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Introduction

Let us consider the kinetic Fokker-Planck equation

∂ t f + v ⋅ ∇ x f = ∇ v ⋅ (∇ v f + α ⟨v⟩ α-2 v f ) , f (0, ⋅, ⋅) = f 0 . ( 1 
)
where f is a function of time t ≥ 0, position x, velocity v, and α is a positive parameter. Here we use the notation

⟨v⟩ = √ 1 + |v| 2 , ∀ v ∈ R d .
We consider the spatial domain T ∶= (0, L) d ∋ x, with periodic boundary conditions, and define Ω t ∶= (t, t + τ ) × T, for some τ > 0, t ≥ 0 and Ω = Ω 0 . The normalized local equilibrium, that is, the equilibrium of the spatially homogeneous case, is

γ α (v) = 1 Z α e -⟨v⟩ α , ∀ v ∈ R d ,
where Z α is a non-negative normalization factor, so that dγ α ∶= γ α (v) dv is a probability measure. We shall distinguish a sublinear regime if α ∈ (0, 1), a linear regime if α = 1 and a superlinear regime if α ≥ 1. The superlinear regime covers the Maxwellian case α = 2. The threshold case α = 1 corresponds to a linear growth of ⟨v⟩ α as |v| → +∞. The estimates in the linear case are similar to the ones of the superlinear regime. In the literature, γ α is said to be subexponential, exponential or superexponential depending whether the regime is sublinear, linear or superlinear.

The mass M ∶= ∬

T×R d f (⋅, x, v) dx dv
is conserved under the evolution according to the kinetic Fokker-Planck equation [START_REF] Achleitner | A numerical computation of the rates for kinetic fokkerplanck equations[END_REF]. We are interested in the convergence of the solution to the stationary solution M L -d γ α . By linearity, we can assume from now on that M = 0 with no loss of generality. The function

h = f γ α
solves the kinetic-Ornstein-Uhlenbeck equation

∂ t h + v ⋅ ∇ x h = ∆ α h, h(0, ⋅, ⋅) = h 0 , (2) 
with ∆ α h ∶= ∆ v h -α v ⟨v⟩ α-2 ⋅ ∇ v h, and zero-average initial datum in the sense that

∬ T×R d h 0 (x, v) dx dγ α = 0.
By mass conservation, solutions to (2) are zero-average for any t > 0. Therefore, we consider the time average defined as

⨏ t+τ t g(s) ds ∶= 1 τ ∫ t+τ t g(s) ds
without specifying the τ dependence when not necessary. Our first result is devoted to the decay rate of h(t, ⋅, ⋅) → 0 as t → ∞ using time averages.

Theorem 1. Let α ≥ 1. Then, for all L > 0 and τ > 0, there exists a constant λ > 0 such that, for all h 0 ∈ L 2 (dx dγ α ) with zero-average, the solution to (2) satisfies

⨏ t+τ t ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds ≤ ∥h 0 ∥ 2 L 2 (dx dγα) e -λ t , ∀ t ≥ 0. (3) 
The expression of λ as a function of τ and L is given in Section 4. To deal with large-time asymptotics in kinetic equations, it is by now standard to use hypocoercivity methods. Although not being exactly a hypocoercive method in the usual sense, Theorem 1 provides us with a hypocoercivity estimate.

Corollary 2. Under the assumptions of Theorem 1, there exists an explicit constant C > 1 such that all solutions h to (2) fulfill

∥h(t, ⋅, ⋅)∥ 2 L 2 (dx dγα) ≤ C ∥h 0 ∥ 2 L 2 (dx dγα) e -λ t , ∀ t ≥ 0. (4) 
A typical feature of hypocoercive estimates is the factor C > 1 in (4). The prefactor C > 1 cannot be avoided. Otherwise, inequality (4) would be equivalent to a Poincaré inequality where the L 2 -norm of a function is controlled with the velocity gradient only. We can see explicitly that for α = 2 the Green function of (1), computed in [START_REF] Kolmogoroff | Zufallige Bewegungen (zur Theorie der Brownschen Bewegung[END_REF], has a built-in delay. In particular,

∥h 0 ∥ 2 L 2 (dx dγ2) -∥h(t, ⋅, ⋅)∥ 2 L 2 (dx dγ2) = O(t 3 ),
as t → 0 + . Note that there is no such a constant in (3). Now, let us turn our attention to the subexponential case 0 < α < 1.

Theorem 3. Let α ∈ (0, 1) Then, for all L > 0 and τ > 0, for all σ > 0, there is a constant K > 0 such that all solutions to (2) decay according to

⨏ t+τ t ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds ≤ K (1 + t) -σ 2 (1-α) ∬ T×R d ⟨v⟩ σ h 2 0 dx dγ α , ∀ t ≥ 0. ( 5 
)
Further details will be given in Section 5. The constants λ, C in Corollary 2 and K in Theorem 3 depend on L > 0 and τ > 0 and their values are discussed later. The rate of Theorem 3 is the same as in the spatiallyhomogeneous case of [START_REF] Bouin | Hypocoercivity without confinement[END_REF]Proposition 11]. In the spatially-inhomogenous case, rates are known, see [START_REF] Kavian | The Fokker-Planck equation with subcritical confinement force[END_REF][START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF]. Finally, see Section 5 for a discussion of the limit α → 1 -. Equation ( 2) is used in physics to describe the distribution function of a system of particles interacting randomly with some background, see for instance [START_REF] Balian | From Microphysics to Macrophysics, Methods and Applications of Statistical Physics[END_REF]. The kinetic Fokker-Planck equation is the Kolmogorov forward equation of Langevin dynamics

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ dx t = v t dt, dv t = -v t + √ 2 dW t ,
where W t is a standard Brownian motion. See [START_REF] Bernard | Hypocoercivity with Schur complements[END_REF]Introduction] for further details on connections with probability theory. The kinetic Fokker-Planck equation (1) is a simple kinetic equation which has a long history in mathematics that we will not retrace in details here. Mathematical results go back at least to [START_REF] Kolmogoroff | Zufallige Bewegungen (zur Theorie der Brownschen Bewegung[END_REF] and are at the basis of the theory of L. Hörmander (see, e.g., [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]), at least in the case α = 2. For the derivation of the kinetic-Fokker-Planck equation from underlying stochastic ODEs, particularly in the context of astrophysics, we can refer to [24, eq. (328)]. Modern hypoellipticity theory emerged from [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF][START_REF] Desvillettes | On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation[END_REF] and was built up in a fully developed theory in [48] with important contributions in [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF][START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF]. Existence theory for solutions to the Vlasov-Fokker-Planck equation was discussed also in [START_REF] Degond | Global existence of smooth solutions for the vlasov-fokkerplanck equation in 1 and 2 space dimensions[END_REF]Appendix A].

