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Abstract In this paper, we study the problem of linear optimization with probabilistic
constraints.We suppose that the constraint row vectors are elliptically distributed. Further, the
dependence of the rows ismodeled by a family of Archimedean copulas, namely, theGumbel-
Hougaard family of copulas. Under mild assumptions, we prove the eventual convexity of
the feasibility set.
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1 Introduction

1.1 Chance constrained optimization

We consider the following linear optimization with joint chance constraints

min cT x

subject to P {V x ≤ D} ≥ p

x ∈ Q. (1)

where Q is a closed convex subset of Rn ; c ∈ Rn, D := (D1, ...,DK ) ∈ RK is a
deterministic vector,V := [v1, ..., vK ]T is a random k×n- matrix where vk is a random vector
in Rn, ∀k = 1, 2, ...,K and p ∈ [0, 1]. We denote Feasi(Q) the feasibility set of (1).
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Chance-constrained optimization has been widely studied in the literature and plays an
important role in engineering, telecommunication, etc. Chance-constrained problem was
first introduced by Charnes et al. [11], they studied the individual chance constraint case.
Miller and Wagner [57] dealt with joint chance constraints but only in the independent
case. Prekopa [66] was the first researcher who studied joint chance constraints with random
parameters on the right hand side. Joint chance-constrained problems are generally non-
convex problems. Therefore, several approximations have been proposed in the literature, see
for instance [15, 46, 53]. Cheng and Lisser [15] proposed piecewise tangent approximations
and sequential approximations to come up with a lower and upper bounds. Luedtke and
Ahmed [53] reformulated the original problem by using a mixed-integer linear optimization
in finite support case. An efficient way to solve the chance constraints problem is given by the
scenario approach studied in [7,8,17,20,35,52,63,64]. Applications of chance-constrained
optimization problems can be found in [9, 27, 28, 37, 39, 43, 48, 72, 74].

1.2 Convexity of the feasibility set

The convexity of chance constraints as well as the regularity properties of probability func-
tions are difficult issues both from theoretical and computational perspectives. Prekopa [67]
introduced the notion of logarithmic concavity to deal with dependent constraints case.
Borell [7] generalized this notion to r-concavity. Prekopa et al. [69] derive a fundamental
result about the convexity of the considered problem if we assume that the rows are normally
distributed. Sen [71] introduced a relaxation method for chance-constrained programs with
a discrete random variable. Marti [54] studied the differentiation of probability functions
by an integral transformation method. The derivatives of the probability function can be
obtained by applying an integral transformation to its integral representation. Some basic
results on the differentiability of a probability function were studied by Kibzun et al [40].
They proposed new formulations of the gradient of probability functions in different forms.
Lobo [49] studied some applications of second-order cone program leading to a new approach
for solving chance constraints. A more developed direction was initialized by Henrion [32]
which gave a full description of the structure (not only the convexity) of a one-row linear
optimization with a chance constraint by introducing a new notion of r-decreasing function.
Henrion [33] studied the convexity in the case where the constraints are independent. To
deal with the dependent case, Henrion and Strugarek [34], Van Ackooij [77] and Cheng et
al. [14] used the theory of copulas to model the dependence of constraints. They supposed
that the distribution of the constraint row vectors are elliptically distributed. Under high
probability threshold p, they prove the convexity of Feasi(Q). Hong et al [35] proposed to
solve joint chance-constrained programs by sequential convex approximations. They prove
that the solutions of the sequence of approximations converge to a Karush-Kuhn-Tacker
(KTT) point of the original problem. Farshbaf-Shaker et al [23] proved some properties of
chance constraints in infinite dimensions. They supposed that the feasibility set belongs to
a Banach space. Under mild conditions, they proved regularity properties of the probability
function with an application to PDE constrained optimization. Wim van Ackooij [79] studied
the convexity of the feasibility set in a general framework by using the radial representation
of elliptical distributions.

In this paper, we deal with the convexity of Feasi(Q). Firstly, we suppose that the vectors
vi are elliptical distributions. Under mild conditions, we generalize the convexity result in
Cheng et al. [14].
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This paper is organized as follows. In Section 2, we reformulate the probability function
of problem (1). Section 3 studies sufficient conditions for the convexity of Feasi(Q). In
Section 4, we show the dependence structure of the constraints of problem (1) and prove the
convexity of Feasi(Q).

2 Elliptical constraints in linear optimization

2.1 Preliminaries

Firstly, we recall some important definitions and propositions we use in our paper.

Proposition 1 (Theorem 2.1, [21]) Let X a random variable in Rn be a spherical distribu-
tion. Hence, there exists a function ψ : R→ R such that for all t ∈ Rn, we have

φX (t) := E(eitT X ) = ψ(tT t) = ψ(t2
1 + ... + t2

n).

The function ψ is called a characteristic generator of X .

Definition 1 (Definition 2.2, [21]) A random variable U in Rn is an elliptical distribution if
we have the following representation

U = µ + AX,

where X follows a spherical distribution with a characteristic generator φ, A ∈ Rn×n,
AAT = Σ and µ ∈ Rn.

