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Polynomial continued fractions for exp(π)

Tanguy Rivoal

June 29, 2022

Abstract

We present two (inequivalent) polynomial continued fraction representations of
the number eπ with all their elements in Q; no such representation was seemingly
known before. More generally, a similar result for erπ is obtained for every r ∈ Q.
The proof uses a classical polynomial continued fraction representation of αβ, for
| arg(α)| < π and β ∈ C \ Z, of which we present a new proof that enables us to
obtain the exact rate of convergence of the convergents of the continued fraction
for eπ. We also deduce some consequences of arithmetic interest concerning the
elements of certain polynomial continued fraction representations of the (transcen-
dental) Gel’fond-Schneider numbers αβ, where α ∈ Q \ {0, 1} and β ∈ Q \Q.

1 Introduction

To prove the irrationality of some classical constant ξ, a standard method is to construct
two sequences of integers (pn)n≥0 and (qn)n≥0 such that 0 6= qnξ − pn → 0 as n → +∞.
One of the most celebrated example is Apéry’s explicit construction [1] of two sequences of
rational numbers whose quotient tends to ζ(3) and prove its irrationality. Apéry’s sequences
are P -recursive of order 2: they are both solutions of the linear recurrence (n+ 1)3un+1 −
(34n3 + 51n2 + 27n + 5)un + n3un−1 = 0. A sequence (un)n≥0 is said to be P -recursive

of order d when it satisfies a linear recurrence relation of the form
∑d

j=0 fj(n)un+j = 0,
fj(x) ∈ C[x], fd(x) 6= 0, and sufficiently many initial values u0, u1, . . . , ud′ ∈ C (for some
d′ ≥ d− 1) to compute un from the recurrence for all n ≥ 0. We shall say that a number

ξ is a PA-number if there exist two P -recursive sequences (pn)n≥0 ∈ QN
and (qn)n≥0 ∈ QN

(not necessarily of the same order) such that pn/qn → ξ as n→ +∞ and whose underlying
recurrences have coefficients in Q[x]. (This notion is related to the ‘Apéry limits’ studied in
[3].) Notice that given two P -recursive sequences solutions of linear recurrences R1 and R2,
it is always possible to assume that R1 = R2, by taking the left lowest common multiple of
R1 and R2 in the non-commutative ring Q(n)[S], where S is the usual ‘shift by +1’; this
procedure increases the order of the recurrence in general.

The termwise sum and product of P -recursive sequences are P -recursive. Hence PA-
numbers form a countable subfield of C we shall denote by P (Q): indeed, if pn/qn → ξ1
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and p̃n/q̃n → ξ2, we have (pnp̃n)/(qnq̃n) → ξ1ξ2, (pnq̃n + qnp̃n)/(qnq̃n) → ξ1 + ξ2 and
qn/pn → 1/ξ1. Given K a subfield of Q, the subfield P (K) of P (Q) corresponds to PA-
numbers for which the underlying linear recurrences can be found with coefficients in
K[x] (but initial values of their solutions are not assumed to be necessarily in K). We
also consider the sets Pd(K) of PA-numbers for which the two underlying recurrences are
exactly of order d ≥ 1 with coefficients in K[x]. P (Q) contains two important subrings
introduced and studied in [7, 8], namely the ring G of G-values (which contains Q, π,
Catalan’s constant G, ζ(3), multiple zeta values, Beta values B(a, b) with a, b ∈ Q, powers
of Gamma values Γ(a/b)b with a, b ∈ N) and the ring E of E-values (which contains ea

and Bessel’s J0(a), a ∈ Q). P (Q) also contains elements which are conjecturally neither
in G nor in E, like Euler’s constant γ and more generally γ + log(x) (x ∈ Q), Γ(a/b) with
a, b ∈ N, and Gompertz constant δ :=

∫∞
0
e−x/(x+ 1)dx; see [4, 18, 19] and [9, p. 424]. It

is not known if all periods in Konsevich-Zagier’s sense are in P (Q).

Because of Apéry’s example, important efforts have been devoted to prove that certain
classical numbers, generically denoted ξ here, are PA-numbers with underlying sequences
of order 2 and coefficients in Q[n]; this then proves ξ to be in P2(Q). Besides an obvious
arithmetic motivation, another one is that this immediately yields a continued fraction
representation for ξ with ultimately polynomial elements (see Lemma 1 in §2), ie we have

ξ = b0 +
a1

b1 +
a2

b2 + · · ·
= b0 +

a1
b1

+
a2
b2

+ · · · (1.1)

where for any n ≥ N0, an = A(n), bn = B(n) for some A(x), B(x) ∈ Q[x] and some
integer N0; the an’s and bn’s are called the elements of the continued fraction [16, p. 5].
Following [5], we say that ξ is represented by a polynomial continued fraction. Recall that
the sequence of convergents (pn/qn)n of the continued fraction on the right-hand side of

(1.1) is pn
qn

:= b0 + a1|
|b1 + a2|

|b2 + · · ·+ an|
|bn where p0 = b0, q0 = 1 and (by convention) p−1 = 1,

q−1 = 0, where the sequences (pn)n≥−1 and (qn)n≥−1 both satisfy the linear recurrence
un = bnun−1 + anun−2, n ≥ 1. Amongst numbers already known to be in P2(Q), we
have algebraic numbers, log(2), π, ζ(n) (n ≥ 2), G, e, δ, π coth(π), Γ(1/3)3/(π

√
3); see

[1, 17, 20, 22], [9, pp. 15, 23, 46, 57, 426] and [16, pp. 266–268]. It is not known if γ, eπ
or e+ π are in P2(Q).