The word hypocoercivity was coined by T. Gallay, in analogy with the already quoted hypoelliptic theory of Hörmander in [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]. In [48], C. Villani distinguishes the regularity point of view for elliptic and parabolic problems driven by degenerate elliptic operators from the issue of the long-time behaviour of solutions, which is nowadays attached to the word hypocoercivity. The underlying idea is to twist the reference norm, in order to carry properties (as the coercivity of the operator driving (2)) from velocity direction to space directions, thanks to commutators. Twisting the H 1 -norm creates equivalent norms, which are exponentially decaying along the evolution. So works the H 1 framework, see [48,[START_REF] Villani | Hypocoercive diffusion operators[END_REF][START_REF] Dolbeault | φ-entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations[END_REF]. The H 1 -framework has been connected to the carré du champ method of D. Bakry and M. Emery in [START_REF] Bakry | Diffusions hypercontractives[END_REF] by F. Baudoin, who proved decay also w.r.t. the Wasserstein distance, as shown in [START_REF] Baudoin | Wasserstein contraction properties for hypoelliptic diffusions[END_REF][START_REF] Villani | [END_REF][START_REF] Baudoin | Gamma calculus beyond Villani and explicit convergence estimates for Langevin dynamics with singular potentials[END_REF]. We report also the works [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF][START_REF] Dietert | Convergence to equilibrium for the kinetic fokker-planck equation on the torus[END_REF], where accurate convergence rates in the Wasserstein distance for (2) are computed trough a coupling argument.

The H 1 hypocoercivity implies a decay rate for the L 2 norm [START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF], but the corresponding estimates turn out to be sub-optimal. Moreover, kinetic equations driven by non-regularising operators are not well suited for the H 1 -framework. This motivates the development of direct L 2 techniques based on a perturbation of the L 2 norm. Such an approach can be found in [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] and [START_REF] Bouin | Hypocoercivity without confinement[END_REF], which is consistent with diffusion limits. In [START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF], the authors extend the technique to the subexponential case. Another possibility is to perform rotations in the phase space and use a Lyapunov inequality for matrices as in [START_REF] Arnold | Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift[END_REF]. This approach gives optimal rates, but it is less general as it requires further algebraic properties for the diffusion operator and a detailed knowledge of its spectrum. The core of [START_REF] Arnold | Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift[END_REF] is a spectral decomposition, that was originally understood via a toy model exposed in [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. In a domain with periodic boundary conditions and no confining potential, the problem is reduced to an infinite set of ODEs corresponding to spatial modes. See [START_REF] Achleitner | On linear hypocoercive BGK models[END_REF][START_REF] Achleitner | On multi-dimensional hypocoercive BGK models[END_REF][START_REF] Arnold | Sharpening of decay rates in fourier based hypocoercivity methods[END_REF] for details and extensions. Other techniques related to hypocoercivity -involving time-integrated functionals and the application of the so called kinetic-fluid decomposition, appear in [START_REF] Strain | Stability of the relativistic Maxwellian in a collisional plasma[END_REF][START_REF] Guo | The Landau equation in a periodic box[END_REF] and subsequent papers.

A new hypocoercivity theory, involving Sobolev norms with negative exponents of the transport operator, was recently proposed by S. Armstrong and J.-C. Mourrat in [START_REF] Albritton | Variational methods for the kinetic fokker-planck equation[END_REF]. Using space-time adapted Poincaré inequalities they derive qualitative hypocoercive estimates in the case α = 2 on bounded spatial domains. The constants appearing there are not quantified. One of the difficulties lies in controlling the constant in Lions' Lemma, which is done in our Section 2. An extension to the whole space in presence of a confining potential can be found in [START_REF] Cao | On explicit L 2 -convergence rate estimate for underdamped Langevin dynamics[END_REF]. Note that the strategy of using time-integrated functionals of the solutions to kinetic equations is present also in [START_REF] Tran | Convergence to equilibrium of some kinetic models[END_REF][START_REF] Duan | Hypocoercivity of linear degenerately dissipative kinetic equations[END_REF].

Adopting the strategy of [START_REF] Albritton | Variational methods for the kinetic fokker-planck equation[END_REF], in this paper we study the convergence to equilibrium of solutions to (1) and ( 2), as it is a simple benchmark in kinetic theory, [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF][START_REF] Villani | Hypocoercive diffusion operators[END_REF][START_REF] Albritton | Variational methods for the kinetic fokker-planck equation[END_REF], and a simplified model of the Boltzmann equation when collisions become grazing, see [START_REF] Degond | The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case[END_REF].

Our original contribution lies in making the strategy of [START_REF] Albritton | Variational methods for the kinetic fokker-planck equation[END_REF] effective, and to generalise it to kinetic Fokker-Planck equations where local equilibria are not necessarily Maxwellians. First, we are able to track the Lions' constant in terms of the parameters (see Lemma 8). Moreover, we achieve a fully constructive proof of the averaging Lemma 12. This allows both for an explicit estimate of the constant and for an adaptation to more general models. One important point is the control in terms of the offset of the solution from the velocity average, without explicitly using gradients, see Proposition 13. So, we compute explicit and accurate decay rates of time averages of solutions to (2). Hypocoercivity estimates are obtained as a consequence of these decay rates, see Corollary 2. We perform an analysis for all positive values of α, which is consistent in the threshold case α = 1. Since the estimates are explicit, we are able to compare the strategy of [START_REF] Albritton | Variational methods for the kinetic fokker-planck equation[END_REF] to other L 2 -hypocoercivity methods.

