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Abstract In this paper, we study the convexity of the linear joint chance constraints. We
assume that the constraint row vectors are elliptically distributed. Further, the dependence
of the rows is modeled by a family of Archimedean copulas, namely, the Gumbel-Hougaard
family of copulas. Under mild assumptions, we prove the eventual convexity of the feasibility
set.
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1 Introduction

We consider the following linear optimization with joint chance constraints

min 𝑐𝑇𝑥

subject to P {𝑉𝑥 ≤ 𝐷} ≥ 𝑝

𝑥 ∈ 𝑄. (1)

where 𝑄 = {𝑥 ∈ R𝑛 | 𝛿𝑙 ≤ ||𝑥 | | ≤ 𝛿𝑢} is a closed convex subset of R𝑛, 𝛿𝑙 and 𝛿𝑢 are
strictly positive real numbers, 𝐷 := (𝐷1, ..., 𝐷𝐾 ) ∈ R𝐾 is a deterministic vector, 𝑉 :=
[𝑣1, ..., 𝑣𝐾 ]𝑇 is a random matrix with size 𝐾 × 𝑛, where 𝑣𝑘 is a random vector in R𝑛, ∀𝑘 =

1, 2, ..., 𝐾 and 𝑝 ∈ (0, 1). We denote 𝑆(𝑝) the feasibility set of (1). Let 𝐽 := {1, 2, ..., 𝐾}.
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The convexity of chance constraints as well as the analytical properties of the probability
function play an important role in convex optimisation which are difficult issues and scarcely
studied in the literature. This problem was first introduced by Prékopa [23]. He considers the
following form of chance constraints

P(ℎ(𝑥, 𝜉) ≥ 0) ≥ 𝑝, (2)

where 𝑥 ∈ R𝑛 is a decision vector, 𝜉 : Ω → R𝑚 is an 𝑚− random variable vector defined
on a probability space (Ω,A, P), ℎ : R𝑛 × R𝑚 → R𝑠 and 𝑝 ∈ [0, 1] is a given probability
threshold.
Theorem 10.2.1 in [23] states that the feasibility set of (2) is convex if P o 𝜉−1 of 𝜉

is a log-concave probability measure on R𝑚 and the components of ℎ are quasi-concave.
Henrion and Strugarek [8] studied a particular form of (2) by taking ℎ(𝑥, 𝜉) = 𝑔(𝑥) −𝜉 where
𝑔 : R𝑚 → R𝑛. Hence, they consider the following form

P(𝜉 ≤ 𝑔(𝑥)) ≥ 𝑝, (3)

where they suppose that the components of 𝜉 are independent. They prove that if the
cumulative distribution functions of the components of 𝜉 have 𝑟− decreasing densities and the
components of 𝑔 are 𝑟− concave, the feasibility set of (3) is convex. Henrion [10] generalized
this result to the case where the components of 𝜉 are dependent. He uses the theory of copulas
to model the dependence of the components of 𝜉.
Marti [16] studied the differentiation of probability functions by an integral transfor-

mation method. The derivatives of the probability function can be obtained by applying
an integral transformation to its integral representation. Some basic results on the differen-
tiability of a probability function were studied by Kibzun et al [12]. They proposed new
formulations of the gradient of probability functions in different forms, i.e., integral over the
surface, volume, or sum of surface and volume integrals. Lobo [14] studied some applications
of second-order cone program leading to a new approach for solving chance constraints. A
more developed direction was initialized by Henrion [9] which gave a full description of the
structure (not only the convexity) of a one-row linear optimization with a chance constraint
by introducing a new notion of r-decreasing function. Henrion [8] studied the convexity in
the case where the constraints are independent. To deal with the dependent case, Henrion and
Strugarek [10], Cheng et al. [2] and Van Ackooij [28] used the theory of copulas to model the
dependence of the constraints. They supposed that the distribution of the constraint row vec-
tors are elliptically distributed. Under high probability threshold 𝑝, they prove the convexity
of 𝑆(𝑝). Hong et al [11] proposed to solve joint chance-constrained programs by sequential
convex approximations. They proved that the solutions of the sequence of approximations
converge to a Karush-Kuhn-Tacker (KTT) point of the original problem. Farshbaf-Shaker et
al [5] proved some properties of chance constraints in infinite dimensions. They supposed that
the feasibility set belongs to a Banach space. Under mild conditions, they proved regularity
properties of the probability function with an application to PDE constrained optimization.
Wim van Ackooij [30] studied the convexity of the feasibility set in a general framework by
using the radial representation of elliptical distributions.
In this paper, we deal with the convexity of 𝑆(𝑝). We assume that the row vectors 𝑣𝑖

follow an elliptical distribution. We derive a reformulation of the joint chance constraints
and assume that the dependence of the random constraint vector is captured by a Gumbel-
Hougaard copula. Under mild conditions, we prove a new convexity result of the feasibility
set 𝑆(𝑝).
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This paper is organized as follows. In Section 2, we recall some basic concepts and
preliminary results. In Section 2.1, we present a reformulation of the joint chance constraints.
In Sections 2.2 and 3, we prove the concavity of the left-hand side and the convexity of the
right-hand side of the reformulated constraint. In Section 4, we prove the convexity of the
feasibility set 𝑆(𝑝) under mild conditions. We conclude the paper in Section 5.

2 Basic concepts and preliminary results

First, we recall some important definitions and propositions that we use in our paper.

Definition 1 An 𝑛-dimensional random vector 𝑋 follows a spherical distribution if there
exists a function Ψ : R→ R such that the characteristic function 𝜙𝑋 (𝑡) of 𝑋 is given by

𝜙𝑋 (𝑡) = E(𝑒𝑖𝑡
𝑇𝑋) = Ψ(𝑡𝑇 𝑡).

The function Ψ is called a characteristic generator of the spherical distribution.

Definition 2 An 𝑛-dimensional random vector 𝑈 follows an elliptical distribution with lo-
cation parameter 𝜇, positive definite scale matrix Σ and characteristic generator Ψ (in short
𝑈 ∼ 𝐸𝑙𝑙𝑖𝑝(𝜇, Σ,Ψ)), if we have the following representation

𝑈=̂𝜇 + 𝐴𝑋,

where 𝑋 follows a spherical distribution with a characteristic generator Ψ, 𝐴 ∈ R𝑛×𝑛 such
that 𝐴𝐴𝑇 = Σ and 𝜇 ∈ R𝑛; =̂ implies that the both sides have the same distribution.

The probability density function of all the distributions from elliptical family does not always
exist. Whenever it exists, it is of the form

𝑓𝑈 (𝑧) =
𝑐√︁
det(Σ)

𝑔𝑑𝑒𝑛

(√︃
(𝑧 − 𝜇)𝑇Σ−1 (𝑧 − 𝜇)

)
,

where 𝑔𝑑𝑒𝑛 is a nonnegative function called radial density and 𝑐 > 0 is a normalization
factor which makes 𝑓𝑈 a probability density function.

Definition 3 A function 𝑓 : 𝑄 → (0, +∞) is 𝑟-concave on a set 𝑄 ⊂ R𝑠 for a given
𝑟 ∈ (−∞, +∞) if for any 𝑥, 𝑦 ∈ 𝑄 and 𝑦 ∈ [0, 1],

𝑓 (𝑦𝑥 + (1 − 𝑦)𝑦) ≥ [𝑦 𝑓 (𝑥)𝑟 + (1 − 𝑦) 𝑓 (𝑦)𝑟 ] 1𝑟 , when 𝑟 ≠ 0,
𝑓 (𝑦𝑥 + (1 − 𝑦)𝑦) ≥ 𝑓 (𝑥)𝑦 𝑓 (𝑦)1−𝑦 , otherwise.

Definition 4 (Definition 2.2, [9]) A real function 𝑓 : R→ R is 𝑟-decreasing for some real
number 𝑟 ∈ R, if 𝑓 is continuous on (0, +∞) and there exists some strictly positive real
number 𝑡∗ such that the function 𝑡 ↦→ 𝑡𝑟 𝑓 (𝑡) is strictly decreasing on (𝑡∗, +∞).

Table 1 presents some 1-dimensional spherical distributions with 𝑟-decreasing densities
for some values of 𝑟 and their thresholds 𝑡∗.

Definition 5 A function 𝐶 : [0, 1]𝐾 → [0, 1] is a 𝐾-dimensional copula if 𝐶 is a joint CDF
of a 𝐾-dimensional random vector, on the unit cube [0, 1]𝐾 , whose marginals are uniformly
distributed on [0, 1].
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Distribution Radial density 𝑟 𝑡∗

Normal 𝑒
− 12𝑢

2
𝑟 > 0

√
𝑟

𝑡

(
1 + 1

𝜈
𝑢2

)−(1+𝜈)/2
,

𝜈 > 0, 𝜈 integer
0 < 𝑟 < 𝜈 + 1

√︃
𝑟𝜈
𝜈+1−𝑟

Laplace 𝑒−|𝑢| 𝑟 > 0 𝑟√
2

Kotz type 𝑢2(𝑁−1)𝑒−𝑞𝑢
2𝑠
,

𝑞, 𝑠 > 0, 𝑁 > 1
2

𝑟 > 2(1 − 𝑁 ) 2𝑠
√︃
2(𝑁−1)+𝑟
2𝑞𝑠

Pearson type VII

(
1 + 𝑢2

𝑚

)−𝑁
,

𝑚 > 0, 𝑁 > 1
2

0 < 𝑟 < 2𝑁
√︃

𝑟𝑚
2𝑁−𝑟

Table 1: Selected 1-dimensional spherical distributions with 𝑟-decreasing densities and their
thresholds 𝑡∗.

