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Introduction

Based on marine geophysics, seafloor geology, and ophiolite studies, the classical picture of a uniformly layered oceanic crust (with basaltic lava flows, basaltic sheeted dikes, and gabbros, from top to bottom) emerged in the early 1970s [START_REF] Anonymous | Penrose field conference: Ophiolites[END_REF]. About 50 years later, our vision of the architecture of the ocean crust has considerably evolved, with a continuously growing understanding of its variability at the global scale. This variability results from various modes of accretion that are controlled by magma supply to the ridge, which in turn is related on the first order to spreading rate (e.g., [START_REF] Chen | Oceanic crustal thickness versus spreading rate[END_REF][START_REF] Bown | Variation with spreading rate of oceanic crustal thickness and geochemistry[END_REF][START_REF] Cannat | Assessing the conditions of continental breakup at magma-poor rifted margins: What can we learn from slow spreading mid-ocean ridges?[END_REF][START_REF] Coogan | Contrasting cooling rates in the lower oceanic crust at fast-and slow-spreading ridges revealed by geospeedometry[END_REF][START_REF] Dick | An ultraslow-spreading class of ocean ridge[END_REF][START_REF] Ildefonse | Formation and evolution of oceanic lithosphere: New insights on crustal structure and igneous geochemistry from ODP/IODP Sites 1256, U1309, and U1415[END_REF][START_REF] Karson | Discovering the deep: A photographic atlas of the seafloor and ocean crust[END_REF]. microstructures in gabbros and anorthosites, respectively, from the root zone of the sheeted dyke complex and the underlying foliated gabbros (FG) in the Samail ophiolite. They found crystallographic preferred orientations (CPO) which indicate subsiding of a crystal mush from the AML, consistent with the gabbro glacier mechanism forming the upper part of the lower crust in the Samail ophiolite. This conclusion is consistent with the results of [START_REF] Brown | Textural character of gabbroic rocks from pito deep: A record of magmatic processes and the genesis of the upper plutonic crust at fast-spreading mid-ocean ridges[END_REF], who analyzed microstructures in the upper 800 m of the recent lower oceanic crust from Pito Deep at the EPR. They propose that the analyzed gabbroic rocks crystallized within the AML and subsequently subsided from the AML downward to form at least the upper 800 m of the plutonic crust. Similarly, [START_REF] Perk | Petrology and geochemistry of primitive lower oceanic crust from Pito Deep: Implications for the accretion of the lower crust at the Southern East Pacific Rise[END_REF] investigated the microstructures, petrology, and geochemistry of the uppermost 1,000 m below the sheeted dike complex at Pito Deep and concluded that gabbros might have crystallized at shallow depths, and subsequently subsided and formed the observed foliated and layered textures within the uppermost 1,000 m of the gabbros. However, they compare their data with those from Hess Deep and suggest that the formation of the latter may have occurred by subsiding crystal mush in the shallow part of the lower crust, and by in-situ crystallization deeper in the crust. Van-Tongeren et al. (2015) studied plagioclase CPO along the entire lower crust in Wadi Khafifah (Wadi Tayin block, Samail ophiolite) and found no down section trends, neither in fabric strength nor in lineation orientation that are predicted in the gabbro glacier model. Hence, their data support the sheeted sill model for the studied crustal section. Seismic experiments performed at the Juan de Fuca Ridge [START_REF] Canales | Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge[END_REF], the Galapagos Spreading Center [START_REF] Boddupalli | Distribution of crustal melt bodies at the hot spot-influenced section of the Galápagos spreading centre from seismic reflection images[END_REF] and the EPR [START_REF] Marjanovic | A multi-sill magma plumbing system beneath the axis of the East Pacific Rise[END_REF][START_REF] Marjanovic | Distribution of melt along the East Pacific Rise from 9°30′ to 10°N from an amplitude variation with angle of incidence (AVA) technique[END_REF] provide evidence for the occurrence of small melt sills within the lower crust supporting the possibility of in-situ crystallization beneath the spreading center. A weakness of most of the abovementioned studies is that they either cover only parts of the lower oceanic crust (e.g., [START_REF] Brown | Textural character of gabbroic rocks from pito deep: A record of magmatic processes and the genesis of the upper plutonic crust at fast-spreading mid-ocean ridges[END_REF][START_REF] Faak | Near conductive cooling rates in the upper-plutonic section of crust formed at the East Pacific Rise[END_REF][START_REF] Morales | Microstructures and crystallographic preferred orientation of anorthosites from Oman ophiolite and the dynamics of melt lenses[END_REF][START_REF] Nicolas | Subsidence in magma chamber and the development of magmatic foliation in Oman ophiolite gabbros[END_REF][START_REF] Perk | Petrology and geochemistry of primitive lower oceanic crust from Pito Deep: Implications for the accretion of the lower crust at the Southern East Pacific Rise[END_REF] or provide a relatively low spatial resolution along the crust [START_REF] Coogan | Constraining the cooling rate of the lower oceanic crust: A new approach applied to the Oman ophiolite[END_REF][START_REF] Coogan | Contrasting cooling rates in the lower oceanic crust at fast-and slow-spreading ridges revealed by geospeedometry[END_REF][START_REF] Vantongeren | Cooling rates in the lower crust of the Oman ophiolite: Ca in olivine, revisited[END_REF][START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF] making well-founded, unequivocal interpretations in terms of lower crustal accretion difficult.

Our objective in this paper is to test fast-spread crust accretion models by quantifying the vertical variability of CPO and Crystal Size Distribution (CSD) of primary silicate phases (plagioclase, clinopyroxene, olivine) in gabbroic rocks, as a qualitative proxy for strain and cooling, in the lower oceanic crust Wadi Gideah in the Samail ophiolite [START_REF] Garbe-Schoenberg | Trace element systematics in the plutonic section of fast-spread oceanic crust-evidence from the Wadi Gideah reference profile (Wadi Tayin Massif, Oman ophiolite)[END_REF][START_REF] Koepke | A Reference Section through the Lower Fast-spreading oceanic crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF][START_REF] Müller | Wadi Gideah (Samail ophiolite): Implications for the crustal accretion at fast-spreading mid-ocean ridges[END_REF][START_REF] Müller | Oman ophiolite: Petrological and geochemical investigation of fast-spreading crust formation processes[END_REF][START_REF] Oeser | A profile of multiple sulfur isotopes through the Oman ophiolite[END_REF]. Our data provide a high spatial resolution along the entire gabbroic section exposed at Wadi Gideah. A further increase of the spatial resolution will also be reached in upcoming publications by integrating drill core data in the frame of the Oman Drilling Project (see below; [START_REF] Kelemen | & the Oman Drilling Project Science Team[END_REF]. For the drill sites within the layered gabbro and in the transition between layered and foliated gabbro, the Wadi Gideah was chosen because it displays a continuous crustal section from the crust/mantle boundary to the sheeted dike horizon in a region (the southern Wadi Tayin massif) that is arguably not disturbed by any secondary magmatic event such as large intrusions of wehrlites or gabbronorites (e.g., [START_REF] Goodenough | Records of ocean growth and destruction in the Oman-UAE ophiolite[END_REF], and which shows petrographic/petrologic features similar to gabbros from the East Pacific Rise (e.g., [START_REF] Koepke | Gabbros from IODP Site 1256, equatorial Pacific: Insight into axial magma chamber processes at fast spreading ocean ridges[END_REF][START_REF] Müller | A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF][START_REF] Müller | A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF][START_REF] Müller | Oman ophiolite: Petrological and geochemical investigation of fast-spreading crust formation processes[END_REF].

Geological Background: The Wadi Gideah Reference Section

The samples investigated here are a subset of a sample suite collected over four field campaigns along Wadi Gideah in the Wadi Tayin block of the Samail ophiolite (e.g., [START_REF] Nicolas | Accretion of Oman and United Arab Emirates ophiolite-discussion of a new structural map[END_REF][START_REF] Pallister | Samail Ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber[END_REF], Figure 1), with the aim of constructing a complete analytical data set for a reference section in an analog to fast-spreading centers [START_REF] Garbe-Schoenberg | Trace element systematics in the plutonic section of fast-spread oceanic crust-evidence from the Wadi Gideah reference profile (Wadi Tayin Massif, Oman ophiolite)[END_REF][START_REF] Koepke | A Reference Section through the Lower Fast-spreading oceanic crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF][START_REF] Müller | Wadi Gideah (Samail ophiolite): Implications for the crustal accretion at fast-spreading mid-ocean ridges[END_REF][START_REF] Müller | Oman ophiolite: Petrological and geochemical investigation of fast-spreading crust formation processes[END_REF][START_REF] Oeser | A profile of multiple sulfur isotopes through the Oman ophiolite[END_REF]. Beside the microstructural data presented herein, the results of detailed petrographic and petrological, trace element and isotopic, as well as crystallization temperature studies will be published soon qualifying the Wadi Gideah section as a reference section of lower fast-spread crust in the Samail ophiolite. This reference section also provides the opportunity to integrate data from the drill cores GT1 and GT2 of the Oman Drilling Project [START_REF] Kelemen | & the Oman Drilling Project Science Team[END_REF], which are located in the same Wadi. The 400 m long gabbro sections from drill sites GT1 and GT2 are located in the LG and in the layered/foliated gabbro transition of the Wadi Gideah, respectively. Wadi Gideah drains southward from a divide located in the harzburgites of the mantle horizon (Figure 1a). The crustal section dips gently ∼28° to the south [START_REF] Pallister | Samail Ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber[END_REF], a value which is representative of the whole Wadi Tayin block [START_REF] Nicolas | Variable crustal thickness in the Oman ophiolite: Implication for oceanic crust[END_REF].