This document is organized as follows. In Section 2 we collect some preliminary results: Poincaré and weighted Poincaré inequalities (Propositions 5 and 6), adapted Lions' inequality (Lemmas 7 and 8). In Section 3 we introduce an averaging lemma (Lemma 12), which is then used to prove the generalized Poincaré inequality of Proposition 13, at the core of the method. In Section 4 we use Proposition 13 and a Grönwall estimate to prove Theorem 1 and compute an explicit formula for λ (Proposition 15). Section 5 is devoted to the proof of Theorem 3, with additional details, and to the limit α → 1 -. Finally, in Section 6, we derive the hypocoercive estimates of Corollary 2. On the benchmark case α = 2 in one spatial dimension, we also compare our results with those obtained by more standard methods.

Preliminaries

Let us start with some preliminary results.

Weighted spaces

For functions g of the variable v only, that is, of the so-called homogeneous case, we define the weighted Lebesgue and Sobolev spaces

L 2 α ∶= L 2 (R d , dγ α ) and H 1 α ∶= {g ∈ L 2 α ∶ ∇ v g ∈ (L 2 α ) d } .
We equip L 2 α with the scalar product

(g 1 , g 2 ) = ∫ R d g 1 (v) g 2 (v) dγ α (6) 
and consider on H 1 α the norm defined by

∥h∥ 2 H 1 α ∶= ( ∫ R d h dγ α ) 2 + ∫ R d |∇ v h| 2 dγ α
as in [START_REF] Albritton | Variational methods for the kinetic fokker-planck equation[END_REF]. The duality product between H -1 α ∋ z and H 1 α ∋ g is given by

⟨z, g⟩ ∶= ∫ R d ∇ v w z ⋅ ∇ v g dγ α ,
where w z is the weak solution in H 1 α to

-∆ α w z = z -∫ R d z dγ α , ∫ R d w dγ α = 0.
Here we write ∫ R d z dγ α for functions which are integrable w.r.t. dγ α and, up to a little abuse of notations, this quantity has to be understood in the distribution sense for more general measures. As a consequence and with the above notations, we define

∥z∥ 2 H -1 α ∶= ( ∫ R d z dγ α ) 2 + ∥w z ∥ 2 H 1 α .
With these notation, the key property of the operator ∆ α , is

⟨g 1 , ∆ α g 2 ⟩ = -∫ ∇ v g 1 ⋅ ∇ v g 2 dγ α for any functions g 1 , g 2 ∈ H 1 α . We recall that Ω t = (t, t + τ ) × T ⊂ R + t × R d
x and that x-periodic boundary conditions are assumed. Consider next functions h of (t, x, v) ∈ R + × T × R d and define the space

H kin ∶= {h ∈ L 2 ((t, t + τ ) × T; H 1 α ) ∶ ∂ t h + v ⋅ ∇ x h ∈ L 2 (Ω t ; H -1 α ) ∀ t ≥ 0} .
The dependence of the space on t, τ is implicit for readability purposes. We can equip H kin with the norm

∥h∥ 2 kin ∶= ∥h∥ 2 L 2 (Ωt;L 2 α ) + |h| 2 kin
where the kinetic semi-norm is given by

|h| 2 kin ∶= ∥∇ v h∥ 2 L 2 (Ωt;L 2 α ) + ∥∂ t h + v ⋅ ∇ x h∥ 2 L 2 (Ωt;H -1 α )
. We refer to [START_REF] Albritton | Variational methods for the kinetic fokker-planck equation[END_REF]Section 6] for the proof of following result.

Proposition 4. The embedding H 1 kin ↪ L 2 (Ω t × T; L 2 α
) is continuous and compact for any t ≥ 0.

Poincaré inequalities

In this subsection, we consider functions g depending only on the variable v. Let α ≥ 1. We can state some Poincaré inequalities. Proposition 5. If α ≥ 1, there exists a constant P α > 0 such that, for all functions g ∈ H 1 α , we have

∫ R d |g -ρ g | 2 dγ α ≤ P α ∫ R d |∇ v g| 2 dγ α with ρ g ∶= ∫ R d g dγ α . (7) 
With α ≥ 1, the operator ∆ α admits a compact resolvent on L 2 (dγ α ). Then, [START_REF] Arnold | Sharpening of decay rates in fourier based hypocoercivity methods[END_REF] holds by the standard results of [START_REF] Brezis | Opérateurs maximaux monotones, mathematics studies 5[END_REF]Chapter 6]. The best constant P α is such that P -1 α is the minimal positive eigenvalue of -∆ α . See [START_REF] Cattiaux | Entropic multipliers method for Langevin diffusion and weighted log-Sobolev inequalities[END_REF] and the references quoted therein for estimates on P α . In the case of the Gaussian Poincaré inequality, it is shown in [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] that P 2 = 1, although the result was probably known before.