Proposition 1 (Sklar’s Theorem) Let 𝐹 : R𝐾 → [0, 1] be a joint CDF of a 𝐾-dimensional
random vector and 𝐹1, ..., 𝐹𝐾 are the marginal CDFs. Then, there exists a 𝐾-dimensional
copula 𝐶 such that

𝐹 (𝑧) = 𝐶 (𝐹1 (𝑧1), ..., 𝐹𝐾 (𝑧𝐾 )) .

Moreover, if 𝐹𝑖 is continuous for any 𝑖 = 1, ..., 𝐾 , then 𝐶 is uniquely given by

𝐶 (𝑢) = 𝐹
(
𝐹

(−1)
1 (𝑢1), ..., 𝐹 (−1)

𝐾
(𝑢𝐾 )

)
.

Proposition 2 (Fréchet-Hoeffding upper bound) For any 𝐾−dimensional copula 𝐶 and
𝑢 = (𝑢1, ..., 𝑢𝐾 ) ∈ [0, 1]𝐾 , we have

𝐶 (𝑢) ≤ 𝐶𝑀 (𝑢) := min
𝑘=1,...,𝐾

𝑢𝑘 .

Definition 6 A 𝐾-dimensional copula 𝐶 is strictly Archimedean if there exists a continuous
and strictly decreasing function𝜓 : (0, 1] → [0, +∞), such that𝜓(1) = 0, lim𝑡→0 𝜓(𝑡) = +∞,
and for any 𝐾-dimensional vector 𝑢 = (𝑢1, ..., 𝑢𝐾 ) ∈ [0, 1]𝐾 , we have

𝐶 (𝑢) = 𝜓 (−1)

(
𝐾∑︁
𝑖=1

𝜓(𝑢𝑖)
)
.

The function 𝜓 is called a generator of the copula 𝐶.

Table 2 presents a selection of some strictly Archimedean copulas with their generators.

Definition 7 A function 𝑓 : R → R is 𝐾-monotonic on an open interval 𝐼 ⊆ R for some
positive integer 𝐾 ≥ 2, if the following three conditions hold:

1. 𝑓 is differentiable up to the order (𝐾 − 2) on 𝐼,
2. The derivatives of 𝑓 are satisfied by

(−1)𝑘 𝑑
𝑘

𝑑𝑡𝑘
𝑓 (𝑡) ≥ 0, 0 ≤ 𝑘 ≤ 𝐾 − 2,

for all 𝑡 ∈ 𝐼,
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Type of copula Parameter 𝜃 Generator 𝜓𝜃 (𝑡)
Independent - -log(𝑡)

Gumbel-Hougaard 𝜃 ≥ 1 [− log(𝑡) ] 𝜃

Frank 𝜃 > 0 − log
(
𝑒−𝜃𝑡−1
𝑒−𝜃−1

)
Clayton 𝜃 > 0 1

𝜃
(𝑡 𝜃 − 1)

Joe 𝜃 ≥ 1 − log[1 − (1 − 𝑡) 𝜃 ]

Table 2: Different types of strictly Archimedean copulas.

3. The function 𝑡 ↦→ (−1)𝐾−2 𝑑𝐾−2

𝑑𝑡𝐾−2 𝑓 (𝑡) is nonincreasing and convex on 𝐼.

Proposition 3 (Theorem 2.2, [18]) Let 𝜓 : (0, 1] → [0, +∞) be a strictly decreasing func-
tion such that 𝜓(1) = 0 and lim𝑡→0 𝜓(𝑡) = +∞. Then, 𝜓 is the generator of a 𝐾-dimensional
strictly Archimedean copula if and only if the inverse function 𝜓 (−1) is 𝐾−monotonic on
(0, +∞) and continuous on [0, +∞).

2.1 Reformulation of the probability function

In problem (1), we assume that the random constraint vector 𝑣𝑖 ∼ 𝐸𝑙𝑙𝑖𝑝(𝜇𝑖 , Σ𝑖 ,Ψ𝑖), ∀𝑖 ∈ 𝐽.
Let 𝜆𝑖,𝑚𝑖𝑛 and 𝜆𝑖,𝑚𝑎𝑥 be the smallest and the largest eigenvalues of the positive definite
matrix Σ𝑖 respectively.
Assume that 0 ∉ 𝑄. Let

𝜉𝑖 (𝑥) :=
𝑣𝑇
𝑖
𝑥 − 𝜇𝑇

𝑖
𝑥√︁

𝑥𝑇Σ𝑖𝑥
.

𝑔𝑖 (𝑥) :=
𝐷𝑖 − 𝜇𝑇𝑖 𝑥√︁
𝑥𝑇Σ𝑖𝑥

. (4)

The constraint in (1) can be rewritten as follows

P {𝑉𝑥 ≤ 𝐷} ≥ 𝑝.

⇔ P
{
𝑣𝑇𝑖 𝑥 ≤ 𝐷𝑖 , 𝑖 ∈ 𝐽

}
≥ 𝑝.

⇔ P {𝜉𝑖 (𝑥) ≤ 𝑔𝑖 (𝑥), 𝑖 ∈ 𝐽} ≥ 𝑝. (5)

It is easy to see that 𝜉𝑖 (𝑥) follows 1−dimensional spherical distributionwith characteristic
generator Ψ𝑖 . Our aim is to reformulate this function to study the convexity of 𝑆(𝑝). For this
purpose, we use the Sklar’s Theorem (cf. Proposition 1) to rewrite constraint (5) as follows

P {𝜉𝑖 (𝑥) ≤ 𝑔𝑖 (𝑥), 𝑖 ∈ 𝐽} ≥ 𝑝 ⇔ 𝐶𝑥 [𝐹1 (𝑔1 (𝑥)), ..., 𝐹𝐾 (𝑔𝐾 (𝑥))] ≥ 𝑝, (6)

where 𝐶𝑥 is the 𝐾− dimensional copula of the 𝐾-dimensional random vector 𝜉 (𝑥) :=
(𝜉1 (𝑥), ..., 𝜉𝐾 (𝑥)) and 𝐹𝑖 is the marginal cumulative distribution function of 𝜉𝑖 (𝑥), 𝑖 =

1, ..., 𝐾.

Remark 1 The copula 𝐶𝑥 depends on 𝑥 while the marginal distribution of 𝜉𝑖 (𝑥) does not
depend on 𝑥.
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We suppose that for all 𝑥, 𝐶𝑥 is a strictly Archimedean copula with generator 𝜓𝑥 . The
constraint (6) can be written as

𝐶𝑥 [𝐹1 (𝑔1 (𝑥)), ..., 𝐹𝐾 (𝑔𝐾 (𝑥))] ≥ 𝑝 ⇔ 𝜓
(−1)
𝑥

(
𝐾∑︁
𝑖=1

𝜓𝑥 (𝐹𝑖 (𝑔𝑖 (𝑥)))
)
≥ 𝑝.

⇔
𝐾∑︁
𝑖=1

𝜓𝑥 (𝐹𝑖 (𝑔𝑖 (𝑥))) ≤ 𝜓𝑥 (𝑝). (7)

We add auxiliary variables {𝑦𝑖 ≥ 0, 𝑖 ∈ 𝐽} in order to reformulate constraint (7) into
individual chance constraints [2,3]. In particular, as𝜓𝑥 is positive, constraint (7) is equivalent
to the following constraint


𝜓𝑥 (𝐹𝑖 (𝑔𝑖 (𝑥))) ≤ 𝑦𝑖𝜓𝑥 (𝑝), 𝑖 ∈ 𝐽.
𝑦𝑖 ≥ 0, 𝑖 ∈ 𝐽.∑𝐾
𝑖=1 𝑦𝑖 = 1.

(8)

This means that if 𝑥∗ ∈ 𝑆(𝑝) then there exists 𝑦∗ := (𝑦∗1, ..., 𝑦
∗
𝐾
) ∈ R𝐾 such that (𝑥∗, 𝑦∗)

satisfies constraints (8). On the other hand, if (𝑥∗, 𝑦∗) is a feasible solution for constraints (8)
and 𝑥∗ ∈ 𝑄, we deduce that 𝑥∗ ∈ 𝑆(𝑝). Moreover, for 𝑥∗ ∈ 𝑆(𝑝), we can choose 𝑦∗ in order
to satisfy constraints (8) as

𝑦∗𝑖 =
𝜓𝑥∗ (𝐹𝑖 (𝑔𝑖 (𝑥∗)))∑𝐾
𝑗=1 𝜓𝑥∗ (𝐹𝑗 (𝑔 𝑗 (𝑥∗)))

, ∀𝑖 ∈ 𝐽. (9)

By applying the decreasing monotonicity of the generator 𝜓𝑥 , constraints (8) can be
written as follows


𝐹𝑖 (𝑔𝑖 (𝑥)) ≥ 𝜓 (−1)

𝑥 (𝑦𝑖𝜓𝑥 (𝑝)), 𝑖 ∈ 𝐽.
𝑦𝑖 ≥ 0, 𝑖 = 1, ..., 𝐾.∑𝐾
𝑖=1 𝑦𝑖 = 1.

