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In this paper, we study the convexity of the linear joint chance constraints. We assume that the constraint row vectors are elliptically distributed. Further, the dependence of the rows is modeled by a family of Archimedean copulas, namely, the Gumbel-Hougaard family of copulas. Under mild assumptions, we prove the eventual convexity of the feasibility set.

Introduction

We consider the following linear optimization with joint chance constraints min 𝑐 𝑇 𝑥 subject to

P {𝑉𝑥 ≤ 𝐷} ≥ 𝑝 𝑥 ∈ 𝑄. (1) 
where 𝑄 = {𝑥 ∈ R 𝑛 | 𝛿 𝑙 ≤ ||𝑥|| ≤ 𝛿 𝑢 } is a closed convex subset of R 𝑛 , 𝛿 𝑙 and 𝛿 𝑢 are strictly positive real numbers, 𝐷 := (𝐷 1 , ..., 𝐷 𝐾 ) ∈ R 𝐾 is a deterministic vector, 𝑉 := [𝑣 1 , ..., 𝑣 𝐾 ] 𝑇 is a random matrix with size 𝐾 × 𝑛, where 𝑣 𝑘 is a random vector in R 𝑛 , ∀𝑘 = 1, 2, ..., 𝐾 and 𝑝 ∈ (0, 1). We denote 𝑆( 𝑝) the feasibility set of [START_REF] Borell | Convex set functions in d-space[END_REF]. Let 𝐽 := {1, 2, ..., 𝐾 }.

The convexity of chance constraints as well as the analytical properties of the probability function play an important role in convex optimisation which are difficult issues and scarcely studied in the literature. This problem was first introduced by Prékopa [START_REF] Prékopa | Stochastic programming[END_REF]. He considers the following form of chance constraints

P(ℎ(𝑥, 𝜉) ≥ 0) ≥ 𝑝, (2) 
where 𝑥 ∈ R 𝑛 is a decision vector, 𝜉 : Ω → R 𝑚 is an 𝑚-random variable vector defined on a probability space (Ω, A, P), ℎ : R 𝑛 × R 𝑚 → R 𝑠 and 𝑝 ∈ [0, 1] is a given probability threshold.

Theorem 10.2.1 in [START_REF] Prékopa | Stochastic programming[END_REF] states that the feasibility set of ( 2) is convex if P o 𝜉 -1 of 𝜉 is a log-concave probability measure on R 𝑚 and the components of ℎ are quasi-concave. Henrion and Strugarek [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF] studied a particular form of (2) by taking ℎ(𝑥, 𝜉) = 𝑔(𝑥) -𝜉 where 𝑔 : R 𝑚 → R 𝑛 . Hence, they consider the following form

P(𝜉 ≤ 𝑔(𝑥)) ≥ 𝑝, (3) 
where they suppose that the components of 𝜉 are independent. They prove that if the cumulative distribution functions of the components of 𝜉 have 𝑟-decreasing densities and the components of 𝑔 are 𝑟-concave, the feasibility set of (3) is convex. Henrion [START_REF] Henrion | Convexity of chance constraints with dependent random variables: the use of copulae[END_REF] generalized this result to the case where the components of 𝜉 are dependent. He uses the theory of copulas to model the dependence of the components of 𝜉.

Marti [START_REF] Marti | Differentiation of probability functions: The transformation method[END_REF] studied the differentiation of probability functions by an integral transformation method. The derivatives of the probability function can be obtained by applying an integral transformation to its integral representation. Some basic results on the differentiability of a probability function were studied by Kibzun et al [START_REF] Kibzun | Differentiability of probability function[END_REF]. They proposed new formulations of the gradient of probability functions in different forms, i.e., integral over the surface, volume, or sum of surface and volume integrals. Lobo [START_REF] Lobo | Applications of second-order cone programming[END_REF] studied some applications of second-order cone program leading to a new approach for solving chance constraints. A more developed direction was initialized by Henrion [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF] which gave a full description of the structure (not only the convexity) of a one-row linear optimization with a chance constraint by introducing a new notion of r-decreasing function. Henrion [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF] studied the convexity in the case where the constraints are independent. To deal with the dependent case, Henrion and Strugarek [START_REF] Henrion | Convexity of chance constraints with dependent random variables: the use of copulae[END_REF], Cheng et al. [START_REF] Cheng | Second-order cone programming approach for elliptically distributed joint probabilistic constraints with dependent rows[END_REF] and Van Ackooij [START_REF] Van Ackooij | Eventual convexity of chance constrained feasible sets[END_REF] used the theory of copulas to model the dependence of the constraints. They supposed that the distribution of the constraint row vectors are elliptically distributed. Under high probability threshold 𝑝, they prove the convexity of 𝑆( 𝑝). Hong et al [START_REF] Hong | Sequential convex approximations to joint chance constrained programs: A monte carlo approach[END_REF] proposed to solve joint chance-constrained programs by sequential convex approximations. They proved that the solutions of the sequence of approximations converge to a Karush-Kuhn-Tacker (KTT) point of the original problem. Farshbaf-Shaker et al [START_REF] Farshbaf-Shaker | Properties of chance constraints in infinite dimensions with an application to pde constrained optimization[END_REF] proved some properties of chance constraints in infinite dimensions. They supposed that the feasibility set belongs to a Banach space. Under mild conditions, they proved regularity properties of the probability function with an application to PDE constrained optimization. Wim van Ackooij [START_REF] Van Ackooij | Eventual convexity of probability constraints with elliptical distributions[END_REF] studied the convexity of the feasibility set in a general framework by using the radial representation of elliptical distributions.

In this paper, we deal with the convexity of 𝑆( 𝑝). We assume that the row vectors 𝑣 𝑖 follow an elliptical distribution. We derive a reformulation of the joint chance constraints and assume that the dependence of the random constraint vector is captured by a Gumbel-Hougaard copula. Under mild conditions, we prove a new convexity result of the feasibility set 𝑆( 𝑝).

This paper is organized as follows. In Section 2, we recall some basic concepts and preliminary results. In Section 2.1, we present a reformulation of the joint chance constraints. In Sections 2.2 and 3, we prove the concavity of the left-hand side and the convexity of the right-hand side of the reformulated constraint. In Section 4, we prove the convexity of the feasibility set 𝑆( 𝑝) under mild conditions. We conclude the paper in Section 5.

Basic concepts and preliminary results

First, we recall some important definitions and propositions that we use in our paper.

Definition 1 An 𝑛-dimensional random vector 𝑋 follows a spherical distribution if there exists a function Ψ : R → R such that the characteristic function 𝜙 𝑋 (𝑡) of 𝑋 is given by

𝜙 𝑋 (𝑡) = E(𝑒 𝑖𝑡 𝑇 𝑋 ) = Ψ(𝑡 𝑇 𝑡).
The function Ψ is called a characteristic generator of the spherical distribution.

Definition 2 An 𝑛-dimensional random vector 𝑈 follows an elliptical distribution with location parameter 𝜇, positive definite scale matrix Σ and characteristic generator Ψ (in short 𝑈 ∼ 𝐸𝑙𝑙𝑖 𝑝(𝜇, Σ, Ψ)), if we have the following representation

𝑈 =𝜇 + 𝐴𝑋,
where 𝑋 follows a spherical distribution with a characteristic generator Ψ, 𝐴 ∈ R 𝑛×𝑛 such that 𝐴𝐴 𝑇 = Σ and 𝜇 ∈ R 𝑛 ; = implies that the both sides have the same distribution.

The probability density function of all the distributions from elliptical family does not always exist. Whenever it exists, it is of the form

𝑓 𝑈 (𝑧) = 𝑐 √︁ det(Σ) 𝑔 𝑑𝑒𝑛 √︃ (𝑧 -𝜇) 𝑇 Σ -1 (𝑧 -𝜇) ,
where 𝑔 𝑑𝑒𝑛 is a nonnegative function called radial density and 𝑐 > 0 is a normalization factor which makes 𝑓 𝑈 a probability density function.

Definition 3 A function 𝑓 : 𝑄 → (0, +∞) is 𝑟-concave on a set 𝑄 ⊂ R 𝑠 for a given 𝑟 ∈ (-∞, +∞) if for any 𝑥, 𝑦 ∈ 𝑄 and 𝑦 ∈ [0, 1], Table 1 presents some 1-dimensional spherical distributions with 𝑟-decreasing densities for some values of 𝑟 and their thresholds 𝑡 * . The function 𝜓 is called a generator of the copula 𝐶.