Definition 2 (Chapter 4.6, [68]) A function f : Rs → (0,+∞) is r-concave for a given
r ∈ (−∞,+∞) if dom f is convex and

f (αx + (1 − α)y) ≥ [α f (x)r + (1 − α) f (y)r ] 1
r if r , 0.

f (αx + (1 − α)y) ≥ f (x)α f (y)1−α if r = 0.

for all x, y ∈ dom f and α ∈ [0, 1]. In the case where r = 0, f is called a log-concave
function. Here, dom f denotes the defined domain of f .

Definition 3 (Definition 2.2, [32])
A function f : R → R is said r-decreasing for some r ∈ R if it is continuous on (0,∞)

and if there exists some t∗ > 0 such that the function tr f (t) is strictly decreasing for all
t > t∗.

Definition 4 (Definition 1, [70]) A copula is the distribution function C : [0, 1]K → [0, 1]
of a random vector in dimension K whose marginals are uniformly distributed on [0, 1].

Proposition 2 (Theorem of Sklar, [70]) Given a distribution function F : RK → [0, 1]
with marginals F1, ..., FK , there exists a copula C such that

∀z ∈ RK, F(z) = C (F1(z1), ..., FK (zK )) .
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Moreover, if Fi is continuous, then C is uniquely given by

C(u) = F
(
F(−1)

1 (u1), ..., F(−1)
K (uK )

)
.

In other words, C is uniquely determined on F1 × ... × FK .

Proposition 3 (Fréchet-Hoeffding upper bound) For any copula C and u = (u1, ..., uK ) ∈
[0, 1]K , we have

C(u) ≤ CM (u) := min
k=1,...,K

uk .

Definition 5 (Definition 2.2, [56])AcopulaC is strictlyArchimedean if there exists a contin-
uous and strictly decreasing function Ψ : (0, 1] → [0,∞) such that Ψ(1) = 0, limt→0 Ψ(t) =
∞ and

C(u) = Ψ(−1)
(

K∑
i=1
Ψ(ui)

)
.

Ψ is called the generator of C.

Definition 6 (Definition 2.3, [56]) A real function f : R → R is K-monotonic on an open
interval I ⊆ R with K ≥ 2 if it is differentiable up to (K − 2) - order and the derivatives are
satisfied by

(−1)k dk

dtk
f (t) ≥ 0, 0 ≤ k ≤ K − 2 and ∀t ∈ I .

and the function (−1)K−2 dK−2

dtK−2 f (t) is non increasing and convex on I. Moreover, f is
called completely monotonic if f is K−monotonic, ∀K ∈ N.

Proposition 4 (Theorem2.2, [56])Givenψ : (0, 1] → [0,+∞) a strictly decreasing function
such that ψ(1) = 0. Hence, it is the generator of a strictly Archimedean copula in dimension
K if and only if ψ−1 is K-monotonic on (0,∞).

2.2 Reformulation of the probability function

In problem (1), we suppose that vi follows an elliptical distribution such that

vi = µi + AiYi, i = 1, 2, ...,K (2)

where µi ∈ Rn, Ai ∈ Rn×n such that Ai AT
i = Σi is a positive definite matrix, Yi is a

spherical distribution with a characteristic generator ψi . We refer the readers to [21] for more
details about elliptical distributions.

Assumption 1 0 < Q.
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In this paper, unless otherwise specified, we assume that Assumption 1 holds.
Let

ξi(x) :=
vTi x − µTi x√

xTΣi x
.

gi(x) :=
Di − µTi x√

xTΣi x
. (3)

The constraint in (1) can be rewritten as follows

P {V x ≤ D} ≥ p.

⇔ P
{
vTi x ≤ Di, i = 1, ...,K

}
≥ p.

⇔ P {ξi(x) ≤ gi(x), i = 1, ...,K} ≥ p. (4)

The characteristic function of ξi(x) is given by

E(eitξi (x)) = ψi(t2) ∀t ∈ R.

We deduce that ξi(x) is a 1-dimension distribution that does not depend on x. Our aim
is to reformulate this function to study the convexity of Feasi(Q). For this purpose, we use
the Sklar Theorem (cf. Proposition 2) to rewrite constraint (4) as follows

P {ξi(x) ≤ gi(x), i = 1, ...,K} ≥ p.

⇔ Cx[F1(g1(x)), ..., FK (gK (x))] ≥ p. (5)

where Cx denotes the Copula of the multivariate variable ξ(x) := (ξ1(x), ..., ξK (x)) and
Fi denotes the cumulative distribution function of ξi(x), i = 1, ...,K .

We suppose a specific form of ξ(x)which shows explicitly the variation of ξ with respect
to x.

In particular, we suppose that for all x, Cx is a strictlyArchimedean copulawith generator
ψx . We use an Archimedean copula to model the dependence as we can calculate explicitly
its partial derivatives. The constraint (5) can be written as

Cx[F1(g1(x)), ..., FK (gK (x))] ≥ p⇔ ψ
(−1)
x

(
K∑
i=1

ψx(Fi(gi(x)))
)
≥ p.

⇔
K∑
i=1

ψx(Fi(gi(x))) ≤ ψx(p). (6)

We summarize some selected strictly Archimedean copulas in the following table:
Now, we add auxiliary variables {αi ≥ 0, i = 1, ...,K} in order to reformulate constraint

(6) into separated constraints. In particular, as ψx is positive, constraint (6) is equivalent to
the following constraint
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Type of copula Parameter θ Generator Ψθ (t)
Independent - -log(t)

Gumbel-Hougaard θ ≥ 1 [− log(t)]θ

Frank θ > 0 − log
(
e−θ t−1
e−θ−1

)
Clayton θ > 0 1

θ (tθ − 1)
Joe θ ≥ 1 − log[1 − (1 − t)θ ]

Table 1: Different types of strictly Archimedean copulas.


