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Numerical analysis of the drag on a rigid body in an immersed granular
flow

Nathan Coppin1 ·Matthieu Constant1 · Jonathan Lambrechts1 · Frédéric Dubois2,3 · Vincent Legat1

Abstract
The drag exerted on an object moving in a granular medium is subject to many studies: in dry grains, it depends on the
stress – often due to gravity – inside the grains. For Froude numbers less than 10, the drag is independent of the velocity. In
immersed grains, it is proportional to the apparent weight of the grains and it depends on both velocity and fluid viscosity. In
this paper, the drag on a cylinder in dry and immersed granular flow is simulated with a multi-scale FEM-DEM model. The
Janssen stress saturation effect before the flow and velocity independence of the drag are both reproduced. The semi-circular
orientation of the stress field supports the hypothesis of a spherical zone of influence of the cylinder. This orientation does not
significantly change upon flowing. The results show the velocity independence of the drag is due to particle friction. In the
immersed case, the fluid contribution is negligible on its own. A dimensional analysis suggests that shear thickening should
be taken into account. The transition between the quasi-static and the fluidized regime is accompanied by a decrease of the
stress field downstream of the cylinder and a change in the shape of the shear zone.

Keywords Granular drag · Janssen effect · Nonsmooth contact dynamics · Unresolved model · MigFlow

1 Introduction

Granular flows exhibit complex behaviours, and are the sub-
ject of many experimental, theoretical and numerical studies.
A quantity of interest is the drag force exerted on an object
that is intruding such a material. This quantity is involved
in many practical and industrial problems such as the design
of mixing and plowing devices [51], or anti-avalanche pro-
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tections [44]. Oftentimes, a surrounding fluid significantly
modifies the dynamic or static behaviour of the material.

In the dry case, experiments on the granular drag begun in
the early 1970’s with Wieghardt’s work. He noticed that the
drag did not mainly depend on the flow velocity, but rather
on the shape and size of the intruder [51]. Further experi-
ments established that at moderate velocities, the velocity
had no impact on the drag force. The latter mostly depends
on the object shape and size and on gravitational stress inside
the material [5,16,24,53]. This is because the motion of the
intruder implies a reorganisation of the spatial structure of the
grains, which in turn depends on geometrical parameters and
on the gravitational stress that maintain the grains together.
Hence, the flow can be characterised with the Froude number
Fr = V /

√
gL with V the flow velocity, g the accelera-

tion due to gravity and L a characteristic length – e.g. the
intruder diameter, the hydraulic radius of the channel or the
intruder’s penetration depth in the granular bed, depending
on the geometry of the problem. At Froude number greater
than 10, the granular material becomes fluidized. Then, the
transfer of momentum between the grains and the object
dominates yielding a square velocity dependence [24,45,49].

Several experiments were led in the presence of an inter-
stitial fluid. When the material is not saturated, the velocity
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dependence on the drag force is similar to the dry case,
although mechanisms such as cohesion and contact lubrica-
tion have an influence [9]. On the other hand, when the grains
are fully immersed, the buoyancy due to the fluid decreases
the apparent weight of the grains. This decreases the value
of the drag force [19] and the Froude number, leading to an
earlier fluidization. The ratio between the drag force and the
average weight of the grains on the object was observed to
vary as a power lawof a so-called viscous number J = ηγ̇ /P
with η the viscosity of the fluid, γ̇ the shear rate and P the
pressure in the granular material [6,37].

Theoretical models for granular flows exist for differ-
ent regimes such as granular gases [14,33] or quasi-static
flows [13,39].However, establishing a unified approach inde-
pendent of the flow regime remains difficult [40], although
there are progresses concerning the drag [24]. This strug-
gle, in addition to the difficulty for experimental studies to
have access to grain scale phenomena, raises the interest for
numerical methods. These techniques allow better insight on
the physics of the grains – such as the velocity field, the
contact network or the stress tensor – and control over the
physical properties – such as friction – although they require
some calibration.

Several methods exist to simulate divided media. Smooth
methods, launched in the 1970’s by Cundall and Strack,
are explicit time-stepping methods that rely on force-
displacement laws for the resolution of the contacts [20].
On the other hand, nonsmooth methods consider instanta-
neous and unilateral contacts. This implies a discontinuity in
the velocities of the particles and prevents the particles from
overlapping. The event-driven method (ED) assumes binary
contacts and solves them sequentially, jumping in time from
one contact to another. It is suitable for granular gases [3,12].
The Nonsmooth Contact Dynamics (NSCD) deals with the
discontinuity of velocities with an implicit formulation of the
contact laws,which amounts to a balance ofmomentum, cou-
pled to a Coulomb law for dry friction. This event-capturing
scheme has a constant time step, over which all contacts are
solved at once. It is done by using an iterative procedure like
Non Linear Gauss Seidel iterations [30]. This implicit time-
stepping resolution has several advantages: it avoids inelastic
collapse when the time between collisions vanishes, it allows
to use a larger time step than explicit methods, and it elimi-
nates the need for global damping in smoothmethods to reach
an equilibrium state. Although static and dynamic situations
are accurately rendered, themethod still faces problems, such
as hyperstaticity or the impossibility to reach exactitude both
in position and velocity [1].

