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Non-Gaussian states, and specifically the paradigmatic cat state, are well known to be very sensitive to
losses. When propagating through damping channels, these states quickly lose their nonclassical features and
the associated negative oscillations of their Wigner function. However, by squeezing the superposition states,
the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example,
we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions
through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value
and a rate of decay of the Wigner function negativity. This work, which uses squeezing as an ancillary
Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.
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The coupling of a quantum system to an ambient
environment leads to the so-called decoherence phenome-
non [1]. This irreversible process washes out the non-
classical features of quantum states and constitutes a main
impediment to quantum information sciences [2], including
for quantum computing, metrology, and communication.
In quantum physics, decoherence typically scales with
time, strength of the coupling, and also with an effective
dimension of the system. Larger systems exhibit faster
decoherence and are extremely fragile.
A paradigmatic example is the superposition of coherent

states (CSS), also known as Schrödinger cat state. This state
of the form jαi � j − αi consists of a superposition of
coherent states with opposite phases and a mean number of
energy quanta jαj2. In the recent years, CSSs have been
prepared in a variety of experimental platforms, including
trapped-ion setups [3–7], photonics experiments [8–13],
cavity-QED systems [14], and superconducting circuits
[15]. In subsequent studies, these states have been used
to follow their decoherence under energy loss and to
explore the boundary between the classical and quantum
worlds [4,14,16].
In this context, over the past several years, different

strategies have been developed to mitigate the effect of
decoherence and protect nonclassical features. Error-
correcting codes [17,18], protected logical qubits with
redundant information encoding [19], or probabilistic
quantum distillation protocols [20] are actively pursued.
Physical control of decoherence via measurement and
feedback has also been proposed and implemented
[21,22]. In all these approaches, the effect of decoherence

on a given state is alleviated afterwards, without an
engineering of the environment. By a challenging quantum
squeezing of the environmental bath, the decoherence can
be reduced as well [23,24].
In contrast, another equivalent but potentially more

feasible strategy can consist of slowing the decoherence
by acting on the state itself. Such protection yet to be
demonstrated can be obtained for instance via a Gaussian
squeezing operation that adapts the non-Gaussian state
prior to the channel [24–26]. The squeezing process does
not preserve energy and translates in phase space to a
simple scale transformation that compresses one direction
and dilates the orthogonal one. By definition, it therefore
preserves the non-Gaussian content of the initial state, and
in particular the negative fringes in the Wigner function
representation in phase space [27]. Squeezing constitutes
the essential and broadly available resource in continuous-
variable quantum optics but recent proposals have also
shown the usefulness of Gaussian operations on non-
Gaussian states [28]. Moreover, a deterministic squeezing
gate has been recently demonstrated and is now available
for optical protocols [29].
In this Letter, we report first quantitative measurements

that demonstrate a decoherence much slower than the
standard one typically observed for large coherent-state
superpositions. Specifically, we experimentally generate a
squeezed optical version of CSS and follow the behavior
of the Wigner function oscillations under photon loss.
We simultaneously determine the decaying value and a
so-called rate of decay of the Wigner function negativity
and compare it with standard decoherence. We demonstrate
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that both are substantially reduced for the squeezed CSS.
Such observations therefore elevate the squeezing opera-
tion as a fundamental off-line Gaussian resource for
quantum information processing.
To first illustrate the Gaussian adaptation strategy, Fig. 1

depicts the specific case considered in this study. A
squeezed coherent-state superposition and a CSS with
the same amplitude but without squeezing propagate over
a lossy channel. The theoretical Wigner functions and
their cross sections are given before and after the in-line
attenuation. As can be seen, the Wigner function oscil-
lations are damped with the loss but the fringe contrast
and the negativities are better preserved for the squeezed
superposition. If necessary, depending on the subsequent
use, antisqueezing can be applied after propagation. We
will not consider this additional operation in the following
as it does not change the Wigner negativity values.
Gaussian adaptation.—We begin by considering a lossy

Gaussian channel with a transmission η, and a squeezing
operation on the environmental bath with an amplitude gain
ffiffiffiffi
G

p
[squeezingS in dB,S ¼ −10 logðGÞ]. After the channel,

the noncommuting operators corresponding to the phase-
space variables are transformed following the relations

Xout ¼
ffiffiffi
η

p
Xin þ

ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p ffiffiffiffi

G
p

Xenv;