ψx(Fi(gi(x))) ≤ αiψx(p), i = 1, ...,K .
αi ≥ 0, i = 1, ...,K .∑K

i=1 αi = 1.
(7)

This means that if x∗ ∈ Feasi(Q) then there exists α∗ = (α∗1, ..., α
∗
K ) ∈ RK such that

(x∗, α∗) satisfies constraints (7). On the other hand, if (x∗, α∗) satisfies constraints (7) and
x∗ ∈ Q, we deduce that x∗ ∈ Feasi(Q). Moreover, for x∗ ∈ Feasi(Q), we can choose
α∗ = (α∗1, ..., α

∗
K ) in order to satisfy constraints (7), i.e. ,

α∗i =
ψx∗ (Fi(gi(x∗)))∑K
j=1 ψx∗ (Fj (gj (x∗)))

, ∀i = 1, 2, ...,K . (8)

By applying the decreasing monotonicity of the generator ψx , constraints (7) can be
written as follows


Fi(gi(x)) ≥ ψ(−1)

x (αiψx(p)), i = 1, ...,K .
αi ≥ 0, i = 1, ...,K .∑K

i=1 αi = 1.
(9)

Remark 1 Our aim is to show the concavity of Fi(gi)with respect to x and the joint convexity
of ψ(−1)

x (αiψx(p)) with respect to (α, x).

2.3 Concavity of Fi(gi)

In this section, we give appropriate sufficient conditions for the concavity of Fi(gi).

Lemma 1 (Lemma 2, section 3.3, Cheng et al. [14])
Let ri > 1, for some 1 ≤ i ≤ K . Then gi is (−ri)− concave on any convex subset of the

following subset of Q

Ω
(i) :=

{
x ∈ Q | Di − µTi x >

ri + 1
ri − 1

λ
− 1

2
i,min | |µi | |

√
xTΣi x

}
(10)

where λi,min is the smallest eigenvalue of Σi .
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Remark 2 It is easy to see thatΩi is a convex set because ri+1
ri−1λ

− 1
2

i,min | |µi | | > 0, µTi x is linear
and

√
xTΣi x is convex with respect to x.

Lemma 2 (Lemma 3, section 3.3, Cheng et al. [14])
If Di > 0 and µi = 0, for some 1 ≤ i ≤ K , then gi is (−1)− concave on any convex

subset of the set Q.

Based on these two Lemmas, we have

Lemma 3 Let I ⊂ {1, 2, ...,K} such that µi , 0, ∀i ∈ I and µi = 0, ∀i < I. Let r =
(r1, ..., rK ) such that ri > 1, ∀i ∈ I and ri = 1 otherwise. Let

p∗ := max
{

1
2
,max

i∈I

{
Fi

(
ri + 1
ri − 1

λ
− 1

2
i,min | |µi | |

)}}
.

Hence, ∀p > p∗, we have

Conv(Feasi(Q)) ⊂
⋂
i∈I
Ω

i .

Moreover, gi > 0 and (−ri)− concave on any convex subset of
⋂

i∈I Ω
i , i=1,...,K, where

Conv is the convex hull.

Proof Firstly, we prove that ∀p > p∗, Feasi(Q) ⊂ ⋂
i∈I Ω

i .
In fact, let x0 ∈ Feasi(Q). In Section 2.2, we show that x0 satisfies constraint (5). In

particular, we have

Cx0 [F1(g1(x0)), ..., FK (gK (x0))] ≥ p. (11)

By applying Proposition 3, we deduce that

1) Fi(gi(x0)) ≥ p, ∀i ∈ I ⇒ Fi(gi(x0)) > p∗ ≥ Fi

(
ri+1
ri−1λ

− 1
2

i,min | |µi | |
)
, ∀i ∈ I .

As Fi is increasing monotonic, we have

gi(x0) >
ri + 1
ri − 1

λ
− 1

2
i,min | |µi | |, ∀i ∈ I .

Therefore,

Di − µTi x0 >
ri + 1
ri − 1

λ
− 1

2
i,min | |µi | |

√
xT0 Σi x0, ∀i ∈ I .

2) Fj (gj (x0)) ≥ p, ∀ j < I ⇒ Fj (gj (x0)) > p∗ ≥ 1
2, j < I .

As Fj (0) = 1
2 , we have

gj (x0) > 0, ∀ j < I .

Therefore,
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Dj > 0, ∀ j < I .

Hence, we deduce that x0 ∈
⋂

i∈I Ω
i . In other words, we have

Feasi(Q) ⊂
⋂
i∈I
Ω

i .

By Remark 2,
⋂

i∈I Ω
i is a convex set. Hence, we have

Conv(Feasi(Q)) ⊂
⋂
i∈I
Ω

i .

which ends the first part of Lemma 3.
Secondly, we prove that gi > 0 and (−ri)− concave on any convex subset of

⋂
i∈I Ω

i .
In fact, this is a direct consequence of Lemma 1 and Lemma 2.

ut

Lemma 4 (Lemma 3.1, Henrion, R. and Strugarek, C. [32])
Let F : R → [0, 1] be a distribution function with (r + 1)− decreasing density f for

some r > 0. Hence, the function z 7→ F(z− 1
r ) is concave on (0, (t∗)−r ), where t∗ is defined in

Definition 3. Moreover, F(t) < 1, ∀t ∈ R.