As far as fluid-grain mixtures are concerned, different
approaches exist. The simplest models make a continuum
assumption both for the fluid and the granular phases [25].
They result in a low computational cost, but ignore discrete
interactions between the grains themselves and between the

grains and the boundaries. Direct simulations combine the
Lagrangianmethods cited above for the grains with amethod
for the fluid which explicitly computes the flow around each
grain, [27,38,52]. Although very accurate, those methods
have a very high cost, because the element size is smaller
than the one of the grains. Multi-scale methods combine the
resolution of the fluid at a coarse scale, solving volume-
averaged Navier-Stokes equations, with DEM methods for
the resolution of the solid phase at the grain scale [22,48]. The
MigFlow1 software makes use of such an hybrid approach.

The goal of this paper is to simulate the drag force exerted
on a cylinder by flowing granular medium, dry or immersed,
across a range of various properties such as fluid density and
dynamic viscosity or particle friction coefficients. To do so,
the frictional contact solver for the granular phase as well
as a channel simulation geometry are first validated against
a physical experiment on the drag exerted on a cylinder in
a dry granular flow. Then, the impact of the friction coeffi-
cients between the particles and the particles and the walls
is investigated. Finally, the presence of an interstitial fluid is
simulated for different values of density and viscosities.

2 Numerical method

The MigFlow software solves the granular phase with the
NSCD method, and the volume averaged Navier-Stokes
equations for the fluid phase with a Finite Element Method.
Both solvers are coupled using a predictor-corrector scheme.
This section first describes the NSCD and its implementa-
tion. Then, the fluid problem and its Finite Element Method
resolution are explained, followed by the description of the
predictor-corrector scheme.

2.1 Granular phase solver

Nonsmooth contact dynamics have been applied to a wide
variety of problems, be they discrete (granular materials or
stone masonry) or continuous (deep-drawing) in nature.

In this way, its adaptability to different body shapes, time
integration schemes and numerical techniques has proven
useful. This paper only aims at presenting the simpler ver-
sion of the method for spheres used in MigFlow, but more
complete descriptions of the various features can be found in
[1,30,31].

2.1.1 Unilateral contact

Consider a pair of spherical bodies in an upcoming contact,
such as in Fig. 1. The body j is called the candidate, and i
the antagonist. Since these bodies are convex, there exists a
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Fig. 1 The candidate body j and the antagonist i in potential contact

pair of contact points on their boundaries as well as a unique
normal vector from the candidate to the antagonist in the
centre-to-centre direction. A local frame can be constructed
by associating to the normal vector n a set of orthonormal
vectors, as described in Fig. 1. The focus is put on the relative
velocity of the contact points U. Its normal component is
UN and its tangential ones are UT .The contact is assumed
to be unilateral, implying that i and j do not interpenetrate.
Since this results in velocity discontinuities, it is necessary to
assume that the relative velocity is a locally boundedvariation
function. It implies that at each time t the function has a
left limit U(t−) = U− and a right limit U(t+) = U+ [35].
The non-interpenetrability is expressed by stating that the
distance between the contact points d = ||x j −xi ||−(ri +r j )
should remain positive. It is ensured by specifying that the
normal component of the reaction impulse PN is positive and
vanishes as soon as the contact is broken. This leads to the
so-called Signorini condition:

d ≥ 0, PN ≥ 0, dPN = 0. (1)

From the following relationship:

dd
dt

= UN , (2)

it is possible to write the Signorini condition in terms of
velocity:

U+
N ≥ 0, PN ≥ 0, U+

N PN = 0. (3)

The Signorini condition is amulti-application andU+
N cannot

be explicitly deduced from PN . A shock law is necessary
to close the system. A newton law with a null restitution
coefficient is chosen to cancel the relative velocity after the
contact:

U+
N = 0. (4)

This implies perfectly inelastic collisions between the par-
ticles, which proves useful to dissipate energy and avoid

persistent vibrations without the use of global damping. As
far as friction is concerned, it is modeled with a Coulomb
law for dry friction. The frictional impulse is bounded by a
threshold depending on the normal reaction impulse. When
sliding occurs, it is opposite to the sliding velocity and has a
magnitude equivalent to the normal impulse times the friction
coefficient:

||PT || ≤ μPN , ||U+
T || �= 0 ⇒ PT = −μPN

U+
T

||U+
T || , (5)

with μ the coefficient of friction.

2.1.2 Equations of motion

The sets of coordinates and velocities of the grains in the
laboratory frame of reference are denoted as:

q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

xi
θi
x j

θ j
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

dq
dt

= u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

ui
ωi

u j

ω j
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where xk , θk are the position and Euler angles vectors of
particle k and uk ,ωk its velocity and angular velocity vectors.
The equations of motion for the particles are obtained from
Newton’s second law:

M
du
dt

= fe + r (7)

q(t) = q(τ ) +
∫ t

τ

udt . (8)

with M the mass matrix, fe the explicitly known external
forces such as gravity or fluid-grain interaction forces, and
r the sum of all reaction forces due to the contacts between
the particles. The problem consists in finding all contact reac-
tions for all the contacts during a given time step. To this end,
it is necessary to iteratively solve each contact by switching
to its local frame of reference and applying the contact laws
before switching back to the global frame of reference. The
switching to the local contact frame of reference is performed
using a transformation H∗(x):

U = H∗(x)u, (9)

where x represents the set of the positions xk of the particles.
From an equality of power expressed in the two frames, it
can be shown that the reciprocal transformation is given by
its transpose H(x) [1].