Pout ¼
ffiffiffi
η

p
Pin þ

ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p ffiffiffiffiffiffiffiffi

G−1
p

Penv: ð1Þ

The uncorrelated operators Xenv and Penv stand for the
environmental noise and the correlation between them can
always be canceled by properly changing the phase before
and after the channel. By combining squeezing and phase
shift, this noise can be therefore arbitrarily canceled in any
direction of the phase space at the cost of an increase in the
perpendicular direction. From these expressions, it also
follows that the strategy consisting of squeezing the initial
state is equivalent to the challenging squeezing of the
environmental noise, as suggested in Ref. [24]. We note,
however, that in Ref. [24], the decoherence is studied via the
evolution of the state purity. Purity as well as fidelity are
parameters that average all features of the considered state
and do not directly relate to the important nonclassical
aspects of the interference in phase space.
Turning to the phase-space representation, the Wigner

function Wðx; pÞ of the initial state is thereby transformed
to W0ðx0; p0Þ at the channel output by a two-dimensional
convolutionwith a kernel dependingon the environment [27]

Kðx; p; x0; p0Þ

∝ exp

�

−
ðx0 − ffiffiffi

η
p

xÞ2
2Gð1 − ηÞVx;env

−
ðp0 − ffiffiffi

η
p

pÞ2
2G−1ð1 − ηÞVp;env

�

; ð2Þ

where Vx;env and Vp;env are variances of the environmental
noise. Because of the global nature of the convolution in
the phase space, the value and direction of the squeezing
has to be optimized separately for different input states
Wðx; pÞ and for different measures of decoherence.
Using Eq. (2) for a purely lossy channel, the output

Wigner function W0ð0; 0Þ is clearly non-negative for any
η < 1 if the gain G asymptotically tends to zero or diverges
to infinity. Simultaneously, for the states with Wð0; 0Þ < 0
and a nonvanishing derivative dW0ð0; 0Þ/dGjG¼1, a squeez-
ing along the x or p quadratures helps to slow down
decoherence. As a result, there exists an optimal squeezing
value. The derivative gives a sufficient integral condition to
reach it. Moreover, as any negativity of Wðx; pÞ can be
shifted to the origin, this analysis applies therefore to
many asymmetrical states in phase space. The simplest
examples have been theoretically presented in Ref. [26]
and optimally squeezed CSSs are derived in the
Supplemental Material [30].
Decoherence quantification.—We now turn to the quan-

tification of decoherence. Any modulation of the Wigner
function into the highly-nonclassical negative values
gradually decays under increasing dissipation to a zero-
temperature environment [31]. The presence of such
negative values is a clear witness of nonclassical phase
space interference. However, it is not sufficient to describe
the dynamics of decoherence in the channel.
For this purpose, we adapt the approach initiated by Zurek

and co-workers using a relative rate _Wðx; pÞ/Wðx; pÞ, where
the dot denotes time derivative inRef. [31]. Our steps beyond
are the following. First, the derivative can be respective to

(a)

(b)

(c)

FIG. 1. Illustration of the decoherence process in phase space
and protection by a squeezing operation. (a) Direct transmission.
The theoretical Wigner functions of an even coherent-state
superposition (jαj2 ¼ 2) are displayed before and after propaga-
tion through a lossy channel with a transmission η ¼ 0.8.
(b) Squeezing adaptation before transmission. The same coher-
ent-state superposition is first squeezed (Sx ¼ 4 dB) and then
transmitted. An antisqueezing operation may then be performed.
(c) The 2D plots give the cross sections of the Wigner functions
along the p axis. The oscillations are damped with the loss but the
negativities are better preserved for the squeezed version.
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any parametrization of the decay. In our case, it is the channel
transmission η. Second, we focus only on the decay of
negative values of the Wigner function. Third, we specifi-
cally measure the rate of the decay of the largest negativity
located at the coordinate xmin and momentum pmin at the
given transmission η. Therefore, we use the rate of decay
defined as