(10)

In the rest of the paper, we consider the Gumbel-Hougaard family of copulas where the
generator 𝜓𝑥 is given by

𝜓𝑥 (𝑡) = (− log 𝑡)
1
𝜅 (𝑥) ,∀(𝑥, 𝑡) ∈ 𝑄 × (0, 1], (11)

where 𝜅(𝑥) : 𝑄 → (0, 1] is a strictly positive function.

Remark 2 Our aim is to show the concavity of 𝐹𝑖 (𝑔𝑖) with respect to 𝑥 and the joint convexity
of 𝜓 (−1)

𝑥 (𝑦𝑖𝜓𝑥 (𝑝)) with respect to (𝑦𝑖 , 𝑥).
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2.2 Concavity of 𝐹𝑖 (𝑔𝑖 (·))

Define an index set 𝐼𝜇 ⊂ 𝐽 such that 𝜇𝑖 ≠ 0 for any 𝑖 ∈ 𝐼𝜇 and 𝜇𝑖 = 0 otherwise. Define a
set of real numbers {𝑟𝑖 | 𝑖 ∈ 𝐽} such that{

𝑟𝑖 > 1, if 𝑖 ∈ 𝐼𝜇,
𝑟𝑖 = 1, if 𝑖 ∉ 𝐼𝜇 .

Assumption 1

1. The cumulative distribution function 𝐹𝑖 has (𝑟𝑖 + 1)− decreasing densities with the
thresholds 𝑡∗

𝑖
, ∀𝑖 ∈ 𝐽.

2. 𝑝 > 𝑝∗, where

𝑝∗ := max
{
1
2
,max
𝑗∈𝐼𝜇

𝐹𝑗

(
𝑟 𝑗 + 1
𝑟 𝑗 − 1

𝜆
− 12
𝑗 ,𝑚𝑖𝑛

| |𝜇 𝑗 | |
)
,max
𝑗∈𝐽

𝐹𝑗 [𝑡∗𝑗 (𝑟 𝑗 + 1)]
}
. (12)

Lemma 1 If Assumption 1 holds, then we have

𝐶𝑜𝑛𝑣(𝑆(𝑝)) ⊂
⋂
𝑗∈𝐼𝜇

Ω 𝑗 .

where

Ω 𝑗 :=
{
𝑥 ∈ 𝑄 | 𝐷 𝑗 − 𝜇𝑇𝑗 𝑥 >

𝑟 𝑗 + 1
𝑟 𝑗 − 1

𝜆
− 12
𝑗 ,𝑚𝑖𝑛

| |𝜇 𝑗 | |
√︃
𝑥𝑇Σ 𝑗𝑥

}
,

and𝐶𝑜𝑛𝑣 is the convex hull. Moreover, for any 𝑖 = 1, 2, ..., 𝐾 , 𝑔𝑖 > 0 and (−𝑟𝑖)− concave
on any convex subset 𝑄𝑖 of

⋂
𝑗∈𝐼𝜇 Ω

𝑗 .

The proof is given in Appendix A.

Lemma 2 If Assumption 1 holds, then 𝐹𝑖 (𝑔𝑖 (·)) is concave on 𝑆(𝑝), ∀𝑖 ∈ 𝐽.

Proof By Lemma 1, we deduce that 𝑔𝑖 is (−𝑟𝑖)− concave and 𝑔𝑖 > 0 on 𝐶𝑜𝑛𝑣(𝑆(𝑝)), for
𝑖 ∈ 𝐽. Hence, for 𝑎 ∈ [0, 1] and 𝑥1, 𝑥2 ∈ 𝑆(𝑝), we have

𝑔𝑖 (𝑎𝑥1 + (1 − 𝑎)𝑥2) ≥ [𝑎𝑔−𝑟𝑖
𝑖

(𝑥1) + (1 − 𝑎)𝑔−𝑟𝑖
𝑖

(𝑥2)]−
1
𝑟𝑖 . (13)

As 𝑥1 ∈ 𝑆(𝑝) and 𝑝 > 𝑝∗, we have

𝐶𝑥1 [𝐹1 (𝑔1 (𝑥1)), ..., 𝐹𝐾 (𝑔𝐾 (𝑥1))] > 𝑝∗.

By Proposition 2 and the definition of 𝑝∗, we deduce that

𝐹𝑖 (𝑔𝑖 (𝑥1)) > 𝑝∗ ≥ 𝐹𝑖 [𝑡∗𝑗 (𝑟𝑖 + 1)], 𝑖 ∈ 𝐽.

Since, 𝐹𝑖 (·) is monotonically increasing, we deduce that
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𝑔𝑖 (𝑥1) > 𝑡∗𝑖 (𝑟𝑖 + 1) > 0⇒ 0 < 𝑔𝑖 (𝑥1)−𝑟𝑖 < (𝑡∗𝑖 (𝑟𝑖 + 1))−𝑟𝑖 , 𝑖 ∈ 𝐽.

Similarly, we obtain the inequality for 𝑥2. By taking 𝐹𝑖 on both sides of (13), we have

𝐹𝑖 (𝑔𝑖 (𝑎𝑥1 + (1 − 𝑎)𝑥2)) ≥ 𝐹𝑖 ( [𝑎𝑔−𝑟𝑖𝑖 (𝑥1) + (1 − 𝑎)𝑔−𝑟𝑖
𝑖

(𝑥2)]−
1
𝑟𝑖 ). (14)

Since, 𝐹𝑖 (·) has (𝑟𝑖 + 1)−decreasing density, from Lemma 3.1 of [9], the function
𝑡 ↦→ 𝐹𝑖

(
𝑡
− 1
𝑟𝑖

)
is concave on (0, (𝑡∗

𝑖
)−𝑟𝑖 ). Therefore, we can write

𝐹𝑖 ( [𝑎𝑔−𝑟𝑖𝑖 (𝑥1) + (1 − 𝑎)𝑔−𝑟𝑖
𝑖

(𝑥2)]−
1
𝑟𝑖 ) ≥ 𝑎𝐹𝑖 (𝑔𝑖 (𝑥1)) + (1 − 𝑎)𝐹𝑖 (𝑔𝑖 (𝑥2)). (15)

From (14) and (15), we have

(𝐹𝑖 (𝑔𝑖 (𝑎𝑥1 + (1 − 𝑎)𝑥2)) ≥ 𝑎 ((𝐹𝑖 (𝑔𝑖 (𝑥1))) + (1 − 𝑎) ((𝐹𝑖 (𝑔𝑖 (𝑥2))) .

Therefore, 𝐹𝑖 (𝑔𝑖 (·)) is concave on 𝑆(𝑝).
⊓⊔

3 Convexity of 𝝍 (−1)
𝒙 (𝒚𝒊𝝍𝒙( 𝒑))

In this section, we use the following notations. Given arbitrarily positive real numbers
0 < 𝑐𝑙 ≤ 1 and 0 < ℎ𝑙 ≤ ℎ𝑢 < 1. Let

𝜑∗1 := 𝑐𝑙 . log ℎ𝑢 . log 𝑝.ℎ𝑙 .

𝜑∗2 :=
(log ℎ𝑙)2
4𝑐𝑙

+max
(
[1 + log ℎ𝑙 (1 + log 𝑝.ℎ𝑙)]2, [1 + log ℎ𝑢 .𝑐𝑙 (1 + log 𝑝)]2

)
.

𝜔 :=
𝜑∗2
𝜑∗1
. (16)

Remark 3 Since 𝜑∗1 > 0, then 𝜔 is well-defined. Moreover, 𝜔 does not depend on (𝑥, 𝑦𝑖).

In order to show the convexity of 𝑈 (𝑥, 𝑦𝑖) = 𝜓
(−1)
𝑥 (𝑦𝑖𝜓𝑥 (𝑝)), we first show that the

Hessian matrix of𝑈 is positive semidefinite. The following lemma is a reformulation of the
positive semidefiniteness of the Hessian matrix of𝑈.

Lemma 3 The positive semidefiniteness of the Hessian matrix of 𝑈 on the convex set
𝑄 × [ℎ𝑙 , ℎ𝑢] is equivalent to the positive semidefiniteness of the following 𝑛−dimensional
symmetric matrix

𝑁 (𝑥, 𝑦𝑖) :=
𝜕2

𝜕𝑦2
𝑖

𝑈 (𝑥, 𝑦𝑖) × 𝐻𝑥𝑈 (𝑥, 𝑦𝑖) −
(
▽𝑥

𝜕

𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖)

) (
▽𝑥

𝜕

𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖)

)𝑇
, (17)

for all (𝑥, 𝑦𝑖) on 𝑄 × [ℎ𝑙 , ℎ𝑢], where
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𝐻𝑥𝑈 =



𝜕2𝑈
𝜕𝑥21

𝜕2𝑈
𝜕𝑥1𝜕𝑥2

... 𝜕2𝑈
𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑈
𝜕𝑥2𝜕𝑥1

𝜕2𝑈
𝜕𝑥22

... 𝜕2𝑈
𝜕𝑥2𝜕𝑥𝑛

. . ... .