Our main result is an addition to this list:

Theorem 1. For every r ∈ R such that r2 ∈ Q, the number erπ is in P2(Q).
More specifically in the case r = 1, the number eπ is representable by the two (inequiv-

alent) polynomial continued fractions:

eπ = 1 +
6
1
− 560

800
− C(2)
D(2)

− C(3)
D(3)

− · · · − C(n)
D(n)

− · · · (1.2)

= −3 +
200
4

+
3744
1064

− E(2)
F (2)

− E(3)
F (3)

− · · · − E(n)
F (n)

− · · · , (1.3)
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where A(x) := 2(x+ 1)2 + 8, B(x) := 2x+ 3 and

C(x) := 4A(2x− 2)A(2x− 1)B(2x− 4)B(2x),

D(x) := 2B(2x− 2)A(2x) + 4B(2x− 2)B(2x− 1)B(2x) + 2A(2x− 1)B(2x),

E(x) := A(2x− 1)A(2x)B(2x− 3)B(2x+ 1),

F (x) := B(2x− 1)A(2x+ 1) + 2B(2x− 1)B(2x)B(2x+ 1) + A(2x)B(2x+ 1).

By inequivalent, we mean that the continued fractions (1.2) and (1.3) don’t have the
same sequences of convergents, denoted by (p̂n/q̂n)n and (p̃n/q̃n)n respectively; note that
p̂n, q̂n, p̃n and q̃n are integers for all n ≥ 0 because C(n), D(n), E(n), F (n) are integers for
any integer n. We shall also prove that

lim
n→+∞

∣∣∣eπ − p̂n
q̂n

∣∣∣1/n = lim
n→+∞

∣∣∣eπ − p̃n
q̃n

∣∣∣1/n =
1

4
(2−

√
2)4 (1.4)

and that

lim
n→+∞

|q̂n/n!3|1/n = 32(2 +
√

2)2 and lim
n→+∞

|q̃n/n!3|1/n = 16(2 +
√

2)2. (1.5)

The justifications of these limits are given in §4. The growth of q̂n and q̃n is unfortunately
to fast to get a new proof of the irrationality of eπ from these continued fractions, or to
prove that eπ is not a Liouville number, a long standing problem for this number.

We shall deduce Eqs. (1.2) and (1.3) from another continued fraction expansion that
will be proved first using Proposition 1 stated in §2:

eπ = 1 +
4
−1

+
A(0)

2B(0)
+
A(1)
B(1)

+ · · ·+ A(2n)
2B(2n)

+
A(2n+ 1)
B(2n+ 1)

+ · · · (1.6)

where A(x) and B(x) are as in Theorem 1. This is formally not a polynomial continued
fraction and it does not immediately imply that eπ ∈ P2(Q). More generally, an adaptation
of the proof of (1.6) shows that, for every r ∈ R such that r2 ∈ Q,

erπ = 1 +
4r

1− 2r
+
Ar(0)
2B(0)

+
Ar(1)
B(1)

+ · · ·+ Ar(2n)
2B(2n)

+
Ar(2n+ 1)
B(2n+ 1)

+ · · · , (1.7)

where Ar(x) := 2(x+ 1)2 + 8r2 ∈ Q[x] and B(x) := 2x+ 3 (with a simple modification to
the continued fraction if r = 1/2). Two polynomial continued fractions for erπ can then
be obtained in the same way as (1.2) and (1.3) follow from (1.6). This proves the first
assertion of Theorem 1, ie that erπ is in P2(Q) for every r ∈ R such that r2 ∈ Q.

More generally, Proposition 1 implies that, for every α ∈ Q \ {0, 1}, β ∈ Q \ Q, the
transcendental Gel’fond-Schneider number αβ is in P2(Q(α, β2)). Observe that if α ∈ Q
and β2 ∈ Q, then the elements of the continued fractions (deduced by specialisation of
Proposition 1) for these numbers are rational numbers, except possibly the second and
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third ones. This applies for instance to 2
√
2 which is thus proved to be in P2(Q): taking

α = 2 and β =
√

2 in (2.2), we get

2
√
2 = 1− 2

√
2√

2− 3
− −1

9
− 2

15
− 7

21
− · · · − n2 + 2n− 1

3(2n+ 3)
− · · · .

It would be interesting from a number theoretical point of view to obtain a polynomial
continued fraction for 2

√
2 with all its elements in Q and ultimately in Q[n]; none of those

listed in [16, pp. 269–270] seems to provide one. The case of eπ is in fact particularly
remarkable. Taking α = eiπ/2 and β = −2i, or α = e−iπ/2 and β = 2i (both choices
lead in the end to the fractions in Theorem 1), Proposition 1 provides for eπ a polynomial
continued fraction with elements ultimately in Q(i)[n]. This a priori only proves that eπ

is in P2(Q(i)) and surprisingly a more careful analysis leads to Theorem 1. This choice of
parameters is very special in the sense that, taking α = eiπ/k and β = −ki for some integer
k such that |k| ≥ 3, we do not get a continued fraction for eπ with all its elements in Q.

2 Proof of Theorem 1

We first state and prove a useful lemma that make the connection between linear recur-
rences of order 2 and continued fractions.