Materials and Methods

Sample Material

A subset of 68 samples (out of 293 samples for the whole reference section) was used for measuring CPO and CSD in this study (Table 1). The samples were initially obtained for geochemical analysis only and were not oriented in the field with respect to the structural context. They were cut perpendicular to the foliation and parallel to the lineation of the samples, when visible. The analyzed samples span the entire lower crustal section, with 44 samples from the lower, LG and the Moho transition zone (MTZ), 16 samples from the FG, five samples from a transition zone between varitextured and foliated gabbros (VG/FG TZ), and three samples which are considered to represent the frozen AML (e.g., [START_REF] Müller | A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF][START_REF] Müller | A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF]Müller et al., 2017, Figure 1, Table 1). Wadi Gideah approximately parallels the inferred ridge axis which was mapped by [START_REF] Nicolas | Accretion of Oman and United Arab Emirates ophiolite-discussion of a new structural map[END_REF] about 10 km east of Wadi Gideah. The height above the base of the MTZ (in meters above MTZ; mam), was recalculated for each sample using the average 28° tilt of the section and the GPS coordinates of the sample locations. The vertical interval between each sample averages 81 m (and ranges from 1 to 389 m). Samples were not oriented in the field because they were initially taken for geochemical analyses. The foliation measured in the field indicate average dips of 26° and 74° to the South-West for the LG and FG, respectively, steepening from the lower to the upper FG (e.g., [START_REF] Nicolas | Variable crustal thickness in the Oman ophiolite: Implication for oceanic crust[END_REF][START_REF] Nicolas | Accretion of Oman and United Arab Emirates ophiolite-discussion of a new structural map[END_REF][START_REF] Pallister | Samail Ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber[END_REF][START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF]. This is consistent with the general structure of the gabbroic crust described in Oman, with sub-horizontal LG, subparallel to the crust-mantle boundary, and steep FG (e.g., [START_REF] Nicolas | Accretion of Oman and United Arab Emirates ophiolite-discussion of a new structural map[END_REF]. Mineral foliations in the LG unit are subparallel to the dm-scale layering. The orientation of the modal layering was measured by [START_REF] Zihlmann | Hydrothermal fault zones in the lower oceanic crust: An example from Wadi Gideah, Samail ophiolite, Oman[END_REF] in a stratigraphic horizon <500 m above and Crustal height of the sample in meters above the Moho. d Phase proportions in percentage of all acquired pixels; pl, plagioclase; cpx, clinopyroxene; ol, olivine; opx, orthopyroxene; ox, oxides (ilmenite and magnetite); sec, summarized secondary alteration phases (hornblende, chlorite, actinolite); note that oxides may also be secondary products of serpentinization. e J index of the orientation distribution function quantifying the fabric strength of the phase per sample with 1 = random fabric and infinity = single crystal; J index of Pl and Cpx have been calculated using grain data, J index of olivine was calculated using grid data. f BA or BC index quantifying the pole figure symmetry of plagioclase and clinopyroxene, respectively. Varies between 0 and 1 with 0 = purely foliated and 1 = purely lineated symmetry; BA of Pl and Cpx have been calculated using grain data, BA of olivine was calculated using grid data. g Grain orientation spread calculated as the angle between the crystallographic orientation of an individual pixel and the crystallographic orientation of the corresponding grain averaged per phase and sample. h Grain average misorientation calculated as the average misorientation between individual pixel and its four nearest neighbored pixels averaged per phase and sample italic values are standard errors (std err) of the corresponding GOS or GAM, respectively empty cells belong to data sets which have not been used for plots due to bad data quality or a general lack of grains.

below a large fault zone at approximately 1,200 mam in Wadi Gideah and is 154/38° dipping to the South-East. This is consistent with previous field studies in the Wadi Tayin massif (e.g., [START_REF] Pallister | Samail Ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber[END_REF].

Regardless of the dm-scale modal layering, which can hardly be observed in thin sections, LG and FG can be distinguished at the thin section scale by their grain size, which is ∼200 µm on average for plagioclase in the foliated and ∼310 µm on average in the LG. The LG transition to FG upward, at about 2,600 mam, through a diffuse, <100 m thick zone where LG and FG are mixed, and where the foliation rapidly steepens, as commonly described in many sections of the ophiolite (e.g., [START_REF] Macleod | A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges[END_REF]. Up-section, FG give way to varitextured gabbros (VG) from ∼4,150 mam. These isotropic rocks are called "varitextured" due to their strong heterogeneity in texture. They are highly variable in grain size, texture and chemical/modal composition (e.g., [START_REF] France | Interactions between magma and the hydrothermal system in the Oman ophiolite and in IODP hole 1256D: Fossilisation of a dynamic melt lens at fast spreading ridges[END_REF][START_REF] Macleod | A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges[END_REF].

Crystallographic Preferred Orientations

Plagioclase, clinopyroxene, and olivine CPO were measured using the Electron Back-Scattered Diffraction (EBSD) technique (e.g., [START_REF] Prior | EBSD in the earth sciences: Applications, common practice, and challenges[END_REF], using a JEOL JSM-5600 Scanning Electron Microscope (SEM) at Géosciences Montpellier. The system is equipped with an Oxford/Nordlys EBSD detector; the diffraction patterns were collected using the Channel 5® software suite, and later the AZtec software from Oxford Instruments. The SEM was used at an accelerating voltage of 15 kV. Crystallographic orientation maps were obtained for each sample, covering about 80% of a thin section (2.5 × 4 cm) with a sampling step size ranging from 14 to 35 μm. The indexing rate (fraction of patterns that are automatically indexed during mapping) ranges from ∼25% to 94% in the raw maps (75% on average). The raw data contains all indexed pixels with a mean angular deviation (i.e., the angle between the acquired diffraction pattern and the indexing solution proposed by the software) ≤1°. A first stage of post-acquisition data processing was done using the Tango software of the Channel 5® suite to increase the quality of the maps. It consists of removing isolated pixels (either non-indexed or indexed as a given phase and surrounded by pixels indexed for another phase) and filling non-indexed pixels that have a minimum of 5 neighbor pixels with the same orientation. The EBSD data sets were then processed using MTEX (version 5.2.3), a free MATLAB toolbox for analyzing and modeling crystallographic orientations (http://mtex-toolbox.github.io; [START_REF] Bachmann | Texture analysis with MTEX-free and open source software toolbox[END_REF][START_REF] Hielscher | A novel pole figure inversion method: Specification of the MTEX algorithm[END_REF]. We used MTEX to identify grains and produce maps from the EBSD data, calculate pole figures of plagioclase, clinopyroxene, and olivine, analyze the crystallographic misorientations within grains, and calculate CPO strength and symmetry indices. A minimum of 100 grains is required to provide accurate fabric strength analyses (Ismail & Mainprice, 1998). We therefore plotted only data and contoured pole figures from measurements were at least 100 grains of a phase have been analyzed.

Grains were identified from the EBSD data by choosing a 10° threshold, over which the misorientation between two adjacent pixels indexed for the same phase is assumed to be a grain boundary. Grains that have a surface smaller than five pixels could be erroneous measurements and were removed from the data set. Twins in plagioclase have been distinguished from grain boundaries by filtering out the 180° (±5°) misorientations between adjacent grains around the twin rotation axes (crystallographic axes and poles [100],

[100], [010], [010], [001], and [001]). Twins in clinopyroxene have been distinguished from grain boundaries by filtering out the 180° (±5°) misorientations between adjacent grains around the crystallographic axes ( 100) and ( 001). Pole figures were calculated using both the pixel data set from EBSD map data, and the average crystallographic orientation for each grain or each twinned domain in case of twinned grains. The second option can be preferred to avoid the overrepresentation of larger grains when the grain size distribution is heterogeneous at the thin section scale. We used this second option for clinopyroxene and plagioclase, and the pixel data (first option) for olivine. The intense mesh-serpentinization of olivine leads to misguided separation of primary grains into several "subgrains." Therefore, the average orientation option is misleading for olivine. The CPO strength for each phase is determined using both the J index (J) of the Orientation Distribution Function that is exclusively based on crystallographic orientations (e.g., [START_REF] Bunge | Texture analysis in materials science: Mathematical methods[END_REF][START_REF] Mainprice | Interpretation of SKS-waves using samples from the subcontinental lithosphere[END_REF], and the M-index [START_REF] Skemer | The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation[END_REF], based on the misorientation angle distribution. J varies between 1 (for a uniform distribution) and infinite (for a single crystal); M varies from 0 to 1 (see [START_REF] Mainprice | Descriptive tools for the analysis of texture projects with large datasets using MTEX: Strength, symmetry and components[END_REF], for the details of J and M calculations and for a comparison between these two indexes). The Orientation Distribution Function was calculated using the "de la Vallee Poussin" kernel with a halfwidth of 10° [START_REF] Schaeben | The de la Vallée Poussin standard orientation density function[END_REF][START_REF] Mainprice | Descriptive tools for the analysis of texture projects with large datasets using MTEX: Strength, symmetry and components[END_REF].