𝑓 (𝑦𝑥 + (1 -𝑦)𝑦) ≥ [𝑦 𝑓 (𝑥) 𝑟 + (1 -𝑦) 𝑓 (𝑦) 𝑟 ] 1 𝑟 , when 𝑟 ≠ 0, 𝑓 (𝑦𝑥 + (1 -𝑦)𝑦) ≥ 𝑓 (𝑥) 𝑦 𝑓 (𝑦)
Definition 5 A function 𝐶 : [0, 1] 𝐾 → [0, 1] is a 𝐾-dimensional copula if 𝐶 is a joint CDF of a 𝐾-dimensional random vector, on the unit cube [0, 1] 𝐾 , whose marginals are uniformly distributed on [0, 1]. Distribution Radial density 𝑟 𝑡 * Normal 𝑒 -1 2 𝑢 2 𝑟 > 0 √ 𝑟 𝑡 1 + 1 𝜈 𝑢 2 -(1+𝜈) /2 , 𝜈 > 0, 𝜈 integer 0 < 𝑟 < 𝜈 + 1 √︃ 𝑟 𝜈 𝜈+1-𝑟 Laplace 𝑒 -|𝑢| 𝑟 > 0 𝑟 √ 2 Kotz type 𝑢 2( 𝑁 -1) 𝑒 -𝑞𝑢 2𝑠 , 𝑞, 𝑠 > 0, 𝑁 > 1 2 𝑟 > 2(1 -𝑁 ) 2𝑠 √︃ 2( 𝑁 -1) +𝑟 2𝑞𝑠 Pearson type VII 1 + 𝑢 2 𝑚 -𝑁 , 𝑚 > 0, 𝑁 > 1 2 0 < 𝑟 < 2𝑁 √︃ 𝑟 𝑚 2𝑁 -𝑟
𝐶 (𝑢) = 𝐹 𝐹 (-1)
Table 2 presents a selection of some strictly Archimedean copulas with their generators. Definition 7 A function 𝑓 : R → R is 𝐾-monotonic on an open interval 𝐼 ⊆ R for some positive integer 𝐾 ≥ 2, if the following three conditions hold:

1. 𝑓 is differentiable up to the order (𝐾 -2) on 𝐼, 2. The derivatives of 𝑓 are satisfied by

(-1) 𝑘 𝑑 𝑘 𝑑𝑡 𝑘 𝑓 (𝑡) ≥ 0, 0 ≤ 𝑘 ≤ 𝐾 -2, for all 𝑡 ∈ 𝐼, Type of copula Parameter 𝜃 Generator 𝜓 𝜃 (𝑡) Independent - -log(𝑡) Gumbel-Hougaard 𝜃 ≥ 1 [-log(𝑡) ] 𝜃 Frank 𝜃 > 0 -log 𝑒 -𝜃𝑡 -1 𝑒 -𝜃 -1 Clayton 𝜃 > 0 1 𝜃 (𝑡 𝜃 -1) Joe 𝜃 ≥ 1 -log[1 -(1 -𝑡) 𝜃 ]
Table 2: Different types of strictly Archimedean copulas.

3. The function 𝑡 ↦ → (-1) 𝐾-2 𝑑 𝐾-2 𝑑𝑡 𝐾-2 𝑓 (𝑡) is nonincreasing and convex on 𝐼. Proposition 3 (Theorem 2.2, [START_REF] Mcneil | Multivariate archimedean copulas, d-monotone functions and ℓ1-norm symmetric distributions[END_REF]) Let 𝜓 : (0, 1] → [0, +∞) be a strictly decreasing function such that 𝜓(1) = 0 and lim 𝑡→0 𝜓(𝑡) = +∞. Then, 𝜓 is the generator of a 𝐾-dimensional strictly Archimedean copula if and only if the inverse function 𝜓 (-1) is 𝐾-monotonic on (0, +∞) and continuous on [0, +∞).

Reformulation of the probability function

In problem (1), we assume that the random constraint vector 𝑣 𝑖 ∼ 𝐸𝑙𝑙𝑖 𝑝(𝜇 𝑖 , Σ 𝑖 , Ψ 𝑖 ), ∀𝑖 ∈ 𝐽. Let 𝜆 𝑖,𝑚𝑖𝑛 and 𝜆 𝑖,𝑚𝑎𝑥 be the smallest and the largest eigenvalues of the positive definite matrix Σ 𝑖 respectively.

Assume that 0 ∉ 𝑄. Let

𝜉 𝑖 (𝑥) := 𝑣 𝑇 𝑖 𝑥 -𝜇 𝑇 𝑖 𝑥 √︁ 𝑥 𝑇 Σ 𝑖 𝑥 . 𝑔 𝑖 (𝑥) := 𝐷 𝑖 -𝜇 𝑇 𝑖 𝑥 √︁ 𝑥 𝑇 Σ 𝑖 𝑥 . (4) 
The constraint in (1) can be rewritten as follows

P {𝑉𝑥 ≤ 𝐷} ≥ 𝑝. ⇔ P 𝑣 𝑇 𝑖 𝑥 ≤ 𝐷 𝑖 , 𝑖 ∈ 𝐽 ≥ 𝑝. ⇔ P {𝜉 𝑖 (𝑥) ≤ 𝑔 𝑖 (𝑥), 𝑖 ∈ 𝐽} ≥ 𝑝. (5) 
It is easy to see that 𝜉 𝑖 (𝑥) follows 1-dimensional spherical distribution with characteristic generator Ψ 𝑖 . Our aim is to reformulate this function to study the convexity of 𝑆( 𝑝). For this purpose, we use the Sklar's Theorem (cf. Proposition 1) to rewrite constraint (5) as follows

P {𝜉 𝑖 (𝑥) ≤ 𝑔 𝑖 (𝑥), 𝑖 ∈ 𝐽} ≥ 𝑝 ⇔ 𝐶 𝑥 [𝐹 1 (𝑔 1 (𝑥)), ..., 𝐹 𝐾 (𝑔 𝐾 (𝑥))] ≥ 𝑝, (6) 
where 𝐶 𝑥 is the 𝐾-dimensional copula of the 𝐾-dimensional random vector 𝜉 (𝑥) := (𝜉 1 (𝑥), ..., 𝜉 𝐾 (𝑥)) and 𝐹 𝑖 is the marginal cumulative distribution function of 𝜉 𝑖 (𝑥), 𝑖 = 1, ..., 𝐾.

Remark 1

The copula 𝐶 𝑥 depends on 𝑥 while the marginal distribution of 𝜉 𝑖 (𝑥) does not depend on 𝑥.

We suppose that for all 𝑥, 𝐶 𝑥 is a strictly Archimedean copula with generator 𝜓 𝑥 . The constraint (6) can be written as

𝐶 𝑥 [𝐹 1 (𝑔 1 (𝑥)), ..., 𝐹 𝐾 (𝑔 𝐾 (𝑥))] ≥ 𝑝 ⇔ 𝜓 (-1) 𝑥 𝐾 ∑︁ 𝑖=1 𝜓 𝑥 (𝐹 𝑖 (𝑔 𝑖 (𝑥))) ≥ 𝑝. ⇔ 𝐾 ∑︁ 𝑖=1 𝜓 𝑥 (𝐹 𝑖 (𝑔 𝑖 (𝑥))) ≤ 𝜓 𝑥 ( 𝑝). (7) 
We add auxiliary variables {𝑦 𝑖 ≥ 0, 𝑖 ∈ 𝐽} in order to reformulate constraint (7) into individual chance constraints [START_REF] Cheng | Second-order cone programming approach for elliptically distributed joint probabilistic constraints with dependent rows[END_REF][START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF]. In particular, as 𝜓 𝑥 is positive, constraint ( 7) is equivalent to the following constraint

         𝜓 𝑥 (𝐹 𝑖 (𝑔 𝑖 (𝑥))) ≤ 𝑦 𝑖 𝜓 𝑥 ( 𝑝), 𝑖 ∈ 𝐽. 𝑦 𝑖 ≥ 0, 𝑖 ∈ 𝐽. 𝐾 𝑖=1 𝑦 𝑖 = 1. (8)
This means that if 𝑥 * ∈ 𝑆( 𝑝) then there exists 𝑦 * := (𝑦 * 1 , ..., 𝑦 * 𝐾 ) ∈ R 𝐾 such that (𝑥 * , 𝑦 * ) satisfies constraints [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF]. On the other hand, if (𝑥 * , 𝑦 * ) is a feasible solution for constraints [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF] and 𝑥 * ∈ 𝑄, we deduce that 𝑥 * ∈ 𝑆( 𝑝). Moreover, for 𝑥 * ∈ 𝑆( 𝑝), we can choose 𝑦 * in order to satisfy constraints [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF] as

𝑦 * 𝑖 = 𝜓 𝑥 * (𝐹 𝑖 (𝑔 𝑖 (𝑥 * ))) 𝐾 𝑗=1 𝜓 𝑥 * (𝐹 𝑗 (𝑔 𝑗 (𝑥 * ))) , ∀𝑖 ∈ 𝐽. (9) 
By applying the decreasing monotonicity of the generator 𝜓 𝑥 , constraints (8) can be written as follows

         𝐹 𝑖 (𝑔 𝑖 (𝑥)) ≥ 𝜓 (-1) 𝑥 (𝑦 𝑖 𝜓 𝑥 ( 𝑝)), 𝑖 ∈ 𝐽. 𝑦 𝑖 ≥ 0, 𝑖 = 1, ..., 𝐾. 𝐾 𝑖=1 𝑦 𝑖 = 1. ( 10 
)
In the rest of the paper, we consider the Gumbel-Hougaard family of copulas where the generator 𝜓 𝑥 is given by

𝜓 𝑥 (𝑡) = (-log 𝑡) 1 𝜅 ( 𝑥) , ∀(𝑥, 𝑡) ∈ 𝑄 × (0, 1], (11) 
where 𝜅(𝑥) : 𝑄 → (0, 1] is a strictly positive function.

Remark 2 Our aim is to show the concavity of 𝐹 𝑖 (𝑔 𝑖 ) with respect to 𝑥 and the joint convexity of 𝜓 (-1)

𝑥

(𝑦 𝑖 𝜓 𝑥 ( 𝑝)) with respect to (𝑦 𝑖 , 𝑥).