Weighted Poincaré inequalities

Here we consider again functions depending only on v. For α ∈ (0, 1), inequality [START_REF] Arnold | Sharpening of decay rates in fourier based hypocoercivity methods[END_REF] has to be replaced by the following weighted Poincaré inequality. Proposition 6. If α ∈ (0, 1), there exists a constant P α > 0 such that, for all functions g ∈ H 1 α , we have

∫ R d ⟨v⟩ 2 (α-1) |g -ρ g | 2 dγ α ≤ P α ∫ R d |∇ v g| 2 dγ α with ρ g ∶= ∫ R d g dγ α . (8) 
For more details, we refer for instance to [17, Appendix A]. Notice that the average in the l.h.s. is taken w.r.t. dγ α , not w.r.t. ⟨v⟩ 2 (α-1) dγ α

Lions' Lemma

Let O be an open, bounded and Lipschitz-regular subset of R d+1 ≈ R t × R d x . We recall that

H -1 (O) = {w ∈ D * (O) ∶ |⟨w, u⟩ O | ≤ C ∥u∥ H 1 0 (O) , C > 0}
, where D * (O) denotes the space of distributions over O, equipped with the weak * topology, and ⟨w, u⟩ O is the duality product between H -1 and H 1 0 . The norm on H 1 0 (O) is as usual u ↦ ∥∇u∥ L 2 (O) . On H 1 (O), we introduce the norm

∥u∥ 2 H 1 = | ∫ O u dt dx| 2 + ∥∇u∥ 2 L 2 (O) .
The norm induced on H -1 (O) is then

∥w∥ 2 H -1 (O) = ⟨w, 1⟩ 2 O + ∥z w ∥ 2 H 1 (O)
, where z w is the solution to

-(∂ tt + ∆ x ) z w = w -⟨w, 1⟩ O , ∫ O z w dt dx = 0.
Lions' Lemma gives a sufficient condition for a distribution to be an L 2 function. The following statement is taken from [START_REF] Amrouche | On a lemma of Jacques-Louis Lions and its relation to other fundamental results[END_REF]. 

≤ C L ∥∇u∥ 2 H -1 (O) ,
for any u ∈ L 2 (O).

According to [START_REF] Calderón | On singular integrals[END_REF][START_REF] Bogovskii | Solution of the first boundary value problem for the equation of continuity of an incompressible medium[END_REF][START_REF] Csató | The pullback equation for differential forms[END_REF], if O is star-shaped w.r.t. a ball, then the constant C L has the following structure:

C L = 4 |S d | D(O) d(O) , ( 9 
)
where 

C L = 4 |S d | √ d L 2 + τ 2 τ . (10) 

The kinetic Ornstein-Uhlenbeck equation

We consider solutions to (2) in the weak sense, i.e., functions h in the space

C(R + ; L 2 (dx dγ α )) with initial datum h 0 = h(0, ⋅, ⋅) in L 2 (dx dγ α ) such that (2) holds in the sense of distributions on (0, ∞) × R d x × R d v .
The following result is taken from [START_REF] Albritton | Variational methods for the kinetic fokker-planck equation[END_REF] if α = 2. The extension to α ≠ 2 is straightforward as follows from a careful reading of the proof in [5, Proposition 6.10].

Proposition 9. Let L > 0 and α > 0. With Ω = (0, τ ) × (0, L) d , for all zeroaverage initial datum h 0 ∈ L 2 (dx dγ α ), there exists a unique solution h to (2) such that h ∈ H kin for all τ > 0.

Regularity properties for (2) are collected in [5, Section 6]. In the special case α = 2, some fractional regularity along all directions of the phase space are known. Also see [START_REF] Perthame | Mathematical tools for kinetic equations[END_REF] for further result on regularity theory for kinetic Fokker-Planck equations.

A priori estimates

We state two estimates for solutions to (2).

Lemma 10. Let L > 0, τ > 0, Ω = (0, τ ) × (0, L) d , and α > 0. If h is a solution to (2), then we have

∥(∂ t + v ⋅ ∇ x ) h∥ L 2 (Ω;H -1 α ) ≤ ∥∇ v h∥ L 2 (Ω;L 2 α ) . (11) 
Proof. Take a test function ϕ ∈ L 2 (H 1 α ), and write

∫ T ⟨(∂ t + v ⋅ ∇ x ) h, ϕ⟩ dx = ∫ T ⟨∆ α h, ϕ⟩ dx = -∫ T (∇ v h, ∇ v ϕ) dx,
from which (11) easily follows, after maximizing over ∥∇ v ϕ∥ L 2 α ≤ 1. For completeness, let us recall the classical L 2 decay estimate for solutions to (2). Lemma 11. Let L > 0, τ > 0, Ω = (0, τ ) × (0, L) d , and α > 0. If h is a solution to (2), then we have

d dt ∥h∥ 2 L 2 (dx dγα) = -2 ∥∇ v h∥ 2 L 2 (dx dγα) .

An averaging lemma and a generalized Poincaré inequality

For all functions h ∈ H kin , we define the spatial density

ρ h ∶= ∫ R d h(⋅, ⋅, v) dγ α .
Notice that ∫ Q ρ h dx = 0 whenever h is a zero-average function.

Averaging lemma

Inspired by [5, Proposition 6.2], the following averaging lemma provides a norm of the spatial density, as for instance in [START_REF] Perthame | Mathematical tools for kinetic equations[END_REF].

Lemma 12. Let L > τ > 0, Ω = (0, τ ) × (0, L) d , and α > 0. For all h ∈ H kin , we have

∥∇ t,x ρ h ∥ 2 H -1 (Ω) ≤ d α (∥h -ρ h ∥ 2 L 2 (dt dx dγα) + ∥∂ t h + v ⋅ ∇ x h∥ 2 L 2 (Ω;H -1 α ) ) (12) 
with d α = 2 (∥v 1 |v| 2 ∥ 2 L 2 α + (1 + L 2 4 π 2 ) ∥|v| 2 ∥ 2 L 2 α + d 2 L 2 4 π 2 ∥v∥ 2 L 2 α ) . (13) 
Inequality ( 12) can be extended to any measure dγ such that ∫ R d |v| 4 dγ < ∞ and ∫ R d v dγ = 0. The proof of Lemma 12 is technical, but follows in a standard way from the time-independent case, as it is common in averaging lemmas: see [START_REF] Perthame | Mathematical tools for kinetic equations[END_REF]. For sake of simplicity, we detail only the t-independent case below.