Journal of Geophysical Research: Solid Earth

The symmetry of the CPOs is determined using the BA-index (BA) for plagioclase and BC-indices (BC) for clinopyroxene and olivine, which are calculated from the Point (P), Girdle (G), and Random (R) indices that are themselves calculated from the eigenvalues (λ 1 ≥ λ 2 ≥ λ 3 , with λ 1 + λ 2 + λ 3 = 1) of the orientation tensor for each pole figure [START_REF] Mainprice | Descriptive tools for the analysis of texture projects with large datasets using MTEX: Strength, symmetry and components[END_REF][START_REF] Satsukawa | A database of plagioclase crystal preferred orientations (CPO) and microstructures-Implications for CPO origin, strength, symmetry and seismic anisotropy in gabbroic rocks[END_REF][START_REF] Vollmer | An application of eigenvalue methods to structural domain analysis[END_REF]:
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In a plagioclase CPO that results from magmatic flow, the foliation is classically marked by a preferred orientation of planes ( 010), and the lineation by a preferred orientation of axes [100] (e.g., [START_REF] Mock | Formation of igneous layering in the lower oceanic crust from the Samail Ophiolite, Sultanate of Oman[END_REF][START_REF] Satsukawa | A database of plagioclase crystal preferred orientations (CPO) and microstructures-Implications for CPO origin, strength, symmetry and seismic anisotropy in gabbroic rocks[END_REF]. BA is 0 for a perfect axial-B CPO, an oblate (planar) fabric defined by a strong point alignment of ( 010) with a girdle distribution of [100], and it is 1 for a perfect axial-A CPO, a prolate (linear) fabric with a strong point maximum concentration of [100], and parallel girdle distributions of ( 010) and ( 001). BA is 0.5 for the intermediate p-type CPO with point maxima in [100], (010), and (001) [START_REF] Satsukawa | A database of plagioclase crystal preferred orientations (CPO) and microstructures-Implications for CPO origin, strength, symmetry and seismic anisotropy in gabbroic rocks[END_REF]. With pyroxene and olivine, the situation is similar, except for the magmatic lineation that is then marked by the preferred orientation of [001] axes. Hence we use BC, to characterize the variations between a perfect oblate (BC = 0) and a perfect prolate (BC = 1) CPO. BA and BC are only presented for those samples that show a significant CPO. Therefore, a few samples with pole figures indicating no fabric are not included into BA or BC plots.

In EBSD maps, the misorientation within grains is quantified using four parameters, the misorientation to the mean (M2M), the grain orientation spread (GOS), the kernel average misorientation (KAM), and the grain average misorientation (GAM). M2M is, for each pixel within a grain, the angle between the crystallographic orientation of that pixel and the average crystallographic orientation of the grain. It visualizes the misorientation between domains separated by subgrain boundaries or the progressive misorientation related to undulose extinction in optical microscopy. The GOS is, for each grain, the average M2M. The KAM is, for each pixel, the average misorientation (lower than 10°) of the nearest n neighbors (n = 4 here, see [START_REF] Wright | A review of strain analysis using electron backscatter diffraction[END_REF] for a review of misorientation parameters). The GAM is, for each grain, the average KAM.

Crystal Size Distributions

For the determination of CSD, we used the software CSDCorrections 1.60 provided by [START_REF] Higgins | Measurement of crystal size distributions[END_REF]. The inserted parameters length, width, area and angle of every plagioclase crystal were obtained by EBSD measurements. We used the ellipse minor axis length for the calculation. An average value of the plagioclase roundness was calculated from the EBSD data used for the CSD determination with the software. On the basis of the two-dimensional (2D) data obtained for every indexed grain, we calculated the three-dimensional (3D) aspect ratio of plagioclase following the procedure proposed by [START_REF] Higgins | Numerical modeling of crystal shapes in thin sections: Estimation of crystal habit and true size[END_REF] normed to 1 for the short axis length. Using the equation

 Intermediate Short L l L w ( 2 
)
where L is the 3D length of the indexed parameter, l is the 2D length, and w the 2D width of the grain, the ratio of the 3D intermediate to short axis was calculated for every plagioclase grain with a width of at least 30 µm (=thin section thickness; cf., [START_REF] Higgins | Measurement of crystal size distributions[END_REF]. For calculating the 3D long axis length, we used the skewness defined by

         2D 2D 2D mean / -mode / skewness . SD / w l w l w l
(3) [START_REF] Higgins | Numerical modeling of crystal shapes in thin sections: Estimation of crystal habit and true size[END_REF] where (w/l) 2D is the ratio of the 2D parameters width to length and SD is the standard deviation. The ratio of the 3D intermediate to long axes lengths could be determined using Figure 5 in [START_REF] Higgins | Numerical modeling of crystal shapes in thin sections: Estimation of crystal habit and true size[END_REF]. Hence, the 3D long axis length was calculated by division of the 3D intermediate length (obtained from Equation 2) by the 3D intermediate to long axis ratio (obtained from Equation 3). With these data, a first calculation of the CSD was performed for a massive fabric. The resulting alignment factor was then used as qualifier of fabric (i.e., lineation intensity) for a second CSD calculation taking the previously calculated lineation intensity into account.

Results

The parameters calculated from the EBSD data are presented for plagioclase, clinopyroxene, and olivine in the Table S1 [START_REF] Mock | Electron Backscatter Diffraction (EBSD) analysis through fast-spread lower oceanic crust of Wadi Gideah in the Oman ophiolite[END_REF]. Examples of maps from varitextured, foliated and LG are presented in Figure 2.

General Observations

The lithological units are defined following previous field studies (e.g., [START_REF] Pallister | Samail Ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber[END_REF][START_REF] Nicolas | Variable crustal thickness in the Oman ophiolite: Implication for oceanic crust[END_REF], and are consistent with field observations along the Wadi Gideah section (Garbe-Schoenberg et al., 2014; [START_REF] Koepke | A Reference Section through the Lower Fast-spreading oceanic crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF][START_REF] Müller | Wadi Gideah (Samail ophiolite): Implications for the crustal accretion at fast-spreading mid-ocean ridges[END_REF][START_REF] Müller | Oman ophiolite: Petrological and geochemical investigation of fast-spreading crust formation processes[END_REF][START_REF] Oeser | A profile of multiple sulfur isotopes through the Oman ophiolite[END_REF]. The samples located between 4,969 and 4,627 mam, which we interpret as frozen fillings of the dynamic AML are fine-grained, isotropic gabbros which we named dolerite in this study, and one anorthosite in sample OM10_Gid_ A12_2a (Table 1). Below the AML, the VG transition to the FG unit over the VG/FG TZ from 4,617 to 4,144 mam. Olivine gabbros and olivine-bearing gabbros with occasional poikilitic hornblende or clinopyroxene containing plagioclase and variable grain sizes characterize this unit. Orthopyroxene and granular oxides are present in some of the samples. Both hornblende and oxide are also present in the underlying FG unit from 4,138 to 2,671 mam, which mainly consist of plagioclase and clinopyroxene. Some relicts of highly altered olivine and small amounts of orthopyroxene in some samples complete the mineral compositions in the FG unit. These rocks show a strong foliation and their grain sizes are constantly smaller than below within the LG unit. The occurrence of oxides, hornblende, and orthopyroxene systematically decreases down section in the FG unit. These phases are nearly absent in the LG unit below, which is dominated by mainly olivine gabbros with minor gabbro from 2,625 to 180 mam. The average grain size of the LG unit is clearly higher than in the FG unit, and their fabric is not only foliated but also shows an increasing lineation intensity down section. Samples from the MTZ come from 157 to 16 mam and show gabbro, olivine gabbro and troctolite. They have variable grain sizes, locally with cm-sized plagioclase and clinopyroxene. Their fabric symmetry reveals both foliation and lineation, which are best-defined by plagioclase preferred orientations.

As shown in Figures 2 and3a, secondary phases (e.g., actinolite, chlorite, and hornblende) represent a significant fraction of the modal composition, indicating a degree of alteration between 10% and 80% that decreases down section. In particular, the olivine content (up to 16.7%) has to be taken with caution since olivine is highly sensitive to serpentinization leading to the underestimation of the primary olivine abundance by the EBSD. Regardless of the sensitivity of olivine to serpentinization and the increasing degree of alteration up section, the primary olivine content decreases up section, as observed petrographically. Along the entire crust, plagioclase (15%-76%) and clinopyroxene (0%-38%) form the most abundant primary phases, both showing significant variability along the sampled section. Orthopyroxene was found in several samples with low abundances (up to 6% in a single sample from the LG unit); it is more abundant in the FG and VG units. The primary oxide content (magnetite and ilmenite) is generally low, reaching a maximum of 1.5% in sample OM10-Gid-A17-1 within the FG unit. The abundance of secondary phases, hence the degree of alteration, increases above 3,000 mam at the expense of the primary major components plagioclase and clinopyroxene, which both show decreasing contents above 3,000 mam. Grain size (Figure 3b) is given by the diameter of the equivalent circle (i.e., with the same area as the corresponding grain). Plagioclase and clinopyroxene grain sizes are significantly coarser in the LG unit (beneath 2,600 mam) compared to the FG unit and the VG/FG TZ (Figure 3b). The plagioclase average grain size in the VG/FG TZ and FG unit is about 200 µm; it increases to 310 µm in the LG unit beneath 2,600 mam. Clinopyroxene forms coarser grains with 258 µm on average above 2,600 mam, and 410 µm on average below. The deformation features indicate that brittle or plastic deformations are very weak or absent in most of the samples and that magmatic deformation is dominant throughout the entire section. This is mostly indicated by very low misorientation angles (Figure 7) and the paucity of petrographic indicators for plastic deformation, such as kink banding or undulose extinction in olivine.

The dominance of magmatic deformation implies that the microstructures we observe in our samples can be ascribed to the primary emplacement of crustal material and are not or only weakly affected by any late-stage tectonic process. 