2.1.3 Time discretisation

In a dense granular material, the time between two succes-
sive contacts vanishes. Since the time at which each contact
occurs is ill-defined, a time stepping method such as NSCD
aims to solve all the contacts occurring in a given time inter-
val Δt at once. This consist in finding the values of q and u
at the end of the time step, given their value at the beginning.
Various approximation formulas can be established to esti-
mate an intermediary state of these variables to be used in
the computation, see [30], but as it is not done here, it shall
not be discussed.

Integrating the equations of motion with an Euler explicit
scheme for the external forces, and an implicit one for the
reaction forces and thevelocity in the second expression leads
to:

M(un+1 − un) = fne Δt + pn+1

qn+1 = qn + un+1Δt, (10)

pn+1 being the sum of all the impulses over the time-step due
to the contacts.

The matrices H∗(x) that transform the variables are con-
sidered constant over the time step because the change in x
over the time step is small with respect to the curvature of
the bodies [30].

2.1.4 Resolution of a contact

The contact laws detailed earlier are expressed in the local
frame. Consequently, if a contact is to be solved, it is first nec-
essary to switch to this frame. Once the switch is performed,
the following set of uncoupled equations is to be solved:

{
Un+1

N = U f lN + WNN Pn+1
N

WNN = m−1
j + m−1

i

(11)

⎧⎨
⎩
Un+1
T = U f lT + WT TP

n+1
T

WT T = diag
(
WNN + r2i I

−1
i + r2j I

−1
j

) (12)

with mk and Ik the mass and inertia of particle k, and WNN

and WT T the components of a matrix W associated to the
normal and tangential directions, respectively. This matrix
W has dimensions kg−1 and results from the inverse of the
mass matrix multiplied to the left and to the right by the
switching matrices H∗ and H, respectively. The free local
velocity U f l represents the relative velocity of the particles
due to the external forces and to the other contacts implying
the two particles. The perfectly inelastic shock law and the

Algorithm 1: Contact resolution

• Initiate the contact:

n = x j − xi
||x j − xi || ,⊥ t ∈ R

2×3
Construct
the local
frame

ci = m j

mi + m j
, c j = mi

mi + m j

Compute
redistribution
coefficients

a = Ii
mir2i

= I j
m j r2j

= 2

5

Compute
the moment
of inertia
factor

• Compute the relative velocities:

UN ← δUold
N + n · (u j − ui )

Remove
previous
corrections

UT ← δUold
T + t · (u j − ui )

+ t · [(ωi ri + ω j r j ) × n]

• Solve the normal component:

δUN ← max

(
0,UN − d

Δt

)

• Solve the tangential components:

δUT ← min

(
||UT ||, a + 1

a
μδUN

)
UT

||UT ||

• Correct the velocities:

δUN ← δUN − δUold
N

Include
previous
corrections

δUT ← δUT − δUold
T

ui ← ui − ci
[
δUNn + a

a + 1
t∗ · δUT

]
Transform
local
corrections
into
global ones

u j ← u j + c j
[
δUNn + t∗ · a

a + 1
δUT

]

ωi ← ωi + ci
ri

1

a + 1
t∗ ·

(
0 1

−1 0

)
· δUT

ω j ← ω j + c j
r j

1

a + 1
t∗ ·

(
0 1

−1 0

)
· δUT

coulomb friction yield:

Pn+1
N = −U f lN/WNN (13)

Pn+1
T = min(μPn+1

N , ||Pstick||) Pstick

||Pstick|| , (14)



with Pstick = −W−1
T TU f lT the impulse that cancels the tan-

gential relative velocity.
Each contact is solved based on the above procedure.

In practice, the impulses are directly computed as relative
velocity corrections, and then the velocities of the grains
are modified accordingly, as pictured in Algorithm 1. Con-
tacts with the boundaries are solved in the same way, except
that the boundaries are treated as having infinite mass. The
moment of inertia factor has a value of 0.4 for solid spheres,
but it can be tuned to match a given degree of hollowness of
the grains. The previous corrections are canceled and then
retaken into account for convergence purposes.