We use Lemmas 3 and 4 to prove the following auxiliary result

Lemma 5 Let I, µ = (µ1, ..., µK ), r = (r1, ..., rK ) as defined in Lemma 3. We suppose that
the cumulative distribution function Fi has (ri + 1)− decreasing densities with the thresholds
t∗i (ri + 1), ∀i = 1, ...,K and p > p∗, where

p∗ = max
{

1
2
,max

i∈I
Fi

(
ri + 1
ri − 1

λ
− 1

2
i,min | |µi | |

)
, max
j=1,...,K

Fj [t∗j (rj + 1)]
}
.

Hence, for all y, z ∈ Feasi(Q) and 0 ≤ a ≤ 1, we have

Fi(gi(ay + (1 − a)z)) ≥ aFi(gi(y)) + (1 − a)Fi(gi(z)).

Proof By Lemma 3, we deduce that gi is (−ri)− concave and gi > 0 on Conv(Feasi(Q)),
for all i = 1, ...,K . Hence, for any a ∈ [0, 1] and y, z ∈ Feasi(Q), we have

gi(ay + (1 − a)z) ≥ [ag−rii (y) + (1 − a)g−rii (z)]
− 1

ri . (12)

As y ∈ Feasi(Q) and p > p∗, we have

Cy[F1(g1(y)), ..., FK (gK (y))] > p∗. (13)

By Proposition 3 and the definition of p∗, we deduce that

Fi(gi(y)) > p∗ ≥ Fi[t∗j (ri + 1)], i = 1, ...,K . (14)
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As Fi are increasing monotonic, we deduce that

gi(y) > t∗i (ri + 1) > 0⇒ 0 < gi(y)−ri < (t∗i (ri + 1))−ri , i = 1, ...,K . (15)

Similarly, we obtain the inequality for z.
By taking Fi on both sides of (12), we have

Fi(gi(ay + (1 − a)z)) ≥ Fi([ag−rii (y) + (1 − a)g−rii (z)]
− 1

ri ). (16)

By (15) and Lemma 4, we have

Fi(gi(ay + (1 − a)z)) ≥ Fi([ag−rii (y) + (1 − a)g−rii (z)]
− 1

ri ) ≥ aFi(gi(y)) + (1 − a)Fi(gi(z)).

ut

In the rest of the paper, we suppose that the statements in Lemma 5 hold.

3 Convexity of ψ(−1)
x (αiψx(p))

The aim of this section is to study appropriate sufficient conditions for the joint convexity
of U(x, αi) = ψ(−1)

x (αiψx(p)) with respect to (x, αi), i=1,...,K. For this purpose, we study
the positive semidefiniteness of the Hessian matrix of ψ(−1)

x (αiψx(p)) on the convex set
Q × [k1, k2], for given k1, k2 where

0 ≤ k1 < k2 ≤ 1. (17)

Assumption 2 We suppose that ψ : (x, t) 7→ ψx(t) is a jointly continuously differentiable
function with respect to (x, t) up to second-order as well as ψ(−1). Moreover, ψ(−1)

x is 4-
monotonic function with respect to t, ∀x ∈ Q.

The following lemma is a reformulation of the positive semidefiniteness of the Hessian
matrix of U.

Lemma 6 Suppose that Assumption 2 holds and p < 1. Hence, the positive semidefiniteness
of the Hessian matrix of U on the convex set Q × [k1, k2] is equivalent to the positive
semidefiniteness of the following symmetric matrix

[
d2

dx2
d2

dα2
i

−
(

d2

dxdαi

) (
d2

dxdαi

)T ]
o

[U(x, αi)]. (18)

for all (x, αi) on Q × [k1, k2].
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Proof For U(x, αi) = ψ(−1)
x (αiψx(p)), we have

d2

dα2
i

U(x, αi) = [ψx(p)]2(ψ(−1)
x )′′(αiψx(p)).

As ψ(−1)
x is 4-monotonic, we deduce that (ψ(−1)

x )′′ is decreasing. Note that ψx(p) > 0 as
p < 1. If there exists a ≥ 0 such that (ψ(−1)

x )′′(a) = 0, by the decreasing monotonicity of
(ψ(−1)

x )′′, we deduce that (ψ(−1)
x )′′(t) = 0 on (a,∞) as well as ψ(−1)

x (t) = c1t + c2 on (a,∞)
where c1, c2 are given scalars. However, ψ(−1)

x (t) ∈ (0, 1], ∀t ∈ [0,∞] which means that
ψ
(−1)
x (t) = c2 on (a,∞), which contradicts the strict monotonicity of ψ(−1)

x . Hence, we have
(ψ(−1)

x )′′(αiψx(p)) > 0 as well as d2

dα2
i

U(x, αi) > 0 on Q × [k1, k2].
The quadratic form of the Hessian matrix of U at (x, αi) is

(sT , r)
{
δ2

δiδ j
U(x, αi)

}
(s, r).