Crystal Size Distributions

CSD results for plagioclase are shown in Figure 4. They are displayed in a conventional way (Figure 4c) with the population density (n; the number of crystals per volume in a size bin divided by the width of the size bin; [START_REF] Garrido | Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite[END_REF][START_REF] Marsh | Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization[END_REF] as a function of the binned crystal size (3D length of the crystals). The CSD plots show linear trends in the mid to large grain sizes and a decreased population density of the finer grains leading to roughly convex upward trends (Figure 4c). Regression lines were calculated using at least three data points and taking a best fit quality of Q > 0.1 into account, as suggested by the CSDCorrections software [START_REF] Higgins | Measurement of crystal size distributions[END_REF] for an acceptable regression quality. While the linear regression MOCK ET AL.
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13 of 27 includes the maximum population density at small grain sizes within most of the gabbros of the AML, VG/FG TZ, and FG units, it is restricted to the larger crystal sizes in the LG unit and the MTZ. The slopes of the regression lines as well as their intercept with the y-axis were plotted for every sample (Figures 4a and4b). [START_REF] Marsh | Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization[END_REF] [START_REF] Marsh | Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization[END_REF]. Orange diamonds are used for calculating the regression line (dashed line). Sample name and corresponding crustal unit are given beside each plot. h, height above base of the MTZ, s, slope, I, y-axis intercept, Q, quality of the regression given by the CSDCorrections software [START_REF] Higgins | Measurement of crystal size distributions[END_REF];

Q max = 1, Q > 0.
1 is acceptable. Lithological units are given at the right. Dotted horizontal lines mark transitions between lithological units.

growth rate [START_REF] Marsh | Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization[END_REF]. It provides implications on the cooling rate of the systems since nucleation exponentially increases with faster cooling (e.g., [START_REF] Garrido | Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite[END_REF].

Consistently with the 2D grain sizes obtained by EBSD, both plots show shifts at 2,600 mam toward gentler slopes (Figure 4a) or lower intercepts (Figure 4b). The average slope in the samples from the AML and the FG unit is -7.97; the steepest slope of -14.2 is in the VG/FG TZ unit, and the gentlest slope of -3.54 is in the FG unit. In the LG and MTZ samples, the average slope is -5.14, with the steepest slope of -8.66 in the uppermost LG unit and the gentlest slope of -1.98 in the lowermost LG above the MTZ. The intercept of the regression lines is plotted on a logarithmic scale in order to consider both very low and very high population densities. Its mean is 3,663 mm -4 in the units above 2,600 m with a minimum of 47 mm -4 in the upper FG unit and a maximum of 29,437 mm -4 in the VG/FG TZ unit. In the sections below 2,600 m, the mean of the intercept is 223 mm -4 with a minimum of 10.5 mm -4 in the lowermost and a maximum of 982 mm -4 in the uppermost LG. Maxima of the interception correspond to the lowest (and therefore steepest) slope and vice versa.

Fabric Strength

The J and M indices show similar trends along the sampled section (Figure 5a). For the sake of simplicity, we describe and discuss the fabric strength using J only. Values of J calculated from average orientation data are slightly lower than those calculated from the pixel data, but show the same relative trends, which we focus on in this study. The depth plots of J for plagioclase and clinopyroxene are given in Figure 5a. With its low number of reliable results, due to the high degree of serpentinization and/or relatively small number of grains, the depth plot of J for olivine is meaningless, and is not presented. Plagioclase data show two distinct trends along the crustal section: the upper part from the dike/gabbro transition at 5,000 mam down to 3,500 mam is characterized by low and relatively stable J, up to 2.1. The second part beneath 3,500 mam shows a stronger scattering, and higher values of J up to 5.1. Because of the significant change in the middle of the FG unit, which is also seen in the symmetry indices (described below), we decided to distinguish the upper foliated gabbros (UFG), where fabric strength is constantly weak, from the lower foliated gabbros (LFG) with increasing and more scattered fabric strengths. J for clinopyroxene shows a similar behavior with relatively stable values <2.5 from the dike/gabbro transition down to about 2,600 mam (Figure 5a). In the LG below 2,600 mam, it is more scattered, and is generally higher, up to 4.84. There is a gentle trend of increasing fabric strength for both plagioclase and clinopyroxene with depth from the top of the LG unit to about 1,000 mam. In the lowermost 1,000 meters, close to the MTZ, the fabric strength of both phases remains more or less constant, and gently decreases in the MTZ samples.

Pole Figures and Symmetry

Representative pole figures for plagioclase and olivine CPO are shown in Figures 5a and5c compilation of all pole figures is available in the PANGAEA database [START_REF] Mock | Electron Backscatter Diffraction (EBSD) analysis through fast-spread lower oceanic crust of Wadi Gideah in the Oman ophiolite[END_REF]. The trace of the foliation, corresponding to the preferred orientation of plagioclase (010), is plotted on pole figures of every phase.

Plagioclase shows point maxima of (010) along the entire section, mostly correlated with point to girdle distributions of [100]. For quantifying the CPO symmetry, we used BA and BC for plagioclase and clinopyroxene, respectively (Figure 5b). Distinct trends along the crustal section are observed for both phases: the upper 1,500 m of the section are dominated by more or less constant indices with an intermediate symmetry in the section from 5,000 down to 3,500 mam (BA ≈ 0.4 for plagioclase and BC ≈ 0.5 for clinopyroxene).

These data indicate that a significant lineation is present within the VG/FG TZ and UFG units as already shown by the pole figures (Figure 5c). At ∼3,000-3,500 mam, a foliation-dominated fabric is represented by a clear minimum of the symmetry indices in both phases (BA = 0.06 for plagioclase and BC = 0.13 for clinopyroxene). Below this horizon, the lineation component gradually becomes stronger down section in both phases, with intermediate to slightly lineated symmetries at the base of the crust with a BA of up to 0.68 for plagioclase and a BC of up to 0.64 for clinopyroxene. 5c).

The pole figure J indices (pfJ) of plagioclase and clinopyroxene (Figure 6) plotted versus the crustal height behave similar to J with very low values in the AML, the VG/FG TZ and the UFG unit. In the LFG and LG units, the values are widely scattered. The pfJ of those axes that represent the lineation ([100] in plagioclase, [001] in clinopyroxene) show slight increases down section from 3,500 to 1,000 mam.

Misorientation

The deformation within grains is quantified using the GOS and GAM (Figures 7a and7b). Generally, the GOS does not vary much in our sample suite. However, similarly to J, the GOS in plagioclase and clinopyroxene decreases at the transition from the UFG to LFG units and slightly increases down section from 3,500 mam. The GOS in olivine is generally more scattered. It tends to increase down section with maxima of about 1.3° between 1,500 and 1,000 mam. Below 1,000 mam, the olivine GOS decreases to 0.5° at the MTZ. The sample average GOS in both clinopyroxene and plagioclase are relatively constant at about 0.5° from 5,000 down to 3,500 mam where they decrease to 0.3°, and gradually increase down section to 0.8° at 800 mam. Below 800 mam, they decrease to 0.5° at the MTZ reproducing the trend observed in olivine. The sample average GAM in all three phases is more scattered than the GOS between 5,000 and 3,500 mam. Similar to the GOS, the GAM increases below 3,500 mam toward a maximum of about 0.7° in olivine and 0.5 or 0.6° in clinopyroxene and plagioclase, respectively. Below 800 mam, the GAM of all phases gradually decreases to about 0.4° at the MTZ. Misorientation in olivine is generally higher than in the other phases. The gradual increase in the LG unit reproduces the increase of J along this section (Figures 5 and7).

Discussion

As summarized in the introduction, apparently contradictory conclusions in several published studies lead to a still on-going debate about the lower fast-spread oceanic crust accretion mechanism(s). Our results obtained in Wadi Gideah provide an opportunity to test the accretion models presented in the introduction in terms of consistency with the microstructural features of the primary phases plagioclase, clinopyroxene and olivine. Magmatic deformation is the most dominant type of deformation in our profile. Low values (≤1°) for the mean angular deviation in all samples emphasize the high data quality, and the relatively high spatial resolution (one sample every 81 m on average) is unique for an entire crustal profile. Compared to previous fabric studies, the high density of our data allows us to identify trends along the crust that were not documented before. This qualifies this section to constrain crustal accretion processes for fast-spreading ridge systems beneath the paleo spreading center that produced the Samail ophiolite. overview of the crustal units we identified in our reference section and compiles microstructural key features and their implications on magmatic processes leading to the emplacement of every unit.

Re-Evaluating End-Member Accretion Models

Both microstructural features and CSD data show correlated changes within the FG unit between 2,600 and 3,500 mam (Figures 34567). The changes at 2,600 mam coincide with the transition between the FG and the LG units. Changes at ∼3,500 mam are located within the FG unit, separating the UFG unit from the LFG unit. The gabbro glacier model (e.g., [START_REF] Henstock | The accretion of oceanic crust by episodic sill intrusion[END_REF] implies microstructural features that should be observed along the crust as a result of ductile flow. Primary phases are expected in the gabbro glacier model to show a sub-vertical lineation close to the AML gradually rotating to horizontal and Moho-parallel at greater depths. Mineral lineations are described and measured in many field studies in Oman (e.g., [START_REF] Nicolas | Accretion of Oman and United Arab Emirates ophiolite-discussion of a new structural map[END_REF][START_REF] Pallister | Samail Ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber[END_REF], and were used as an argument supporting a gabbro glacier model (e.g., [START_REF] Quick | Ductile deformation and the origin of layered gabbro in ophiolites[END_REF]. Since the samples in our study were initially taken for geochemical analysis, they are not oriented and we are not able to use thin section orientations to document the global lineation trend at the crustal scale. However, both BA and BC, for pole figures of plagioclase and clinopyroxene, respectively, do not evolve continuously from oblate to prolate symmetry (i.e., from [100] girdles to [100] point maxima in plagioclase) down section as could be expected in a scenario involving ductile flow from the AML (Figure 5b). Instead, BA and BC show significant variations between adjacent samples. A similar conclusion was drawn by VanTongeren et al. ( 2015) using plagioclase CPO of gabbros from Wadi Khafifah (data points included in Figure 5a). The CPO strength in our study shows an increasing down section trend that may appear consistent with a subsiding crystal mush being transported in a ductile flow. However, the intuitive suggestion that the fabric strength continuously increases within such an environment is questionable. When cumulate mushes from the AML subside, the strength of a fabric does not necessarily depend on the transport distance. As pointed out by [START_REF] Vernon | Review of microstructural evidence of magmatic and solid-state flow[END_REF], other parameters like melt fraction, viscosity of the melt and habit of the solids may control if and how strongly the crystals become aligned. Since the mechanical environment and the physical parameters of an assumed subsiding crystal mush may vary along the crust, fabric strength can also be variable along a crustal section with increasing strain. We therefore argue that a critical parameter is not necessarily the fabric strength but its symmetry. The latter varies along the crustal section: lineation is present in the VG/FG TZ and UFG unit, it is weak or even absent in the LFG unit, and increases with strong scattering in the LG unit. This behavior cannot be easily explained by local differences in physical properties of a crystal mush that is deformed by a gabbro glacier at the crustal scale. It rather suggests that the deformation regime changes along the studied profile.