Proof of Lemma 12. Assume that h ∈ H kin does not depend on t. Let ϕ ∈ D(T) d be a smooth test-vector field with zero average on each component. We write

-∫ T ρ h ∇ x ⋅ ϕ dx = ∫ T (∇ x ρ h ) ⋅ ϕ dx,
with a slight abuse of notation, since the integral of the r.h.s. is in fact a duality product.

Using ∫ R d v i v j dγ α = d -1 ∥v∥ 2 L 2 α δ ij , we obtain ∫ T ∇ x ρ h ⋅ ϕ dx = d ∥v∥ -2 L 2 α ∬ T×R d v ⋅ ∇ x ρ h ϕ ⋅ v dx dγ α .
By adding and subtracting ρ h , and then integrating by parts, still at formal level, we obtain

∬ T×R d v ⋅ ∇ x ρ h ϕ ⋅ v dx dγ α = -∬ T×R d v ⋅ (h -ρ h ) ∇ x ϕ ⋅ v dx dγ -∬ T×R d v ⋅ ∇ x h v ⋅ ϕ dx dγ α ≤ ∥h -ρ h ∥ L 2 (dx dγα) ∥∇ x ϕ∥ L 2 (dx) ∥v 2 ∥ L 2 α + ∥v ⋅ ∇ x h∥ L 2 (H -1 α ) ∥ϕ∥ L 2 (dx) ∥v∥ L 2 α
using Cauchy-Schwarz inequalities and duality estimates. By the Poincaré inequality, we know that

4 π 2 d L 2 ∥ϕ∥ 2 L 2 (dx) ≤ ∥∇ϕ∥ 2 L 2 (dx)
Maximizing the r.h.s. on ϕ such that ∥∇ x ϕ∥ L 2 (dx) ≤ 1 completes the proof of the t-independent case. When h additionally depends on t, the same scheme can be applied with v ⋅ ∇ x replaced by ∂ t + v ⋅ ∇ x .

A generalized Poincaré inequality

The next a priori estimate is at the core of the method. It is a modified Poincaré inequality in t, x and v which relies on Lemma 12 and involves derivatives of various orders.

Proposition 13. Let L > 0, τ > 0, Ω = (0, τ ) × (0, L) d , and α > 0. Then, for all h ∈ H kin with zero average, we have that

∥h∥ 2 L 2 (dt dx dγα) ≤ C (∥h -ρ h ∥ 2 L 2 (dt dx dγα) + ∥∂ t h + v ⋅ ∇ x h∥ 2 L 2 (Ω;H -1 α ) ) (14) 
with C = 1 + C L d α , where C L and d α are given respectively by [START_REF] Balian | From Microphysics to Macrophysics, Methods and Applications of Statistical Physics[END_REF] and [START_REF] Baudoin | Gamma calculus beyond Villani and explicit convergence estimates for Langevin dynamics with singular potentials[END_REF].

Proof. By orthogonality in L 2 (Ω; L 2 α ) and because dγ α is a probability measure, we have the decomposition

∥h∥ 2 L 2 (Ω;L 2 α ) = ∥h -ρ h ∥ 2 L 2 (Ω;L 2 α ) + ∥ρ h ∥ 2 L 2 (Ω) .
The function ρ h has zero average on Ω by construction, so that

∥h∥ 2 L 2 (Ω;L 2 α ) ≤ ∥h -ρ h ∥ 2 L 2 (Ω;L 2 α ) + C L ∥∇ x,t ρ∥ 2 H -1 (Ω)
by Lemma 8. Hence

∥h∥ 2 L 2 (Ω;L 2 α ) ≤ (1 + C L d α ) ∥h -ρ h ∥ 2 L 2 (Ω;dγα) + C L d α ∥∂ t h + v ⋅ ∇ x h∥ 2 L 2 (Ω;H -1 α )
by Lemma 12. This concludes the proof.

Linear and superlinear local equilibria: exponential decay rate

In this Section, we consider the case α ≥ 1 and the domain Ω = (t, t + τ ) × (0, L) d , for an arbitrary t ≥ 0. Let us define κ α ∶= (1 + C L d α )(P α + 1) where P α is the Poincaré constant in [START_REF] Arnold | Sharpening of decay rates in fourier based hypocoercivity methods[END_REF] and where C L and d α are given respectively by [START_REF] Balian | From Microphysics to Macrophysics, Methods and Applications of Statistical Physics[END_REF] and [START_REF] Baudoin | Gamma calculus beyond Villani and explicit convergence estimates for Langevin dynamics with singular potentials[END_REF]. Lemma 14. Let L > 0, τ > 0, t ≥ 0, Ω t = (t, t + τ ) × (0, L) d , and α ≥ 1. Then, for all h ∈ H kin with zero average which solve (2), we have that

∥h∥ 2 L 2 (dt dx dγα) ≤ κ α ∥∇ v h∥ 2 L 2 (dt dx dγα) . ( 15 
)
Proof. We know that

∥h∥ 2 L 2 (dt dx dγα) ≤ (1 + C L d α ) (P α ∥∇ v h∥ 2 L 2 (dt dx dγα)) + ∥∂ t h + v ⋅ ∇ x h∥ 2 L 2 (H -1 α )
) as a consequence of ( 7) and [START_REF] Bernard | Hypocoercivity with Schur complements[END_REF]. Then [START_REF] Bihari | A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations[END_REF] follows from Lemma 10.

We are ready to prove Theorem 1 with an explicit estimate of the constant λ.

Proof of Theorem 1. Inequality (15) -on the interval (t, t + τ ) -gives

∫ t+τ t ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds ≤ κ α ∫ t+τ t ∥∇ v h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds.
With λ = 2/κ α , we deduce from Lemma 11 that

d dt ∫ t+τ t ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds = -2 ∫ t+τ t ∥∇ v h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds ≤ -λ ∫ t+τ t ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds.
Grönwall's Lemma and the monotonicity of t ↦ ∥h(t, ⋅, ⋅)∥ 2 L 2 (dx dγα) imply

∫ t+τ t ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds ≤ ∫ τ 0 ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds e -λ t ≤ τ ∥h 0 ∥ 2 L 2 (dx dγα) e -λ t
for ant t ≥ 0, which proves (3), that is, Theorem 1.