2.1.5 Collection of grains

When solving the contacts for a collection of grains, several
difficulties arise. First, the velocity corrections due to the
yet unsolved contacts are unknown. Furthermore, the reso-
lution of one contact may affect a previously solved contact.
To overcome these issues, an iterative procedure based on a
queue is used. First, all possible contacts are detected with
the help of an octree, and are inserted into the queue. Then,
each contact of the queue is solved in turn. When a contact
is solved, it is removed from the queue, and the contacts that
imply one of the particles of the solved contact are put back
in, if they are not already. If the difference between the pre-
vious corrections and the current ones times the time step are
inferior to a given geometrical tolerance:

δUNΔt < ζ and ||δUT ||Δt < ζ, (15)

then the contacts that imply the particles are not reinserted.
Convergence is reached when the queue is empty. To accel-
erate this process, velocity corrections from the last time
step are used as a first guess for the current one. Since in
static situations, contacts are persistent and grain velocities
do not change much, this results in a significant speed-up
with equivalent accuracy [4]. Even then, convergence is not
guaranteed for different reasons. One of them is that the kine-
matic constraints due to the constant approximation of the
local frame of reference can be too large [31]. Since non-
convergence results in accuracy loss, a recursive adaptative
strategy on the time step was implemented to deal with the
above reason.When convergence cannot be reached, the cur-
rent time-step is split in two sub time-steps that are solved
with half the tolerance. To avoid infinite splitting when the
non-convergence is due to another reason, a maximum num-
ber of splits is specified. When convergence is reached for
all sub time-steps, the computation can go on to the next
time-step.

2.2 Fluid phase solver

To simulate an interstitial fluid, the multi-scale approach
allows to smooth the discontinuities due to the grains from
the fluid point of view. The precise flow at the surface of the
grains, on the other hand, is neglected. To do this, the fluid
fields are replaced by their average on a given control vol-
ume, weighted by the fluid volume fraction over that control
volume: the porosity [8].

The Navier-Stokes equations for an incompressible flow
become:

∂φ

∂t
+ ∇ · v = 0, (16)

∂ρ f v
∂t

+ ∇ · ρ f vv
φ

= ∇ ·
(
2ηφd

( v
φ

)
− pI

)
+ f + φρ f g,

(17)

where v is the volume-averaged fluid velocity, ρ f its density,
η its dynamic viscosity, d the deformation rate tensor, p the
pressure, I the identity tensor, f the fluid-grain interaction
force, and g the acceleration due to gravity. These equations
are solved with a PSPG-SUPG stabilised P1-P1 Finite Ele-
ment Method that is corrected for incompressibility with a
LSIC term [17]. The currently used volume-averaging pro-
cess requires the elements to be larger than the grains, but
progress has been made that may suppress this constrain
[15]. However, in this work the focus is put on the granular
phase and an accuracy larger than the grain scale is sufficient
for the fluid phase. Therefore, linear interpolation functions
are satisfactory, and give good computational performances
because of their simplicity. As for the fluid-grain interaction
force f , it only accounts for the pressure gradient and the drag
contribution, neglecting other ones, such as the lift:

f = −Vp∇ p|x − γ
(
u − v

φ
|x

)
, (18)

whereVp is a vector containing the volumes of the grains, and
where the drag component γ coefficient follows an empir-
ical formula that has been adapted to take into account the
porosity [41,50] and the Reynolds number so that it can be
valid at different flow regimes [21]:

γ = φ−1.8|q πd2

4

ρ f

2

(
0.63||u − v

φ
|x|| 12 +

[ η

dρ f φ|x
] 1
2
)

(19)

This interaction force was validated in theMigFlow software
for Stokes clouds of glass beads falling in a viscous fluid [18].

The resolution of the fluid phase rests on the following
implicit time scheme:

φn − φn−1

Δt
+ ∇ · vn+1 =0 (20)



ρ f

(vn+1 − vn

Δt
+ ∇ · v

n+1vn

φn

)
=∇ · 2ηφndn+1 − φn∇ pn+1

+ (fn+1 + Vp∇ pn+1|xn+1)

+ φnρ f g (21)

2.2.1 Fluid-grain coupling scheme

For the sake of computational convenience, the fluid and the
granular solvers are explicitly coupled. A predictor correc-
tor scheme, detailed in [17], is used to improve the overall
stability. However, with such an explicit coupling, the inter-
action force is still unstable. For this reason, the latter is
computed with a Patankar scheme. Instead of using un to
compute the interaction force, a prediction is made based on
external forces at time n + 1 and contact forces at time n:

u∗ − un

Δt
= g + M−1(fn+1 + pn

Δt
) (22)

fn+1 = −Vp∇ pn+1|xn − γ n
(
u∗ − vn+1

φn
|xn

)
(23)

3 Validation

To validate the grain solver, the numerical model is con-
fronted to a physical experiment performed by Chehata et
al. [16]. They measured the drag force exerted on a cylinder
inside a gravity-driven granular flow, and observed that it did
not depend on the flow velocity.

