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Introduction

For various applications of extreme value statistics with stationary time series, it is natural to wonder how a recorded high level can affect the future behavior of the sequence or how time dependencies perturb inferential methodologies. For example, for high quantile marginal estimation it is well known that the inference procedures tailored for independent observations are disturbed by temporal dependencies and must be corrected to produce accurate estimates; cf. Leadbetter [START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF], Embrechts et al. [START_REF] Embrechts | Modelling extremal events: for insurance and finance[END_REF]. We aim to model extremal time dependencies in the setting of R d -valued stationary regularly varying time series (X t ) t∈Z with generic element X 0 ; see Section 2.1 for a definition, cf. Basrak and Segers [START_REF] Basrak | Regularly varying multivariate time series[END_REF]. In this framework, an exceedance of a high threshold by the norm |X t | at time t might trigger consecutive exceedances in some small time interval around t. These short periods with at least one exceedance were introduced implicitly in the seminal paper by Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF]. We refer to them as clusters (of exceedances). They were further reviewed in Basrak and Segers [START_REF] Basrak | Regularly varying multivariate time series[END_REF] and Basrak et al. [START_REF] Basrak | An invariance principle for sums and record times of regularly varying stationary sequences[END_REF].

The main motivation for studying clusters (of exceedances) can be traced back to Theorem 2.5 in Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF]. For weakly dependent regularly varying time series, the point process with atoms at a -1 n X [0,n] = a -1 n (X 0 , . . . , X n ) admits a limit distribution that can be characterized in terms of three features: the index of regular variation, the distribution of cluster (of exceedances), and the extremal index of (|X t |), denoted by θ |X| , where a n are moderate threshold levels satisfying nP(|X 0 | > a n ) → 1 as n → ∞. In this setting, clusters are modeled as rare events of X [0,n] when its supremum norm exceeds the high level x n such that P(

X [0,n] ∞ > x n ) ∼ θ |X| n P(|X 0 | > x n ) → 0.
From the last relation we also see that θ |X| arises when comparing the extremal behavior of blocks of maxima in (X t ) with the corresponding behavior of the blocks in an iid sequence (X t ) with the same marginal distribution. In particular θ |X| describes how the blocks of maxima reach high levels compared to the iid setting.

In view of the previous discussion a cluster (of exceedances) is tied together with the extremal index by the supremum norm. Our main theoretical result extends the aforementioned ideas from the ∞ -norm to pnorms for p < ∞. In Theorem 2.1 we investigate the behavior of X [0,n] when its p -norm exceeds high levels (x n ) satisfying P( X [0,n] p > x n ) = P( n t=1 |X t | p > x p n ) → 0 as n → ∞. We call this a large deviation result since it describes the probability that the partial sums X [0,n] p p exceed the extreme threshold x p n . This leads us to a new definition of a cluster process in the space p = p (R d ) and, in the limiting case p = ∞, one recovers the classical clusters (of exceedances). Similarly, large deviation principles for sums were considered by Nagaev [START_REF] Nagaev | Large deviations of sums of independent random variables[END_REF], Cline and Hsing [START_REF] Cline | Large deviation probabilities for sums of random variables with heavy or subexponential tails[END_REF] in the independent heavy-tailed case, and by Mikosch and Wintenberger [27,[START_REF] Mikosch | The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains[END_REF][START_REF] Mikosch | A large deviations approach to limit theory for heavy-tailed time series[END_REF], Mikosch and Rodionov [START_REF] Mikosch | Precise large deviations for dependent subexponential variables[END_REF] in the dependent heavy-tailed case. We extend large deviation principles to p -norms X [0,n] p , and extremal p -blocks, i.e., blocks X [0,n] with large p -norm.