Indeed, the estimate for λ is explicit, as we state in the following.

Proposition 15. For any α ≥ 1, Theorem 1 holds true with

1 λ = 1 τ (τ + √ d L 2 + τ 2 ) (2 d α |S d-1 | (P α + 1)).
Notice that the r.h.s. vanishes as τ ↓ 0, which is expected because of the degeneracy of ∆ α : an exponential decay rate of ∥h(t, ⋅, ⋅)∥ 2 L 2 (dx dγα) cannot hold. The section is concluded showing how the result above yields the classic hypocoercivity estimate of Corollary 2.

Proof of Corollary 2. For any t ≥ 0, we know from Theorem 1 that

∥h(t + τ, ⋅, ⋅)∥ 2 L 2 (dx dγα) ≤ ⨏ t+τ t ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds ≤ ∥h 0 ∥ 2 L 2 (dx dγα) e -λ t ,
as a consequence of the monotonicity of the L 2 norm, according to Lemma 11. This proves that

∥h(t, ⋅, ⋅)∥ 2 L 2 (dx dγα) ≤ C ∥h 0 ∥ 2 L 2 (dx dγα) e -λ t
with C = e λ τ for any t ≥ τ . However, if t ∈ [0, τ ), it turns out that C e -λ t ≥ 1 so that the inequality is also true by Lemma 11. This concludes the proof.

Sublinear equilibria: algebraic decay rates

Proof of Theorem 3

Assume that α ∈ (0, 1). Let us define the parameter β = 2 (1 -α)/p where p, q > 1 are Hölder conjugate exponents, i.e., 1 p + 1 q = 1 and define

Z h (t) ∶= ∬ T×R d ⟨v⟩ β q |h -ρ h | 2 dx dγ α . (16) 
The following estimates replace Proposition 13.

Proposition 16. Let L > 0, τ > 0, t ≥ 0, Ω t = (t, t + τ ) × (0, L) d , and α ≥ 1. With the above notations, for all h ∈ H kin with zero average, we have that

∥h∥ 2 L 2 (dt dx dγα) ≤ C P 1 p α ∥∇ v h∥ 2 p L 2 (dt dx dγα) ( ∫ t+τ t Z h (s) ds) 1 q + C ∥∂ t h + v ⋅ ∇ x h∥ 2 L 2 (Ω;H -1 α )
where C = 1 + C L d α is as in Proposition 13 and P α denotes the constant in the weighted Poincaré inequality (8).

Proof. Using ( 14) and Hölder's inequality w.r.t. the variable v, we find that

∥h -ρ h ∥ 2 L 2 α ≤ ( ∫ R d ⟨v⟩ -β p |h -ρ h | 2 dγ α ) 1 p ( ∫ R d ⟨v⟩ β q |h -ρ h | 2 dγ α ) 1 q 
.

The weighted Poincaré inequality [START_REF] Arnold | Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift[END_REF] with β p = 2 (1 -α) and an additional Hölder inequality w.r.t. the variables t and x allow us to complete the proof.

Lemma 17. Let L > 0, τ > 0, t ≥ 0, Ω t = (t, t + τ ) × (0, L) d , and α ∈ (0, 1). There is a constant W > 0 such that, for all solution h ∈ H kin to (2) with an initial datum h 0 with zero average, using the notation (16) as in Proposition 16, we have

Z h (t) ≤ W ∬ T×R d ⟨v⟩ β q h 2 0 dx dγ α , ∀ t ≥ 0.
Proof. An elementary computation shows that

∬ T×R d ⟨v⟩ β q |h -ρ h | 2 dx dγ α ≤ 2 ∬ T×R d ⟨v⟩ β q (h 2 + ρ 2 h ) dx dγ α ≤ 2 (1 + ∫ R d ⟨v⟩ β q dγ α ) ∬ T×R d ⟨v⟩ β q h 2 dx dγ α because ρ 2 h = ( ∫ R d h dγ α ) 2 ≤ ∫ R d h 2 dγ α ≤ ∫ R d ⟨v⟩ β q h 2 dγ α .
According to [START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF]Proposition 4], there is a constant K β q > 1 such that

∬ T×R d ⟨v⟩ β q |h(t, x, v)| 2 dx dγ α ≤ K β q ∬ T×R d ⟨v⟩ β q h 2 0 dx dγ α , ∀ t ≥ 0.
The result follows with W = 2 (1 + ∫ R d ⟨v⟩ β q dγ α ) K β q .

Assume that h ∈ H kin solves (2) with an initial datum h 0 with zero average and let us collect our estimates. With Proposition 10, Proposition 16, and Lemma 17, the estimate of Lemma 14 is replaced by

∥h∥ 2 L 2 (dt dx dγα) ≤ A ∥∇ v h∥ 2 p L 2 (dt dx dγα) + C ∥∇ v h∥ 2 L 2 (dt dx dγα) (17) 
with A = C P

1 p α (τ W ) 1/q ( ∬ T×R d ⟨v⟩ β q h 2 0 dx dγ α ) 1/q .
The main result of the section is a technical version of Theorem where norms are taken on T × R d . We know from Lemma 11 and ( 17) that

x ′ = -2 y and x ≤ φ(y) ∶= A y 1/p + C y.