Lemma 1. Let (pn)n≥−1 ∈ CN and (qn)n≥−1 ∈ CN be two solutions of a recurrence

un = Bnun−1 + Anun−2, n ≥ 1 (2.1)

with initial conditions p−1 = a 6= 0, p0 = b, q−1 = c, q0 = d such that ad 6= bc. Assume
that ξ := limn→+∞ pn/qn exists and is finite.

If cξ 6= a, then
A1

B1
+
A2

B2
+
A3

B3
+ · · · = (ad− bc)ξ

a(a− cξ)
− b

a
.

A continued fraction representation for ξ is readily obtained.

Proof. The sequences p̂n := 1
a
pn and q̂n = 1

ad−bc(aqn−cpn) are solutions of (2.1) with initial
conditions

p̂−1 = 1, p̂0 =
b

a
, q̂−1 = 0, q̂0 = 1.

Moreover,

lim
n→+∞

p̂n
q̂n

=
(ad− bc)ξ
a(a− cξ)

.

The theory of continued fractions [16, p. 6] then ensures that

(ad− bc)ξ
a(a− cξ)

=
b

a
+
A1

B1
+
A2

B2
+
A3

B3
+ · · · .

This completes the proof.
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To prove Eq. (1.6) stated in the Introduction and then Theorem 1, we shall need the
following proposition. For α ∈ C∗, we set log(α) := ln |α|+i arg(α) where −π < arg(α) < π
and for any β ∈ C, αβ := exp(β log(α)).

Proposition 1. Let α ∈ C∗ be such that | arg(α)| < π and β ∈ C \ Z. Set U(x) :=
(x+ 1)2 − β2 and V (x) := (α + 1)(2x+ 3). Then

αβ = 1 +
2β(α− 1)

α + β + 1− αβ −
(α− 1)2U(0)

V (0)

− (α− 1)2U(1)
V (1)

− (α− 1)2U(2)
V (2)

− · · · − (α− 1)2U(n)
V (n)

− · · · . (2.2)

This continued fraction is not new, see for instance [12, p. 105] or [16, p. 269, Eq. (2.3.2)]
(the latter without proof). Even though it is not formally necessary for us to give a
proof of it, we shall give one different of that of [12] (based on an analysis of solutions
of Riccati equation that goes back to Euler). The reason to do that is that our method
directly provides explicit closed form formulas for the convergents of (2.2) as well as rates
of convergence, not given in [12]. The latter are needed to justify (1.4) and (1.5) above.
Moreover, the method can also be adapted to produce other continued fractions for αβ;
see §5 for details. We postpone the proof of Proposition 1 to §3.

Proof of Theorem 1. In Proposition 1, we take α = eiπ/2 and β = 2i, so that αβ = eπ.
We have A(x) = 2U(x) and B(x) = V (x)/(i + 1) where U(x) = (x + 1)2 + 2 and V (x) =
(i+ 1)(2x+ 3) are as in Proposition 1, that yields

eπ = 1 +
4(i+ 1)
−(i+ 1)

+
iA(0)

(i+ 1)B(0)

+
iA(1)

(i+ 1)B(1)
+

iA(2)
(i+ 1)B(2)

+ · · ·+ iA(n)
(i+ 1)B(n)

+ · · · . (2.3)

This polynomial continued fraction has elements ultimately in Q(i)[n] and we seek one
with elements ultimately in Q[n]. The first step is to prove (1.6) in the Introduction, ie
that

eπ = 1 +
4
−1

+
A(0)

2B(0)
+
A(1)
B(1)

+
A(2)

2B(2)
+ · · ·+ A(2n− 1)

B(2n− 1)
+

A(2n)
2B(2n)

+ · · · . (2.4)

To do that, we shall prove that (2.3) and (2.4) are equivalent continued fractions in the
sense that they have the same sequence of convergents (this is not obvious at first glance),
so that they both converge to eπ because the right-hand side of (2.3) does. By [14, p. 235,

Theorem 2.1], two continued fractions b0+ a1|
|b1 + a2|

|b2 +· · · and d0+ c1|
|d1 + c2|

|d2 +· · · are equivalent

if and only if there exists a sequence (ρn)n≥0 such that ρ0 = 1, ρn 6= 0 for all n ≥ 0 and

cn = ρnρn−1an (n ≥ 1), dn = ρnbn (n ≥ 0). Here, considering that b0 + a1|
|b1 + a2|

|b2 + · · · is

the right-hand side of (2.4) and d0 + c1|
|d1 + c2|

|d2 + · · · is the right-hand side of (2.3), we see
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that taking ρ0 = 1, ρ2n+1 = i + 1 and ρ2n+2 = (i + 1)/2 for n ≥ 0, we have cn = ρnρn−1an
(n ≥ 1) and dn = ρnbn (n ≥ 0). Similarily, to prove the continued fraction (1.7) for
erπ stated in the Introduction, we take α = eiπ/2 and β = 2ri in Proposition 1, so that
αβ = erπ can be represented by the continued fraction (2.2) with U(x) = (x + 1)2 + 4r2

and V (x) = (i + 1)(2x + 3), which is then proved to be equivalent to (1.7) by the same
method as above.