Concavity of 𝐹 𝑖 (𝑔 𝑖 (•))

Define an index set 𝐼 𝜇 ⊂ 𝐽 such that 𝜇 𝑖 ≠ 0 for any 𝑖 ∈ 𝐼 𝜇 and 𝜇 𝑖 = 0 otherwise. Define a set of real numbers {𝑟 𝑖 | 𝑖 ∈ 𝐽} such that

𝑟 𝑖 > 1, if 𝑖 ∈ 𝐼 𝜇 , 𝑟 𝑖 = 1, if 𝑖 ∉ 𝐼 𝜇 .
Assumption 1

1. The cumulative distribution function 𝐹 𝑖 has (𝑟 𝑖 + 1)-decreasing densities with the thresholds 𝑡 * 𝑖 , ∀𝑖 ∈ 𝐽. 2. 𝑝 > 𝑝 * , where

𝑝 * := max 1 2 , max 𝑗 ∈𝐼 𝜇 𝐹 𝑗 𝑟 𝑗 + 1 𝑟 𝑗 -1 𝜆 -1 2 𝑗,𝑚𝑖𝑛 ||𝜇 𝑗 || , max 𝑗 ∈𝐽 𝐹 𝑗 [𝑡 * 𝑗 (𝑟 𝑗 + 1)] . ( 12 
)
Lemma 1 If Assumption 1 holds, then we have

𝐶𝑜𝑛𝑣(𝑆( 𝑝)) ⊂ 𝑗 ∈𝐼 𝜇 Ω 𝑗 .
where

Ω 𝑗 := 𝑥 ∈ 𝑄 | 𝐷 𝑗 -𝜇 𝑇 𝑗 𝑥 > 𝑟 𝑗 + 1 𝑟 𝑗 -1 𝜆 -1 2 𝑗,𝑚𝑖𝑛 ||𝜇 𝑗 || √︃ 𝑥 𝑇 Σ 𝑗 𝑥 ,
and 𝐶𝑜𝑛𝑣 is the convex hull. Moreover, for any 𝑖 = 1, 2, ..., 𝐾, 𝑔 𝑖 > 0 and (-𝑟 𝑖 )concave on any convex subset 𝑄 𝑖 of 𝑗 ∈𝐼 𝜇 Ω 𝑗 .

The proof is given in Appendix A.

Lemma 2 If Assumption 1 holds, then 𝐹

𝑖 (𝑔 𝑖 (•)) is concave on 𝑆( 𝑝), ∀𝑖 ∈ 𝐽.
Proof By Lemma 1, we deduce that 𝑔 𝑖 is (-𝑟 𝑖 )concave and 𝑔 𝑖 > 0 on 𝐶𝑜𝑛𝑣(𝑆( 𝑝)), for 𝑖 ∈ 𝐽. Hence, for 𝑎 ∈ [0, 1] and 𝑥 1 , 𝑥 2 ∈ 𝑆( 𝑝), we have

𝑔 𝑖 (𝑎𝑥 1 + (1 -𝑎)𝑥 2 ) ≥ [𝑎𝑔 -𝑟 𝑖 𝑖 (𝑥 1 ) + (1 -𝑎)𝑔 -𝑟 𝑖 𝑖 (𝑥 2 )] -1 𝑟 𝑖 . (13) 
As 𝑥 1 ∈ 𝑆( 𝑝) and 𝑝 > 𝑝 * , we have

𝐶 𝑥 1 [𝐹 1 (𝑔 1 (𝑥 1 )), ..., 𝐹 𝐾 (𝑔 𝐾 (𝑥 1 ))] > 𝑝 * .
By Proposition 2 and the definition of 𝑝 * , we deduce that

𝐹 𝑖 (𝑔 𝑖 (𝑥 1 )) > 𝑝 * ≥ 𝐹 𝑖 [𝑡 * 𝑗 (𝑟 𝑖 + 1)], 𝑖 ∈ 𝐽.
Since, 𝐹 𝑖 (•) is monotonically increasing, we deduce that

𝑔 𝑖 (𝑥 1 ) > 𝑡 * 𝑖 (𝑟 𝑖 + 1) > 0 ⇒ 0 < 𝑔 𝑖 (𝑥 1 ) -𝑟 𝑖 < (𝑡 * 𝑖 (𝑟 𝑖 + 1)) -𝑟 𝑖 , 𝑖 ∈ 𝐽.
Similarly, we obtain the inequality for 𝑥 2 . By taking 𝐹 𝑖 on both sides of (13), we have

𝐹 𝑖 (𝑔 𝑖 (𝑎𝑥 1 + (1 -𝑎)𝑥 2 )) ≥ 𝐹 𝑖 ([𝑎𝑔 -𝑟 𝑖 𝑖 (𝑥 1 ) + (1 -𝑎)𝑔 -𝑟 𝑖 𝑖 (𝑥 2 )] -1 𝑟 𝑖 ). (14) 
Since, 𝐹 𝑖 (•) has (𝑟 𝑖 + 1)-decreasing density, from Lemma 3.1 of [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF], the function

𝑡 ↦ → 𝐹 𝑖 𝑡 -1 𝑟 𝑖
is concave on (0, (𝑡 * 𝑖 ) -𝑟 𝑖 ). Therefore, we can write

𝐹 𝑖 ([𝑎𝑔 -𝑟 𝑖 𝑖 (𝑥 1 ) + (1 -𝑎)𝑔 -𝑟 𝑖 𝑖 (𝑥 2 )] -1 𝑟 𝑖 ) ≥ 𝑎𝐹 𝑖 (𝑔 𝑖 (𝑥 1 )) + (1 -𝑎)𝐹 𝑖 (𝑔 𝑖 (𝑥 2 )). (15) 
From ( 14) and ( 15), we have

(𝐹 𝑖 (𝑔 𝑖 (𝑎𝑥 1 + (1 -𝑎)𝑥 2 )) ≥ 𝑎 ((𝐹 𝑖 (𝑔 𝑖 (𝑥 1 ))) + (1 -𝑎) ((𝐹 𝑖 (𝑔 𝑖 (𝑥 2 ))) . Therefore, 𝐹 𝑖 (𝑔 𝑖 (•)) is concave on 𝑆( 𝑝). ⊓ ⊔ 3 Convexity of 𝝍 (-1) 𝒙 (𝒚 𝒊 𝝍 𝒙 ( 𝒑))
In this section, we use the following notations. Given arbitrarily positive real numbers 0 < 𝑐 𝑙 ≤ 1 and 0

< ℎ 𝑙 ≤ ℎ 𝑢 < 1. Let 𝜑 * 1 := 𝑐 𝑙 . log ℎ 𝑢 . log 𝑝.ℎ 𝑙 . 𝜑 * 2 := (log ℎ 𝑙 ) 2 4𝑐 𝑙 + max [1 + log ℎ 𝑙 (1 + log 𝑝.ℎ 𝑙 )] 2 , [1 + log ℎ 𝑢 .𝑐 𝑙 (1 + log 𝑝)] 2 . 𝜔 := 𝜑 * 2 𝜑 * 1 . ( 16 
)
Remark 3 Since 𝜑 * 1 > 0, then 𝜔 is well-defined. Moreover, 𝜔 does not depend on (𝑥, 𝑦 𝑖 ).

In order to show the convexity of 𝑈 (𝑥, 𝑦 𝑖 ) = 𝜓 (-1)

𝑥

(𝑦 𝑖 𝜓 𝑥 ( 𝑝)), we first show that the Hessian matrix of 𝑈 is positive semidefinite. The following lemma is a reformulation of the positive semidefiniteness of the Hessian matrix of 𝑈.

Lemma 3

The positive semidefiniteness of the Hessian matrix of 𝑈 on the convex set 𝑄 × [ℎ 𝑙 , ℎ 𝑢 ] is equivalent to the positive semidefiniteness of the following 𝑛-dimensional symmetric matrix

𝑁 (𝑥, 𝑦 𝑖 ) := 𝜕 2 𝜕𝑦 2 𝑖 𝑈 (𝑥, 𝑦 𝑖 ) × 𝐻 𝑥 𝑈 (𝑥, 𝑦 𝑖 ) -▽ 𝑥 𝜕 𝜕𝑦 𝑖 𝑈 (𝑥, 𝑦 𝑖 ) ▽ 𝑥 𝜕 𝜕𝑦 𝑖 𝑈 (𝑥, 𝑦 𝑖 ) 𝑇 , ( 17 
)
for all (𝑥, 𝑦 𝑖 ) on 𝑄 × [ℎ 𝑙 , ℎ 𝑢 ],
where

𝐻 𝑥 𝑈 =             𝜕 2 𝑈 𝜕𝑥 2 1 𝜕 2 𝑈 𝜕𝑥 1 𝜕𝑥 2 ... 𝜕 2 𝑈 𝜕𝑥 1 𝜕𝑥 𝑛 𝜕 2 𝑈 𝜕𝑥 2 𝜕𝑥 1 𝜕 2 𝑈 𝜕𝑥 2 2 ... 𝜕 2 𝑈 𝜕𝑥 2 𝜕𝑥 𝑛 . . ... . . . ... . 𝜕 2 𝑈 𝜕𝑥 𝑛 𝜕𝑥 1 𝜕 2 𝑈 𝜕𝑥 𝑛 𝜕𝑥 2 ... 𝜕 2 𝑈 𝜕𝑥 2 𝑛             , ▽ 𝑥 = 𝜕 𝜕𝑥 1 , ..., 𝜕 𝜕𝑥 𝑛 𝑇 .
The proof is given in Appendix B.