. . ... .
𝜕2𝑈

𝜕𝑥𝑛𝜕𝑥1
𝜕2𝑈

𝜕𝑥𝑛𝜕𝑥2
... 𝜕2𝑈

𝜕𝑥2𝑛


, ▽𝑥 =

(
𝜕
𝜕𝑥1
, ..., 𝜕

𝜕𝑥𝑛

)𝑇
.

The proof is given in Appendix B.

Assumption 2 We assume the following statements:

1. 𝑝 ≥ 𝑒−1
2. 0 < 𝑐𝑙 ≤ 𝜅(𝑥) ≤ 1, ∀𝑥 ∈ 𝑄.
3. 𝐻𝜅 (𝑥) − 𝜔 ▽𝑥 𝜅(𝑥) (▽𝑥𝜅(𝑥))𝑇 is a positive semidefinite matrix for any 𝑥 ∈ 𝑄, where 𝐻𝜅

is the Hessian matrix of 𝜅 ; ▽𝑥𝜅 is the gradient vector of 𝜅.

Lemma 4 Suppose that Assumption 2 holds. Let 𝜑1 (𝑥, 𝑦𝑖) := 𝜅(𝑥) log 𝑦𝑖 .
[
𝜅(𝑥) − 1 + 𝜅(𝑥) log 𝑝.𝑦𝜅 (𝑥)

𝑖

]
.

Then, 𝜑1 (𝑥, 𝑦𝑖) ≥ 𝜑∗1 > 0, for any (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎ𝑙 , ℎ𝑢], where 𝜑∗1 is defined in (16).

Proof Since 0 < 𝑦𝑖 ≤ ℎ𝑢 < 1, then

(− log 𝑦𝑖) ≥ (− log ℎ𝑢) > 0. (18)

As 0 < ℎ𝑙 ≤ 𝑦𝑖 < 1 and 0 < 𝜅(𝑥) ≤ 1, we deduce that 1 ≥ 𝑦
𝜅 (𝑥)
𝑖

≥ 𝑦𝑖 ≥ ℎ𝑙 > 0. Note
that 1 ≥ − log 𝑝 > 0 (because 𝑒−1 ≤ 𝑝 < 1). Then, 1 ≥ − log 𝑝.𝑦𝜅 (𝑥)

𝑖
≥ − log 𝑝.ℎ𝑙 > 0. We

have:

1 − 𝜅(𝑥) − 𝜅(𝑥) log(𝑝).𝑦𝜅 (𝑥)
𝑖

= 1 − 𝜅(𝑥) (1 + log 𝑝.𝑦𝜅 (𝑥)
𝑖

)

≥ 1 − 1.(1 + log 𝑝.𝑦𝜅 (𝑥)
𝑖

) (since 0 < 𝜅(𝑥) ≤ 1 and 1 + log 𝑝.𝑦𝜅 (𝑥)
𝑖

≥ 0)

= − log 𝑝.𝑦𝜅 (𝑥)
𝑖

≥ − log 𝑝.ℎ𝑙 > 0, ∀(𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎ𝑙 , ℎ𝑢] . (19)

Moreover,

𝜅(𝑥) ≥ 𝑐𝑙 > 0, ∀𝑥 ∈ 𝑄. (20)

Therefore, it suffices to multiply term by term the inequalities (18)-(20) to complete the
proof.

⊓⊔

Lemma 5 Suppose that Assumption 2 is fullfiled.

Let 𝜑2 (𝑥, 𝑦𝑖) := 𝜅(𝑥) log(𝑦𝑖)2 (1 + log 𝑝.𝑦𝜅 (𝑥)𝑖
)
[
1 − 𝜅(𝑥) − 𝜅(𝑥) log 𝑝.𝑦𝜅 (𝑥)

𝑖

]
+(

1 + 𝜅(𝑥). log 𝑦𝑖 + log 𝑝. log 𝑦𝑖 .𝑦𝜅 (𝑥)𝑖
.𝜅(𝑥)

)2
. (21)

Then, 0 < 𝜑2 (𝑥, 𝑦𝑖) ≤ 𝜑∗2, for any (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎ𝑙 , ℎ𝑢], where 𝜑∗2 is defined in (16).
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Proof Since 𝑝 ≥ 𝑒−1, then 0 > log 𝑝 ≥ −1. Using 0 < 𝑦
𝜅 (𝑥)
𝑖

< 1, we have 0 < (1 +
log 𝑝.𝑦𝜅 (𝑥)

𝑖
) < 1. Moreover, as 0 < 𝜅(𝑥) ≤ 1, then 0 < 𝜅(𝑥).(1 + log 𝑝.𝑦𝜅 (𝑥)

𝑖
) < 1. Let

𝑠 := 𝜅(𝑥).(1 + log 𝑝.𝑦𝜅 (𝑥)
𝑖

). By applying the Cauchy-Schwarz inequality, we deduce that
𝑠(1 − 𝑠) ≤ 1

4 (the equality holds if and only if 𝑠 =
1
2 ). Hence,

𝜅(𝑥) (1 + log 𝑝.𝑦𝜅 (𝑥)
𝑖

)
[
1 − 𝜅(𝑥).(1 + log 𝑝.𝑦𝜅 (𝑥)

𝑖
)
]
≤ 1
4
.

⇒0 < (1 + log 𝑝.𝑦𝜅 (𝑥)
𝑖

)
[
1 − 𝜅(𝑥).(1 + log 𝑝.𝑦𝜅 (𝑥)

𝑖
)
]
≤ 1
4.𝜅(𝑥) ≤ 1

4𝑐𝑙
. (22)

Since 1 > 𝑦𝑖 ≥ ℎ𝑙 > 0, we have 0 > log 𝑦𝑖 ≥ log ℎ𝑙 . Then,

0 < (log 𝑦𝑖)2 ≤ (log ℎ𝑙)2. (23)

Moreover,

0 < 𝜅(𝑥) ≤ 1 (24)

Hence, by multiplying term by term the inequalities (22)- (24), we get an upper bound
for the first term of (21):

0 < 𝜅(𝑥) log(𝑦𝑖)2 (1+log 𝑝.𝑦𝜅 (𝑥)𝑖
)
[
1 − 𝜅(𝑥) − 𝜅(𝑥) log 𝑝.𝑦𝜅 (𝑥)

𝑖

]
≤ (log ℎ𝑙)2

4𝑐𝑙
, ∀(𝑥, 𝑦𝑖) ∈ 𝑄×[ℎ𝑙 , ℎ𝑢] .

(25)
In order to get an upper bound for the second term of 𝜑2 (𝑥, 𝑦𝑖), we need some following

inequalites:

0 < 𝑐𝑙 ≤ 𝜅(𝑥) ≤ 1. (26)
0 < − log ℎ𝑢 ≤ − log 𝑦𝑖 ≤ − log ℎ𝑙 . (27)

0 ≤ 1 + log 𝑝 ≤ 1 + log 𝑝.𝑦𝜅 (𝑥)
𝑖

≤ 1 + log 𝑝.ℎ𝑙 . (28)

Note that (28) holds since 1 > 𝑝 then log 𝑝 < 0 and 1 ≥ 𝑦
𝜅 (𝑥)
𝑖

≥ ℎ𝑙 . By multiplying the
inequalities (26)-(28) term by term, we get

− log ℎ𝑙 (1 + log 𝑝.ℎ𝑙) ≥ − log 𝑦𝑖 .𝜅(𝑥) (1 + log 𝑝.𝑦𝜅 (𝑥)𝑖
) ≥ − log ℎ𝑢 .𝑐𝑙 (1 + log 𝑝)

Or equivalently,

1 + log ℎ𝑙 (1 + log 𝑝.ℎ𝑙) ≤ 1 + log 𝑦𝑖 .𝜅(𝑥) (1 + log 𝑝.𝑦𝜅 (𝑥)𝑖
) ≤ 1 + log ℎ𝑢 .𝑐𝑙 (1 + log 𝑝).

(29)

We deduce from (29) that

0 ≤ [1 + log 𝑦𝑖 .𝜅(𝑥) (1 + log 𝑝.𝑦𝜅 (𝑥)𝑖
)]2 ≤ max

(
(1 + log ℎ𝑙 (1 + log 𝑝.ℎ𝑙))2, (1 + log ℎ𝑢 .𝑐𝑙 (1 + log 𝑝))2

)
.

(30)

Adding (25) and (30) together, completes the proof. ⊓⊔
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Lemma 6 If Assumption 2 holds, then𝑈 is jointly convex on 𝑄 × [ℎ𝑙 , ℎ𝑢].