The low J in the AML region, the VG/FG TZ and the UFG unit indicates a random fabric in the samples from the frozen AML to weak CPO showing both foliation and lineation in the samples from the VG/FG TZ and the UFG unit. [START_REF] Müller | A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF] and [START_REF] Müller | A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF] studied an outcrop representing a frozen AML at the Southern end of Wadi Gideah, where our samples from the AML were taken, and found indicators for multiple sequences of heating and cooling events as well as dynamic vertical movement processes during the lifetime of the AML.

They have also reported evidence for the AML intruding into the sheeted dikes at its highest position and MOCK ET AL.
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18 of 27 2017) also showed that the geochemistry of most of the VG unit corresponds to frozen melts rather than to cumulate rocks. This indicates a regime with locally high melt fraction where crystals are free to rotate and previous crystal alignment, if present, is destroyed by melt perturbation or movement (e.g., [START_REF] Vernon | Review of microstructural evidence of magmatic and solid-state flow[END_REF], possibly resulting in the weak fabrics of our samples from the AML and the VG/FG TZ.

If we posit that crystallization of the lower crust occurred only, or at least to a major extent, in the AML, a mechanism is required to explain clear textural differences between the VG/FG TZ and FG units and the LG unit. We observe a substantial and abrupt change from small to coarser grain sizes of plagioclase and clinopyroxene at the transition from the FG to LG units (Figure 3). The smaller grain sizes qualitatively imply a faster cooling of the VG/FG TZ and FG units and a slower cooled LG unit. Although this reflects in principle the findings of [START_REF] Coogan | Constraining the cooling rate of the lower oceanic crust: A new approach applied to the Oman ophiolite[END_REF][START_REF] Coogan | Contrasting cooling rates in the lower oceanic crust at fast-and slow-spreading ridges revealed by geospeedometry[END_REF], who documented by diffusion modeling that the cooling rate decreases down section in the lower crust of the Oman, they described a gradually decreasing trend. Our findings that grain sizes abruptly increase from the LFG to the LG units are similar to the results of [START_REF] Garrido | Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite[END_REF] who studied plagioclase CSD in Wadi Khafifah. The plagioclase CSD in our study calls for a conditional change leading to abruptly smaller crystals above 2,600 mam (Figure 4) and therefore confirms observations by [START_REF] Garrido | Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite[END_REF] who found a significant change in plagioclase grain size at 2,000 mam in Wadi Khafifah. Taking the slight variations in the crustal section thickness in the Wadi Tayin massif into MOCK ET AL. 

Table 2

Crustal Units With Some Microstructural Key Features account (e.g., [START_REF] Nicolas | Variable crustal thickness in the Oman ophiolite: Implication for oceanic crust[END_REF], the change in crystal size can be assumed to occur at a similar relative crustal height. As a general implication, [START_REF] Garrido | Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite[END_REF] concluded that the difference in grain size is due to varying cooling rates along the crust with an abruptly accelerated cooling above 2,000 m (in Wadi Khafifah) compared to the region below. Faster cooling of the uppermost gabbros is also consistent with the interpretation of [START_REF] Nicolas | Subsidence in magma chamber and the development of magmatic foliation in Oman ophiolite gabbros[END_REF] deduced from gabbros below the root zone of the sheeted dyke complex that these must have been expelled fast through the wall of the AML therefore preserving textures of a fast cooling. [START_REF] Quick | Ductile deformation and the origin of layered gabbro in ophiolites[END_REF] proposed that grain size is inversely related to strain and found that the least strain predicted for uppermost gabbros is consistent with the high textural variety of the rocks near the AML. However, if grain size was inversely related to strain, the increasing strain down section in a subsiding mush should cause a gradual decrease of the grain size. The observed abrupt coarsening of grain sizes at 2,600 mam does not agree with this expectation.

We found that the scenario of a downward ductile flow, inherent in the gabbro glacier model, is consistent with our microstructural data in the uppermost 1,500 m of the gabbroic crust where small, grained textures (Figure 3b) can be explained by an efficient hydrothermal cooling of the AML. Moreover, the observed foliated and lineated fabrics (Figures 5b and5c), reflecting the possible impact of shearing, are consistent with a downward flow model. This scenario is however not applicable to coarser grained regions below (Figure 3b), which show substantial scattering in the fabric strength, which tends to decrease in the lowermost 1,000 m of the crust (Figure 5a). CPO in the LFG and LG units reflect variable degrees of lineation and foliation at the meter scale along the lower crust, as revealed by the down section plots of BA and BC (Figures 5b and5c). [START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF], and wadis Somrah, Khafifah, and Abyad [START_REF] Morris | What do variable magnetic fabrics in gabbros of the Oman ophiolite reveal about lower oceanic crustal magmatism at fast spreading ridges?[END_REF] as resulting from upward migrating melt aligning the solid phases of the crystal mush. Their model of upward migrating melt is restricted to the FG unit in all sampled sections, where macroscopic foliations in the field are generally steep. Both steep foliations below the AML documented by [START_REF] Pallister | Samail Ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber[END_REF] or [START_REF] Morales | Microstructures and crystallographic preferred orientation of anorthosites from Oman ophiolite and the dynamics of melt lenses[END_REF] and our observations from EBSD measurements also agree with this hypothesis in the VG/FG TZ and UFG unit where the pole figures indicate that plagioclase (and to a minor extend also clinopyroxene) fabrics are lineated. This upward flow model is also in agreement with the more efficient cooling of those gabbroic units as indicated by our CSD analyses and also the study of [START_REF] Garrido | Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite[END_REF].

Whereas the uniform subsidence in a gabbro glacier model should result in consistent trends in pole figure symmetry with depth, a down-section trend in a sheeted sill model can be more complex and variable. Crystallization of the gabbros within small melt bodies of variable size and at various depths is not expected to result in clear microstructural or textural trends since small regions crystallize individually and not necessarily in a depth-or time-related sequence [START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF]. The relatively low CPO strength of all phases in the gabbros of the AML, VG/FG TZ, and the UFG unit (Figure 5a) could be interpreted as being consistent with the individual crystallization of small melt-rich magma bodies. However, the globally steep foliations in the UFG of the Oman ophiolite (e.g., [START_REF] Macleod | A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges[END_REF][START_REF] Nicolas | Subsidence in magma chamber and the development of magmatic foliation in Oman ophiolite gabbros[END_REF][START_REF] Pallister | Samail Ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber[END_REF], and observed in Wadi Gideah appear inconsistent with in-situ crystallization of individual sills in the UFG unit. In contrast to the uppermost 1,500 m, the fabric strength in the gabbros below 3,500 mam tends to increase downward, with strong scattering (Figure 5a). Regardless of the observed overall increasing down section trend, the significant variations in fabric strength and pole figure symmetries on a small spatial scale are consistent with individual crystallization of relatively small melt bodies.

Plagioclase pole figures with point maxima in (010) and girdle distributions in [100] in the LFG and upper LG units (i.e., low BA and BC values) indicate a compaction-induced fabric [START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF] where shear, if present, played a minor role. Girdle distributions in [100] pole figures tend to evolve to point maxima down section in the lower LG unit and MTZ (i.e., higher value of BA and BC; Figures 5b and5c) indicating a stronger lineation, hence likely more significant shearing of the lower crustal regions. Regardless of local variations in CPO strength and pole figure symmetries, a general increase of fabric strength and higher impact of shear strain below 3,500 m was not described in previous CPO studies (e.g., [START_REF] Morales | Microstructures and crystallographic preferred orientation of anorthosites from Oman ophiolite and the dynamics of melt lenses[END_REF][START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF], Figure 5a). Local differences are well-pronounced for instance in sam-ples OM12Gid045 and OM12Gid044, which show weaker fabrics, different to those in the samples above and below (see pole figure compilation and microstructural data in [START_REF] Mock | Electron Backscatter Diffraction (EBSD) analysis through fast-spread lower oceanic crust of Wadi Gideah in the Oman ophiolite[END_REF]. The differences in J values between earlier fabric studies and our data may be caused by different approaches in the sample selection (i.e., anorthosite in Morales et al., 2011 vs. gabbroic rocks in our study) and/or calculation of the orientation distribution function (see Section 4.1). They do not change the observation that a down section increasing trend in fabric strength is visible along the LG unit in our study. This trend cannot be explained by crystallizing sills alone. A process affecting the CPO strength and symmetry (development of mineral lineation) of all primary phases could be the active flow of the underlying mantle, as proposed based on the continuity of lineation trajectories in the upper mantle and gabbros above, and the inferred mechanical coupling between the mantle and the crystallizing gabbroic mush [START_REF] Ildefonse | A detailed study of mantle flow away from diapirs in the Oman ophiolite[END_REF][START_REF] Jousselin | Detailed mapping of a mantle diapir below a paleo-spreading center in the Oman ophiolite[END_REF][START_REF] Jousselin | Gabbro layering induced by simple shear in the Oman ophiolite Moho transition zone[END_REF][START_REF] Nicolas | Evidence from the Oman ophiolite for active mantle upwelling beneath a fast-spreading ridge[END_REF][START_REF] Nicolas | Accretion of Oman and United Arab Emirates ophiolite-discussion of a new structural map[END_REF]. In the lower crustal magmatic mush, shear strain imposed by the actively convecting upper mantle can produce a magmatic fabric with a lineation component being most pronounced close to the crust-mantle transition and attenuating up section where the effect of mantle-induced shear is reduced. A limited amount of melt would (a) allow crystal preferred orientation, (b) accommodate the induced shear strain and therefore (c) prevent intracrystalline deformation which would lead to higher misorientation in the grains. Misorientation in the primary phase grains is indeed low, particularly in clinopyroxene and plagioclase, along the entire reference profile (Figure 7). It is generally stronger for olivine than for clinopyroxene or plagioclase (Figure 7), because olivine is more sensitive to crystal-plastic deformation in hypersolidus conditions [START_REF] Yoshinobu | Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers[END_REF]. Decreasing misorientation in the lowermost 800 m of the crust (Figure 7), may relate to a higher melt fraction present in this region when incipient crystal-plastic deformation started to overprint the magmatic fabric. A possible explanation for higher melt proportions in the lowermost 800 m of the crust could be its vicinity to the hot upper mantle or deep melt lenses in the MTZ (e.g., [START_REF] Crawford | Constraints on melt in the lower crust and Moho at the East Pacific Rise, 9 48′ N, using seafloor compliance measurements[END_REF][START_REF] Dunn | Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9 degrees 30[END_REF][START_REF] Garmany | Accumulations of melt at the base of young oceanic crust[END_REF] and correlated emplacement of melt in the MTZ horizon (e.g., [START_REF] Kelemen | Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust[END_REF]. Post-magmatic tectonic processes are unlikely to account for the observed misorientation for two main reasons: (a) tectonic emplacement, for example, during obduction, would be expected to affect the entire crust, and not only the LG unit, and (b) if local regions of the crust were affected by plastic strain, for example, in the proximity of fault zones, they might present sharply contrasting misorientation signals. Fault zones have been described in Wadi Gideah (e.g., [START_REF] Zihlmann | Hydrothermal fault zones in the lower oceanic crust: An example from Wadi Gideah, Samail ophiolite, Oman[END_REF] indicating that local heterogeneities in plastic deformation intensity might exist. However, the sample suite used in this study did not include samples from fault zones; we therefore assume that the misorientation in our samples is not affected by late plastic deformation.