RDWη
¼ 1

Wðxmin; pmin; ηÞ
∂Wðx; p; η0Þ

∂η0
�
�
�
�
xmin;pmin;η

: ð3Þ

In Fig. 2, we present the evolution of the rate of decay for a
CSS with a size jαj2, at a transmission η ¼ 1, as well as the
value for several Fock states for comparison. For the Fock
states j1i and j2i, the rate of decay is equal to RDj1i ¼ 2

and RDj2i ¼ 3.22 for η ¼ 1, demonstrating that the decay
is faster for the higher Fock states. More generally, for any
twoFock states jni and jnþ 1i, we obtainRDjnþ1i > RDjni.
For CSSs with different amplitudes, we have as well
RDðαþ ΔαÞ > RDðαÞ. For a large mean photon number,
Fock states and CCSs tend to have a comparable rate of
decay, which increases with the size of the system (see the
SupplementalMaterial [30]). As illustrated in Fig. 2, squeez-
ing a CSS enables us to strongly reduce the rate of decay
and to make it comparable to the one of smaller Fock states.
This reduction is even greater for CSS with large size [26].
Experimental generation of squeezed optical CSS.—We

proceed to the experimental investigation. We generate free-
propagating squeezed even CSSs via our recently demon-
strated versatile method based on two-photon heralding [13].
This scheme relies on a two-mode squeezed vacuum state
emitted by a type-II optical parametric oscillator (OPO)
operated far below threshold [32] and linear mixing of the
two entangled modes (see the Supplemental Material [30]).
A two-photon detection based on high-efficiency super-
conducting nanowire single-photon detectors [33] on one of

the resulting modes heralds the generation of a superposition
of zero and two-photon Fock states on the other. This
superposition can be tuned with the adjustable linear mixing
and shows large fidelity with the targeted squeezed CSS
for jαj2 as large as 3. Experimental details have been reported
elsewhere [13,34].
The heralded state is characterized by full quantum state

tomography via homodyne detection. Quadrature values
from 50 000 measurements are processed with a maximum
likelihood algorithm [35], which provides the density matrix
and the associated Wigner function. The Wigner function is
given in Fig. 3 (panel η ¼ 0.9), after correction for detection
losses (15%). The state exhibits a fidelity F ∼ 77% with a
squeezed CSS with jαj2 ¼ 2.1 and S ¼ 4 dB. The negative
peaks of the Wigner functions reach W ¼ −0.32� 0.01.
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FIG. 2. Protection of coherent-state superpositions by squeez-
ing. The rates of decay at η ¼ 1 for CSS (blue solid line) and
optimally squeezed CSS (red solid line) are plotted as a function
of the mean photon number jαj2. For comparison, the horizontal
gray dashed lines give the rate of decay for Fock states jni.
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FIG. 3. Experimental results. (a) The Wigner functions of the
experimental squeezed optical CSS are given for five different
values of channel transmission η and compared with a CSS of
same amplitude without squeezing. The initial synthesized state
exhibits a fidelity F ¼ 77% with a squeezed CSS with jαj2 ¼ 2.1
and a squeezing value S ¼ 4 dB. (b) The right column provides
the cross sections along the imaginary axes. The initial state
corresponding to η ¼ 0.9 is corrected for 15% detection losses.
The specific value η ¼ 0.9 corresponds to the estimated escape
efficiency of the OPO.
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The aim of the present investigation is to study the effect
of losses on this squeezed CSS. For this purpose, we
introduce losses by changing the temporal mode used for
the homodyne characterization [36,37]. Indeed, because of
the continuous-wave nature of our experiment, the state
reconstruction requires a temporal filtering. The temporal
mode is given by a double-decaying exponential profile
fðtÞ ¼ ffiffiffiffiffi

πγ
p

e−πγjtj, where γ is the bandwidth of the OPO
cavity. By mismatching the temporal mode and the optimal
one, i.e., by adding a delay τ in the reconstruction
algorithm, we introduce controllable loss, with an effective
overall transmission η. This procedure works because the
orthogonal modes are very close to the vacuum state as the
OPO is pumped far below threshold. It provides the states
after the lossy channel and these decohered states are used
in the rest of the study.
Experimental decoherence for squeezed optical CSS.—

The evolution of the Wigner function under decoherence
is compared for the experimentally prepared squeezed
CSS and for the CSS of the same amplitude but without
squeezing. Figure 3(a) shows the Wigner functions for five
different values of channel transmission η and Fig. 3(b)
provides the corresponding cross sections along the imagi-
nary axis. Decoherence manifests itself in the progressive
reduction of the Wigner function negativities. This

comparison confirms that these negativities are better
preserved for the squeezed CSS.
More quantitatively, Fig. 4(a) provides the maximal