Assumption 2

We assume the following statements: 

1. 𝑝 ≥ 𝑒 -1 2. 0 < 𝑐 𝑙 ≤ 𝜅(𝑥) ≤ 1, ∀𝑥 ∈ 𝑄. 3. 𝐻 𝜅 (𝑥) -𝜔 ▽ 𝑥 𝜅(𝑥)(▽ 𝑥 𝜅(𝑥)
) ∈ 𝑄 × [ℎ 𝑙 , ℎ 𝑢 ],
where 𝜑 * 1 is defined in [START_REF] Marti | Differentiation of probability functions: The transformation method[END_REF].

Proof Since 0 < 𝑦 𝑖 ≤ ℎ 𝑢 < 1, then (-log 𝑦 𝑖 ) ≥ (-log ℎ 𝑢 ) > 0. ( 18 
)
As 0 < ℎ 𝑙 ≤ 𝑦 𝑖 < 1 and 0 < 𝜅(𝑥) ≤ 1, we deduce that 1

≥ 𝑦 𝜅 ( 𝑥) 𝑖 ≥ 𝑦 𝑖 ≥ ℎ 𝑙 > 0. Note that 1 ≥ -log 𝑝 > 0 (because 𝑒 -1 ≤ 𝑝 < 1). Then, 1 ≥ -log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ≥ -log 𝑝.ℎ 𝑙 > 0. We have: 1 -𝜅(𝑥) -𝜅(𝑥) log( 𝑝).𝑦 𝜅 ( 𝑥) 𝑖 = 1 -𝜅(𝑥) (1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ) ≥ 1 -1.(1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 )(since 0 < 𝜅(𝑥) ≤ 1 and 1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ≥ 0) = -log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ≥ -log 𝑝.ℎ 𝑙 > 0, ∀(𝑥, 𝑦 𝑖 ) ∈ 𝑄 × [ℎ 𝑙 , ℎ 𝑢 ]. (19) 
Moreover,

𝜅(𝑥) ≥ 𝑐 𝑙 > 0, ∀𝑥 ∈ 𝑄. (20) 
Therefore, it suffices to multiply term by term the inequalities ( 18)- [START_REF] Nelsen | An introduction to copulas[END_REF] to complete the proof.

⊓ ⊔ Lemma 5 Suppose that Assumption 2 is fullfiled.

Let 𝜑 2 (𝑥, 𝑦 𝑖 ) := 𝜅(𝑥) log(𝑦 𝑖 ) 2 (1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ) 1 -𝜅(𝑥) -𝜅(𝑥) log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 + 1 + 𝜅(𝑥). log 𝑦 𝑖 + log 𝑝. log 𝑦 𝑖 .𝑦 𝜅 ( 𝑥) 𝑖 .𝜅(𝑥) 2 . ( 21 
)
Then, 0 < 𝜑 2 (𝑥, 𝑦 𝑖 ) ≤ 𝜑 * 2 , for any (𝑥, 𝑦 𝑖 ) ∈ 𝑄 × [ℎ 𝑙 , ℎ 𝑢 ],
where 𝜑 * 2 is defined in [START_REF] Marti | Differentiation of probability functions: The transformation method[END_REF].

Proof Since 𝑝 ≥ 𝑒 -1 , then 0 > log 𝑝 ≥ -1. Using 0 < 𝑦 𝜅 ( 𝑥) 𝑖 < 1, we have 0 < (1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ) < 1. Moreover, as 0 < 𝜅(𝑥) ≤ 1, then 0 < 𝜅(𝑥). ( 

Since 1 > 𝑦 𝑖 ≥ ℎ 𝑙 > 0, we have 0 > log 𝑦 𝑖 ≥ log ℎ 𝑙 . Then,

0 < (log 𝑦 𝑖 ) 2 ≤ (log ℎ 𝑙 ) 2 . ( 23 
)
Moreover,

0 < 𝜅(𝑥) ≤ 1 (24) 
Hence, by multiplying term by term the inequalities ( 22)-( 24), we get an upper bound for the first term of (21):

0 < 𝜅(𝑥) log(𝑦 𝑖 ) 2 (1+log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ) 1 -𝜅(𝑥) -𝜅(𝑥) log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ≤ (log ℎ 𝑙 ) 2 4𝑐 𝑙 , ∀(𝑥, 𝑦 𝑖 ) ∈ 𝑄×[ℎ 𝑙 , ℎ 𝑢 ]. (25) 
In order to get an upper bound for the second term of 𝜑 2 (𝑥, 𝑦 𝑖 ), we need some following inequalites:

0 < 𝑐 𝑙 ≤ 𝜅(𝑥) ≤ 1. ( 26 
) 0 < -log ℎ 𝑢 ≤ -log 𝑦 𝑖 ≤ -log ℎ 𝑙 . ( 27 
) 0 ≤ 1 + log 𝑝 ≤ 1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ≤ 1 + log 𝑝.ℎ 𝑙 . (28) 
Note that (28) holds since 1 > 𝑝 then log 𝑝 < 0 and 1 ≥ 𝑦 𝜅 ( 𝑥) 𝑖 ≥ ℎ 𝑙 . By multiplying the inequalities ( 26)- [START_REF] Van Ackooij | Eventual convexity of chance constrained feasible sets[END_REF] term by term, we get

-log ℎ 𝑙 (1 + log 𝑝.ℎ 𝑙 ) ≥ -log 𝑦 𝑖 .𝜅(𝑥)(1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ) ≥ -log ℎ 𝑢 .𝑐 𝑙 (1 + log 𝑝) Or equivalently, 1 + log ℎ 𝑙 (1 + log 𝑝.ℎ 𝑙 ) ≤ 1 + log 𝑦 𝑖 .𝜅(𝑥)(1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ) ≤ 1 + log ℎ 𝑢 .𝑐 𝑙 (1 + log 𝑝). ( 29 
)
We deduce from (29) that

0 ≤ [1 + log 𝑦 𝑖 .𝜅(𝑥)(1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 )] 2 ≤ max (1 + log ℎ 𝑙 (1 + log 𝑝.ℎ 𝑙 )) 2 , (1 + log ℎ 𝑢 .𝑐 𝑙 (1 + log 𝑝)) 2 . ( 30 
)
Adding [START_REF] Prékopa | Uniform quasi-concavity in probabilistic constrained stochastic programming[END_REF] 

𝑥

(𝑡) = 𝑒 -𝑡 𝜅 ( 𝑥) . As 𝑈 (𝑥, 𝑦 𝑖 ) = 𝜓 (-1) 𝑥 (𝑦 𝑖 𝜓 𝑥 ( 𝑝)), we can rewrite 𝑈 (𝑥, 𝑦 𝑖 ) as follows:

𝑈 (𝑥, 𝑦 𝑖 ) = 𝑒 -𝑦 𝑖 (-log 𝑝) 1 𝜅 ( 𝑥) 𝜅 ( 𝑥) = 𝑝 𝑦 𝜅 ( 𝑥) 𝑖 . (31) 
By [START_REF] Zadeh | Convexity of chance constrained programming problems with respect to a new generalized concavity notion[END_REF], we calculate explicitly the partial derivatives of 𝑈 as follows

                     𝜕 𝜕𝑦 𝑖 𝑈 (𝑥, 𝑦 𝑖 ) = log( 𝑝) 𝑝 𝑦 𝜅 ( 𝑥) 𝑖 𝜅(𝑥)𝑦 𝜅 ( 𝑥)-1 𝑖 . 𝜕 2 𝜕𝑦 2 𝑖 𝑈 (𝑥, 𝑦 𝑖 ) = 𝜅(𝑥) log( 𝑝)𝑦 𝜅 ( 𝑥)-2 𝑖 𝑝 𝑦 𝜅 ( 𝑥) 𝑖 [𝜅(𝑥) -1 + 𝜅(𝑥) log( 𝑝)𝑦 𝜅 ( 𝑥) 𝑖 ]. ▽ 𝑥 𝑈 (𝑥, 𝑦 𝑖 ) = log( 𝑝) 𝑝 𝑦 𝜅 ( 𝑥) 𝑖 log(𝑦 𝑖 )𝑦 𝜅 ( 𝑥) 𝑖 ▽ 𝑥 𝜅(𝑥). ▽ 𝑥 𝜕 𝜕𝑦 𝑖 𝑈 (𝑥, 𝑦 𝑖 ) = log( 𝑝)𝑦 𝜅 ( 𝑥)-1 𝑖 𝑝 𝑦 𝜅 ( 𝑥) 𝑖 [1 + 𝜅(𝑥) log(𝑦 𝑖 ) + log( 𝑝) log(𝑦 𝑖 )𝑦 𝜅 ( 𝑥) 𝑖 𝜅(𝑥)] ▽ 𝑥 𝜅(𝑥). 𝐻 𝑥 𝑈 (𝑥, 𝑦 𝑖 ) = 𝑝 𝑦 𝜅 ( 𝑥) 𝑖 𝑦 𝜅 ( 𝑥) 𝑖 (log 𝑝)(log 𝑦 𝑖 ) [𝐻 𝜅 (𝑥) + (log 𝑦 𝑖 + log 𝑦 𝑖 log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ) ▽ 𝑥 𝜅(𝑥) (▽ 𝑥 𝜅(𝑥)) 𝑇 ].
Hence, we obtain the following formulations: 17) and (32), the positive semidefiniteness of 𝑁 (𝑥, 𝑦 𝑖 ) is equivalent to the positive semidefiniteness of the following matrix:

                   𝜕 2 𝜕𝑦 2 𝑖 𝑈 (𝑥, 𝑦 𝑖 ) × 𝐻 𝑥 𝑈 (𝑥, 𝑦 𝑖 ) = 𝜅(𝑥) log( 𝑝) 2 𝑦 2𝜅 ( 𝑥)-2 𝑖 log(𝑦 𝑖 ) 𝑝 2.𝑦 𝜅 ( 𝑥) 𝑖 × 𝜅(𝑥) -1 + 𝜅(𝑥) log 𝑝𝑦 𝜅 ( 𝑥) 𝑖 × 𝐻 𝜅 (𝑥) + ▽ 𝑥 𝜅(𝑥) (▽ 𝑥 𝜅(𝑥)) 𝑇 (log 𝑦 𝑖 + log 𝑦 𝑖 . log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ) . ▽ 𝑥 𝜕 𝜕𝑦 𝑖 𝑈 (𝑥, 𝑦 𝑖 ) ▽ 𝑥 𝜕 𝜕𝑦 𝑖 𝑈 (𝑥, 𝑦 𝑖 ) 𝑇 = log( 𝑝) 2 𝑦 2𝜅 ( 𝑥)-2 𝑖 .𝑝 2.𝑦 𝜅 ( 𝑥) 𝑖 × 1 + 𝜅(𝑥) log 𝑦 𝑖 + log 𝑝 log 𝑦 𝑖 .𝑦 𝜅 ( 𝑥) 𝑖 𝜅(𝑥) 2 ▽ 𝑥 𝜅(𝑥) (▽ 𝑥 𝜅(𝑥)) 𝑇 .
𝑀 (𝑥, 𝑦 𝑖 ) = 𝜅(𝑥) -1 + 𝜅(𝑥) log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 × 𝐻 𝜅 (𝑥) + ▽ 𝑥 𝜅(𝑥) (▽ 𝑥 𝜅(𝑥)) 𝑇 (log 𝑦 𝑖 + log 𝑦 𝑖 . log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ) × 𝜅(𝑥) log 𝑦 𝑖 -1 + 𝜅(𝑥) log 𝑦 𝑖 + log 𝑝 log 𝑦 𝑖 .𝑦 𝜅 ( 𝑥) 𝑖 𝜅(𝑥) 2 ▽ 𝑥 𝜅(𝑥) (▽ 𝑥 𝜅(𝑥)) 𝑇 . ( 33 
)
We reformulate (33) as follows:

𝑀 (𝑥, 𝑦 𝑖 ) = 𝜑 1 (𝑥, 𝑦 𝑖 )𝐻 𝜅 (𝑥) -𝜑 2 (𝑥, 𝑦 𝑖 ) ▽ 𝑥 𝜅(𝑥) (▽ 𝑥 𝜅(𝑥)) 𝑇
where 𝜑 1 (𝑥, 𝑦 𝑖 ) and 𝜑 2 (𝑥, 𝑦 𝑖 ) are defined in Lemmas 4 and 5.

We have 𝐻 𝜅 (𝑥) -𝜔 ▽ 𝑥 𝜅(𝑥)(▽ 𝑥 𝜅(𝑥)) 𝑇 is a positive semidefinite matrix for all 𝑥 ∈ 𝑄 where 𝜔 is defined in ( 16)). Since 𝜑 * 1 , 𝜑 * 2 > 0, we have 𝜔 > 0. Moreover, ▽ 𝑥 𝜅(𝑥) (▽ 𝑥 𝜅(𝑥)) 𝑇 is a positive semidefinite matrix. Hence, 𝐻 𝜅 (𝑥) is also a positive semidefinite matrix. Therefore, it suffices to prove that 𝜑 1 (𝑥, 𝑦 𝑖 ) ≥ 𝜑 * 1 > 0 and 𝜑 2 (𝑥, 𝑦 𝑖 ) ≤ 𝜑 * 2 , for all (𝑥, 𝑦 𝑖 ) ∈ 𝑄 × [ℎ 𝑙 , ℎ 𝑢 ]. Using Lemmas 4 and 5 completes the proof.

⊓ ⊔

Convexity of the feasibility set 𝑺( 𝒑)

In section 2.2, we have shown that if Assumption 1 holds, then Lemma 2 holds. In section 3, we have shown that given arbitrarily numbers 𝑐 𝑙 and ℎ 𝑙 , ℎ 𝑢 which are defined in [START_REF] Marti | Differentiation of probability functions: The transformation method[END_REF], if Assumption 2 holds, then Lemma 6 holds. We will apply the results of Lemma 2 and Lemma 6 to prove the convexity of the feasibility set 𝑆( 𝑝).

Define an index set 𝐼 𝐷 ⊂ 𝐽 such that 𝐷 𝑗 > 0 for any 𝑗 ∈ 𝐼 𝐷 and 𝐷 𝑗 ≤ 0 otherwise. In this section, let 𝑐 𝑙 be a number chosen arbitrarily in (0, 1] as defined in [START_REF] Marti | Differentiation of probability functions: The transformation method[END_REF]. However, ℎ 𝑙 , ℎ 𝑢 are not chosen arbitrarily, but defined in the following lemma.

Lemma 7 For all 𝑗 ∈ 𝐽, let:

𝐺 𝑗 :=                      log 𝐹 𝑗 𝐷 𝑗 √ 𝜆 𝑗,𝑚𝑖𝑛 . 𝛿 𝑙 + ||𝜇 𝑗 || √ 𝜆 𝑗,𝑚𝑖𝑛 log 𝑝 1 𝑐 𝑙 , if 𝑗 ∈ 𝐼 𝐷 . log 𝐹 𝑗 𝐷 𝑗 √ 𝜆 𝑗,𝑚𝑎𝑥 . 𝛿𝑢 + || 𝜇 𝑗 || √ 𝜆 𝑗,𝑚𝑖𝑛 log 𝑝 1 𝑐 𝑙 , if 𝑗 ∈ 𝐽\𝐼 𝐷 .
Let ℎ 𝑙 := min 1≤ 𝑗 ≤𝐾 (𝐺 𝑗 ) et ℎ 𝑢 := 1 -(𝑛 -1).ℎ 𝑙 . Assume that 𝑆( 𝑝) ≠ ∅. Given 𝑥 ∈ 𝑆( 𝑝) and 𝑦 𝑖 defined in [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF]. Hence,

0 < ℎ 𝑙 ≤ 𝑦 𝑖 ≤ ℎ 𝑢 < 1, ∀𝑖 ∈ 𝐽.
The proof is given in Appendix C.

Remark 4 Notice that the inequality 0 < ℎ 𝑙 ≤ ℎ 𝑢 < 1 defined in Lemma 7 is a necessary condition for the nonemptiness property of 𝑆( 𝑝). It is natural to assume that 𝑆( 𝑝) ≠ ∅ since the case 𝑆( 𝑝) = ∅ is trivial.

Based on Lemma 7, we prove the convexity of 𝑆( 𝑝).

Theorem 1 Let 𝑐 𝑙 be defined in [START_REF] Marti | Differentiation of probability functions: The transformation method[END_REF] and ℎ 𝑙 , ℎ 𝑢 defined in Lemma 7. Suppose that Assumptions 1 and 2 hold and 𝑆( 𝑝) ≠ ∅. Then, 𝑆( 𝑝) is a convex set.

Proof Let 𝑥 1 , 𝑥 2 ∈ 𝑆( 𝑝) and 𝛽 ∈ [0, 1]. We show that 𝑥 * := 𝛽𝑥 1 + (1 -𝛽)𝑥 2 ∈ 𝑆( 𝑝).

In fact, let 𝑦 1 := (𝑦 1 1 , ..., 𝑦 1 𝐾 ) and 𝑦 2 := (𝑦 2 1 , ..., 𝑦 2 𝐾 ) given by [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF]. Using Lemma 7, 0 < ℎ 𝑙 ≤ 𝑦 1 𝑖 , 𝑦 2 𝑖 ≤ ℎ 𝑢 < 1, for all 𝑖 ∈ 𝐽. Moreover, we deduce from Lemma 2 and Lemma 6 that

𝐹 𝑖 (𝑔 𝑖 (•)) is concave on 𝑆( 𝑝) and 𝑈 (•, •) is jointly convex on 𝑄 × [ℎ 𝑙 , ℎ 𝑢 ], i.e., 𝐹 𝑖 (𝑔 𝑖 (𝑥 * )) ≥ 𝛽𝐹 𝑖 (𝑔 𝑖 (𝑥 1 )) + (1 -𝛽)𝐹 𝑖 (𝑔 𝑖 (𝑥 2 )), ∀𝑖 ∈ 𝐽 𝑈 (𝑥 * , 𝛽𝑦 1 𝑖 + (1 -𝛽)𝑦 2 𝑖 ) ≤ 𝛽𝑈 (𝑥 1 , 𝑦 1 𝑖 ) + (1 -𝛽)𝑈 (𝑥 2 , 𝑦 2 𝑖 ), ∀𝑖 ∈ 𝐽.
Therefore, (𝑥 * , 𝛽𝑦 1 + (1 -𝛽)𝑦 2 ) satisfies [START_REF] Henrion | Convexity of chance constraints with dependent random variables: the use of copulae[END_REF]. In other word, 𝑥 * ∈ 𝑆( 𝑝). ⊓ ⊔ We are interested in finding an example which fits all the Assumptions in Theorem 1. Finding a necessary and sufficient condition for the nonemptiness of 𝑆( 𝑝) is a hard problem. In the following, we will study some cases which fit Assumption 2 and Assumption 1.

An example of the function 𝜅

In this section, we give an example of 𝜅 which satisfies all the conditions in Assumption 2. Let 𝑐 𝑙 be defined in [START_REF] Marti | Differentiation of probability functions: The transformation method[END_REF] and ℎ 𝑙 , ℎ 𝑢 defined in Lemma 7. Assume that 𝑆( 𝑝) ≠ ∅. Remark 5 It is not necessary to verify the condition 𝑝 ≥ 𝑒 -1 ≈ 0.37 since we study an eventual convexity of the feasibility set, i.e., under high value of the probability threshold 𝑝.