Comparison With Previous Fabric Studies in the Samail Ophiolite

The importance of microstructural features to understand magmatic processes during crustal formation led to several studies performed on plutonic rocks from Oman. [START_REF] Nicolas | Subsidence in magma chamber and the development of magmatic foliation in Oman ophiolite gabbros[END_REF] focused on the root zone of the sheeted dyke complex and the uppermost gabbros and found clear indicators for a crystal mush subsiding from the AML and contributing to the lower crustal accretion. [START_REF] Morales | Microstructures and crystallographic preferred orientation of anorthosites from Oman ophiolite and the dynamics of melt lenses[END_REF] analyzed anorthosites throughout the uppermost 2,000 m of the gabbros and found an increasing strain down section. [START_REF] Jousselin | Gabbro layering induced by simple shear in the Oman ophiolite Moho transition zone[END_REF] investigated microstructures within gabbroic lenses in the MTZ and concluded that the convecting underlying mantle significantly contributes to the deformation of gabbros in the MTZ. [START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF] did not observe any trend in fabric strength along the lower crust in Wadi Khafifah (Figure 5a), which contrasts with the increasing J trend that we observe in the LFG and LG units down to 1,000 mam. We posit that the absence of such a trend in [START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF] is possibly an artifact of the lower data density with an average sample spacing of ∼330 m. In order to test this hypothesis, we identified 13 data points of our sample suite that are close to the stratigraphic heights of VanTongeren's samples (symbols with thick contours Figure 5a). Indeed, the gaps between the selected data points and the overall distribution conceals a down section trend. This also reveals that the number of samples, hence the data density, significantly affects the measurability of trends. With an average spacing of less than 2 m between adjacent samples of LG cored during the Oman Drilling Project, Mock et al. (2020a) 2011) analyzed 15 more or less monomineralic anorthosites mostly from the uppermost 1,500 m of the plutonic crust. The samples correspond to anorthositic layers and lenses of different thickness, which is a significantly different approach to our study using gabbroic samples. [START_REF] Morales | Microstructures and crystallographic preferred orientation of anorthosites from Oman ophiolite and the dynamics of melt lenses[END_REF] found indicators for increasing strain down section below the root zone of the sheeted dyke complex in the Wadi Tayin massif. This is consistent with the plagioclase [100] point maxima, and relatively high BA we observe along the VG/FG TZ and the UFG units. Although we calculated very low J indices of plagioclase and clinopyroxene in those units (<2.03 for plagioclase, <1.97 for clinopyroxene), Morales et al. found J between 2 and 8.7 increasing down section for steeply foliated and widely scattered J between 2 and 11.9 for flat-lying anorthosites (Figure 8 in [START_REF] Morales | Microstructures and crystallographic preferred orientation of anorthosites from Oman ophiolite and the dynamics of melt lenses[END_REF]. They analyzed anorthosites arguing that they "record the evolution of textures controlled by magmatic flow, compaction and recrystallization more clearly than the enclosing gabbros" [START_REF] Morales | Microstructures and crystallographic preferred orientation of anorthosites from Oman ophiolite and the dynamics of melt lenses[END_REF]. Magmatic deformation textures might be weaker in our gabbros where mostly three phases of the main crystallization (cotectic crystallization) are present, leading to the observed low J. Moreover, the formation of monomineralic anorthosite crystallized from a cotectic assemblage containing olivine, clinopyroxene and plagioclase, requires a specific sorting process in the context of layer formation, which is not known up to now, increasing the probability that these rocks are not representative of the overall gabbro section. [START_REF] Nicolas | Subsidence in magma chamber and the development of magmatic foliation in Oman ophiolite gabbros[END_REF] studied the root zone of the sheeted dyke complex with a focus on the transition from the AML to the gabbroic section. They also found evidence for a gabbro mush subsiding from the floor of the melt lens and contributing to the lower crustal accretion. The random fabrics in the uppermost 10 m below the root zone of the sheeted dyke complex is consistent with the random fabrics we see in the AML samples. They also observe increasing fabric strengths below this horizon, first showing [100] girdles, which then evolve to weak point maxima at 365 m below the root zone of the sheeted dyke complex in a way similar to our results in the VG/FG TZ.

In their microstructural investigation of gabbroic lenses within the MTZ, [START_REF] Jousselin | Gabbro layering induced by simple shear in the Oman ophiolite Moho transition zone[END_REF] identified four fabric types depending on the intensity of foliation, lineation or both. We ascribe seven of our samples to the MTZ, between 16 and 157 mam. They also show different fabric symmetries from intermediate (OM15_15D_II) to foliated with a [100] girdle (e.g., OM15_13_II) to foliated and lineated with point maxima in both (010) and [100] (e.g., OM10_Gid_A31). This is consistent with the interpretation of [START_REF] Jousselin | Gabbro layering induced by simple shear in the Oman ophiolite Moho transition zone[END_REF] that both compaction and magmatic shearing imposed by the convecting mantle might play a role in creating magmatic deformation of the lowermost gabbros in Oman. Olivine crystals of the lowermost gabbros in our sample suite partially display [100] point maxima, parallel to [100] lineations of plagioclase (Figure 5c). This likely indicates a plastic deformation component recorded by olivine and is consistent with the type 4 layering described by [START_REF] Jousselin | Gabbro layering induced by simple shear in the Oman ophiolite Moho transition zone[END_REF] in the MTZ.

Combining the Evaluated End-Member Processes to a Hybrid Model

Our results point to a hybrid model of lower crustal as explained in the following and depicted in Figure 8. Intermediate pole figure symmetries (BA and BC close to 0.5) along the uppermost 1,500 m of the profile with point maxima in both [100](010) of plagioclase and (010)[001] of clinopyroxene indicate that the rock fabrics are not only foliated but also show significant lineation. Lineation can be explained by either subsiding crystal mush from the AML (e.g., [START_REF] Quick | Ductile deformation and the origin of layered gabbro in ophiolites[END_REF] or upward migrating porous melt flow [START_REF] Macleod | A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges[END_REF][START_REF] Morris | What do variable magnetic fabrics in gabbros of the Oman ophiolite reveal about lower oceanic crustal magmatism at fast spreading ridges?[END_REF][START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF] being dominant in this section. More scattered CPO strengths and significantly distinct pole figure symmetries in the section between 3,500 mam and the MTZ are well-explained by in-situ crystallization of individual magma reservoirs, and do not agree with cumulates being transported by a global flow mechanism from the AML downward. In the horizon between 3,500 and 2,600 mam, both grain size and CPO (J, pfJ, BA, pole figures) significantly change. These changes occur in the same horizon as changes in geochemical and petrolog-ical data from the same sample suite do (Garbe-Schönberg et al., 2014;[START_REF] Koepke | A Reference Section through the Lower Fast-spreading oceanic crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF][START_REF] Müller | Wadi Gideah (Samail ophiolite): Implications for the crustal accretion at fast-spreading mid-ocean ridges[END_REF][START_REF] Müller | A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF][START_REF] Müller | A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project[END_REF][START_REF] Müller | Oman ophiolite: Petrological and geochemical investigation of fast-spreading crust formation processes[END_REF]. We interpret them as indicators for changing formation mechanisms, calling for a hybrid crustal accretion model that combines in-situ crystallizing melt bodies in the LFG unit and the LG unit with flow-dominated transport of crystals in the UFG unit and VG/FG TZ. A two-mechanisms accretion model is consistent with the sheeted sill model of [START_REF] Kelemen | Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust[END_REF], which posits that the uppermost horizon beneath the AML might form by subsiding mushes from the AML. However, we infer from previous studies [START_REF] Garrido | Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite[END_REF][START_REF] Kelemen | Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust[END_REF][START_REF] Korenaga | Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: Implications for magma transport in the oceanic lower crust[END_REF][START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF] supporting a sheeted sill model that this horizon is relatively thin expanding over only a few hundred meters below the AML. Our results suggest that a change in the accretion mechanism occurred ∼1,500 m below the AML indicating that the lower two thirds of the analyzed section crystallized at depth whereas the upper third results either from subsiding mush from the AML or from upward migrating porous melt flow. We therefore suggest to describe crustal accretion by a hybrid model where several accretion mechanisms play key roles, rather than by the end-member sheeted sill (e.g., [START_REF] Kelemen | Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust[END_REF] or gabbro glacier (e.g., [START_REF] Henstock | The accretion of oceanic crust by episodic sill intrusion[END_REF] models. [START_REF] Boudier | Magma chambers in the Oman ophiolite: Fed from the top and the bottom[END_REF] already proposed a hybrid accretion model where sill intrusions crystallize randomly distributed within a gabbro glacier that expands over the entire lower crust. The gabbro glacier mechanism is restricted in our model to the upper 1,500 m of the lower crust leading to a clear spatial separation between in-situ crystallization within the lowermost 3,500 m and vertical crystal mush movement in the uppermost 1,500 m of the lower crust. This is a key difference between our model and the hybrid model of [START_REF] Boudier | Magma chambers in the Oman ophiolite: Fed from the top and the bottom[END_REF]. Increasing CPO strength accompanied by slightly higher misorientation in the LG unit can be caused by mantle flow-induced deformation [START_REF] Jousselin | Gabbro layering induced by simple shear in the Oman ophiolite Moho transition zone[END_REF][START_REF] Nicolas | Evidence from the Oman ophiolite for active mantle upwelling beneath a fast-spreading ridge[END_REF] in the presence of a limited amount of melt. This (likely syn-magmatic) secondary process is compatible with magma reservoirs crystallizing deep in the crust.