Proof Using Lemma 3, it suffices to show the positive semidefiniteness of 𝑁 (𝑥, 𝑦𝑖) in (17)
for any (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎ𝑙 , ℎ𝑢]. Since 𝜓𝑥 (𝑡) = (− log 𝑡)

1
𝜅 (𝑥) , we have 𝜓 (−1)

𝑥 (𝑡) = 𝑒−𝑡 𝜅 (𝑥) .
As𝑈 (𝑥, 𝑦𝑖) = 𝜓 (−1)

𝑥 (𝑦𝑖𝜓𝑥 (𝑝)), we can rewrite𝑈 (𝑥, 𝑦𝑖) as follows:

𝑈 (𝑥, 𝑦𝑖) = 𝑒
−
{
𝑦𝑖 (− log 𝑝)

1
𝜅 (𝑥)

}𝜅 (𝑥)
= 𝑝𝑦

𝜅 (𝑥)
𝑖 . (31)

By (31), we calculate explicitly the partial derivatives of𝑈 as follows



𝜕
𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖) = log(𝑝)𝑝𝑦

𝜅 (𝑥)
𝑖 𝜅(𝑥)𝑦𝜅 (𝑥)−1

𝑖
.

𝜕2

𝜕𝑦2
𝑖

𝑈 (𝑥, 𝑦𝑖) = 𝜅(𝑥) log(𝑝)𝑦𝜅 (𝑥)−2𝑖
𝑝𝑦

𝜅 (𝑥)
𝑖 [𝜅(𝑥) − 1 + 𝜅(𝑥) log(𝑝)𝑦𝜅 (𝑥)

𝑖
] .

▽𝑥𝑈 (𝑥, 𝑦𝑖) = log(𝑝)𝑝𝑦
𝜅 (𝑥)
𝑖 log(𝑦𝑖)𝑦𝜅 (𝑥)𝑖

▽𝑥 𝜅(𝑥).
▽𝑥 𝜕

𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖) = log(𝑝)𝑦𝜅 (𝑥)−1𝑖

𝑝𝑦
𝜅 (𝑥)
𝑖 [1 + 𝜅(𝑥) log(𝑦𝑖) + log(𝑝) log(𝑦𝑖)𝑦𝜅 (𝑥)𝑖

𝜅(𝑥)] ▽𝑥 𝜅(𝑥).
𝐻𝑥𝑈 (𝑥, 𝑦𝑖) = 𝑝𝑦

𝜅 (𝑥)
𝑖 𝑦

𝜅 (𝑥)
𝑖

(log 𝑝) (log 𝑦𝑖) [𝐻𝜅 (𝑥) + (log 𝑦𝑖 + log 𝑦𝑖 log 𝑝.𝑦𝜅 (𝑥)𝑖
) ▽𝑥 𝜅(𝑥) (▽𝑥𝜅(𝑥))𝑇 ] .

Hence, we obtain the following formulations:



𝜕2

𝜕𝑦2
𝑖

𝑈 (𝑥, 𝑦𝑖) × 𝐻𝑥𝑈 (𝑥, 𝑦𝑖) = 𝜅(𝑥) log(𝑝)2𝑦2𝜅 (𝑥)−2𝑖
log(𝑦𝑖)𝑝2.𝑦

𝜅 (𝑥)
𝑖 ×[

𝜅(𝑥) − 1 + 𝜅(𝑥) log 𝑝𝑦𝜅 (𝑥)
𝑖

]
×

[
𝐻𝜅 (𝑥) + ▽𝑥𝜅(𝑥) (▽𝑥𝜅(𝑥))𝑇 (log 𝑦𝑖 + log 𝑦𝑖 . log 𝑝.𝑦𝜅 (𝑥)𝑖

)
]
.(

▽𝑥 𝜕
𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖)

) (
▽𝑥 𝜕

𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖)

)𝑇
= log(𝑝)2𝑦2𝜅 (𝑥)−2

𝑖
.𝑝2.𝑦

𝜅 (𝑥)
𝑖 ×(

1 + 𝜅(𝑥) log 𝑦𝑖 + log 𝑝 log 𝑦𝑖 .𝑦𝜅 (𝑥)𝑖
𝜅(𝑥)

)2
▽𝑥 𝜅(𝑥) (▽𝑥𝜅(𝑥))𝑇 .

(32)

Note that log(𝑝)2.𝑦2𝜅 (𝑥)−2
𝑖

.𝑝2.𝑦
𝜅 (𝑥)
𝑖 is a positive common factor of 𝜕

2

𝜕𝑦2
𝑖

𝑈 (𝑥, 𝑦𝑖)×𝐻𝑥𝑈 (𝑥, 𝑦𝑖)

and
(
▽𝑥 𝜕

𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖)

) (
▽𝑥 𝜕

𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖)

)𝑇
. Then, using (17) and (32), the positive semidefi-

niteness of 𝑁 (𝑥, 𝑦𝑖) is equivalent to the positive semidefiniteness of the following matrix:

𝑀 (𝑥, 𝑦𝑖) =
[
𝜅(𝑥) − 1 + 𝜅(𝑥) log 𝑝.𝑦𝜅 (𝑥)

𝑖

]
×

[
𝐻𝜅 (𝑥) + ▽𝑥𝜅(𝑥) (▽𝑥𝜅(𝑥))𝑇 (log 𝑦𝑖 + log 𝑦𝑖 . log 𝑝.𝑦𝜅 (𝑥)𝑖

)
]

× 𝜅(𝑥) log 𝑦𝑖 −
(
1 + 𝜅(𝑥) log 𝑦𝑖 + log 𝑝 log 𝑦𝑖 .𝑦𝜅 (𝑥)𝑖

𝜅(𝑥)
)2

▽𝑥 𝜅(𝑥) (▽𝑥𝜅(𝑥))𝑇 . (33)

We reformulate (33) as follows:

𝑀 (𝑥, 𝑦𝑖) = 𝜑1 (𝑥, 𝑦𝑖)𝐻𝜅 (𝑥) − 𝜑2 (𝑥, 𝑦𝑖) ▽𝑥 𝜅(𝑥) (▽𝑥𝜅(𝑥))𝑇

where 𝜑1 (𝑥, 𝑦𝑖) and 𝜑2 (𝑥, 𝑦𝑖) are defined in Lemmas 4 and 5.

We have 𝐻𝜅 (𝑥) − 𝜔 ▽𝑥 𝜅(𝑥) (▽𝑥𝜅(𝑥))𝑇 is a positive semidefinite matrix for all 𝑥 ∈ 𝑄
where𝜔 is defined in (16)). Since 𝜑∗1, 𝜑

∗
2 > 0, we have𝜔 > 0.Moreover, ▽𝑥𝜅(𝑥) (▽𝑥𝜅(𝑥))𝑇 is

a positive semidefinitematrix. Hence,𝐻𝜅 (𝑥) is also a positive semidefinitematrix. Therefore,
it suffices to prove that 𝜑1 (𝑥, 𝑦𝑖) ≥ 𝜑∗1 > 0 and 𝜑2 (𝑥, 𝑦𝑖) ≤ 𝜑∗2, for all (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎ𝑙 , ℎ𝑢].
Using Lemmas 4 and 5 completes the proof. ⊓⊔



12 Hoang Nam NGUYEN, Abdel LISSER

4 Convexity of the feasibility set 𝑺( 𝒑)

In section 2.2, we have shown that if Assumption 1 holds, then Lemma 2 holds. In section
3, we have shown that given arbitrarily numbers 𝑐𝑙 and ℎ𝑙 , ℎ𝑢 which are defined in (16), if
Assumption 2 holds, then Lemma 6 holds. We will apply the results of Lemma 2 and Lemma
6 to prove the convexity of the feasibility set 𝑆(𝑝).
Define an index set 𝐼𝐷 ⊂ 𝐽 such that 𝐷 𝑗 > 0 for any 𝑗 ∈ 𝐼𝐷 and 𝐷 𝑗 ≤ 0 otherwise. In

this section, let 𝑐𝑙 be a number chosen arbitrarily in (0, 1] as defined in (16). However, ℎ𝑙 , ℎ𝑢
are not chosen arbitrarily, but defined in the following lemma.

Lemma 7 For all 𝑗 ∈ 𝐽, let:

𝐺 𝑗 :=



©­«
log

(
𝐹𝑗

(
𝐷𝑗√

𝜆 𝑗,𝑚𝑖𝑛.𝛿𝑙
+

| |𝜇𝑗 | |√
𝜆 𝑗,𝑚𝑖𝑛

))
log 𝑝

ª®¬
1
𝑐𝑙

, if 𝑗 ∈ 𝐼𝐷 .

©­«
log

(
𝐹𝑗

(
𝐷𝑗√

𝜆 𝑗,𝑚𝑎𝑥 .𝛿𝑢
+

| |𝜇𝑗 | |√
𝜆 𝑗,𝑚𝑖𝑛

))
log 𝑝

ª®¬
1
𝑐𝑙

, if 𝑗 ∈ 𝐽\𝐼𝐷 .