We apply our findings to cluster inference. For this purpose we divide the sample X 1 , . . . , X n into disjoint blocks (B t ) 1≤t≤ n/bn , B t := X (t-1) bn+ [1,bn] , for a sequence of block lengths (b n ) such that b n → ∞ and b n /n → 0. Then we select blocks whose p -norms exceed a high threshold x bn . Our goal is to infer features of the cluster processes from these extremal p -blocks. In Theorem 4.2 we design consistent disjoint blocks methods with thresholds chosen as order statistics of p -norms. Hereby we must choose a number k n = k n (p) of blocks with large p -norm such that n/(b n k n ) → ∞, k n → ∞. The sequence (k n ) appeals to the classical bias-variance trade-off in extreme value statistics; see for example Resnick [START_REF] Resnick | Heavy-Tail Phenomena: Probabilistic and Statistical Modeling[END_REF].

When choosing a small number of blocks k n for inference the variance of the estimates increases while a large number k n leads to strong bias. This calls for a rigorous definition of extremal p -blocks with the goal of revealing how p plays a key role for tuning the sequence k n = k n (p). Moreover, we can derive the same quantity by using extremal p -blocks for different values of p if we apply a change-of-norm technique. Our large deviations result allows us then to compare the different estimators through the tuning parameter k n (p). The key argument of our analysis is the relationship we stress between the sequence k n = k n (p) and the large deviations of p -norms.

One advantage of using empirical p -norm thresholds is that they adapt to the block lengths (b n ) and take into account the value of p. In the existing literature for p = ∞ no detailed advice is given as to how (b n ) and (x bn ) must be chosen; see for example Drees, Rootzén [START_REF] Drees | Limit theorems for empirical processes of cluster functionals[END_REF], Drees, Neblung [START_REF] Drees | Asymptotics for sliding blocks estimators of rare events[END_REF], Cissokho, Kulik [START_REF] Cissokho | Estimation of cluster functionals for regularly varying time series: sliding blocks estimators[END_REF], Drees et al. [START_REF] Drees | Cluster based inference for extremes of time series[END_REF], who assume growth conditions on the sequence (x n ) such as nP(|X 0 | > x n ) → 0 as n → ∞. It is common practice to replace x bn by an upper order statistic of (|X t |) 1≤t≤n ; see for example the blocks estimator of the extremal index proposed by Hsing [START_REF] Hsing | Extremal index estimation for a weakly dependent stationary sequence[END_REF]. In our setting, the order statistics of the p -norms adapt naturally to different values of p. Asymptotic normality of our estimators could be derived by combining arguments from Theorem 4.3 in Cissokho and Kulik [START_REF] Cissokho | Estimation of cluster functionals for regularly varying time series: sliding blocks estimators[END_REF] and the large deviation arguments developed below; this topic is the subject of ongoing work and will not be presented here.

The case when p and the index α of regular variation of (X t ) coincide is rather specific. The relation P(

X [0,n] α > x n ) ∼ n P(|X 0 | > x n ) → 0
indicates that serial dependence does not affect large deviations of the αnorm. From this relation we see that the α -norm of the series reaches high levels at the same rate as in the iid case. Consequently, when p coincides with the index α, the temporal dependencies of the sequence do not perturb the number k n = k n (α) of extremal α -blocks we can consider for inference. In practice, this fact might ease tuning the parameter k n . Hereby we focus on inferring classical indices of serial dependence based on extremal αblocks. We apply our inference procedure to estimate the extremal index using extremal α -blocks. We also consider inference of cluster indices as defined by Mikosch and Wintenberger [START_REF] Mikosch | The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains[END_REF] on partial sum functionals by considering extremal α -blocks. Our simulation study supports the fact that α -cluster inference is robust regarding the number k n of extremal αblocks we can choose.