= r2

(
d2

dα2
i

U(x, αi)
)
+

[
sT

d2

dxdαi
U(x, αi) +

(
d2

dxdαi
U(x, αi)

)T
s

]
r + sT

(
d2

dx2 U(x, αi)
)

s.

∀(s, r) ∈ RN × R, where
{
δ2

δiδ jU(x, αi)
}
is the Hessian matrix of U at (x, αi).

If we consider this quadratic form as a second-order polynomial function of r with strictly
positive second-order coefficient, then the positive semidefiniteness of U is equivalent to the
positivity of its quadratic form for all r ∈ R which is equivalent to the following inequality

(
sT

d2

dxdαi
U(x, αi)

)2

−
(

d2

dα2
i

U(x, αi)
)
.sT

(
d2

dx2 U(x, αi)
)

s ≤ 0, ∀s ∈ RN .

⇔ sT
[(

d2

dxdαi
U(x, αi)

) (
d2

dxdαi
U(x, αi)

)T
− d2

dα2
i

U(x, αi)
d2

dx2 U(x, αi)
]

s ≤ 0, ∀s ∈ RN .

⇔
[(

d2

dxdαi
U(x, αi)

) (
d2

dxdαi
U(x, αi)

)T
− d2

dα2
i

U(x, αi)
d2

dx2 U(x, αi)
]
− is a negative

semi definite matrix.

ut

Next, we introduce a particular family of generators which meets Assumption 2.

3.1 A particular form of the family of the generators ψx

We consider the following assumptions

Assumption 3 p < 1.

Assumption 4 Let a function ψ : (Q ⊂ Rn) × (0, 1] → [0,∞) such that (x, t) 7→
(− log t)

1
κ(x) , where κ : Q→ (0, 1] is a strictly positive function.
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If Assumption 4 holds, we have ψ(−1)
x (t) = e−t

κ(x) . We can check that ψx is a strictly
decreasing function and ψx(1) = 0 for all x ∈ Q and ψ satisfies the conditions in Assumption
2. Then, by Proposition 4, we deduce that for all k ≥ 2, ψx is the generator of a strictly
Archimedean k-dimension copula, ∀x ∈ Q.

Remark 3 In fact, ∀x ∈ Q, ψx is the generator of a copula in the family of Gumbel-Hougaard
copulas. The condition where 0 < κ(x) ≤ 1 is deduced by the defined domain of Gumbel-
Hougaard copulas. We can see later that if we use a function κ to model the dependence
structure of ψ with respect to x, the positive semidefiniteness of the matrix in Lemma 6 is
equivalent to the following inequality

κ(x)′′ � ω(κ(x)′)(κ(x)′)T . (19)

where ω is a strictly positive scalar, κ(x)′′ is the Hessian matrix of κ at x and κ(x)′ is the
gradient vector of κ at x.

From now and on, we suppose that Assumptions 3 and 4 hold. If we apply Lemma 6, it
is sufficient to study the positive semidefiniteness of the matrix

H(U)(x, αi) =
[

d2

dx2
d2

dα2
i

−
(

d2

dxdαi

) (
d2

dxdαi

)T ]
o

[U(x, αi)]. (20)

on the convex set Q × [k1, k2].

3.2 An equivalent condition of the positive semidefiniteness of H(U)

The main step of this section is to reformulate the positive semidefiniteness of H(U) by an
inequality under the form (19).

If we apply the form of ψ in Assumption (4) inU(x, αi) = ψ(−1)
x (αiψx(p)), we can rewrite

U(x, αi) as follows

U(x, αi) = e
−
{
αi (− log p)

1
κ(x)

}κ(x)
.

= pα
κ(x)
i . (21)

Now, by (21), we calculate explicitly d2

dx2 , d2

dα2
i

and d2

dxdαi
of U.

By a direct calculation, we deduce the first formulation as follows


d

dαi
U(x, αi) = log(p)pα

κ(x)
i κ(x)ακ(x)−1

i .
d2

dα2
i

U(x, αi) = κ(x) log(p)ακ(x)−2
i pα

κ(x)
i [κ(x) − 1 + κ(x) log(p)ακ(x)i ].

(22)

Remark 4 The first and second derivatives in (22) are deduced by the rule of differentiation
for composite functions in the 1-dimension case.
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Next, we calculate d
dx ofU. With the chain rule of differentiation for composite functions

in the multi-dimension case, we have

d
dx

U(x, αi) = log(p)pα
κ(x)
i log(αi)ακ(x)i κ(x)′. (23)

We differentiate the two sides of (23) with αi in order to obtain d2

dxdαi

d2

dxdαi
U(x, αi) = log(p)ακ(x)−1

i pα
κ(x)
i [1 + κ(x) log(αi) + log(p) log(αi)ακ(x)i κ(x)]κ(x)′.

(24)

To calculate d2

dx2 of U, we differentiate both sides of (23) with x

d2

dx2 U(x, αi) = pα
κ(x)
i (log p)(logαi)[κ′′(x) + (logαi + logαi log p.ακ(x)i )κ(x)′(κ(x))T ].

(25)

Remark 5 κ(x)′ is a column vector and κ(x)′′ is a symmetric matrix. We can write
d
dxU(x, αi) = log p. logαi .t1(x).t2(x).t3(x) where t1(x) = pα

κ(x)
i , t2(x) = α

κ(x)
i and

t3(x) = κ(x)′. We use the product rule of differentiation and apply again the chain rule of
differentiation for composite functions in the multi-dimension case in order to obtain (25).