Lemma 8

Let 𝑑 be a real number such that 𝑑 < 𝑐 𝑙 and 𝑞 : 𝑄 → R be a real-valued function which satisfies the two following conditions.

1. 𝑞 is a twice continuously differentiable and convex function on 𝑄. 2. log(𝑐 𝑙 -𝑑) ≤ 𝑞(𝑥) ≤ log min 1 𝜔 , 1 -𝑑 , ∀𝑥 ∈ 𝑄, where 𝜔 is defined in [START_REF] Marti | Differentiation of probability functions: The transformation method[END_REF].

Hence, 𝜅(𝑥) := 𝑒 𝑞 ( 𝑥) + 𝑑 is a function which satisfies Assumption 2.

Proof First we check if the condition 𝑐 𝑙 ≤ 𝜅(𝑥) ≤ 1, ∀𝑥 ∈ 𝑄 is true.

In fact, since log(𝑐 𝑙 -𝑑) ≤ 𝑞(𝑥) ≤ log(1 -𝑑), then we have 𝑐 𝑙 ≤ 𝜅(𝑥) ≤ 1, ∀𝑥 ∈ 𝑄. Then, we prove the third condition of Assumption 2.

Since 𝑞(𝑥) ≤ log( 1 𝜔 ), then 𝑒 𝑞 ( 𝑥) ≤ 1 𝜔 , ∀𝑥 ∈ 𝑄. Let 𝜅 * (𝑥) := 𝑒 𝑞 ( 𝑥) . We have the following formulation:

𝐻 𝑥 log(𝜅 * (𝑥)) = 𝜅 * (𝑥)𝐻 𝑥 𝜅 * (𝑥) -▽ 𝑥 𝜅 * (𝑥) (▽ 𝑥 𝜅 * (𝑥)) 𝑇 𝜅 * (𝑥) 2 , (34) 
where 𝐻 𝑥 log(𝜅 * (•)) is the Hessian matrix of the function log(𝜅 * (•)).

As 𝑞 is a convex function on 𝑄 and log(𝜅 * (.)) = 𝑞(.), we deduce that 𝐻 𝑥 (log(𝜅 * (𝑥))) is a positive semidefinite matrix for any 𝑥 ∈ 𝑄. Using (34), 𝜅 * (𝑥)𝐻 𝑥 𝜅 * (𝑥) -▽ 𝑥 𝜅 * (𝑥) (▽ 𝑥 𝜅 * (𝑥)) 𝑇 is a positive semidefinite matrix. Since 0 < 𝜅 * (𝑥) and ▽ 𝑥 𝜅 * (𝑥) (▽ 𝑥 𝜅 * (𝑥)) 𝑇 is positive semidefinite, we deduce that 𝐻 𝑥 𝜅 * (𝑥) is also positive semidefinite, for all 𝑥 ∈ 𝑄. Moreover, 𝜅 * (𝑥) ≤ 

Numerical experiments

To test the 𝑟-decreasing property for a differentiable density 𝑓 (𝑡), we verify if the derivative of 𝑡 𝑟 𝑓 (𝑡) is strictly negative for 𝑡 > 𝑡 * (𝑟) > 0. This is equivalent to check the inequality 𝑟. 𝑓 (𝑡) + 𝑡. 𝑓 ′ (𝑡) < 0.

The results for different 1-dimensional spherical distributions are given in Table 1. In this section, we study different values of 𝑝 * for some popular distributions. All the numerical results are performed using Python 3.8.8 on an Intel Core i5-1135G7, Processor 2.4 GHz (8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD. In Assumption 

] is the best value we can obtain. Table 3 gives numerical values of 𝑝 * for some commonly used distributions.

We consider the case where 𝑛 = 2 and 𝐾 = 2, i.e., 2 constraints in 2-dimensional case. We choose the parameters as follows: 𝑝 = 0.95, 𝑐 𝑙 = 0.9, In our simulations, we consider the probability function 𝑓 𝑝𝑟 𝑜𝑏𝑎 (𝑥) = 𝜓 (-1) 𝑥 2 𝑖=1 𝜓 𝑥 (𝐹 𝑖 (𝑔 𝑖 (𝑥))) as in [START_REF] Henrion | A gradient formula for linear chance constraints under gaussian distribution[END_REF], where 𝜓 𝑥 is defined in [START_REF] Hong | Sequential convex approximations to joint chance constrained programs: A monte carlo approach[END_REF], 𝐹 1 is the cumulative distribution function of an 1dimensional standard 𝑡-distribution with 3-degrees of freedom and 𝐹 2 is the cumulative distribution function of an 1-dimensional standard 𝑡-distribution with 4-degrees of freedom, 𝑥 = (𝑥 1 , 𝑥 2 ) 𝑇 where 𝑥 1 , 𝑥 2 ∈ [-1, 1]. Figures 1 and2 show the function 𝑧 = 𝑓 𝑝𝑟 𝑜𝑏𝑎 (𝑥 1 , 𝑥 2 ) on the domain [-1, 1] 2 , and its contour lines with four different levels 0.6, 0.7, 0.8 and 0.9, respectively. Figure 2 : Contour line of the probability function 𝑓 𝑝𝑟 𝑜𝑏𝑎 with 4 levels (0.6, 0.7, 0.8, 0.9).

𝐷 1 = 1, 𝐷 2 = 0.85, 𝜇 1 = (1, 20) 𝑇 , 𝜇 2 = (7, 2) 𝑇 , 𝛿 𝑙 = 0.2, 𝛿 𝑢 = 1.5, Σ 1 = 3 × I 2 ,

Conclusion

In this paper, we studied the convexity of joint chance constraints in the case of elliptical distributions. Further, we modeled the dependence of random variables by a Gumbel-Hougaard copula. We come up with new convexity results of the feasibility set. Further research will be dedicated to other families of copulas.

Appendices Appendix A: Proof of Lemma 1

Let 𝑖 ∈ 𝐼 and 𝑥 0 ∈ 𝑆 ( 𝑝). In Section 2.1, we show that 𝑥 0 satisfies constraint [START_REF] Henrion | Structural properties of linear probabilistic constraints[END_REF]. In particular, we have

𝐶 𝑥 0 [𝐹 1 (𝑔 1 ( 𝑥 0 )), ..., 𝐹 𝐾 (𝑔 𝐾 ( 𝑥 0 )) ] ≥ 𝑝. ( 36 
)
where 𝑔 𝑖 is defined in (4), for all 𝑖 ∈ 𝐽 . By applying Proposition 2, we deduce that

𝐹 𝑖 (𝑔 𝑖 ( 𝑥 0 )) ≥ 𝑝. ⇒𝐹 𝑖 (𝑔 𝑖 ( 𝑥 0 )) > 𝑝 * ≥ 𝐹 𝑖 𝑟 𝑖 + 1 𝑟 𝑖 -1 𝜆 -1 2 𝑖,𝑚𝑖𝑛 | | 𝜇 𝑖 | | . (37) 
Since, 𝐹 𝑖 (•) is an increasing function, we have

𝑔 𝑖 ( 𝑥 0 ) > 𝑟 𝑖 + 1 𝑟 𝑖 -1 𝜆 -1 2 𝑖,𝑚𝑖𝑛 | | 𝜇 𝑖 | |.
Therefore,

𝐷 𝑖 -𝜇 𝑇 𝑖 𝑥 0 > 𝑟 𝑖 + 1 𝑟 𝑖 -1 𝜆 -1 2 𝑖,𝑚𝑖𝑛 | | 𝜇 𝑖 | | √︃ 𝑥 𝑇 0 Σ 𝑖 𝑥 0 .
We deduce that 𝑆 ( 𝑝) ⊂ 𝑗∈𝐼 Ω 𝑗 . For each 𝑗 ∈ 𝐼, Ω 𝑗 is a convex set which implies that 𝐶𝑜𝑛𝑣 (𝑆 ( 𝑝)) ⊂ 𝑗∈𝐼 Ω 𝑗 . We prove the second part of Lemma 1 by considering the following two cases: Case 1: Let 𝑖 ∉ 𝐼, then 𝜇 𝑖 = 0. From the definition of 𝑝 * , we have 𝑝 > 1 2 . We prove that 𝐷 𝑖 > 0. In fact, let 𝑥 0 ∈ 𝑆 ( 𝑝). By applying Proposition 2 on (36), we have

(𝐹 𝑖 (𝑔 𝑖 ( 𝑥 0 )) ≥ 𝑝 > 1 2 . ( 38 
)
Since, 𝐹 𝑖 is the CDF of an 1-dimensional real-valued random variable which is symmetric at 0, 𝐹 𝑖 (0) = 1 2 . From (38) we get 𝑔 𝑖 ( 𝑥 0 ) > 0 which in turn implies that 𝐷 𝑖 -( 𝜇 𝑖 ) 𝑇 𝑥 0 > 0. Since 𝜇 𝑖 = 0, we get 𝐷 𝑖 > 0. In this case, the proof follows directly from Lemma 3 of [START_REF] Cheng | Second-order cone programming approach for elliptically distributed joint probabilistic constraints with dependent rows[END_REF].

Case .