Observe the alternance of the factors 1 and 2 in front of B(n) in (2.4), which is formally
not a polynomial continued fraction. Consider now the sequence (pn/qn)n of its conver-
gents, where the sequences (pn)n and (qn)n are solutions of the same system of two linear
recurrences: {

u2n = µ2nu2n−1 + λ2nu2n−2,

u2n+1 = δ2n+1u2n + λ2n+1u2n−1
(2.5)

where, for any n large enough, λn = A(n − 2), µn = 2B(n − 2), δn = B(n − 1). A quick
computation then shows that (p2n+1)n and (q2n+1)n both satisfy

δ2n+1u2n+3 =(
(δ2n+3µ2n+2 + λ2n+3)δ2n+1 + δ2n+3λ2n+2

)
u2n+1 − δ2n+3λ2n+2λ2n+1u2n−1. (2.6)

This is a linear recurrence of order 2 with coefficients in Q[n]. Hence, not only (2.6)
implies that eπ = limn

p2n+1

q2n+1
is in P2(Q), but Lemma 1 applied to (2.6) shows that eπ can

be represented by a polynomial continued fraction with elements in Q[n]. We can similarly
obtain the linear recurrence of order 2 satisfied by (p2n)n and (q2n)n:

µ2nu2n+2 =
(
(δ2n+1µ2n+2 + λ2n+2)µ2n + µ2n+2λ2n+1

)
u2n − µ2n+2λ2n+1λ2nu2n−2 (2.7)

and make the same deductions.
Let us now more precisely show how to obtain (1.2) and (1.3) from (2.4). The process

consists in ‘taking the even and odd part’ of a continued fraction. The two resulting
continued fractions are given by general formulas given in [16], which we repeat below. For
the even part, we have ([16, p. 87, Eq. (2.4.5)])

a1
b1

+
a2
b2

+
a3
b3

+ · · ·

=
b2a1

b2b1 + a2
− a2a3b4
b2(a4 + b3b4) + a3b4

− a4a5b6b2
b4(a6 + b5b6) + a5b6

− a6a7b8b4
b6(a8 + b7b8) + a7b8

− · · · .

Applying this formula to (2.4), we obtain (1.2) after some simplications, which is obviously
a polynomial continued fraction. It is important to note that even though the sequence of
convergents (p̂n/q̂n)n≥0 of (1.2) coincides with (p2n/q2n)n≥0, we do not have p̂n = p2n and
q̂n = q2n for all n ≥ 0 because (1.2) is not the canonical even part of (1.6).
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The formula for the odd part ([16, p. 87, Eq. (2.4.5)]) is

a1
b1

+
a2
b2

+
a3
b3

+ · · ·

=
a1
b1
− a1a2b3/b1
b1(a3 + b2b3) + a2b3

− a3a4b5b1
b3(a5 + b4b5) + a4b5

− a5a6b7b3
b5(a7 + b6b7) + a6b7

− · · · ,

from which we compute the odd part of (2.4), given by the polynomial continued frac-
tion (1.3). Again, we mention that even though the sequence of convergents (p̃n/q̃n)n≥0 of
(1.3) coincides with (p2n+1/q2n+1)n≥0, we do not we have p̃n = p2n+1 and q̃n = q2n+1 for all
n ≥ 0 because (1.2) is not the canonical odd part of (1.6).

Finally, let us prove that the continued fractions (1.2) and (1.3) are not equivalent.
Indeed, if they were equivalent, by the characterization of equivalence used in (i) above,
the quantity ρn := D(n)/F (n) (well defined for all integer n ≥ 2 because F vanishes at no
integer point) would satisfy

C(n)

E(n)
= ρnρn−1 =

D(n)D(n− 1)

F (n)F (n− 1)

for every integer n ≥ 3, hence for all n ∈ C (but finitely many points) because this is an
equality involving rational functions of n. But

C(n)

E(n)
=

(5 + 4n+ 4n2)(5 + 4n)(4n− 3)

4(4n2 − 4n+ 5)(4n+ 3)(4n− 5)

and
D(n)D(n− 1)

F (n)F (n− 1)
=

(43n+ 54n2 + 24n3 + 12)(24n3 + 7n− 18n2 − 1)

4(24n3 + 18n2 + 7n+ 1)(24n3 − 54n2 + 43n− 12)

are not equal because 5/4 is a pole of the former and not of the latter. This completes the
proof of Theorem 1.

Remark. We can produce many more inequivalent polynomial continued fractions for eπ

by taking the odd or even part of (1.2) and (1.3), and so on and so forth.

3 Proof of Proposition 1

We first need to specify the branch of logarithm. It will be necessary below to have
|
√
α + 1| 6= |

√
α− 1|, ie that α /∈ R−. Thus we consider R− as a cut and we set log(α) :=

ln |α|+i arg(α), where −π+2k0π < arg(α) < π+2k0π for some k0 ∈ Z. Moreover, we shall
first prove Proposition 1 under the following supplementary technical assumption (which
will then be lifted): ∣∣e| log(α)|/2 − 1

∣∣ < max |
√
α± 1|, (3.1)

7



where for simplicity, we set max |
√
α ± 1| := max(|

√
α + 1|, |

√
α − 1|), and similarly for

min. A necessary condition for Eq. (3.1) to hold is that k0 = 0. Hence, from now on, we
assume that log(α) is defined with its principal determination. Accordingly, for any z ∈ C,
we set αz := exp(z log(α)).