The experimental apparatus, depicted in Fig. 2 left, con-
sists of a vertical hopper throughwhich a cylinder of diameter
D = 38.1 mm is placed at a position xc. The top of the
hopper is connected to a particle tank, while an aperture of
variable size at its bottom controls the flow. The system is
filled with glass particles with radius r = 3 mm and density
ρp = 2500 kg/m3. In the simulations, a small polydispersity
based on auniformdistribution in the range 0.95r−1.05r was
introduced to prevent crystallisation effects. The coefficients
of friction are μp between the particles and μw between the
particles and the walls. For the sake of simplicity, the coef-
ficient of friction between the particles and the cylinder is
also μw. To be convenient with the FEM used to solve the
presence of a fluid in further simulations, the cylinder is dis-
cretised as an octogonal prism. Instead of a large reservoir,
particles are regularly reloaded when the level of the grains
goes below a given limit, reducing computational costs. The
number of injected particles is sufficiently small to make
their impact on the force measured on the cylinder negligi-
ble. Finally, a channel geometry depicted in Fig. 2 right is
tested. In this case, the particles rest on a fixed bed of particles
(represented in red in Fig. 2 right), in a similar way to what is
done in [32]. In addition to be less CPU time consuming, this

Fig. 2 Left: hopper geometry. Right: channel geometry

geometry allows a better control on the flow velocity, since it
can be directly prescribed on the fixed bed. Furthermore, it is
more suitable to the simulation of an interstitial fluid because
the fluid flow is not disturbed by the change of directions of
boundaries.

Although the experiment is quasi-2D, 2D simulationswith
MigFlow yield values of the drag force much higher than
the experimental results. While they capture the velocity-
independent behaviour, 3D simulations are necessary for
quantitative validation. These 3D simulations with 100000
particles for 40 s take approximately 40 hours on a SkyLake
2.3 GHz CPU. A sensitivity analysis on the convergence cri-
terion showed that at value of 10−6 m for the geometrical
tolerance allows good confidence in the value of the drag
force. Figure 3 shows a typical curve for the norm of the
drag force versus time. This force is computed as the sum of
all the contact impulses on the cylinder over the time step,
divided by the time step:

F = 1

Δt

∑
β

mβ(δUNn + δUT · t), (24)

where β denotes the contacts in which the cylinder is implied
andmβ themass of the corresponding grains. Remember that



Fig. 3 Typical curve for the drag force, resulting from amoving average
with span tav = 0.5 s that only takes past data into account. The mean
drag force is in blue. The flow velocity is V = 64 mm/s and the time
step is .001 s

the velocity corrections are with respect to the free veloci-
ties of the grains computed from the external forces. Hence,
these are not zero in static situations. The grains are at rest
for five seconds before the flow begins, either by opening the
aperture in the hopper geometry, or by setting the particle bed
in motion in the channel geometry. After a while, the reload-
ing stops and the container empties. The value of the drag
force is taken as the average value between the start of the
flow and the stop of the reloading. Figure 4 shows a snapshot
of the contact network in 2D between the grains when they
are flowing. This network fluctuates quickly as contacts are
continuously initiated and broken, which is reflected by the
variability of the data in Fig. 3.

3.1 Static stress state

The value of the static force before the flow begins is diffi-
cult to validate as such, because of the complex structure of
the contact network. It varies from a simulation to another.
Because of this, the focus is put on the static stress inside the
granular material, which is linked to the drag force [16,24].
The discrete stress tensor can be computed at given grid
points directly from the contact forces between the particles:

σi j = 1

V

∑
β∈V

fβi · lβj , (25)

where V is a given volume around the grid point, fβi is the

i th component of the contact force of contact β and lβj the
j th component of its centre to centre vector. The volume V
is chosen as πd3/6 and the grid points are separated by a
distance

√
2d, with d = 2r the particle diameter.

Fig. 4 Snapshot of the contact network in 2D between the grains when
they are flowing. The redder and wider the line, the larger the contact
force between the two grains

The vertical stress σyy has been shown to asymptote to
a saturating value σ0 as depth increases, unlike hydrostatic
stress in newtonian fluids. Indeed, because of the frictional
nature of the contacts, arches appear that deflect a part of the
weight of the grains onto the side walls. This feature was first
modeled by Janssen [29]. He supposed that the horizontal
stress was uniform across a vertical section of the container,
and that the contact forces of the grains with the walls were
at the point of Coulomb failure, i.e. fT = μwfN . He obtained
what follows:

⎧⎨
⎩

σyy(y) = σ0

(
1 − exp

(
− H − y

y0

))

σ0 = φpρpgy0

(26)

where g is the norm of the acceleration due to gravity, H
the total height of the granular column and φp the packing
fraction. In all simulations, φp was close to the maximum
value for spheres in 3D φp ∼ 0.64. In rectangular containers,
the value of y0 is given by [16]:

y0 = 1

Kμw

(L − 2r)(W − 2r)

2(L + W − 4r)
, (27)

with L and W the length and width of the container, respec-
tively, and r the particle radius. The latter is used to take finite
particle size effects into account. For the effect to be signif-
icant, the ratios H/W and H/L need to be large enough,
which is the case in the considered experiment. The param-
eter K is called the coefficient of earth pressure.
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Fig. 5 Width and length averaged vertical stress as a function of height
inside the grains before the flow starts. The grey zone indicates the
position of the cylinder. Solid curves represent the simulation data. The
dashed curve represents Eq. 26 with y0 from Eq. 27. The dotted curve
is Eq. 26 with μw = μw in Eq. 27

It represents the ratio between the horizontal stress and
the vertical stress in a granular material. In a container filled
by pouring, it can be assessed as [34]:

K = 1 − sin(ψ)

1 + sin(ψ)
, (28)

whereψ is the internal angle of friction of the material. Here,
it is estimated as tan−1(μp). If a stress load of magnitude Q0

is applied at the top of the granular column, then the Janssen
equation must be modified by adding a term Q(y) that takes
this load into account [36]:

Q(y) = Q0 exp
(

− H − y

y0

)
. (29)

This term is useful to compare stress curves in granular
columnswith different total heights. The same height bounds
are taken for every column so that the relative position of the
cylinder is the same, and the stress state above the upper
bond is rendered as an applied load Q0. The stress profiles
obtained with the simulations for the hopper, the channel,
and the channel without cylinder are given in Fig. 5.