Wigner function negativity as a function of the transmission
η. We see that the negativity stays larger for the squeezed
superposition, whatever the amount of loss experienced by
the state. By fitting the experimental points by a third-order
polynomial, we can finally estimate the derivative of the
negativity, and therefore the rate of decay as a function of
the transmission η, as shown in Fig. 4(b). The protection
simultaneously improves both the negativity and the rate of
decay, for any losses. For example, for losses around 20%,
the rate-of-decay is typically decreased by about a factor 2,
a very substantial improvement. The pink dashed lines
correspond to a simple theoretical model taking into
account the mean-photon number and the squeezing value.
The small discrepancy is explained by the higher photon-
number components included in this model and not present
in our experimentally synthesized superposition.
Discussion.—Our result clearly illustrates the

decoherence protection provided by the squeezing adapta-
tion of fragile nonclassical feature in the coherent-state
superpositions. This improved robustness can find imme-
diate applications in quantum communication and comput-
ing schemes. It has been shown, for instance, that CSS code
words can be used for quantum memory protection [38]
and this study has been extended to multicomponent
superpositions [39]. The use of squeezed code words
may reduce further the error rate. In a similar way, recent
demonstrations based on CSSs for universal gate imple-
mentations in superconducting circuits [40] could benefit
from this approach to further limit errors. Protecting non-
classical features in experiments where such states are used
to study various topological effects is also highly relevant
[41]. The general idea to optimize CSSs can be analyzed for
a variety of other catlike states used in different applications
proposed sometimes long-time ago, such as entangled
CSSs for quantum repeaters [42] or compass states for
quantum metrology [43].
Beyond catlike states, this strategy can be applied to

protect other quantum states. For lossy channels, it is
especially powerful for the phase-asymmetrical states that
exhibit complex topology of negativity in phase space
[44,45]. These local operations may also provide advantages
for protecting complex bipartite states, including NOON
states or hybrid entangled states [46,47]. However, as stated
before, an exact prediction for a specific state must be
analyzed always relatively to a given figure of merit. The
channel is described by a convolution of the input Wigner
function with a kernel representing the channel noise. As a
nonlocal transformation in phase space, the convolution
forbids for a general state any simple intuitive picture of
how and why the squeezing helps. It is not exactly related to
minimization of energy or to azimuthal symmetry in phase
space. Importantly, the nonlocal nature of this transformation
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FIG. 4. Evolution of the Wigner function negativity and rate of
decay as a function of the transmission η. (a) Negativity of the
Wigner function of the initial squeezed CSS with jαj2 ¼ 2.1 and
S ¼ 4 dB. (b) Estimated rate of decay of the negativity. The solid
lines show the evolution for the CSS of the same amplitude
without squeezing. The dashed lines correspond to the theoretical
model.
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means involvement of all small details of theWigner function
in the decoherence process. A general operational procedure
is therefore dependent not only on the specific state but also
on the feature to protect for a given application.
The squeezing adaptation used here can be further

generalized to any Gaussian operation. If we accept a
probabilistic protocol, any conditional purity-preserving
Gaussian filter can be added to the toolbox to protect
against decoherence [48]. For multimode states, useful for
example in quantum coding, multimode Gaussian opera-
tions and filters can also be advantageous. Beyond the
lossy channel, the method is extendable to noisy and non-
Gaussian channels [49].
In conclusion, we have shown that the photon-loss

induced decoherence of CSSs can be significantly slowed
down by initially squeezing the superposed states. This
strategy allows us here to reduce the rate of decay by a
factor of 2. Theory remarkably predicts even higher factors
for larger superpositions. Our study thereby confirms the
usefulness of Gaussian operations on non-Gaussian states
to make them more robust and to approach a minimal
decoherence rate. This Gaussian adaptation is a versatile
tool for advanced quantum state engineering and robust
state transfer, and can find immediate applications in a
variety of schemes. This work also invites to revisit the
standard decoherence rate usually considered for many
other physical platforms, where quantum superpositions of
macroscopic states can be generated. In a broader context,
this result constitutes a further example of the potential of
the hybrid quantum information processing approach
where Gaussian and non-Gaussian operations and tech-
niques can be combined for advanced capabilities and
improved scalability [50].
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