Finally, let us denote by φ -1 the inverse of y ↦ φ(y) and consider

ψ(z) ∶= ∫ x0 z dz 2 φ -1 (z) with x 0 = ∥h 0 ∥ 2 L 2 (dx dγα) .
Theorem 18. Let L > 0, τ > 0, t ≥ 0, Ω t = (t, t+τ )×(0, L) d , and α ∈ (0, 1). With the above notations, for all solution h ∈ H kin to (2) with an initial datum h 0 with zero average, we have

x(t) = ⨏ t+τ t ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds ≤ ψ -1 (t), ∀ t ≥ 0.
Proof. The strategy goes as in [START_REF] Liggett | L 2 rates of convergence for attractive reversible nearest particle systems: the critical case[END_REF][START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF]. Everything reduces to the differential inequality

x ′ ≤ -2 φ -1 (x)
using the monotonicity of y ↦ φ(y). From by the elementary Bihari-Lasalle inequality, see [START_REF] Bihari | A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations[END_REF][START_REF] Lasalle | Uniqueness theorems and successive approximations[END_REF], which is obtained by a simple integration, we obtain

x(t) = ⨏ t+τ t ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds ≤ ψ -1 (t + ψ(x(0))).
Since, on the one hand

x(0) = ⨏ τ 0 ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds ≤ ∥h 0 ∥ 2 L 2 (dx dγα) = x 0 because s ↦ ∥h(s, ⋅, ⋅)∥ 2 L 2 (dx dγα)
is nonincreasing according to Lemma 11, and ψ is nonincreasing on the other hand, then

ψ -1 (t + ψ(x(0))) ≤ ψ -1 (t),
which concludes the proof. Notice that the dependence on h 0 enters in A and x 0 , and henceforth in φ and ψ.

Proof of Theorem 3. Since lim t→+∞ y(t) = 0, we have that φ(y(t)) ∼ A y(t) 1/p as t → +∞, which heuristically explains the role played by p in [START_REF] Albritton | Variational methods for the kinetic fokker-planck equation[END_REF]. This can be made rigorous as follows. Notice that φ(y) = A y 1/p + C y ≤ A 0 y 1/p , ∀ y ≤ y 0 , with A 0 = A + C y 1-1/p 0 . With A replaced by A 0 and C replaced by 0, the computation of the proof of Theorem 18 is now explicit. With the choice y 0 = φ -1 (x 0 ), we know that y(t) ≤ y 0 for any t ≥ 0 and obtain

x(t) ≤ (x 1-p 0 + 2 (p -1) A -p 0 t) -1 p-1 , ∀ t ≥ 0. (18) 
Using

x 0 = A y 1/p 0 + C y 0 ≥ C y 0 , we know that A 0 = x 0 y -1/p 0 ≤ A + C 1/p x 1-1/p 0 , which proves (5) with K = max {1, (2 (p -1)) 1/(1-p) (C P 1/p α (τ W ) 1-1/p + C 1/p )} .
The conclusion holds using σ = β q = 2 (1 -α)/(p -1).

The linear threshold: from algebraic to exponential rates

A very natural question arises: is the result Theorem 15 (corresponding to α ∈ (0, 1) consistent with the result of Theorem 18 (which covers any α ≥ 1) ? A first observation is that we can vary α in the assumptions concerning the initial data.

Lemma 19. If h 0 ∈ L 2 (T; L 2 α0 ) for some α 0 ∈ (0, 1), then ⟨v⟩ σ/2 h 0 ∈ L 2 (T; L 2 α ) for any α > α 0 and any σ > 0.

The proof is a simple consequence of the fact that v ↦ ⟨v⟩ σ exp⟨v⟩ α-α0 is uniformly bounded. For any α > α 0 , let us denote the corresponding solution of (2) with initial datum h 0 , of zero average, by h (α) .

If α ∈ (α 0 , 1), then (18) can be rewritten as

⨏ t+τ t ∥h (α) (s, ⋅, ⋅)∥ 2 L 2 (dx dγα) ds ≤ ∥h 0 ∥ 2 L 2 (dx dγα) (1 + (p -1) ℓ(α) t) -1 p-1 .
By passing to the limit as α → 1 -, we recover (3) with λ = lim α→1 -ℓ(α), where

ℓ(α) = 2 ∥h 0 ∥ 2(p-1)
L 2 (dx dγα) A -p 0 and A 0 = A 0 (α) as above. The Poincaré constant P α in the weighted Poincaré inequality (8) admits a limit as α → 1 -, according to [18, Appendix A].

The limit of lim α→1 -ℓ(α) is certainly not optimal. By working directly on the Bihari-Lasalle estimate of Theorem 18, we can recover the value of λ in Theorem 15. Notice here that σ > 0 plays essentially no role and can be taken arbitrarily small, even depending on α, but such that p = 2 (1 -α)/σ → 1 as α → 1 -.

As in [START_REF] Carrapatoso | Landau equation for very soft and Coulomb potentials near Maxwellians[END_REF][START_REF] Kavian | The Fokker-Planck equation with subcritical confinement force[END_REF], it is possible to obtain improved decay rates in (5) by picking the initial datum in a smaller space. Typically, the control of additional norms or moments is asked. However, the strategy in the current paper is in the opposite direction. If α ∈ (0, 1) we are interested in taking the initial data in a space as large as possible so that we can compute decay rates. The additional conditions to be imposed have been shown to vanish as α → 1 -.

6. Hypocoercivity and comparison with some other methods

An explicit hypocoercivity result

Theorem 1 implies an L 2 -hypocoercivity result in the linear and superlinear regimes α ≥ 1, see Corollary 2. The remainder of this section is devoted to a comparison with earlier hypocoercivity results in a simple benchmark case: let α = 2, d = 1 and L = 2π. In this case, for the choice τ = 2π, Theorem 1 amounts to ∥h∥ 2 L 2 (dx dγ2) ≤ e

Direct spectral methods

In a series of papers, F. Achleitner, A. Arnold, E. Carlen and several other collaborators use direct spectral methods. We refer in particular to [START_REF] Arnold | Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift[END_REF][START_REF] Achleitner | On linear hypocoercive BGK models[END_REF][START_REF] Achleitner | On multi-dimensional hypocoercive BGK models[END_REF][START_REF] Achleitner | On optimal decay estimates for ODEs and PDEs with modal decomposition[END_REF] and also [START_REF] Arnold | Sharpening of decay rates in fourier based hypocoercivity methods[END_REF] for an introduction to the method, which can be summarized as follows.

