

i=1
�i

∑d

i=1
�i

.

Fig. 21   Sensitivity of Pn (the modulus of the alternating component) for small changes in the parameters shown in the plot. The operating 
point is f = 50 Hz, � = 0 degrees, Ip = 3 A, s = 2.5 %, � = 34.45 MS/m, � = 0.375 mm. The region explored is � ∈ [22.2, 53.8] deg.



In our case,  we considered the constraint 
1 > 𝜁(l) > 0.9999 to construct the RB.
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