Following the same proof as Case 1, we have 𝑦 𝑖 ≥ 𝐺 𝑖 . Therefore, using Case 1 and Case 2, 𝑦 𝑖 ≥ ℎ 𝑙 > 0, ∀𝑖 ∈ 𝐽. Since, 𝑖∈𝐽 𝑦 𝑖 = 1, ∀𝑖 ∈ 𝐽, we have

𝑦 𝑖 = 1 - ∑︁ 𝑗∈𝐽. 𝑗≠𝑖 𝑦 𝑗 ≤ 1 -(𝑛 -1).ℎ 𝑙 = ℎ 𝑢 < 1. ( 46 
)
Hence, 0 < ℎ 𝑙 ≤ 𝑦 𝑖 ≤ ℎ 𝑢 < 1, ∀𝑖 ∈ 𝐽.

1 (Definition 6 A

 16 𝑢 1 ), ..., 𝐹 (-1) 𝐾 (𝑢 𝐾 ) . Proposition 2 (Fréchet-Hoeffding upper bound) For any 𝐾-dimensional copula 𝐶 and 𝑢 = (𝑢 1 , ..., 𝑢 𝐾 ) ∈ [0, 1] 𝐾 , we have 𝐶 (𝑢) ≤ 𝐶 𝑀 (𝑢) := min 𝑘=1,...,𝐾 𝑢 𝑘 . 𝐾-dimensional copula 𝐶 is strictly Archimedean if there exists a continuous and strictly decreasing function 𝜓 : (0, 1] → [0, +∞), such that 𝜓(1) = 0, lim 𝑡→0 𝜓(𝑡) = +∞, and for any 𝐾-dimensional vector 𝑢 = (𝑢 1 , ..., 𝑢 𝐾 ) ∈ [0, 1] 𝐾 , we have 𝐶 (𝑢) = 𝜓 (-1) 𝐾 ∑︁ 𝑖=1 𝜓(𝑢 𝑖 ) .

2 𝜕𝑦 2 𝑖

 22 that log( 𝑝) 2 .𝑦 2𝜅 ( 𝑥)-2 𝑖 .𝑝 2.𝑦 𝜅 ( 𝑥) 𝑖 is a positive common factor of 𝜕 𝑈 (𝑥, 𝑦 𝑖 )×𝐻 𝑥 𝑈 (𝑥, 𝑦 𝑖 ) and ▽ 𝑥 𝜕 𝜕𝑦 𝑖 𝑈 (𝑥, 𝑦 𝑖 ) ▽ 𝑥 𝜕 𝜕𝑦 𝑖 𝑈 (𝑥, 𝑦 𝑖 ) 𝑇 . Then, using (

Figure 1 :

 1 Figure 1 : Graphical representation of the probability function 𝑓 𝑝𝑟 𝑜𝑏𝑎 on [-1, 1] 2 .

Definition 4 (Definition 2.2, [9]) A real function

  𝑓 : R → R is 𝑟-decreasing for some real number 𝑟 ∈ R, if 𝑓 is continuous on (0, +∞) and there exists some strictly positive real number 𝑡 * such that the function 𝑡 ↦ → 𝑡 𝑟 𝑓 (𝑡) is strictly decreasing on (𝑡

1-𝑦 , otherwise. * , +∞).

Table 1 :

 1 Selected 1-dimensional spherical distributions with 𝑟-decreasing densities and their thresholds 𝑡 * .

Proposition 1 (Sklar's Theorem) Let

  𝐹 : R 𝐾 → [0, 1] be a joint CDF of a 𝐾-dimensional random vector and 𝐹 1 , ..., 𝐹 𝐾 are the marginal CDFs. Then, there exists a 𝐾-dimensional copula 𝐶 such that 𝐹 (𝑧) = 𝐶 (𝐹 1 (𝑧 1 ), ..., 𝐹 𝐾 (𝑧 𝐾 )) . , if 𝐹 𝑖 is continuous for any 𝑖 = 1, ..., 𝐾, then 𝐶 is uniquely given by

	Moreover

  ) 𝑇 is a positive semidefinite matrix for any 𝑥 ∈ 𝑄, where 𝐻 𝜅 is the Hessian matrix of 𝜅 ; ▽ 𝑥 𝜅 is the gradient vector of 𝜅. Suppose that Assumption 2 holds. Let 𝜑 1 (𝑥, 𝑦 𝑖 ) := 𝜅(𝑥) log 𝑦 𝑖 . 𝜅(𝑥) -1 + 𝜅(𝑥) log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 . Then, 𝜑 1 (𝑥, 𝑦 𝑖 ) ≥ 𝜑 * 1 > 0, for any (𝑥, 𝑦 𝑖

	Lemma 4

  1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖 ) < 1. Let 𝑠 := 𝜅(𝑥).(1 + log 𝑝.𝑦 𝜅 ( 𝑥) By applying the Cauchy-Schwarz inequality, we deduce that

	𝑠(1 -𝑠) ≤ 1 4 (the equality holds if and only if 𝑠 = 1 2 ). Hence,					
	𝜅(𝑥)(1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖	) 1 -𝜅(𝑥).(1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖	) ≤	4 1	.		
	⇒0 < (1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖	) 1 -𝜅(𝑥).(1 + log 𝑝.𝑦 𝜅 ( 𝑥) 𝑖	) ≤	4.𝜅(𝑥) 1	≤	4𝑐 𝑙 1	.

𝑖

).

  If Assumption 2 holds, then 𝑈 is jointly convex on 𝑄 × [ℎ 𝑙 , ℎ 𝑢 ].Proof Using Lemma 3, it suffices to show the positive semidefiniteness of 𝑁 (𝑥, 𝑦 𝑖 ) in[START_REF] Mcneil | Quantitative risk management: concepts, techniques and tools-revised edition[END_REF] for any (𝑥, 𝑦 𝑖 ) ∈ 𝑄 × [ℎ 𝑙 , ℎ 𝑢 ]. Since 𝜓 𝑥 (𝑡) = (log 𝑡)

	Lemma 6	
	and (30) together, completes the proof.	⊓ ⊔

1 𝜅 ( 𝑥) , we have 𝜓

(-1) 

  𝑥 𝜅 * (𝑥) (▽ 𝑥 𝜅 * (𝑥)) 𝑇 is a positive semidefinite matrix.On the other hand, since 𝜅(𝑥) = 𝜅 * (𝑥) + 𝑑, then 𝐻 𝑥 𝜅 * (𝑥) = 𝐻 𝑥 𝜅(𝑥) and ▽ 𝑥 𝜅 * (𝑥) = ▽ 𝑥 𝜅(𝑥), ∀𝑥 ∈ 𝑄. Therefore, the third condition of Assumption 2 holds.⊓ ⊔ Notice that we are interested to find a function 𝑞 which meets the two conditions in Lemma 8. Let 𝑞(𝑥):= | | 𝑥 | | 2𝐿 + 𝑧 where || • || denotes the Euclidean norm, 𝐿 > 0, 𝑧 ∈ R are real numbers such that: 𝑧 = min 𝑥 ∈𝑄 𝑞(𝑥) and 𝐿 +𝑧 + 𝑑 which satisfies (35) fits all conditions in Assumption 2. It suffices to choose appropriate parameters 𝐿, 𝑧 and 𝑑. In fact, (35) is a mild condition. Let 𝑑 be an arbitrary real number in (𝑐 𝑙 -1 𝜔 , 𝑐 𝑙 ). We deduce from this condition that log(𝑐 𝑙 -𝑑) is well defined and Let 𝑧 be an arbitrary real number in 𝑙 -𝑑) -

	Proof The first condition is trivial. Since	𝛿 2 𝑙 𝐿 + 𝛿 2 𝑢 𝐿 + 𝑧 = max 𝑥 ∈𝑄 𝑞(𝑥),
	we deduce that the second condition holds.			
								⊓ ⊔
	Using Lemma 9, the function 𝜅(𝑥) = 𝑒	||𝑥|| 2		
			log(𝑐 𝑙 -𝑑) ≤ log min	1 𝜔	, 1 -𝑑 .
	Let 𝐿 be an arbitrary real number in	𝛿 2 𝑢 -𝛿 2 𝑙 𝜔 ,1-𝑑)]-log(𝑐 𝑙 -𝑑) , +∞ which depends on log[min( 1
	𝑑. We deduce from this condition that				
	log min	1 𝜔	, 1 -𝑑 -log(𝑐 𝑙 -𝑑) ≥	1 𝐿	𝛿 2 𝑢 + 𝑧 -	1 𝐿	𝛿 2 𝑙 + 𝑧 > 0.
							𝛿 2 𝑙 𝐿 , log min 1 𝜔 , 1 -𝑑 -	𝛿 2 𝑢 𝐿
	which depends on 𝑑 and 𝐿. We deduce from this condition that:
			log(𝑐 𝑙 -𝑑) ≤ 1 𝐿 𝛿 2 𝑙 + 𝑧.
			1 𝐿 𝛿 2 𝑢 + 𝑧 ≤ log min 1 𝜔 , 1 -𝑑 .
	Therefore, we can easily verify that (35) holds.		
	1 𝜔 . Hence,						
	1 𝜔 𝐻 𝑥 𝜅 Lemma 9 log(𝑐 𝑙 -𝑑) ≤ 1 𝐿 𝛿 2 𝑙 + 𝑧 ≤	1 𝐿	𝛿 2 𝑢 + 𝑧 ≤ log min	1 𝜔	, 1 -𝑑 ,	(35)
	Hence, 𝑞(𝑥) satisfies the two conditions in Lemma 8.