We combine (22) and (25) in order to obtain d2

dα2
i

d2

dx2

d2

dα2
i

d2

dx2 = κ(x) log(p)2α2κ(x)−2
i log(αi)p2.ακ(x)i ×[

κ(x) − 1 + κ(x) log pακ(x)i

]
×

[
κ(x)′′ + κ(x)′(κ(x)′)T (logαi + logαi . log p.ακ(x)i )

]
. (26)

Moreover, d2

dαidx

(
d2

dαidx

)T
is deduced from (24)

d2

dαidx

(
d2

dαidx

)T
= log(p)2α2κ(x)−2

i .p2.ακ(x)i ×(
1 + κ(x) logαi + log p logαi .ακ(x)i κ(x)

)2
κ(x)′(κ(x)′)T . (27)

Note that log(p)2.α2κ(x)−2
i .p2.ακ(x)i is the common factor of (26) and (27). Then, we can

reduce this term from both sides of (27) and (26) as follows

M = log(p)−2.α
−2κ(x)+2
i .p−2.ακ(x)i .

[
d2

dα2
i

d2

dx2 −
d2

dαidx

(
d2

dαidx

)T ]
=

=
[
κ(x) − 1 + κ(x) log p.ακ(x)i

]
.
[
κ(x)′′ + κ(x)′(κ(x)′)T (logαi + logαi . log p.ακ(x)i )

]
× κ(x) logαi −

(
1 + κ(x) logαi + log p logαi .ακ(x)i κ(x)

)2
κ(x)′(κ(x)′)T . (28)
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Hence, in order to study the positive semidefiniteness of
[

d2

dα2
i

d2

dx2 − d2

dαidx

(
d2

dαidx

)T ]
on

Q × [k1, k2], we study the positive semidefiniteness of M when (x, α) ∈ Q × [k1, k2].
We rewrite M as follows

M = Aκ(x)′′ − Bκ(x)′(κ(x)′)T . (29)

where


A = κ(x) logαi .

[
κ(x) − 1 + κ(x) log p.ακ(x)i

]
.

B = κ(x) log(αi)2(1 + log p.ακ(x)i )
[
1 − κ(x) − κ(x) log p.ακ(x)i

]
+(

1 + κ(x). logαi + log p. logαi .ακ(x)i .κ(x)
)2
.

3.3 A sufficient condition of the convexity of ψ(−1)
x (αiψx(p))

In (29), A and B depend on x. The key idea of this section is to study a lower bound of
A and an upper bound of B. Particularly, we will study the positive semidefiniteness of the
following term

M∗ = A1κ(x)′′ − B1κ(x)′(κ(x)′)T . (30)

where A ≥ A1, B ≤ B1 and A1, B1 do not depend on x.
Next, we consider the following assumption.

Assumption 5

1. p ≥ e−1.
2. 0 < cl ≤ κ(x) ≤ 1, ∀x ∈ Q.
3. 0 < hl ≤ αi ≤ hu < 1.
4. There exists δl and δu such that 0 < δl ≤ ||x | | ≤ δu < ∞, ∀x ∈ Q, where | |.| | is the

Euclidean norm in Rn.

In other words, κ(x) and αi are bounded by strictly positive scalars cl, cu, hl and hu and
Q is a bounded domain in Rn. The main idea is to find a function κ such that if Assumptions
3,4 and 5 hold, ψ(−1)

x (αiψx(p)) is a convex function with respect to (x, α) on Q × [hl, hu].
Now, we evaluate A and B in (29) as follows

1. We use the statements 1,2 and 3 in Assumption 5 to deduce that 0 ≤ 1 − ακ(x)i ≤
1+ log p.ακ(x)i ≤ 1+ log p.hl ≤ 1. Then we combine with cl ≤ κ(x) ≤ 1 and (− logαi) ≥
(− log hu) to deduce a lower bound of A

A = κ(x)(− logαi).
[
1 − κ(x).(1 + log p.ακ(x)i )

]
≥ cl(− log hu)(− log p.hl). (31)
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2. Since 0 ≤ 1 + log p.ακ(x)i ≤ 1, we apply the Cauchy-Schwarz inequality to deduce that

(1 + log p.ακ(x)i )
[
1 − κ(x).(1 + log p.ακ(x)i )

]
≤ 1

4.κ(x) ≤
1

4cl
. (32)

The following inequalities are deduced by Assumption 5

cl ≤ κ(x) ≤ 1. (33)
− log hu ≤ − logαi ≤ − log hl . (34)

1 + log p ≤ 1 + log p.ακ(x)i ≤ 1 + log p.hl . (35)

We apply (32)-(35) in order to get

1 + log hl(1 + log p.hl) ≤ 1 + κ(x). logαi + log p. logαi .ακ(x)i .κ(x)
≤ 1 − cl(− log hu)(1 + log p).

Therefore, we have

(1 + κ(x). logαi + log p. logαi .ακ(x)i .κ(x))2

≤ max (|1 + log hl(1 + log p.hl)|, |1 − cl(− log hu)(1 + log p)|)2 .

