

MODELING OF THE NET EMISSON COEFFICIENT IN HIGH INTENSITY DISCHARGE (HID) LAMPS

Mohamad Hamady, Antoine Sahab, Yann Cressault, Georges Zissis

▶ To cite this version:

Mohamad Hamady, Antoine Sahab, Yann Cressault, Georges Zissis. MODELING OF THE NET EMISSON COEFFICIENT IN HIGH INTENSITY DISCHARGE (HID) LAMPS. IEEE International Conference on Plasma Science (ICOPS), Dec 2020, Singapore, Singapore. pp.PID6322237. hal-03269413

HAL Id: hal-03269413 https://hal.science/hal-03269413

Submitted on 6 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Atomic co	nstants	calculat	ed hy	σωρνι				
11011110 00	notanto	cuicuiui	cu by I	JOIN				
line (nm)	E _b (eV)	E _h (eV)	G _b	Gh	A _{ki} (10 ⁸ s ⁻¹)	C ₃ (10 ^{-15 m3} s ⁻¹)	C ₄ (10 ⁻²² m ⁴ s ⁻ ¹)	C ₆ (10 ⁻⁴² m ⁶ s ⁻¹)
404.7	4.66	7.73	1	3	0.20	2.97	3	2.5
435.8	4.88	7.73	3	3	0.55	3.86	3	2.5
546.1	5.46	7.73	5	3	0.48	0	6	2
577.0	6.7	8.85	3	5	0.23	6.24	0.046	2.76
577.0 Atomic co line (nm)	6.7 enstants of E _b (eV)	8.85 calculat E _h (eV)	3 Seed by 2 gb	5 STROM gh	0.23 (BERG (10 ⁸ s ⁻¹)	6.24 C _n (10 ⁻³⁶ m4)	0.046 Cs (10 ⁻³³ m4)	2.76 Cos (10 ⁻⁶² m7)
577.0 Atomic co line (nm) 404.7	6.7 <i>instants</i> (eV) 4.66	8.85 <i>calculat</i> (eV) 7.73	3 Sed by 2 gь 1	5 STROM gh 3	0.23 BERG (10 ⁸ s ⁻¹) 0.17	6.24 C _n (10 ⁻³⁶ m4) 1	0.046 Cs (10 ⁻³³ m4) 0	2.76 Cos (10 ⁻⁶² m7) 1
577.0 Atomic co line (nm) 404.7 435.8	6.7 <i>instants</i> (eV) 4.66 4.88	8.85 calculat (eV) 7.73 7.73	3 Seed by 2 g _b 1 3	5 STROM gh 3 3	0.23 BERG (10 ⁸ s ⁻¹) 0.17 0.37	6.24 C _n (10 ⁻³⁶ m4) 1 1.3	0.046 Cs (10 ⁻³³ m4) 0 0	2.76 Cos (10 ⁻⁶² m7) 1 1.3
577.0 Atomic co line (nm) 404.7 435.8 546.1	6.7 mstants (eV) 4.66 4.88 5.46	8.85 calculat E _h (eV) 7.73 7.73 7.73	3 ged by 2 gь 1 3 5	5 STROM 3 3 3 3	0.23 <i>BERG</i> (10 ⁸ s ⁻¹) 0.17 0.37 0.52	6.24 C _n (10 ⁻³⁶ m4) 1 1.3 0.6	0.046 Cs (10 ⁻³³ m4) 0 0 0	2.76 Cos (10 ⁻⁶² m7) 1 1.3 0.3

Laplace	ence	ofat	tomic o	onstants on output flux
Model output:	1			
line (nm)	404.7	435.8	546.1	577.0
Flux (W) calculated by Born's Constants	45.5	70.37	59.6	31
Flux (W) calculated by Stromberg's Constants	27.49	49.3	41.6	70.8
1000 0 0 0 0 0 0 0 0 0 0 0 0		RGs Constants		
racus (on total ini	ensitv for	the line 577 nn	n E