Note that this weaker version of Proposition 1 is enough to prove Theorem 1, with α = i
and β = −2i. Moreover, (3.1) is always satisfied if α > 1 because |e| log(α)|/2−1

∣∣ = |
√
α−1|

in this case.

3.1 Construction of the convergents

For every integers m,n ≥ 0, let

I(m,n) :=
m!n!

2iπ

∫
C

αzdz(∏m
j=0(z − j)

)(∏n
j=0(z − j − β)

)
where C is any closed direct curve surrounding the poles of the integrand. If α = 1,
then I(n,m) = 0 for all m,n ≥ 0; this case is not interesting even though some lemmas
below are valid for α = 1. The integral I(m,n) is a variation of a family of integrals
appearing in interpolation theory, especially for functions of exponential type, where the
interpolating sets are here N and N + β. When α = eiπ/2, β = −2i or α = 2, β =

√
2,

suitable generalisations of I(m,n) enabled Gel’fond [10] and Kuzmin [13] to prove the

transcendence of eπ and 2
√
2 respectively (1) by interpolating eπz and 2z on Z[i] and Z[

√
2]

respectively. Taking n = 0 and allowing multiplicities for the poles at 0, 1, . . . ,m, the case
α = e leads to a proof of the transcendence of e.

Lemma 2. Let α ∈ C∗ such that | arg(α)| < π and β ∈ C\Z. For every integers m,n ≥ 0,
we have

I(m,n) = Q(m,n)αβ − P (m,n),

where

Q(m,n) := (−1)n
n∑
k=0

(−1)k
(
n
k

)
m!∏m

j=0(k − j + β)
αk

and

P (m,n) := (−1)m+1

m∑
k=0

(−1)k
(
m
k

)
n!∏n

j=0(k − j − β)
αk.

are polynomials in α of respective degree n and m.

Proof. This is an immediate application of the residue theorem applied to I(m,n) because
all the poles of the integrand are simple.

1The interpolating integral is implicit in Kuzmin’s paper.
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Note that (P (m,n))m,n≥0 and (Q(m,n))m,n≥0 are in fact well-defined for any α ∈ C
and any β ∈ C \ Z. Note also that∫

C

zkdz(∏m
j=0(z − j)

)(∏n
j=0(z − j − β)

) = 0

for any integer k ∈ {0, . . . ,m + n}; hence the expansion αz =
∑∞

k=0
log(α)k

k!
zk shows that

I(m,n) is the remainder term of the [m/n] Padé approximant of αβ at α = 1. See [2]
for an alternative approach (and different goals) to the computation of the [n/n] Padé
approximants, with more complicated expressions and no recurrence given as in the next
lemma.

We shall now only be interested in the case m = n and for S ∈ {I, P,Q}, we set
Sn := S(n, n).

Lemma 3. Let α ∈ C∗ such that | arg(α)| < π and β ∈ C\Z. The three sequences (Pn)n≥0,
(Qn)n≥0 and (In)n≥0 are solutions of the linear recurrence of order 2:

((n+ 2)2 − β2)un+2

− (α + 1)(n+ 2)(2n+ 3)un+1 + (α− 1)2(n+ 1)(n+ 2)un = 0. (3.2)

The roots of the characteristic equation associated to this recurrence are (
√
α± 1)2. They

are distinct and such that |
√
α + 1| 6= |

√
α− 1|.

Note that

P0 =
1

β
, P1 = −αβ + α− β + 1

β(β2 − 1)
, Q0 =

1

β
, Q1 =

αβ − α− β − 1

β(β2 − 1)
.

Proof. We apply Zeilberger’s algorithm (as implemented in Maple) to the two sequences
(Pn)n≥0 and (Qn)n≥0. They are both found to be satisfy (3.2) (under even less restrictive
assumptions on α and β). By linearity, the same holds for the sequence (In)n≥0.

Let us give the details for Pn =
∑n

k=0 T (n, k) where

T (n, k) := (−1)n+1

(
n
k

)
n!∏n

j=0(k − j − β)
(−α)k.

Note that Pn =
∑n+`

k=0 T (n, k) for any integer ` ≥ 0 because
(
n
k

)
= 0 for any integer

k ≥ n+ 1. Zeilberger’s algorithm (as implemented in Maple 16) shows that

((n+ 2)2 − β2)T (n+ 2, k)− (α + 1)(n+ 2)(2n+ 3)T (n+ 1, k)

+ (α− 1)2(n+ 1)(n+ 2)T (n, k) = G(n, k + 1)−G(n, k) (3.3)

where the certificat

G(n, k) =
(
4n2 − αn2 − αβn+ 13n+ 2knα− 4kn− 4nα + 2nβ − kβ + 10 + k2

− 4α− 2αβ − 6k + 3β + 4kα + kαβ − k2α
) (−α)kΓ(1− k + β)n!(n+ 2)!

Γ(n+ 3− k + β)Γ(k)Γ(n+ 3− k)
.
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Since G(n, 0) = G(n, n+3) = 0 (because of the factor Γ(k)Γ(n+3−k) at the denominator),
summing both sides of (3.3) for k from 0 to n+ 2 proves that (Pn)n≥0 is solution of (3.2).
The sequence (Qn)n≥0 is also one of its solution because Qn is obtained from −Pn by
changing β to −β, and the polynomial coefficients of (3.2) depends on β only through β2.