Let ℎ𝑙 := min1≤ 𝑗≤𝐾 (𝐺 𝑗 ) et ℎ𝑢 := 1− (𝑛 − 1).ℎ𝑙 . Assume that 𝑆(𝑝) ≠ ∅. Given 𝑥 ∈ 𝑆(𝑝)
and 𝑦𝑖 defined in (9). Hence, 0 < ℎ𝑙 ≤ 𝑦𝑖 ≤ ℎ𝑢 < 1,∀𝑖 ∈ 𝐽.

The proof is given in Appendix C.

Remark 4 Notice that the inequality 0 < ℎ𝑙 ≤ ℎ𝑢 < 1 defined in Lemma 7 is a necessary
condition for the nonemptiness property of 𝑆(𝑝). It is natural to assume that 𝑆(𝑝) ≠ ∅ since
the case 𝑆(𝑝) = ∅ is trivial.

Based on Lemma 7, we prove the convexity of 𝑆(𝑝).

Theorem 1 Let 𝑐𝑙 be defined in (16) and ℎ𝑙 , ℎ𝑢 defined in Lemma 7. Suppose that Assump-
tions 1 and 2 hold and 𝑆(𝑝) ≠ ∅. Then, 𝑆(𝑝) is a convex set.

Proof Let 𝑥1, 𝑥2 ∈ 𝑆(𝑝) and 𝛽 ∈ [0, 1]. We show that 𝑥∗ := 𝛽𝑥1 + (1 − 𝛽)𝑥2 ∈ 𝑆(𝑝).
In fact, let 𝑦1 := (𝑦11, ..., 𝑦

1
𝐾
) and 𝑦2 := (𝑦21, ..., 𝑦

2
𝐾
) given by (9). Using Lemma 7,

0 < ℎ𝑙 ≤ 𝑦1
𝑖
, 𝑦2
𝑖
≤ ℎ𝑢 < 1, for all 𝑖 ∈ 𝐽. Moreover, we deduce from Lemma 2 and Lemma 6

that 𝐹𝑖 (𝑔𝑖 (·)) is concave on 𝑆(𝑝) and𝑈 (·, ·) is jointly convex on 𝑄 × [ℎ𝑙 , ℎ𝑢], i.e.,

𝐹𝑖 (𝑔𝑖 (𝑥∗)) ≥ 𝛽𝐹𝑖 (𝑔𝑖 (𝑥1)) + (1 − 𝛽)𝐹𝑖 (𝑔𝑖 (𝑥2)), ∀𝑖 ∈ 𝐽
𝑈 (𝑥∗, 𝛽𝑦1𝑖 + (1 − 𝛽)𝑦2𝑖 ) ≤ 𝛽𝑈 (𝑥1, 𝑦1𝑖 ) + (1 − 𝛽)𝑈 (𝑥2, 𝑦2𝑖 ), ∀𝑖 ∈ 𝐽.

Therefore, (𝑥∗, 𝛽𝑦1 + (1 − 𝛽)𝑦2) satisfies (10). In other word, 𝑥∗ ∈ 𝑆(𝑝).
⊓⊔

We are interested in finding an example which fits all the Assumptions in Theorem 1.
Finding a necessary and sufficient condition for the nonemptiness of 𝑆(𝑝) is a hard problem.
In the following, we will study some cases which fit Assumption 2 and Assumption 1.
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4.1 An example of the function 𝜅

In this section, we give an example of 𝜅 which satisfies all the conditions in Assumption 2.
Let 𝑐𝑙 be defined in (16) and ℎ𝑙 , ℎ𝑢 defined in Lemma 7. Assume that 𝑆(𝑝) ≠ ∅.

Remark 5 It is not necessary to verify the condition 𝑝 ≥ 𝑒−1 ≈ 0.37 since we study an
eventual convexity of the feasibility set, i.e., under high value of the probability threshold 𝑝.

Lemma 8 Let 𝑑 be a real number such that 𝑑 < 𝑐𝑙 and 𝑞 : 𝑄 → R be a real-valued function
which satisfies the two following conditions.

1. 𝑞 is a twice continuously differentiable and convex function on 𝑄.
2. log(𝑐𝑙 − 𝑑) ≤ 𝑞(𝑥) ≤ log

[
min

(
1
𝜔
, 1 − 𝑑

)]
, ∀𝑥 ∈ 𝑄, where 𝜔 is defined in (16).

Hence, 𝜅(𝑥) := 𝑒𝑞 (𝑥) + 𝑑 is a function which satisfies Assumption 2.

Proof First we check if the condition 𝑐𝑙 ≤ 𝜅(𝑥) ≤ 1,∀𝑥 ∈ 𝑄 is true.
In fact, since log(𝑐𝑙 − 𝑑) ≤ 𝑞(𝑥) ≤ log(1 − 𝑑), then we have 𝑐𝑙 ≤ 𝜅(𝑥) ≤ 1,∀𝑥 ∈ 𝑄.

Then, we prove the third condition of Assumption 2.
Since 𝑞(𝑥) ≤ log( 1

𝜔
), then 𝑒𝑞 (𝑥) ≤ 1

𝜔
,∀𝑥 ∈ 𝑄. Let 𝜅∗ (𝑥) := 𝑒𝑞 (𝑥) . We have the

following formulation:

𝐻𝑥 log(𝜅∗ (𝑥)) =
𝜅∗ (𝑥)𝐻𝑥𝜅∗ (𝑥) − ▽𝑥𝜅∗ (𝑥) (▽𝑥𝜅∗ (𝑥))𝑇

𝜅∗ (𝑥)2
, (34)

where 𝐻𝑥 log(𝜅∗ (·)) is the Hessian matrix of the function log(𝜅∗ (·)).
As 𝑞 is a convex function on𝑄 and log(𝜅∗ (.)) = 𝑞(.), we deduce that𝐻𝑥 (log(𝜅∗ (𝑥))) is a

positive semidefinite matrix for any 𝑥 ∈ 𝑄. Using (34), 𝜅∗ (𝑥)𝐻𝑥𝜅∗ (𝑥) −▽𝑥𝜅∗ (𝑥) (▽𝑥𝜅∗ (𝑥))𝑇
is a positive semidefinite matrix. Since 0 < 𝜅∗ (𝑥) and ▽𝑥𝜅∗ (𝑥) (▽𝑥𝜅∗ (𝑥))𝑇 is positive
semidefinite, we deduce that 𝐻𝑥𝜅∗ (𝑥) is also positive semidefinite, for all 𝑥 ∈ 𝑄. Moreover,
𝜅∗ (𝑥) ≤ 1

𝜔
. Hence,

1
𝜔
𝐻𝑥𝜅

∗ (𝑥) − ▽𝑥𝜅∗ (𝑥) (▽𝑥𝜅∗ (𝑥))𝑇

is a positive semidefinite matrix.
On the other hand, since 𝜅(𝑥) = 𝜅∗ (𝑥) + 𝑑, then 𝐻𝑥𝜅∗ (𝑥) = 𝐻𝑥𝜅(𝑥) and ▽𝑥𝜅∗ (𝑥) =

▽𝑥𝜅(𝑥),∀𝑥 ∈ 𝑄. Therefore, the third condition of Assumption 2 holds.
⊓⊔

Notice that we are interested to find a function 𝑞 which meets the two conditions in
Lemma 8.

Lemma 9 Let 𝑞(𝑥) := | |𝑥 | |2
𝐿

+ 𝑧 where | | · | | denotes the Euclidean norm, 𝐿 > 0, 𝑧 ∈ R are
real numbers such that:

log(𝑐𝑙 − 𝑑) ≤
1
𝐿
𝛿2𝑙 + 𝑧 ≤

1
𝐿
𝛿2𝑢 + 𝑧 ≤ log

[
min

(
1
𝜔
, 1 − 𝑑

)]
, (35)

Hence, 𝑞(𝑥) satisfies the two conditions in Lemma 8.
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Proof The first condition is trivial. Since 𝛿
2
𝑙

𝐿
+ 𝑧 = min𝑥∈𝑄 𝑞(𝑥) and 𝛿2𝑢

𝐿
+ 𝑧 = max𝑥∈𝑄 𝑞(𝑥),

we deduce that the second condition holds.
⊓⊔

Using Lemma 9, the function 𝜅(𝑥) = 𝑒
| |𝑥 | |2
𝐿

+𝑧 + 𝑑 which satisfies (35) fits all conditions in
Assumption 2. It suffices to choose appropriate parameters 𝐿, 𝑧 and 𝑑. In fact, (35) is a mild
condition. Let 𝑑 be an arbitrary real number in (𝑐𝑙 − 1

𝜔
, 𝑐𝑙). We deduce from this condition

that log(𝑐𝑙 − 𝑑) is well defined and

log(𝑐𝑙 − 𝑑) ≤ log
[
min

(
1
𝜔
, 1 − 𝑑

)]
.

Let 𝐿 be an arbitrary real number in
[

𝛿2𝑢−𝛿2𝑙
log[min( 1𝜔 ,1−𝑑)]−log(𝑐𝑙−𝑑)

, +∞
)
which depends on

𝑑. We deduce from this condition that

log
[
min

(
1
𝜔
, 1 − 𝑑

)]
− log(𝑐𝑙 − 𝑑) ≥

(
1
𝐿
𝛿2𝑢 + 𝑧

)
−

(
1
𝐿
𝛿2𝑙 + 𝑧

)
> 0.