The curves corresponds to themodel fromEq. 26, but with
values of y0 that are different from Eq. 27. Since L , W and
r are purely geometrical, the differences should arise either
from K or μw. The parameter K has a mean value between
0.7 and 0.8, which is close to the value of 0.74 predicted
by Eq. 28. Although the hypothesis of uniform horizontal
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Fig. 6 Comparison of the drag force versus velocity from Chehata et
al. with hopper and channel geometry simulations

stress is wrong, the differences between the estimated and
the measured value of K are too small to explain the contrast
in y0. This could actually be due to μw, because the contacts
at the walls are not at the point of Coulomb failure. As the
particles could slip on one another, the walls could not sup-
port tangential forces much higher than the one between the
particles [32]. The fitted effective value of the wall friction
coefficient μw is given in Fig. 5. Such a lower value of effec-
tive friction is also observed in the dynamic case, because of
the force network fluctuations [10]. As seen in Figs. 5 and 7,
the cylinder significantly modifies the stress field inside the
grains, and the hopper and channel geometries yield similar
results. In Fig. 7, the stress magnitude is lower in the top of
the domain for the channel because the total height of grains
above the cylinder is lower than with the hopper. However,
the difference vanishes as depth increases and the saturating
stress is reached before the cylinder. Just before the cylin-
der, the stress increases and suddenly drops afterwards. This
is because the cylinder shields the grains directly below by
deflecting the weight of the grains towards the walls. The
drop is recovered over three to four cylinder diameters. The
cylinder also gives the stress field a semi-circular orientation
– indicated by the red lines in Fig. 7 – downstream, which
persists for approximately two diameters.

3.2 Drag force

When the flow starts, the force exerted on the cylinder
changes to reach the regime drag force. Results presented
in Fig. 6 are the average over 4 runs, each with new random
starting positions for the grains. Both geometries yield results
matching the data from Chehata et al., although the channel



Fig. 7 Stress field inside the grains before the flow starts. a: hopper geometry. b: channel geometry. The ellipses’ axes represent the principal
stresses. Red lines underline the semi-circular orientation of the stress field

seems to be slightly below the hopper. The drag force itself
has a significant standard deviation but its mean value did
not change much over the different runs, with mean standard
deviations of 0.031 N and 0.059 N for the hopper and the
channel respectively. The coefficients of friction were set to
μp = 0.15 between the particles and μw = 0.3 between the
particles and the walls to obtain matching results. This dif-
ference should arise from the hypothesis of the same friction
coefficient with the walls and with the cylinder. As detailed
in Sect. 4.1, the former tends to reduce the drag force and
the latter tends to increase it. Hence, the higher value of μw

compared to μp is a compromise resulting from a compe-
tition between those two phenomena. Concerning the stress
field, its norm evolves upon flowing of the grains but its ori-
entation remains unchanged. Both norm and orientation do
not significantly change with the flowing velocity. The ori-
entation indicates that the drag is mainly due to compressive
stress in front of the cylinder, i.e. in the stagnation zone,
as supposed by Chehata at al. [16]. The semi-circular shape
downstream, see Fig. 7, supports the assumption of a circular
zone of influence of the object [24,46].

4 Results

The channel geometry yields results similar to the hopper
geometry. Because of its simplicity and its lower computa-
tional cost, it is used to study the influence of both friction and
the interstitial fluid. Friction is at the origin of the velocity-

independent behaviour of the drag. It also impacts the drag
through the Janssen effect which determines the static stress
in contained grains. Many applications of the granular drag
– such as industrial mixing or avalanche protecting devices –
feature an interstitial fluid. Its effects include drag reduction
and fluidization at lower velocities.

4.1 Impact of friction coefficients

Simulations were performedwith amean velocity of V = 64
mm/s with both friction coefficients ranging independently
from0 to 0.6by steps of 0.05. The results are presented in Fig.
8. For a fixed particle friction coefficient μp > 0.1, the drag
decreases exponentially as the wall friction coefficient μw

increases. At low μp < 0.1, the exponential flattens and the
drag becomes independent of μw. For a fixed μw > 0.1, the
drag decreases exponentially as μp increases. At low μw <

0.1, the drag increases with μp. Other simulations show that
when friction vanishes, inertial effects are predominant and
the drag force exhibits a velocity dependent behaviour.