The characteristic equation of the recurrence (3.2) is x2−2(α+1)x+(α−1)2 = 0, with
solutions given by (

√
α±1)2, obviously distinct because α 6= 0. Finally, |

√
α+1| = |

√
α−1|

implies that α ∈ R−, which is excluded.

Lemma 4. Let us assume that α ∈ C \ {1} and β ∈ C \ Z. Then, the sequences (Pn)n≥0
and (Qn)n≥0 are C-linearly independent for n ≥ 0.

Proof. We define the Casoratian Cn := PnQn+1 − Pn+1Qn. It is readily checked that Cn is
the solution of the recurrence

(β + n+ 2)(β − n− 2)Cn+1 = −(α− 1)2(n+ 1)(n+ 2)Cn

with initial condition C0 = 2(α−1)
β(β2−1) . It follows that

Cn = (−1)n
2(α− 1)2n+1n!(n+ 1)!

(β)n+2(β − n− 1)n+1

and this implies that Cn 6= 0 for every n ≥ 0. We then use the fact that the sequences
(Pn)n≥0 and (Qn)n≥0 are C-linearly independent for n ≥ 0 if and only if their Casoratian
does not vanish for every n ≥ 0; see [6, p. 71, Theorem 2.15].

3.2 Convergence of the sequence of convergents

In this section, we determine the behavior of the sequences Pn, Qn and In as n→ +∞.

Lemma 5. Let α ∈ C∗ such that | arg(α)| < π and β ∈ C \ Z. We have

lim sup
n→+∞

|In|1/n ≤
(
e| log(α)|/2 − 1

)2
. (3.4)

Observe that both sides of (3.4) vanish when α = 1. Moreover, as we shall see in
Lemma 6 below, Eq. (3.4) is sharp when α ≥ 1.

Proof. In the integral for In, we choose C as the circle of center 0 and radius R := vn
for some v > 1 to be specified later, with n large enough to ensure that the poles of the
integrand are all inside the open disk delimited by C. For z ∈ C, we have

n∏
j=0

|z − j| ≥ cv,n
Γ(vn)

Γ((v − 1)n)
and

n∏
j=0

|z − j − β| ≥ dv,β,n
Γ(vn)

Γ((v − 1)n)
,
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where c
1/n
v,n and d

1/n
v,β,n both tend to 1 as n → +∞. Moreover, for z ∈ C, we have |αz| ≤

e| log(α)|vn. Hence, using Stirling’s formula Γ(x) = xxxx−1/2
√

2π(1 + O(1/x)) (valid for
| arg(x)| < π), we see that

lim sup
n→+∞

|In|1/n ≤ e| log(α)|v(v − 1)2(v−1)v−2v.

It remains to minimize the right-hand side with respect to v > 1, which is immediate: it
is minimal for v = 1/(e−| log(α)|/2 − 1) > 1, which leads to (3.4).

Lemma 6. Let α ∈ C ∈ \{0, 1} such that | arg(α)| < π and β ∈ C \Z. Assume that (3.1)
holds. Then

lim
n→+∞

|Pn|1/n = lim
n→+∞

|Qn|1/n = max |
√
α± 1|2

and
lim

n→+∞
|In|1/n = min |

√
α± 1|2.

Proof. Classical results of Adams, Birkhoff and Trjitzinsky (see [6, p. 377, Theorem 8.36]
or [21]) ensure the existence of two independent solutions (Un)n≥0 and (Vn)n≥0 of (3.2)
such that

lim
n→+∞

U1/n
n = (

√
α + 1)2 and lim

n→+∞
V 1/n
n = (

√
α− 1)2.

(The assumption α 6= 1 is used here). Any other solution (Wn)n≥0 of (3.2) is a C-linear
combination of (Un)n≥0 and (Vn)n≥0 and is such that

lim
n→+∞

W 1/n
n = (

√
α + 1)2 or lim

n→+∞
W 1/n
n = (

√
α− 1)2.

because |
√
α + 1| 6= |

√
α − 1| by the assumption | arg(α)| < π (ie, there is no oscillating

behavior, which typically happens when the modulus of characteristic roots are equal). By
Lemma 4, the sequences (Pn)n≥0 and (Qn)n≥0 are C-independent (and thus generate the
space of solutions of (3.2)), so that In is not 0 for any large enough n. Hence, Assumption
(3.1) and Lemma 5 together imply that

lim
n→+∞

|In|1/n = min |
√
α± 1|2.

We now assume that max |
√
α± 1| = |

√
α+ 1|; the other possibility would be delt with

in a similar way. There exist a, b, c, d ∈ C such that for all n ≥ 0

Pn = aUn + bVn and Qn = cUn + dVn.

We cannot have a = 0 and c = 0 because by Lemma 4, the sequences (Pn)n≥0 and (Qn)n≥0
are C-independent. Assume that a 6= 0, so that |Pn| behave like |

√
α + 1|2n. Then, c 6= 0

as well because |In| = |Qnα
β − Pn| behaves like |

√
α − 1|2n. Similarly, c 6= 0 forces a 6= 0.

Hence we always ac 6= 0, so that

lim
n→+∞

|Pn|1/n = lim
n→+∞

|Qn|1/n = lim
n→+∞

|Un|1/n = |
√
α + 1|2

as expected.
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3.3 Completion of the proof of Proposition 1

We first assume that (3.1) holds, and we recall that | arg(α)| < π is a necessary condition
for that. Consider the sequences (Pn)n≥0 and (Qn)n≥0 as in Lemma 3 with the same initial
conditions. Under the assumptions of Lemma 6, we have

lim
n→+∞

(
αβ − Pn

Qn

)
= lim

n→+∞

In
Qn

= 0,

and even more precisely

lim
n→+∞

∣∣∣αβ − Pn
Qn

∣∣∣1/n =
min |

√
α± 1|2

max |
√
α± 1|2

< 1.