* (𝑥) -▽

  1, we suppose that ∀ 𝑗 ∈ 𝐽, 𝐹 𝑗 has the same density. For the term 𝐹 𝑗 𝑗,𝑚𝑖𝑛 ||𝜇 𝑗 || in (12), we choose the parameters 𝜆 𝑗,𝑚𝑖𝑛 and 𝜇 𝑗 such that 𝑗,𝑚𝑖𝑛 ||𝜇 𝑗 || is small. For the sake of illustration, we set 𝑝 * = 𝐹 𝑗 [𝑡 * 𝑗 (𝑟 𝑗 + 1)]. As 𝑟 𝑗 ≥ 1, then 𝑝 * = 𝐹 𝑗 [𝑡 * 𝑗

		𝑟 𝑗 +1 𝑟 𝑗 -1 𝜆	-1 2
	𝑟 𝑗 +1 𝑟 𝑗 -1 𝜆	-1 2

  and Σ 2 = 30 × I 2 , where I 2 is the 2 × 2identity matrix. ℎ 𝑙 and ℎ 𝑢 are calculated using Lemma 7. 𝜑 * 1 , 𝜑 * 2 and 𝜔 are calculated using[START_REF] Marti | Differentiation of probability functions: The transformation method[END_REF]. Let 𝑑 = 𝑐 𝑙 -1 2𝜔 , 𝐿 =

	Distribution	𝑝 *
	Normal	0.92
	𝑡 with 2-degrees of freedom	0.84
	𝑡 with 3-degrees of freedom	0.87
	𝑡 with 4-degrees of freedom	0.88
	Laplace	0.88
	𝛿 2 𝑢 -𝛿 2 𝑙 𝜔 ,1-𝑑))-log(𝑐 𝑙 -𝑑) and 𝑧 = log min 1 log(min( 1 𝜔 , 1 -𝑑 -	𝛿 2 𝑢 𝐿 . It
	is easy to see that this choice of parameters fits the condition in Lemma 9.

Table 3 :

 3 Selected 1-dimensional spherical distributions with 𝑟-decreasing densities and the value of the threshold 𝑝 * respectively.

2 :

 2 Let 𝑖 ∈ 𝐼. It follows from Lemma 2 of[START_REF] Cheng | Second-order cone programming approach for elliptically distributed joint probabilistic constraints with dependent rows[END_REF] that the function𝑓 𝑖 ( 𝑥) = √︁ ( 𝑥) 𝑇 Σ 𝑖 𝑥 𝐷 𝑖 -( 𝜇 𝑖 ) 𝑇 𝑥 𝑟 𝑖.is defined and a convex function on 𝑗∈𝐼 Ω 𝑗 . Therefore, for any 𝑦, 𝑧 ∈ 𝑄 𝑖 and 𝜆 ∈ [0, 1], we have𝑓 𝑖 [𝜆𝑦 + (1 -𝜆) 𝑧 ] ≤ 𝜆 𝑓 𝑖 ( 𝑦) + (1 -𝜆) 𝑓 𝑖 (𝑧).(39)Note that 𝑔 𝑖 ( 𝑥) = ( 𝑓 𝑖 ( 𝑥))𝑟 𝑖 on 𝑄 𝑖 . From (39), we can write𝑔 𝑖 [𝜆𝑦 + (1 -𝜆) 𝑧 ] ≥ (𝜆(𝑔 𝑖 ( 𝑦)) -𝑟 𝑖 + (1 -𝜆) (𝑔 𝑖 (𝑧)) -𝑟 𝑖 )Hence, 𝑔 𝑖 is defined and (-𝑟 𝑖 )-concave on 𝑄 𝑖 .It is easy to see that 𝑖∈𝐽 𝑦 𝑖 = 1 and 𝑦 𝑖 ≥ 0, ∀𝑖 ∈ 𝐽. We prove that 𝑦 𝑖 ≥ 𝐺 𝑖 , ∀𝑖 ∈ 𝐽. Consider two cases as follows.Case 1: 𝑖 ∈ 𝐼 𝐷 . We use the Cauchy-Schwarz inequality to deduce that| -𝜇 𝑇 𝑖 𝑥 | ≤ | |𝜇 𝑖 | |. | | 𝑥 | |, ∀𝑖 ∈ 𝐽 . 𝜓 𝑥 [𝐹 𝑗 (𝑔 𝑗 ( 𝑥)) ] ≤ 𝜓 𝑥 ( 𝑝).(43)We apply (41) -(42) and | | 𝑥 | | ≥ 𝛿 𝑙 to deduce the following inequality 𝑔 𝑖 ( 𝑥) ≤ We use the decreasing monotonicity of 𝜓 𝑥 to deduce 𝜓 𝑥 (𝐹 𝑖 (𝑔 𝑖 ( 𝑥))) ≥ 𝜓 𝑥 𝐹 𝑖 Using (44) and (45), we have 𝑦 𝑖 ≥ 𝐺 𝑖 . Case 2: 𝑖 ∈ 𝐽\𝐼 𝐷 . In this case, 𝐷 𝑖 ≤ 0. Then, using (41) and (42), we have: 𝑔 𝑖 ( 𝑥) ≤

									𝐷 𝑖 𝜆 𝑖,𝑚𝑎𝑥 𝛿 𝑢 √︁	+	| | 𝜇 𝑖 | | √︁ 𝜆 𝑖,𝑚𝑖𝑛	(41)
	From linear algebra, we have								
				√︁ 𝜆 𝑖,𝑚𝑎𝑥 | | 𝑥 | | ≥	√︁	𝑥 𝑇 Σ 𝑖 𝑥 ≥	√︁ 𝜆 𝑖,𝑚𝑖𝑛 | | 𝑥 | |.	(42)
	Since 𝑥 ∈ 𝑆 ( 𝑝), using (7), we get:						
								𝐾					
					0 <	∑︁					
								𝑗=1					
			-1										
									√︁	𝐷 𝑖 𝑥 𝑇 Σ 𝑖 𝑥	+	| -𝜇 𝑇 𝑖 𝑥 | √︁ 𝑥 𝑇 Σ 𝑖 𝑥	-1
								≤	𝐷 𝑖 𝜆 𝑖,𝑚𝑖𝑛 𝛿 𝑙 √︁	+	| |𝜇 𝑖 | | √︁ 𝜆 𝑖,𝑚𝑖𝑛	𝑟 𝑖 .
													𝐷 𝑖 𝜆 𝑖,𝑚𝑖𝑛 𝛿 𝑙 √︁	+	| | 𝜇 𝑖 | | 𝜆 𝑖,𝑚𝑖𝑛 √︁	.
	Combining with (43) and (40), we have					
	𝑦 𝑖 ≥	𝜓 𝑥 𝐹 𝑖	𝐷 𝑖 𝜆 𝑖,𝑚𝑖𝑛 𝛿 𝑙 √ 𝜓 𝑥 ( 𝑝)	+	||𝜇 𝑖 || 𝜆 𝑖,𝑚𝑖𝑛 √		=		log 𝐹 𝑖	𝐷 𝑖 𝜆 𝑖,𝑚𝑖𝑛 𝛿 𝑙 √ log 𝑝	+	|| 𝜇 𝑖 || 𝜆 𝑖,𝑚𝑖𝑛 √	1 𝜅 ( 𝑥)	(44)
	As 0 ≤ 𝑦 𝑖 ≤ 1, we deduce that:								
					0 <	log 𝐹 𝑖	𝐷 𝑖 𝜆 𝑖,𝑚𝑖𝑛 𝛿 𝑙 √ log 𝑝	+	|| 𝜇 𝑖 || 𝜆 𝑖,𝑚𝑖𝑛 √	≤ 1
	Therefore,												
	log 𝐹 𝑖	𝐷 𝑖 𝜆 𝑖,𝑚𝑖𝑛 𝛿 𝑙 √ log 𝑝	+	||𝜇 𝑖 || 𝜆 𝑖,𝑚𝑖𝑛 √	1 𝜅 ( 𝑥)	≥	log 𝐹 𝑖	𝐷 𝑖 𝜆 𝑖,𝑚𝑖𝑛 𝛿 𝑙 √ log 𝑝	+	||𝜇 𝑖 || 𝜆 𝑖,𝑚𝑖𝑛 √	1 𝑐 𝑙	= 𝐺 𝑖 .	(45)

.

As 𝐹 𝑖 is increasing monotonic, we have

𝐹 𝑖 (𝑔 𝑖 ( 𝑥)) ≤ 𝐹 𝑖 𝐷 𝑖 √︁ 𝜆 𝑖,𝑚𝑖𝑛 𝛿 𝑙 + | | 𝜇 𝑖 | | √︁ 𝜆 𝑖,𝑚𝑖𝑛

.
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Appendix B: Proof of Lemma 3

The Hessian matrix of 𝑈 at a point ( 𝑥, 𝑦 𝑖 ) is an (𝑛 + 1)-dimensional symmetric matrix which has the form 𝐴 𝐵 𝐶 𝐷 , where

The proof is an application of the Schur's complement. Hence, it suffices to show that 𝜕 2

In fact, for 𝑈 ( 𝑥, 𝑦 𝑖 ) = 𝜓 (-1) 𝑥 ( 𝑦 𝑖 𝜓 𝑥 ( 𝑝)), we have

and ( 𝜓

Using the above formulations, we have 𝜓 𝑥 ( 𝑝) > 0 and ( 𝜓

Appendix C: Proof of Lemma 7

Let 𝑥 ∈ 𝑆 ( 𝑝) and

where 𝜓 𝑥 (.) is defined in [START_REF] Hong | Sequential convex approximations to joint chance constrained programs: A monte carlo approach[END_REF].