Let 𝑧 be an arbitrary real number in
[
log(𝑐𝑙 − 𝑑) −

𝛿2
𝑙

𝐿
, log

[
min

(
1
𝜔
, 1 − 𝑑

)]
− 𝛿2𝑢

𝐿

]
which depends on 𝑑 and 𝐿. We deduce from this condition that:{

log(𝑐𝑙 − 𝑑) ≤ 1
𝐿
𝛿2
𝑙
+ 𝑧.

1
𝐿
𝛿2𝑢 + 𝑧 ≤ log

[
min

(
1
𝜔
, 1 − 𝑑

)]
.

Therefore, we can easily verify that (35) holds.

4.2 Numerical experiments

To test the 𝑟−decreasing property for a differentiable density 𝑓 (𝑡), we verify if the derivative
of 𝑡𝑟 𝑓 (𝑡) is strictly negative for 𝑡 > 𝑡∗ (𝑟) > 0. This is equivalent to check the inequality
𝑟. 𝑓 (𝑡) + 𝑡. 𝑓 ′(𝑡) < 0.
The results for different 1−dimensional spherical distributions are given in Table 1. In

this section, we study different values of 𝑝∗ for some popular distributions. All the numerical
results are performed using Python 3.8.8 on an Intel Core i5-1135G7, Processor 2.4 GHz
(8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD. In Assumption 1, we suppose that

∀ 𝑗 ∈ 𝐽, 𝐹𝑗 has the same density. For the term 𝐹𝑗

(
𝑟 𝑗+1
𝑟 𝑗−1𝜆

− 12
𝑗 ,𝑚𝑖𝑛

| |𝜇 𝑗 | |
)
in (12), we choose the

parameters 𝜆 𝑗 ,𝑚𝑖𝑛 and 𝜇 𝑗 such that
𝑟 𝑗+1
𝑟 𝑗−1𝜆

− 12
𝑗 ,𝑚𝑖𝑛

| |𝜇 𝑗 | | is small. For the sake of illustration, we
set 𝑝∗ = 𝐹𝑗 [𝑡∗𝑗 (𝑟 𝑗 + 1)]. As 𝑟 𝑗 ≥ 1, then 𝑝∗ = 𝐹𝑗 [𝑡∗𝑗 (2)] is the best value we can obtain.
Table 3 gives numerical values of 𝑝∗ for some commonly used distributions.
We consider the case where 𝑛 = 2 and 𝐾 = 2, i.e., 2 constraints in 2-dimensional

case. We choose the parameters as follows: 𝑝 = 0.95, 𝑐𝑙 = 0.9, 𝐷1 = 1, 𝐷2 = 0.85, 𝜇1 =

(1, 20)𝑇 , 𝜇2 = (7, 2)𝑇 , 𝛿𝑙 = 0.2, 𝛿𝑢 = 1.5, Σ1 = 3× I2, and Σ2 = 30× I2, where I2 is the 2×2-
identity matrix. ℎ𝑙 and ℎ𝑢 are calculated using Lemma 7. 𝜑∗1, 𝜑

∗
2 and 𝜔 are calculated using

(16). Let 𝑑 = 𝑐𝑙 − 1
2𝜔 , 𝐿 =

𝛿2𝑢−𝛿2𝑙
log(min( 1𝜔 ,1−𝑑))−log(𝑐𝑙−𝑑)

and 𝑧 = log
(
min

(
1
𝜔
, 1 − 𝑑

))
− 𝛿2𝑢

𝐿
. It

is easy to see that this choice of parameters fits the condition in Lemma 9.
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Distribution 𝑝∗

Normal 0.92
𝑡 with 2− degrees of freedom 0.84
𝑡 with 3− degrees of freedom 0.87
𝑡 with 4− degrees of freedom 0.88

Laplace 0.88

Table 3: Selected 1-dimensional spherical distributions with 𝑟-decreasing densities and the
value of the threshold 𝑝∗ respectively.

In our simulations,we consider the probability function 𝑓𝑝𝑟𝑜𝑏𝑎 (𝑥) = 𝜓 (−1)
𝑥

(∑2
𝑖=1 𝜓𝑥 (𝐹𝑖 (𝑔𝑖 (𝑥)))

)
as in (7), where 𝜓𝑥 is defined in (11), 𝐹1 is the cumulative distribution function of an 1−
dimensional standard 𝑡− distributionwith 3−degrees of freedom and 𝐹2 is the cumulative dis-
tribution function of an 1− dimensional standard 𝑡− distribution with 4−degrees of freedom,
𝑥 = (𝑥1, 𝑥2)𝑇 where 𝑥1, 𝑥2 ∈ [−1, 1]. Figures 1 and 2 show the function 𝑧 = 𝑓𝑝𝑟𝑜𝑏𝑎 (𝑥1, 𝑥2)
on the domain [−1, 1]2, and its contour lines with four different levels 0.6, 0.7, 0.8 and 0.9,
respectively.

Figure 1 : Graphical representation of the probability function 𝑓𝑝𝑟𝑜𝑏𝑎 on
[−1, 1]2.
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Figure 2 : Contour line of the probability function 𝑓𝑝𝑟𝑜𝑏𝑎 with 4 levels
(0.6, 0.7, 0.8, 0.9).

5 Conclusion

In this paper, we studied the convexity of joint chance constraints in the case of elliptical dis-
tributions. Further, we modeled the dependence of random variables by a Gumbel-Hougaard
copula. We come up with new convexity results of the feasibility set. Further research will
be dedicated to other families of copulas.

Appendices

Appendix A: Proof of Lemma 1

Let 𝑖 ∈ 𝐼 and 𝑥0 ∈ 𝑆 (𝑝) . In Section 2.1, we show that 𝑥0 satisfies constraint (6). In particular, we have

𝐶𝑥0 [𝐹1 (𝑔1 (𝑥0)) , ..., 𝐹𝐾 (𝑔𝐾 (𝑥0)) ] ≥ 𝑝. (36)

where 𝑔𝑖 is defined in (4), for all 𝑖 ∈ 𝐽.
By applying Proposition 2, we deduce that

𝐹𝑖 (𝑔𝑖 (𝑥0)) ≥ 𝑝.

⇒𝐹𝑖 (𝑔𝑖 (𝑥0)) > 𝑝∗ ≥ 𝐹𝑖
(
𝑟𝑖 + 1
𝑟𝑖 − 1

𝜆
− 12
𝑖,𝑚𝑖𝑛

| |𝜇𝑖 | |
)
. (37)

Since, 𝐹𝑖 ( ·) is an increasing function, we have

𝑔𝑖 (𝑥0) >
𝑟𝑖 + 1
𝑟𝑖 − 1

𝜆
− 12
𝑖,𝑚𝑖𝑛

| |𝜇𝑖 | |.

Therefore,

𝐷𝑖 − 𝜇𝑇𝑖 𝑥0 >
𝑟𝑖 + 1
𝑟𝑖 − 1

𝜆
− 12
𝑖,𝑚𝑖𝑛

| |𝜇𝑖 | |
√︃
𝑥𝑇0 Σ𝑖 𝑥0.
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We deduce that 𝑆 (𝑝) ⊂ ⋂
𝑗∈𝐼 Ω

𝑗 . For each 𝑗 ∈ 𝐼 ,Ω 𝑗 is a convex set which implies that𝐶𝑜𝑛𝑣 (𝑆 (𝑝)) ⊂⋂
𝑗∈𝐼 Ω

𝑗 . We prove the second part of Lemma 1 by considering the following two cases:
Case 1: Let 𝑖 ∉ 𝐼 , then 𝜇𝑖 = 0. From the definition of 𝑝∗, we have 𝑝 > 1

2 . We prove that 𝐷𝑖 > 0. In fact,
let 𝑥0 ∈ 𝑆 (𝑝) . By applying Proposition 2 on (36), we have

(𝐹𝑖 (𝑔𝑖 (𝑥0)) ≥ 𝑝 > 1
2
. (38)

Since,𝐹𝑖 is the CDFof an 1-dimensional real-valued randomvariablewhich is symmetric at 0,𝐹𝑖 (0) = 1
2 .

From (38) we get 𝑔𝑖 (𝑥0) > 0 which in turn implies that 𝐷𝑖 − (𝜇𝑖)𝑇 𝑥0 > 0. Since 𝜇𝑖 = 0, we get 𝐷𝑖 > 0. In
this case, the proof follows directly from Lemma 3 of [2].

Case 2: Let 𝑖 ∈ 𝐼 . It follows from Lemma 2 of [2] that the function

𝑓𝑖 (𝑥) =
( √︁

(𝑥)𝑇Σ𝑖 𝑥
𝐷𝑖 − (𝜇𝑖)𝑇 𝑥

)𝑟𝑖
.

is defined and a convex function on
⋂
𝑗∈𝐼 Ω

𝑗 . Therefore, for any 𝑦, 𝑧 ∈ 𝑄𝑖 and 𝜆 ∈ [0, 1], we have

𝑓𝑖 [𝜆𝑦 + (1 − 𝜆)𝑧 ] ≤ 𝜆 𝑓𝑖 (𝑦) + (1 − 𝜆) 𝑓𝑖 (𝑧) . (39)

Note that 𝑔𝑖 (𝑥) = ( 𝑓𝑖 (𝑥))
−1
𝑟𝑖 on 𝑄𝑖 . From (39), we can write

𝑔𝑖 [𝜆𝑦 + (1 − 𝜆)𝑧 ] ≥ (𝜆(𝑔𝑖 (𝑦))−𝑟𝑖 + (1 − 𝜆) (𝑔𝑖 (𝑧))−𝑟𝑖 )
−1
𝑟𝑖 .