Set pn := Pn+1 and qn := Qn+1 for all n ≥ −1. We have

p−1 =
1

β
, p0 = −αβ + α− β + 1

β(β2 − 1)
, q−1 =

1

β
, q0 =

αβ − α− β − 1

β(β2 − 1)
.

To apply Lemma 1 with ξ := αβ, we first need to ensure that αβ 6= p−1/q−1 = 1 and that

0 6= p−1q0 − p0q−1 =
2(α− 1)

β(β2 − 1)

ie that α 6= 1. With our assumptions on α, β and the definition of αβ for | arg(α)| < π, the
condition αβ 6= 1 is equivalent to α 6= 1. Then, by Lemma 1, we have that

2β(α− 1)

β2 − 1
· 1

α−β − 1
=
β − α− αβ − 1

β2 − 1
+
W (1)/U(1)
Z(1)/U(1)

+
W (2)/U(2)
Z(2)/U(2)

+ · · · (3.5)

where U(x) := (x+1)2−β2, W (x) := −(α−1)2x(x+1), and Z(x) := (α+1)(x+1)(2x+1).
We also need V (x) := (α+ 1)(2x+ 3) because after some straighforward simplications, we
obtain

α−β = 1 +
2β(α− 1)

β − α− αβ − 1
+

(α− 1)2A(0)
B(0)

− (α− 1)2A(1)
B(1)

− (α− 1)2A(2)
B(2)

− · · · − (α− 1)2A(n)
B(n)

− · · · . (3.6)

This is the statement of the Proposition 1 with −β instead of β. Observe now that the
assumptions of Proposition 1 (even under (3.1)) are the same for β and −β, and that A(x)
and B(x) depend on β only through β2. We thus obtain (2.2) by simply changing β to
−β in (3.6). We can get rid of the assumption α 6= 1 because (3.6) holds for α = 1 and
β ∈ C \ Z.

It remain to get rid of the technical assumption (3.1). For this, we remark that by [12,
pp. 102–106], the continued fraction on the right-hand side of (2.2) defines an analytic
function in C \ R− (because its elements satisfy a general property implying that). Now,
Assumption (3.1) holds for α > 1. Hence, Identity (2.2) holds for α > 1 and then for
| arg(α)| < π by analytic continuation of both sides.

By construction the sequence (Pn/Qn)n≥0 coincides with the sequence of convergents
of (2.2).
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4 Proof of Eqs. (1.4) and (1.5)

In this section, we set α = i and β = −2i in Proposition 1.

We first justify (1.4) in the Introduction. By construction, for all n ≥ 0, we have
Pn/Qn = pn/qn where (pn/qn)n≥0 is the sequence of convergents of (1.6), and p̂n/q̂n =
p2n/q2n and p̃n/q̃n = p2n+1/q2n+1. It follows from Lemma 6 that

lim
n→+∞

∣∣∣eπ − Pn
Qn

∣∣∣1/n =
|eiπ/4 − 1|2

|eiπ/4 + 1|2
=

1

2
(2−

√
2)2 (4.1)

from which (1.4) follows.

Let us now justify (1.5). For n ≥ 3, we have{
p̃n = F (n− 1)p̃n−1 + E(n− 1)p̃n−2

q̃n = F (n− 1)q̃n−1 + E(n− 1)q̃n−2
(4.2)

where E(x) and F (x) are defined in Theorem 1. The sequences (p̃n)n and (q̃n)n are inde-
pendent for n ≥ 2 as we can see by an argument similar to the proof of Lemma 3: the
Casoratian cn := p̃nq̃n−1− p̃n−1q̃n satisfies cn+1 = E(n)cn for n ≥ 2, and c2 = −748800 6= 0,
E(n) 6= 0 for all n ≥ 2. We now observe that p̃n/n!3 and q̃n/n!3 are solutions of the
recurrence deduced from (4.2): un = α(n)un−1 + β(n)un−2, where

α(x) :=
F (x− 1)

x3
∈ Q(x) and α(x) :=

E(x− 1)

x3(x− 1)3
∈ Q(x)

are such that
lim

x→+∞
α(x) = 192 and lim

x→+∞
β(x) = −1024.

The resulting characteristic polynomial is x2 − 192x + 1024, with roots 96 ± 64
√

2 =
16(2 ±

√
2)2. Using again Adams, Birkhoff and Trjitzinsky’s results, we deduce that the

limits of ∣∣∣∣ p̃nn!3

∣∣∣∣1/n , ∣∣∣∣ q̃nn!3

∣∣∣∣1/n and

∣∣∣∣ q̃neπ − p̃nn!3

∣∣∣∣1/n
all exist and are equal to either 16(2−

√
2)2 or 16(2 +

√
2)2. Since

q̃ne
π − p̃n
n!3

=
q̃n
n!3

(
eπ − P2n

Q2n

)
,

we deduce from (4.1) that

lim
n→+∞

∣∣∣∣ q̃neπ − p̃nn!3

∣∣∣∣1/n ≤ 4(2 +
√

2)2(2−
√

2)4 = 16(2−
√

2)2

hence this limit is indeed equal to 16(2 −
√

2)2. Arguing as in the proof of Lemma 6, we
conclude that the limits of |p̃n/n!3|1/n and |q̃n/n!3|1/n are both equal to 16(2 +