We combine with κ(x) ≤ 1 and − logαi ≤ − log hl in order to deduce an upper bound of
B

B ≤ max (|1 + log hl(1 + log p.hl)|, |1 − cl(− log hu)(1 + log p)|)2

+ (log hl)2.
1

4cl
. (36)

Hence, we deduce that a sufficient condition for the positive semidefiniteness of M on
Q × [hl, hu] is the positive semidefiniteness of the following term on Q

A1κ(x)′′ − B1κ(x)′.(κ(x)′)T ,

where B1 = max (|1 + log hl(1 + log p.hl)|, |1 − cl(− log hu)(1 + log p)|)2+ (log hl)2. 1
4cl

and A1 = cl(− log hu)(− log p.hl).
Note that A1 > 0 as − log p.hl > 0 by Assumption 3. Let C = B1

A1
, we deduce that the

positive semidefiniteness of M on Q × [hl, hu] is equivalent to the positive semidefiniteness
of the following term on Q

κ(x)′′ − C.κ(x)′.(κ(x)′)T . (37)



Convexity of elliptically distributed dependent chance constraints 15

3.4 Boundedness of α on Feasi(Q)

The main idea of this Section is to show that for all x ∈ Feasi(Q), we can choose α by (8)
and hl , hu defined by Di , Σi , µi , p, cl such that hl ≤ αi ≤ hu , i = 1, ...,K .

In fact, by (8), if x ∈ Feasi(Q), we can choose αi such that

αi =
ψx[Fi(gi(x))]∑K
j=1 ψx[Fj (gj (x))]

, ∀i = 1, 2, ...,K .

where ψx(t) = (− log t)
1
κ(x) and gi(x) =

Di−µTi x√
xT Σi x

.

We use the Cauchy-Schwarz inequality to deduce that

| − µTi x | ≤ | |µi | |.| |x | |, ∀i = 1, ...,K . (38)

From linear algebra, we have

√
xTΣi x ≥

√
λi,min | |x | |. (39)

Based on inequality (6), Assumption 3, Lemma 4 and the strictly decreasingmonotonicity
of ψx , we have

0 <
K∑
j=1

ψx[Fj (gj (x))] ≤ ψx(p). (40)

We apply (38) - (40) and | |x | | ≥ δl to deduce the following inequality

gi(x) ≤
|Di |√
λi,minδl

+
| |µi | |√
λi,min

.

As Fi is increasing monotonic, we have

Fi(gi(x)) ≤ Fi

(
|Di |√
λi,minδl

+
| |µi | |√
λi,min

)
.

We use the decreasing monotonicity of ψx to deduce

ψx(Fi(gi(x))) ≥ ψx

(
Fi

(
|Di |√
λi,minδl

+
| |µi | |√
λi,min

))
.

Based on the formulation of αi in (8), we have

αi ≥
ψx

(
Fi

(
|Di |√
λi,minδl

+
| |µi | |√
λi,min

))
ψx(p)

.
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Note that 0 < − log p ≤ 1 (by Condition 1 in Assumption 5 and Assumption 2). Hence,
we have

ψx(p) ≤ (− log p). (41)

The following inequality is deduced by Condition 2 in Assumption 5 and the form of ψx

in Assumption 4

ψx

(
Fi

(
|Di |√
λi,minδl

+
| |µi | |√
λi,min

))

≥ min

(
− log Fi

(
|Di |√
λi,minδl

+
| |µi | |√
λi,min

))
,

(
− log Fi

(
|Di |√
λi,minδl

+
| |µi | |√
λi,min

)) 1
cl

 = mi .

(42)

Let hl = min
1≤i≤K

{
mi

− log p

}
. (43)

Hence, we deduce that αi ≥ hl , ∀i = 1, 2, ...,K by (41) and (42).
On the other hand, we have

αi = 1 −
n∑

j=1, j,i
αj ≤ 1 − (n − 1)hl .

Let hu = 1 − (n − 1)hl . (44)

We conclude that 0 < hl ≤ αi ≤ hu < 1, ∀i = 1, 2, ...,K .

4 Convexity results for elliptically distributed chance constraints

In this section, we give an example of κ that satisfies the matrix inequality (37) on Q under
Assumption 5 and we show the dependence structure of the constraints. Our aim is to choose
d ∈ R and a function κ∗ that satisfies (37) on Q such that

0 < cl − d ≤ κ∗(x) ≤ 1 − d, ∀x ∈ Q. (45)

and let κ = κ∗ + d.
We have the following formulation

d2

dx2 log(κ∗(x)) = κ∗(x)κ∗(x)′′ − κ∗(x)′(κ∗(x)′)T
κ∗(x)2

. (46)

Assumption 6 κ∗(x) ≤ 1
C , ∀x ∈ Q.
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If Assumption 6 holds, the positive semidefiniteness of d2

dx2 log(κ∗(x)) is a sufficient
condition for the positive semidefiniteness of the following term

1
C κ
∗(x)′′ − κ∗(x)′(κ∗(x)′)T

κ∗(x)2
. (47)

As κ′ = (κ∗)′, κ′′ = (κ∗)′′ and κ∗(x)2 > 0, the positive semidefiniteness of (47) is
equivalent to the positive semidefiniteness of the following term

1
C
κ(x)′′ − κ(x)′(κ(x)′)T . (48)

Hence, if 0 < cl − d ≤ κ∗(x) ≤ min
(

1
C , 1 − d

)
, ∀x ∈ Q, we deduce that the positive

semidefiniteness of d2

dx2 log(κ∗(x)) is a sufficient condition for the matrix inequality (37).
On the other hand, the positive semidefiniteness of d2

dx2 log(κ∗(x)) on Q is equivalent to
the convexity of log(κ∗) on Q. Hence, log(κ∗) is a convex function on Q.