The weak lineation component in plagioclase and clinopyroxene (low BA or BC, respectively) within the LFG unit could then result from the less pronounced effect of shear strain forced by mantle flow higher up in the section. Shear strain induced by the upper mantle flow is also consistent with lineated [100][010] olivine CPO that match the [100](010) lineation of plagioclase as described above. This feature indicates plastically deformed olivine in those samples [START_REF] Jousselin | Gabbro layering induced by simple shear in the Oman ophiolite Moho transition zone[END_REF], as well as increasing GOS and GAM in olivine (Figure 7).

Assuming that the UFG unit started to crystallize within the AML, efficient cooling of this horizon by seawater circulation within the sheeted dike complex can explain the small grain size of the UFG unit. An off-axis hydrothermal cooling system, as suggested by [START_REF] Garrido | Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite[END_REF], reaching the FG unit could alternatively explain finer grain sizes from this region in a scenario of upward migrating magma crystallizing beneath the AML. To form the coarser grained LG unit, a different crystallization regime is required.

Individually crystallizing magma reservoirs are consistent with scattering of the microstructural parameters and the observed differences between several adjacent samples (Table 1; e.g., from OM12_Gid_026 at 1,246 mam to OM12_Gid_027 at 1,237 mam, or from OM11_Gid_A26 at 945 mam to OM11_Gid_A27 at 831 mam). A requirement for in-situ crystallization is a hydrothermal cooling system removing the latent heat of crystallization. The petrological record in gabbros from high-temperature fault zones in the Wadi Gideah implies that such a system indeed exists [START_REF] Koepke | Invasion of seawater-derived fluids at very high temperatures in the Oman Ophiolite-A key for cooling the deep crust at fast-spreading ridges[END_REF]. Although several authors describe hydrothermal activity in the lower crust of the Samail ophiolite (e.g., [START_REF] Abily | Synmagmatic normal faulting in the lower oceanic crust: Evidence from the Oman ophiolite[END_REF][START_REF] Bosch | Deep and high-temperature hydrothermal circulation in the Oman ophiolite-Petrological and isotopic evidence[END_REF][START_REF] Zihlmann | Hydrothermal fault zones in the lower oceanic crust: An example from Wadi Gideah, Samail ophiolite, Oman[END_REF], cooling of these units may be less efficient and slower than within the overlying units (e.g., [START_REF] Coogan | Constraining the cooling rate of the lower oceanic crust: A new approach applied to the Oman ophiolite[END_REF][START_REF] Coogan | Contrasting cooling rates in the lower oceanic crust at fast-and slow-spreading ridges revealed by geospeedometry[END_REF][START_REF] Garrido | Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite[END_REF] resulting in coarser grain sizes of the primary phases. However, this is contradictory to the quantitative cooling results of VanTongeren et al. ( 2008) who calculated cooling rates using Ca in olivine without significant trends down section, or to the fast cooling along the crust numerically modeled by [START_REF] Hasenclever | Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges[END_REF]. We point out that our interpretation from plagioclase CSD that cooling is slower in the LG unit than in the FG unit and the FG/VG TZ is only qualitative. We therefore do not speculate here whether the cooling of the lowermost crust is sufficient to enable in-situ crystallization. Nonetheless, we wish to emphasize that from a microstructural point of view, magma reservoirs crystallizing at depth provide a plausible explanation for the observed trends and variabilities in fabric strength and symmetry.

Conclusions

We sampled a cross section along the Wadi Gideah in the Wadi Tayin massif of the Samail ophiolite in order to establish a reference profile through the lower crust from the AML down to the MTZ. Wadi Gideah provides an ideal opportunity for this, since all primary lithological units of the gabbroic crust (VG/FG TZ, FG, LG, and MTZ) are present and observable in surface outcrops. Our results show that the VG and the UFG units (above 3,500 mam) and LFG and the LG units (below 3,500 mam) accreted either in different deformation regimes or by different processes or both, as indicated by differences in textural features and differences in the characteristics of CPO above and below 3,500 mam. A constantly weak CPO with moderate lineation in the VG/FG TZ and the UFG unit contrasts with stronger variations in the LFG and LG units. This variability is consistent with small-scaled magmatic systems crystallizing individually at various times and depths whereas the former indicate a formation mechanism aligning formerly crystallized phases. We found that our data are in good agreement with a hybrid accretion model where the UFG and VG are either accumulated in the AML and subsiding downward (e.g., [START_REF] Quick | Ductile deformation and the origin of layered gabbro in ophiolites[END_REF] or crystallized from an upward migrating crystal-laden magma (e.g., [START_REF] Macleod | A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges[END_REF]. In our hybrid model, the LFG and LG units formed by multiple sill intrusions (e.g., [START_REF] Kelemen | Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust[END_REF]. This hybrid model is generally consistent with the sheeted sill model proposed by [START_REF] Kelemen | Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust[END_REF], where the gabbros directly beneath the AML are also formed by subsiding crystal mush. However, our data indicate a thicker portion of the upper gabbros being built by subsidence and/ or upward melt migration. The LFG unit between 3,500 and 2,600 mam could represent a transition zone between the two mechanisms. The increasingly lineated fabric from the top of the LFG unit down section, together with a consistent trend of slightly increasing fabric strength, is consistent with shear deformation induced by mantle flow.
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Figure 1 .

 1 Figure 1. (a) Simplified geological map (modified after Peters et al., 2005) of the working area in the Wadi Gideah, Wadi Tayin massif, Samail ophiolite. Red circles mark locations of the analyzed samples along the Wadi, crossing the entire crustal sequence from the mantle transition zone to the sheeted dikes (see depth plot on the right for more details; AML, axial melt lens; VG/FG TZ, varitextured/foliated gabbro transition zone; FG, foliated gabbro; LG, layered gabbro; MTZ, mantle transition zone). (b) Overview of the entire ophiolite complex at the north-eastern coast of the Sultanate of Oman. The light red southernmost block is the Wadi Tayin massif, the red rectangle gives the cutout of (a).

Figure 2 .

 2 Figure 2. (a)(c) Phase maps acquired by EBSD representing a varitextured gabbro (a), a foliated gabbro (b), and a layered gabbro (c). (d) and (f) orientation maps of plagioclase from the same samples. The inverse pole figure color coding uses the x axis of the maps (horizontal) as a reference direction. Sample names and scale bars are given at the base of each image.

Figure 3 .

 3 Figure 3. (a) Modal proportions of the phases plagioclase (blue), clinopyroxene (red), olivine (green), orthopyroxene (black), and secondary phases (gray) estimated by EBSD analysis. (b) 2D grain sizes of plagioclase (blue circles) and clinopyroxene (red diamonds); A and B plotted versus height above base of the MTZ. The grain size is plotted as diameter of a circle with the area of the analyzed grain. Black bars give the standard error (smaller than the symbol in most cases). Note different axes for plagioclase and clinopyroxene. Lithological units are given at the right (see text for definition of the abbreviations). Dashed horizontal lines mark transitions between lithological units.

Figure 4 .

 4 Figure 4. Results of crystal size distribution analysis. Slope (a) and intercept with y-axis (b) of the regression line interpolated from at least three data points of the crystal size distribution calculated after[START_REF] Higgins | Measurement of crystal size distributions[END_REF]. Blue circles are plagioclase data of this study, red crosses are data from[START_REF] Garrido | Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite[END_REF]. Dashed vertical lines give mean from the samples above 2,600, dotted lines below 2,600 m above the Moho (mam). (c) shows representative CSD plots for plagioclase selected for every crustal unit. y-axis gives the population density which is the number of crystals per volume divided by the width of the size bin given on the x-axis[START_REF] Marsh | Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization[END_REF]. Orange diamonds are used for calculating the regression line (dashed line). Sample name and corresponding crustal unit are given beside each plot. h, height above base of the MTZ, s, slope, I, y-axis intercept, Q, quality of the regression given by the CSDCorrections software[START_REF] Higgins | Measurement of crystal size distributions[END_REF]; Q max = 1, Q > 0.1 is acceptable. Lithological units are given at the right. Dotted horizontal lines mark transitions between lithological units.