Let us consider [START_REF] Brezis | Opérateurs maximaux monotones, mathematics studies 5[END_REF] written after a Fourier transform in x, so that T = i ξ ⋅ v, and acting on L 2 (dx; L 2

2 ) now considered as a space of complex valued functions. Assume that for some positive definite bounded Hermitian operator P and some constant λ ∈ (0, +∞), we have (L -T ) * P + P (L -T ) ≥ 2 λ P.

Let us consider the twisted norm ∥ f ∥ 2 P ∶= ∫ Q ( f , P f ) dx where (⋅, ⋅) is the natural extension of the scalar product as defined in [START_REF] Amrouche | On a lemma of Jacques-Louis Lions and its relation to other fundamental results[END_REF] provides an easy framework for finite dimensional approximations using the basis of Hermite functions (H k ) k∈N and the numerical value µ ≈ 0.4 has been obtained according to [START_REF] Achleitner | A numerical computation of the rates for kinetic fokkerplanck equations[END_REF].

Proposition 15 λ ≈ 0.07 DMS [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] λ ≈ 0.04 ADSW [START_REF] Arnold | Sharpening of decay rates in fourier based hypocoercivity methods[END_REF] λ ≈ 0.17 Achleitner (numerics) [START_REF] Achleitner | A numerical computation of the rates for kinetic fokkerplanck equations[END_REF] λ ≈ 0.4 

Comparison for decay rates in limit regimes

Let α ≥ 1. Corollary 2 provides us with a decay estimate depending on the parameter L, which represents the length of the spatial domain T. Note that [START_REF] Balian | From Microphysics to Macrophysics, Methods and Applications of Statistical Physics[END_REF] is meaningful if 0 < τ < L. We shall now consider two situations, corresponding to L → ∞, where spatial diffusion dominates, and to L → 0, where the dominant term is the collision operator ∆ α . In the first case, we have that the decay exponent λ ≈ τ L 3 → 0, as L → ∞.

The hypocoercivity constant C ≈ 1. Hence, exponential decay is lost in the limit. On the other hand, for L → 0, we have This rate has the wrong order once compared to [START_REF] Arnold | Sharpening of decay rates in fourier based hypocoercivity methods[END_REF], where the authors recover the value λ ≈ 1 -√ 3/7.

Our inaccuracy is mainly due to the incompatibility between [START_REF] Balian | From Microphysics to Macrophysics, Methods and Applications of Statistical Physics[END_REF] and Lemma 12. Moreover, the value of the Lions constant in [START_REF] Balian | From Microphysics to Macrophysics, Methods and Applications of Statistical Physics[END_REF] is just an estimate and it is not expected to be as accurate as something achieved by a spectral method (even if its scaling is correct).

Lemma 7 .

 7 Let O be a bounded, open and Lipschitz-regular subset in R d+1 . Then, for all u ∈ D * (O), we have that u ∈ L 2 (O) if and only if the weak gradient ∇u belongs to H -1 (O). Moreover, there exists a constant C L (O) such that

Lemma 8 .

 8 D is the diameter of O, while d(O) is the diameter of the largest ball one can include in O. See in particular [25, Remark 9.3] and [16, Lemma 1]. As a consequence, we have the following explicit expression of C L when O = Ω. Let L > 0, τ ∈ (0, L) and Ω = (0, τ ) × (0, L) d . Lemma 7 holds with

  From

d dt ∥ f ∥ 2 P 2 P

 22 = -⟨ f , ((L -T ) * P + P (L -T )) f ⟩ ≤ -2 λ ∥ f ∥ 2 P ,for some C > 1, we deduce thatC -1 ∥f (t, ⋅, ⋅)∥ 2 L 2 (dx dγα) ≤ ∥ f (t, ⋅, ⋅)∥ 2 P ≤ e -2 λ t ∥ f0 ∥ ∀ t ≥ 0.To our knowledge, µ has not yet been computed in the case of (1). The spectral decomposition h(t, x, v) = ∑ξ∈Z d ∑ k∈N d a ξ,k (t)H k (v)e -i 2πL ξ⋅x

2 L 2 α

 22 α + 1) ∥v 1 |v| 2 ∥ ≈ 0.04, if α = 1. Moreover, C ≈ 1.
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For sake of comparison, notice that λ = 1/(8 √ 3) ≈ 0.0721688. Even if we are aware of explicit or sharp results in other metrics than L 2 for (2), as [START_REF] Dietert | Convergence to equilibrium for the kinetic fokker-planck equation on the torus[END_REF][START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF], we restrict our discussion to L 2 -hypocoercivity methods.

The DMS method

The first comparison is with the abstract twisted L 2 hypocoercivity method of [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF][START_REF] Bouin | Hypocoercivity without confinement[END_REF]. Let ∥ ⋅ ∥ be the norm of L 2 (dx dγ 2 ) and (⋅, ⋅) the associated scalar product. We consider the evolution equation

Theorem 20. Let h be a solution of [START_REF] Brezis | Opérateurs maximaux monotones, mathematics studies 5[END_REF] with initial datum h 0 ∈ L 2 (Q; L 2 2 ) and assume that T and L are respectively anti-self-ajoint and self-adjoint operators on L 2 (Q; L 2 2 ) such that, for some positive constants λ m , λ M and C M , we have

where A ∶= (Id + (T Π) * T Π) -1 (T Π) * and Π is the projection in L 2 2 onto the kernel of L. Then we have

This result is taken from [START_REF] Bouin | Hypocoercivity without confinement[END_REF]Proposition 4]. According to [18, Corollary 9], we have the estimate λ = 1/24 ≈ 0.041667. A minor improvement is obtained as follows. Using Theorem 20 applied with

3)/2 according to [7, Section II.1.3.2], so that λ = 1/(12 + 6 √ 3) ≈ 0.0446582. Using Fourier modes, a slightly better estimate is obtained from [7, Section II.1.2] with λ ≈ 0.176048.