Let κ∗ = eq , we need to find a convex function q : Q ⊂ Rn → R such that q satisfies the
following condition

0 < cl − d ≤ eq(x) ≤ min
(

1
C
, 1 − d

)
.

⇔ log(cl − d) ≤ q(x) ≤ log
[
min

(
1
C
, 1 − d

)]
, ∀x ∈ Q. (49)

Under Assumption 4, we can choose a function q such that

q(x) = 1
L
| |x | |2 + z, (50)

where L > 0, z ∈ R are real numbers such that

log(cl − d) ≤ 1
L
δ2
l + z ≤ 1

L
δ2
u + z ≤ log

[
min

(
1
C
, 1 − d

)]
, (51)

We deduce the following lemma

Lemma 7 Let δl, δu, cl, hu, hl such that Assumptions 3,4 and 5 hold. Let L > 0, d ∈ R, z ∈ R
are real numbers such that

log(cl − d) ≤ 1
L
δ2
l + z ≤ 1

L
δ2
u + z ≤ log

[
min

(
1
C
, 1 − d

)]
.

where C is defined in (37). Let κ : Q→ (0, 1] such that

κ(x) =
(
e

1
L | |x | |2+z + d

)
. (52)

Hence, U(x, αi) = ψ
(−1)
x (αiψx(p)) is a convex function with respect to (x, αi) on the

convex set Q × [hl, hu].
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By using the same notations as (3), the dependence structure of vectors ξi(x) is modeled
by an Archimedean copula Cx , where

Cx(t) = ψ(−1)
x

(
K∑
i=1

ψx(ti)
)
, t = (t1, ..., tK ), 0 < ti ≤ 1, i = 1, ...,K .

ψx(ti) = (− log ti)
1
κ(x) .

For a fixed x0 ∈ Q, the Archimedean copula Cx0 is a Gumbel-Hougaard copula with
parameter θ = 1

κ(x0) and the dependence with respect to x is modeled by function κ.

Remark 6 By using | |x | |2 as the form of q(x) in (50) to model the dependence structure of
vectors ξi(x), we deduce that the dependence structure of ξi(x) is unchanged on the contour
lines of function | |x | |2. We can replace | |x | |2 by any convex function to model more general
cases.

Our main result is given by the following theorem.

Theorem 1 Consider problem (1). Let hl, hu defined by (43) and (44). Suppose that the
statements in Lemma 7 hold and Feasi(Q) , ∅. Hence, Feasi(Q) is a convex set.

Proof In Section 3.4, we show that if Feasi(Q) , ∅, we have 0 < hl ≤ hu < 1. Let
x1, x2 ∈ Feasi(Q) and β ∈ [0, 1]. We show that y := βx1 + (1 − βx2) ∈ Feasi(Q).

In fact, let α1 := (α1
1, ..., α

1
K ) and α2 := (α2

1, ..., α
2
K ) given by (8). We deduce that (x1, α1)

and (x2, α2) satisfy constraint (9). In Section 3.4, we show that hl ≤ α1
i , α

2
i ≤ hu , ∀i =

1, 2, ...,K . By Lemma 7, we deduce that U(x, αi) = ψ(−1)
x (αiψx(p)) is a convex function with

respect to (x, αi) on the set Q × [hl, hu].
Hence, we deduce the two following inequalities for y:

Fi(gi(y)) ≥ βFi(gi(x1)) + (1 − β)Fi(gi(x2)).
U(y, βα1 + (1 − β)α2) ≤ βU(x1, α

1) + (1 − β)U(x2, α
2). (53)

By (53), we deduce that (y, βα1 + (1 − β)α2) also satisfies (9) as well as y ∈ Feasi(Q).
ut

Now, we discuss about Assumption 1. Firstly, we can state that αi cannot go to 0 in (29).
If αi → 0, we have A = O(logαi) and B = O(logαi)2. Hence, B

A → ∞. We deduce that
κ(x)′ = 0, ∀x ∈ Q. Therefore, κ is a scalar function and we return to the trivial case where
the copula Cx does not depend on x which is the independent case. Hence, αi must be lower
bounded by a strictly positive scalar hl . Based on (8), we deduce that ψx(Fi(gi(x))) is lower
bounded by a strictly positive scalar as well as gi(x) is upper bounded. Therefore,

Di−µTi x√
xT Σi x

is

upper bounded. If x → 0, we might have Di−µTi x√
xT Σi x

→ ∞ if Di > 0. Hence, we do not have

the convexity in this case. We deduce that there exists a strictly positive scalar δl such that
| |x | | ≥ δl , ∀x ∈ Q.
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5 Conclusion

In this paper, we studied the problem of linear optimizationwith joint probabilistic constraints
in the case of elliptical distributions. Further, wemodeled the dependence of randomvariables
by a Gumbel-Hougaard copula. We studied the convexity of the feasibility set and come up
with new convexity results. Further research will be dedicated to other families of copulas.
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