√
2)2.
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We proceed similarily for p̂n and q̂n. For n ≥ 3, we have{
p̂n = D(n− 1)p̂n−1 + C(n− 1)p̂n−2

q̂n = D(n− 1)q̂n−1 + C(n− 1)q̂n−2

from which we deduce that p̂n/n!3 and q̂n/n!3 are solutions of un = δ(n)un−1 + κ(n)un−2
where

δ(x) :=
D(x− 1)

x3
∈ Q(x) and κ(x) :=

C(x− 1)

x3(x− 1)3
∈ Q(x)

are such that
lim

x→+∞
δ(x) = 384 and lim

x→+∞
κ(x) = −4096.

The resulting characteristic polynomial is x2 − 384x + 4096, with roots 32(2 ±
√

2)2. We
obtain exactly as above that the limits of |p̂n/n!3|1/n and |q̂n/n!3|1/n exist and are equal to
32(2 +

√
2)2.

5 Variations on Proposition 1

The method used to prove Proposition 1 is flexible. We started with the integral I(n, n)
but we can also consider an integral of the form I(kn, `n), where k, ` are positive integers.
By Lemma 2, we have I(kn, `n) = Q(kn, `n)αβ − P (kn, `n). Our method then rests on
the explicit computation of the linear recurrence satisfied by P (kn, `n) and Q(kn, `n).
Provided k and ` are given specific values, Zeilberger’s algorithm can again be used. For
instance, for k = 2 and ` = 1, we find that both satisfy the following order 2 linear
recurrence:

(β − 3− 2n)(β − 4− 2n)(n+ 2 + β)(αβ − β + αn+ 8n+ 5 + α)un+2

+ (n+ 2)
(
86 + 260n+ 246α− 23β − 27αβn+ 69α2n+ 51α2n2 + 612αn2 + 30α2

+ 64n3 + 10β2 + 702αn− 15αβ + 232n2 − 28nβ + 39α2β − 8n2β + 8nβ2 + 57α2βn

+ 3αβ3 − 3α2β3 + α3β3 − 2α3 − 5α3n− 4α3n2 − α3n3 − α3β + 2α3β2 + 6α2β2

− 18αβ2 + 12α2n3 + 168αn3 − b3 + 21α2n2β − 12αn2β + 6α2nβ2 − 15αnβ2 − 2α3nβ

−α3n2β+α3β2n
)
un+1+2(1−α)3(2n+1)(n+2)(n+1)(αn+8n+αβ+2α+13−β)un = 0.

It is then possible to perform the same study done in the previous sections and in the end
we obtain a new polynomial continued fraction for αβ, though obviously quite cumbersome
to write down explicitely.

We conclude with the following simple considerations. Euler gave a formal transfor-
mation of a series into a continued fraction, the sequence of convergents of which coincide
with the sequence of partial sums of the series (so that the convergence of the series is
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equivalent to that of the continued fraction); see [15, p. 458, Eq. (12)]. It is more easily
stated as

∞∑
n=0

( n∏
j=0

aj

)
=
a0
1
− a1

1 + a1
− a2

1 + a2
− · · · − an

1 + an
− · · · . (5.1)

That transformation is at the origin of numerous polynomial continued fractions for clas-
sical numbers such as e and π (see for instance [5, 15]). It can be applied as well to the
series

∑∞
n=0

(
β
n

)
(α − 1)n which converges (for any α ∈ C such that |α − 1| < 1 and any

β ∈ C) to αβ with | arg(α)| < π. In this case, the corresponding sequence (an)n≥0 in (5.1)
is a0 = 1 and an = (α − 1)(β − n + 1)/n for n ≥ 1. This leads to the continued fraction
(this is [16, p. 269, Eq. (2.3.5)] that holds for |α− 1| < 1 and any β ∈ C \ Z:

αβ =
1
1
− (α− 1)β

1 + (α− 1)β
− (α− 1)(β − 1)1

2 + (α− 1)(β − 1)
− · · ·− (α− 1)(β − n)n

n+ 1 + (α− 1)(β − n)
− · · · . (5.2)

Applying (5.2) with α = 1/2 and β = −
√

2, we obtain a polynomial continued fraction for

2
√
2 with elements ultimately in Q(

√
2)[n]. We can also apply it with α = eiπ`/k for any

rational number `/k such that 0 < |`/k| < 1/3 (so that 0 < |α − 1| < 1) and β = −ik/`;
this yields a polynomial continued fraction for eπ with elements ultimately in Q(i, eiπ`/k)[n].
These are weaker results than those obtained above using Proposition 1 but they are much
simpler to obtain.
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for π cothπ, J. Difference Equ. Appl. 14.12 (2008), 1279–1287.

[18] T. Rivoal, Rational approximations for values of derivatives of the Gamma function,
Trans. Amer. Math. Soc. 361 (2009), 6115–6149.

[19] T. Rivoal, Approximations rationnelles des valeurs de la fonction Gamma aux ra-
tionnels, J. Number Theory 130.4 (2010), 944–955.

[20] T. Rivoal, Values of the Beta function: from Ramanujan’s continued fraction to
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