Hence, 𝑔𝑖 is defined and (−𝑟𝑖)-concave on 𝑄𝑖 .

Appendix B: Proof of Lemma 3

The Hessian matrix of𝑈 at a point (𝑥, 𝑦𝑖) is an (𝑛 + 1)-dimensional symmetric matrix which has the form[
𝐴 𝐵

𝐶 𝐷

]
, where 𝐴 = 𝐻𝑥𝑈 (𝑥, 𝑦𝑖) , 𝐵 = ▽𝑥 𝜕

𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖) , 𝐶 = 𝐵𝑇 , 𝐷 = 𝜕2

𝜕𝑦2
𝑖

𝑈 (𝑥, 𝑦𝑖) .

The proof is an application of the Schur’s complement. Hence, it suffices to show that 𝜕
2

𝜕𝑦2
𝑖

𝑈 (𝑥, 𝑦𝑖) > 0,
∀(𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎ𝑙 , ℎ𝑢 ].
In fact, for𝑈 (𝑥, 𝑦𝑖) = 𝜓 (−1)

𝑥 (𝑦𝑖𝜓𝑥 (𝑝)) , we have

𝜕2

𝜕𝑦2
𝑖

𝑈 (𝑥, 𝑦𝑖) = [𝜓𝑥 (𝑝) ]2 (𝜓 (−1)
𝑥 )′′ (𝑦𝑖𝜓𝑥 (𝑝)) .

Since 𝜓𝑥 (𝑡) = (− log 𝑡)
1
𝜅 (𝑥) , we deduce that 𝜓 (−1)

𝑥 (𝑡) = 𝑒−𝑡𝜅 (𝑥) and
(𝜓 (−1)
𝑥 )′′ (𝑡) = 𝑒−𝑡𝜅 (𝑥) 𝑡 𝜅 (𝑥)−2𝜅 (𝑥)

[
𝜅 (𝑥)𝑡 𝜅 (𝑥) − 𝜅 (𝑥) + 1

]
.

Using the above formulations, we have 𝜓𝑥 (𝑝) > 0 and (𝜓 (−1)
𝑥 )′′ (𝑡) > 0, ∀𝑡 > 0.

Hence, 𝜕
2

𝜕𝑦2
𝑖

𝑈 (𝑥, 𝑦𝑖) > 0, ∀(𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎ𝑙 , ℎ𝑢 ].

Appendix C: Proof of Lemma 7

Let 𝑥 ∈ 𝑆 (𝑝) and

𝑦𝑖 =
𝜓𝑥 [𝐹𝑖 (𝑔𝑖 (𝑥)) ]∑𝐾
𝑗=1 𝜓𝑥 [𝐹𝑗 (𝑔 𝑗 (𝑥)) ]

, ∀𝑖 ∈ 𝐽. (40)

where 𝜓𝑥 (.) is defined in (11).
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It is easy to see that
∑
𝑖∈𝐽 𝑦𝑖 = 1 and 𝑦𝑖 ≥ 0, ∀𝑖 ∈ 𝐽 . We prove that 𝑦𝑖 ≥ 𝐺𝑖 , ∀𝑖 ∈ 𝐽 . Consider two

cases as follows.
Case 1: 𝑖 ∈ 𝐼𝐷 .
We use the Cauchy-Schwarz inequality to deduce that

| − 𝜇𝑇𝑖 𝑥 | ≤ | |𝜇𝑖 | |. | |𝑥 | |, ∀𝑖 ∈ 𝐽. (41)

From linear algebra, we have

√︁
𝜆𝑖,𝑚𝑎𝑥 | |𝑥 | | ≥

√︁
𝑥𝑇Σ𝑖 𝑥 ≥

√︁
𝜆𝑖,𝑚𝑖𝑛 | |𝑥 | |. (42)

Since 𝑥 ∈ 𝑆 (𝑝) , using (7), we get:

0 <
𝐾∑︁
𝑗=1
𝜓𝑥 [𝐹𝑗 (𝑔 𝑗 (𝑥)) ] ≤ 𝜓𝑥 (𝑝) . (43)

We apply (41) - (42) and | |𝑥 | | ≥ 𝛿𝑙 to deduce the following inequality

𝑔𝑖 (𝑥) ≤ 𝐷𝑖√︁
𝑥𝑇Σ𝑖 𝑥

+
| − 𝜇𝑇

𝑖
𝑥 |√︁

𝑥𝑇Σ𝑖 𝑥

≤ 𝐷𝑖√︁
𝜆𝑖,𝑚𝑖𝑛 𝛿𝑙

+ | |𝜇𝑖 | |√︁
𝜆𝑖,𝑚𝑖𝑛

.

As 𝐹𝑖 is increasing monotonic, we have

𝐹𝑖 (𝑔𝑖 (𝑥)) ≤ 𝐹𝑖

(
𝐷𝑖√︁

𝜆𝑖,𝑚𝑖𝑛 𝛿𝑙
+ | |𝜇𝑖 | |√︁

𝜆𝑖,𝑚𝑖𝑛

)
.

We use the decreasing monotonicity of 𝜓𝑥 to deduce

𝜓𝑥 (𝐹𝑖 (𝑔𝑖 (𝑥))) ≥ 𝜓𝑥

(
𝐹𝑖

(
𝐷𝑖√︁

𝜆𝑖,𝑚𝑖𝑛 𝛿𝑙
+ | |𝜇𝑖 | |√︁

𝜆𝑖,𝑚𝑖𝑛

))
.

Combining with (43) and (40), we have

𝑦𝑖 ≥
𝜓𝑥

(
𝐹𝑖

(
𝐷𝑖√

𝜆𝑖,𝑚𝑖𝑛 𝛿𝑙
+ | |𝜇𝑖 | |√

𝜆𝑖,𝑚𝑖𝑛

))
𝜓𝑥 (𝑝)

=

©­­­­«
log

(
𝐹𝑖

(
𝐷𝑖√

𝜆𝑖,𝑚𝑖𝑛 𝛿𝑙
+ | |𝜇𝑖 | |√

𝜆𝑖,𝑚𝑖𝑛

))
log 𝑝

ª®®®®¬
1
𝜅 (𝑥)

(44)

As 0 ≤ 𝑦𝑖 ≤ 1, we deduce that:

0 <
log

(
𝐹𝑖

(
𝐷𝑖√

𝜆𝑖,𝑚𝑖𝑛 𝛿𝑙
+ | |𝜇𝑖 | |√

𝜆𝑖,𝑚𝑖𝑛

))
log 𝑝

≤ 1

Therefore,

©­­­­«
log

(
𝐹𝑖

(
𝐷𝑖√

𝜆𝑖,𝑚𝑖𝑛 𝛿𝑙
+ | |𝜇𝑖 | |√

𝜆𝑖,𝑚𝑖𝑛

))
log 𝑝

ª®®®®¬
1
𝜅 (𝑥)

≥
©­­­­«
log

(
𝐹𝑖

(
𝐷𝑖√

𝜆𝑖,𝑚𝑖𝑛 𝛿𝑙
+ | |𝜇𝑖 | |√

𝜆𝑖,𝑚𝑖𝑛

))
log 𝑝

ª®®®®¬
1
𝑐𝑙

= 𝐺𝑖 . (45)
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Using (44) and (45), we have 𝑦𝑖 ≥ 𝐺𝑖 .
Case 2: 𝑖 ∈ 𝐽\𝐼𝐷 .
In this case, 𝐷𝑖 ≤ 0. Then, using (41) and (42), we have:

𝑔𝑖 (𝑥) ≤ 𝐷𝑖√︁
𝜆𝑖,𝑚𝑎𝑥 𝛿𝑢

+ | |𝜇𝑖 | |√︁
𝜆𝑖,𝑚𝑖𝑛

.

Following the same proof as Case 1, we have 𝑦𝑖 ≥ 𝐺𝑖 . Therefore, using Case 1 and Case 2, 𝑦𝑖 ≥ ℎ𝑙 >
0, ∀𝑖 ∈ 𝐽 . Since, ∑𝑖∈𝐽 𝑦𝑖 = 1, ∀𝑖 ∈ 𝐽 , we have

𝑦𝑖 = 1 −
∑︁

𝑗∈𝐽. 𝑗≠𝑖
𝑦 𝑗 ≤ 1 − (𝑛 − 1) .ℎ𝑙 = ℎ𝑢 < 1. (46)

Hence, 0 < ℎ𝑙 ≤ 𝑦𝑖 ≤ ℎ𝑢 < 1, ∀𝑖 ∈ 𝐽 .
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