Figure 5 .

 5 Figure 5. J indices (a) and BA or BC indices (b) of plagioclase and clinopyroxene plotted vs. height above base of the MTZ. Plots show correlating trends with changes at 3,500 m. Blue circles are plagioclase data, red diamonds are clinopyroxene data. Red crosses in (a) are plagioclase data from VanTongeren et al. (2015). Plagioclase data with thicker contours are selected samples close to the stratigraphic height of VanTongeren's data. Their lower spatial resolution conceals a down section trend. Dashed horizontal lines mark transitions between lithological units. (c) pole figures of [100], (010), and (001) of plagioclase (left, blue) and of [100], [010], and [001] of olivine (right, green) arranged by height above base of the MTZ. Representative pole figures for every lithological unit are selected. Sample information are given in the gray box with HaM, Height above the base of the MTZ in meters; n = number of indexed crystals, J, J-index of the orientation distribution function, BA, BA index; BC, BC index; pfJ, J-index of each pole figure (see text for details). Red line represents plagioclase foliation perpendicular to point maximum in (010). Note different color bars. Only the pole figures from samples with more than 100 indexed grains are plotted as contoured figures. n.d. means not determined due to very weak CPO visible in the pole figure. * indicates that we present the BA index for olivine, because the olivine fabric is most pronounced by [100][010] here. We separated the FG unit into upper foliated gabbros (UFG) and lower foliated gabbros (LFG) with respect to significantly differing fabric data; see text for details.

Figure 6 .

 6 Figure 6. pfJ indices of the three crystallographic axes 100, 010, and 001 of plagioclase (a-c) and clinopyroxene (d-f) plotted versus height above the base of the mantle transition zone (MTZ). Blue circles are plagioclase, red diamonds are clinopyroxene data. Red crosses are plagioclase data from VanTongeren et al. (2015). Lithological units are given at the right. Dashed horizontal lines mark transitions between lithological units. We separated the foliated gabbros (FG) unit into upper foliated gabbros (UFG) and lower foliated gabbros (LFG) with respect to significantly differing fabric data; see text for details.

Figure 7 .

 7 Figure 7. Depth plots of (a) the grain orientation spread (GOS) of plagioclase, clinopyroxene, and olivine representing the degree of intracrystalline deformation averaged per phase and sample and (b) the grain average misorientation (GAM) of plagioclase, clinopyroxene, and olivine representing the intensity of sub-grain formation averaged per phase and sample. Dashed horizontal lines mark transitions between lithological units.

  [START_REF] Macleod | A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges[END_REF],[START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF], and[START_REF] Morris | What do variable magnetic fabrics in gabbros of the Oman ophiolite reveal about lower oceanic crustal magmatism at fast spreading ridges?[END_REF] suggested an alternative model for the accretion of the gabbros beneath the AML. They interpret steep foliation in the FG unit of Wadi Abyad[START_REF] Macleod | A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges[END_REF], Wadi Khafifah (

  have shown that even on the meter scale gradual changes in plagioclase fabrics occur within the lower oceanic crust.[START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF] interpret their plagioclase pole figures as representing no or only very weak lineation by the [100] girdle or weakly clustered distributions. We interpret at least the three samples from the lowermost 1,000 m of the crust in VanTongeren et al.(2015); Figure4as revealing a more clustered distribution of[100] indicating a significant lineation component in the fabric. This interpretation would be consistent with the fabrics we observe in the LG unit of Wadi Gideah, showing stronger lineation with depth as quantified by BA and [100] pfJ increasing along the LFG and LG units. The 14 samples we analyzed in the uppermost 1,500 m of the gabbro section (AML, VG/FG TZ, and UFG) provide a high spatial resolution for a better discussion of accretion models, as suggested by[START_REF] Vantongeren | Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite[END_REF].Morales et al. (
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 8 Figure 8. (a) Schematic model of lower crustal accretion beneath fast-spreading mid-ocean ridges based on the results of this study. The data of our study support the crystallization of individual meld bodies (sills) at various depths in the lower oceanic crust (color corresponds to temperature), whereas the data from the varitextured and upper foliated gabbros are in agreement with both a subsiding crystal mush of cumulates from the axial melt lens (orange arrow; see (b) for details) and upward migrating crystal-carrying melt (black arrows and white rectangles; see (c) for details). Both mechanisms may result in the observed steep foliations with significant lineation in the varitextured/foliated gabbro transition and the upper foliated gabbros and agree with our data, symbolized by the question mark. See text for further discussion. Blue arrows represent hydrothermal activity (light blue for the shallow, and dark blue for the deep crust), the curved, dashed lines symbolize the foliations observed in the field.

Table 1 Fabric

 1 Geological unit where the sample was taken. AML, axial melt lens; VG/FG TZ, varitextured/foliated gabbro transition zone; UFG, upper foliated gabbro; LFG, lower foliated gabbro; LG, layered gabbro; MTZ, mantle transition zone. b Lithology estimated by primary modal proportions afterGillis, J. Snow, et al. (2014) with ol, olivine; opx, orthopyroxene; ox, oxide; hbl, hornblende; gb, gabbro, 

		std	Ol err	0.68 0.12		0.85 0.13			0.50 0.05			0.51 0.14			0.52 0.07			0.67 0.05			0.26 0.02			0.41 0.05			0.60 0.09		0.40 0.00				0.60 0.13		0.75 0.09	0.58 0.05		0.66 0.03	
	GAM h	std	Cpx err	0.48 0.06		0.67 0.10			0.41 0.04			0.35 0.00			0.36 0.00			0.47 0.00			0.30 0.00			0.39 0.00			0.32 0.00		0.43 0.00				0.38 0.01		0.32 0.01	0.60 0.01		0.48 0.01	
		std	Pl err	0.46 0.00		0.70 0.00			0.56 0.00			0.28 0.00			0.31 0.00			0.36 0.00			0.34 0.00			0.33 0.00					0.40 0.00				0.35 0.00		0.35 0.00	0.50 0.01		0.41 0.01	
		std	Ol err	1.09 0.26		0.96 0.19			0.69 0.05			0.46 0.05			0.42 0.06			0.65 0.05			0.31 0.03			0.48 0.09			0.63 0.11		0.44 0.02				0.49 0.06		1.07 0.24	0.60 0.06		0.66 0.04	
	GOS g	std	Cpx err	0.44 0.06		0.70 0.08			0.39 0.03			0.40 0.01			0.46 0.01			0.61 0.01			0.38 0.01			0.49 0.01			0.40 0.01		0.51 0.01				0.43 0.01		0.45 0.01	0.70 0.01		0.60 0.01	
	ODF J e BA f BC f	std	Pl Cpx Ol Opx Ox sec Pl Cpx Ol Pl Cpx Ol Pl err	OM10_ AML Dol 4969 29.63 0.06 0.03 0 0.02 70.26 1.12 0.68 0.01	Gid_A11	OM10_ AML an 4627 75.57 0.02 0.06 0.01 0.03 24.31 1.10 1.02 0.01	Gid_	A12_2a	OM10_ AML dol 4627 54.72 0.08 0.1 0.01 0.03 45.07 1.09 0.74 0.00	Gid_	A12_2d	OM10_ VG/ ol-opx-4617 44.56 11 0.01 1.76 0.3 42.37 1.21 1.68 0.37 0.39 0.01	Gid_A13 FG hbl-b	TZ d-ox gb	OM10_ VG/ ol-opx-4404 36.4 15.29 0.01 0.58 0.18 47.53 1.74 1.40 0.43 0.34 0.40 0.00	Gid_A14a FG hbl-b	TZ d-ox gb	OM10_ VG/ hbl-ox-gb 4404 44.52 10.32 0.04 0 0.31 44.79 1.16 1.29 0.40 0.49 0.44 0.00	Gid_A14b FG	TZ	OM12_ VG/ ol-b d-ox 4161 34.89 14.88 1.36 0 0.24 48.61 1.39 1.28 3.86 0.24 0.35 0.68 0.39 0.00	Gid_214 FG gb	TZ	OM10_ VG/ hbl-ox-gb 4144 37.58 10.3 0.04 0 1.42 50.65 2.03 1.92 0.37 0.62 0.37 0.00	Gid_A15 FG	TZ	OM15_30 UFG hbl-b 4138 14.69 6.84 0.11 0.01 0.75 77.61 1.95 0.53	d-ox gb	OM10_ UFG hbl-3939 38.86 26.88 6.01 0.78 0.02 27.45 1.36 1.30 1.86 0.33 0.35 0.47 0.48 0.00	Gid_A16 opx-b	d-ox	ol-gb	OM10_ UFG hbl-b 3749 49.32 22.46 0.02 0 0.15 28.06 1.68 1.78 0.41 0.66 0.42 0.01	Gid_A17 ox-gb	OM15_32 UFG hbl-ox-gb 3747 51.95 19.15 0.03 0 1.07 27.79 1.34 1.68 0.52 0.52 0.53 0.01	OM10_ UFG hbl-b 3592 33.78 23.87 0.04 0 0.08 42.22 1.39 1.97 0.45 0.27 0.68 0.01	Gid_A17_2 ox-gb	OM10_ UFG hbl-b 3565 53.98 18.1 0.13 0 1.53 26.25 1.31 1.69 0.52 0.77 0.56 0.01	Gid_A17_1 ox-gb

and Misorientation Data of the Primary Phases Plagioclase, Clinopyroxene, and Olivine of the Analyzed Samples Along Wadi Gideah Arranged by Height Above the Base of the MTZ a
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