Those behaviours indicate that the drag F is linked to the
saturating stress. The latter decreases with increasing fric-
tion, as the walls are able to support a larger fraction of the
load. This Janssen effect should be taken into account in the
choice of the dimensionless quantity F∗, sometimes referred
to as the effective friction [6,40]:

F∗ = F

PDW
, (30)



Fig. 8 Left: drag force as a function of μw for μp = 0.45. Right: drag force as a function of the friction coefficients

Fig. 9 F∗ as a function of the friction coefficients for different values
of μp . Solid lines are fits from Eq. 33. For clarity, some curves have
been omitted

with P = σyy(xc) computed with Eq. 26. It is to note that
the Janssen effect was shown to remain qualitatively valid in
flowing conditions – at least for velocities up to 35 mm/s –
but with an even stronger screening effect [11]. The exact dif-
ference being difficult to compute, the formula for the static
case is used. This should not affect the general behaviour
of the data, but only its absolute value. F∗ is plotted as a
function of μw for different values of μp in Fig. 9.

Two regimes can be distinguished. Fromμw = 0.3 on, F∗
linearly increases with μw with a slope that decreases with
increasing μp. It can be fitted with the following functional
form:

F∗ = Aμw︸︷︷︸
Cylinder friction

+B, (31)

with A and B fitting parameters functions of μp. Fitting A
for μp yields:

A(μp) = 2.6

0.074 + μp
. (32)

This linear term is associated to the frictionbetween the cylin-
der and the moving grains. It is directly proportional to μw,
but as μp increases, the grain network reorganisation dom-
inates. If the data for μp < 0.3 is taken into account, the
constant term in the model becomes a Gauss function:

F∗ = Aμw︸︷︷︸
Cylinder friction

+B exp(−C(μw − D)2), (33)

with C and D fitting parameters also functions of μp.

4.2 Effect of an interstitial fluid

The steady flow of a uniform fluid-grain mixture injected
under gravity through a channel with a given velocity is
simulated. Such circumstances are met in civil engineering
applications like raising the level of a building or stabilising
its foundations by injecting sand mixed with water [2]. The
entrance and the exit of the channel are considered to be very
far from the cylinder on which the drag force is measured.
No-slip boundary conditions are prescribed on the walls and
the cylinder. Results for the drag force are presented in Fig.
10.

Although the force exerted on the cylinder by the fluid
is negligible – 3 to 4 orders of magnitudes lower than the
total drag – the presence of a fluid significantly decreases



Fig. 10 Dimensionless drag force as a function of different parameters, a: flow velocity, b: Reynolds number, c: modified inertial number, d:
modified viscous number. Densities are in kg/m3 and viscosities in Pa·s

the drag force because it modifies the apparent weight of
the grains and hence the gravity-induced stress [19]. The
same dimensionless quantity F∗ is computed as in Eq. 30
but corrected for the apparent weight, collapsing the data for
different grain densities. The behaviour of the stress tensor
indicated a Janssen stress saturation effect that was similar in
all simulations. As seen in Fig. 10a, the drag force becomes
velocity dependent for a smaller velocity with increasing
fluid viscosity. To fully describe the rheology of the fluid-
grain mixture, a proper scaling implying both velocity and
viscosity is necessary. Figure 10b shows that the Reynolds
number Re = ρ f V D/η is not sufficient, because it lacks
information about the granular part of themixture.By consid-
ering the stresses at stake – inertial ρp(dγ̇ )2, viscous ηγ̇ , and

static P – it is possible to construct a dimensionless number
that characterises the flow. The static stress P is computed
with Eq. 26 adapted for the apparent weight. It should be
noted that the visualisation of the stress tensor showed that
the Janssen effect is still valid with a surrounding fluid. Actu-
ally, as the saturating stress is smaller because of buoyancy,
the static stress and hence Janssen effect should decrease in
importance relative to the inertial and viscous stresses.

The so-called modified viscoinertial number is taken as
the square root of the ratio of a linear combination of the



Fig. 11 Grain shear rates Γ̇ , stress fields and normalised velocity |u|/V
profiles near the cylinder. Left: quasi-static regime. Right: fluidized
regime. The average shear rate is computed with the same grid than
the stress tensor. The grey dots in the velocity profiles are the average

velocity at grid points. The grid stretches across the whole width of the
channel horizontally, and one diameter above and below the cylinder
vertically. The black line is the corresponding smoothed curve

inertial and the viscous stress to the static stress [7,47]:

Im =
√

ρp(dγ̇ )2 + β · ηγ̇

P
, (34)

where γ̇ is the shear rate and β is a fitting parameter that
should depend on material properties such as particle shape
and size distribution and friction coefficients [47]. In gran-
ular flows, the shear rate may depend on both the cylinder
diameter and the grain diameter when the ratio of the two is
small [42]. However, since the ratio D/d is around 6.35, the
grain diameter is neglected in the shear rate which is cho-
sen as γ̇ = V /D. Nonetheless, the grain diameter is already
taken into account in Im . The value of β that best fits the
data is 39.9. As seen in Fig. 10c, this allows a collapse of all
curves except the one with the highest viscosity. Ignoring the
latter, the data is fitted by a single power law given in the fig-
ure. It is possible to collapse all the data by considering shear
thickening, which has been observed for immersed granular
flows [23]. In this case, the viscosity depends on the shear
rate as follows:

ηs = H γ̇ n, (35)

with H a constant having appropriate units. The value of n
that best collapses the data is n = 0.7. Replacing η by ηs to

obtain a shear-thickening viscoinertial number:

Is =
√

ρp(dγ̇ )2 + β · ηs γ̇

P
, (36)

yields Fig. 10d. Again, the data can be fitted with a single
power law. Several physical mechanisms could explain the
shear thickening of dense granular suspensions. Heussinger
suggested that it is due to energy dissipation, notably through
the formation of hydrodynamic clusters increasing viscous
dissipation [26]. These clusters have a size linked to the vis-
cosity of the surrounding fluid, which could explain why
the data with the highest viscosity is the most affected by
the consideration of shear thickening. Others suggested that
it originates from constrains on particle rotation and relative
sliding. These constrains can come from interparticle friction
[43] but also from hydrodynamic forces [28]. As hydrody-
namic forces increase with viscosity, this could again explain
the higher sensitivity of the high viscosity data set to shear
thickening. However, it is still unclear how shear thickening
manifests in the simulations and if Is should be used, or if
the highest viscosity data set is at the limit of the numerical
model and Im should be used.

The transition between the quasi-static – F∗ = constant
– and the fluidized regimes occurs between Im = 0.15 and
Im = 0.4 or between Is = 0.3 and Is = 0.6. The corre-
sponding Froude numbers corrected for the apparent gravity
due to buoyancy – Fr = V /

√
(1 − ρ f /ρp)gD – are below



the threshold value of 10. This confirms that the fluid causes
fluidization at lower velocities. Figure 11 shows the grain
shear rate, the stress state and the velocity profiles in the
quasi-static and the fluidized regimes close to the transition.

The grain shear rate is computed as the Frobenius norm
of the deformation rate tensor :

Γ̇ =
√√√√∑

i

∑
j

(1
2

∂ui
∂x j

+ 1

2

∂u j

∂xi

)2
. (37)

The velocities are evaluated on a grid as the average of the
velocities of the grains near the grid points. Their deriva-
tives are computed with a first order central finite difference
scheme. The grid is the same than the one used to compute
the stress tensor. The shear zone size increases as expected
with the flowvelocity, but its shape changes from roughly cir-
cular in the quasi-static regime to an elongated shape aligned
with the flow direction in the fluidized regime. Fluidization
decreases the stress field downstream of the cylinder, imply-
ing a reduction of the amount of interparticle contacts. In
the quasi static regime, the increase of velocity occurs in the
vicinity of the cylinder only: the flow slips in this region
[16]. In the fluidized regime, the velocity increase is uniform
across the channel and decays near the cylinder, which is
characteristic of a viscous flow.

5 Conclusion

The granular flow around a cylinder was simulated in both
dry and immersed cases and the drag force was measured.
The granular phase was solved with the nonsmooth contact
dynamics method: the particles are tracked in a Lagrangian
way and interpenetrations are prevented by correcting their
velocities following a perfectly inelastic collision law, taking
friction into account. The fluid phasewas solvedwith a Finite
Element Method based on an averaging process of the fluid
fields according to the fluid volume fraction. Both solvers are
coupled through a predictor-corrector scheme.

The model and a channel simulation geometry were val-
idated in the dry case against physical experiments. The
Janssen effect was captured with an effective wall friction
coefficient closer to the particle friction coefficient. The inde-
pendent behaviour of the drag force versus velocity was
quantitatively recovered. Visualization of the stress field
showed that the drag force ismainly due to compressive stress
upstream of the cylinder. Its circular orientation downstream
of the cylinder supports the hypothesis of a spherical zone of
influence of the penetrating object.

The impact of the wall and particle friction coefficients
was studied. The drag force was found to decrease exponen-
tially with the friction coefficients, as the walls take a larger

part of the gravitational load. A scaling for the drag force was
then proposed based on the Janssen effect. It was found that
the dimensionless drag force as a function of the wall fric-
tion coefficient follows two regimes. For high wall friction,
the drag increases linearly with the wall friction coefficient,
with a slope decreasing with increasing particle friction. For
low wall friction, the drag follows a Gaussian function with
parameters depending on particle friction. A more accurate
study of the physical phenomenon of this contribution is
required to fully characterise it.

In the immersed case, the contribution of the fluid on its
own was found negligible compared to the one of the grains.
Two dimensionless numbers were used to characterise the
flow. The modified viscoinertial number Im , based on a ratio
of relevant stresses yielded a good collapse of the data except
for the highest fluid viscosity. Considering shear thicken-
ing and using an adapted viscoinertial number Is yielded
a collapse of the whole data. Further investigation should
be led to determine if Im or Is should be preferred. The
transition between the quasi-static and the fluidized regime
was accompanied by a reduction of the interparticle contacts
downstream of the cylinder. The shear zone changes from
circular to elongated in the direction of the flow. The veloc-
ity profile shifted from a slipping behaviour in the vicinity of
the cylinder to a viscous one with a uniform velocity increase
across the channel section and a decay close to the cylinder.
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