The previous indices are based on functionals that are shift-invariant with respect to the backward shift in sequence spaces; see Kulik and Soulier [START_REF] Kulik | Heavy-Tailed Time Series[END_REF] for details. We extend cluster inference to functionals acting on p by studying αth-power sum functionals acting on p . The key argument for this extension is the random shift analysis of Janssen [START_REF] Janssen | Spectral tail processes and max-stable approximations of multivariate regularly varying time series[END_REF] expressed in terms of the αth moment of the cluster process. A similar idea has been investigated in Drees et al. [START_REF] Drees | Statistics for tail processes of Markov chains[END_REF] and Davis et al. [START_REF] Davis | Inference on the tail process with applications to financial time series modeling[END_REF] for inference of the tail process.

Here we focus on cluster inference.

1.1. Outline of the paper. In Section 2, after introducing preliminaries on regular variation, we present the main large deviation principle (Theorem 2.1). In Section 3 we study p -valued cluster processes which were introduced in Theorem 2.1. We apply this theorem in Section 4 where we deal with inference for shift-invariant functionals acting on these cluster processes (see Theorem 4.2), choosing thresholds as empirical quantiles of the p -norms of blocks. We continue with an in-depth analysis of the assumptions of Theorem 2.1; see Section 5. In Section 6 we consider inference for non-shift-invariant functionals. We also illustrate our approach of pbased cluster inference for p = α and compare it with the case p = ∞; see Section 7. We defer all proofs to Section 8. . We write x := (x t ) = (x t ) t∈Z , and define truncation at level ε > 0 from above and below by x = (x t ) t∈Z , x ε = (x t ) t∈Z , where

x t = x t 1 1(|x t | > ), x t = x t 1 1(|x t | ≤ ).
We focus on the sequence space p , p ∈ (0, ∞] equipped with the metric

d p (x, y) := x -y p = t∈Z |x t -y t | p 1/p , p ∈ (1, ∞) , x -y p p , p ∈ (0, 1) ,
x, y ∈ p , and the supremum distance in the case p = ∞. We know that d p makes p a separable Banach space for p ∈ (1, ∞], and a separable complete metric space for p ∈ (0, 1). Recall the backshift operator acting on x ∈ (R d ) Z :

B k x = (x t-k ) t∈Z , k ∈ Z.
Then we define the shift-invariant space p = p / ∼ as the quotient space with respect to the equivalence relation ∼ in p : x ∼ y if there exists k ∈ Z such that B k x = y. An element of p is denoted by [x] = {B k x : k ∈ Z}. For ease of notation, we often write x instead of [x], and we notice that any element in p can be embedded in p by using the equivalence relation. We define for

[x], [y] ∈ p , d p ([x], [y]) := inf k∈Z d p (B k a, b) : a ∈ [x] , b ∈ [y] .
For p ∈ (0, ∞], d p is a metric on p and turns it into a complete metric space; see Basrak et al. [START_REF] Basrak | An invariance principle for sums and record times of regularly varying stationary sequences[END_REF].

Preliminaries and main result

2.1. About regular variation of time series. We consider an R d -valued stationary process (X t ). Following Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF], we call it regularly varying if the finite-dimensional distributions of the process are regularly varying. This notion involves the vague convergence of certain tail measures; see Resnick [START_REF] Resnick | Heavy-Tail Phenomena: Probabilistic and Statistical Modeling[END_REF]. Avoiding the concept of vague convergence and infinite limit measures, Basrak and Segers [START_REF] Basrak | Regularly varying multivariate time series[END_REF] showed that regular variation of (X t ) is equivalent to the weak convergence relations: for every h ≥ 0,

P x -1 (X t ) [-h,h] ∈ • | |X 0 | > x w -→ P Y (Θ t ) [-h,h] ∈ • , x → ∞ , (2.1) 
where Y is Pareto(α)-distributed, i.e., it has tail P(Y > y) = y -α , y > 1, independent of the vector

(Θ t ) [-h,h] in (R d ) 2h+1 and |Θ 0 | = 1.
According to Kolmogorov's consistency theorem, one can extend the latter finitedimensional vectors to a sequence Θ = (Θ t ) t∈Z in (R d ) Z called the spectral tail process of (X t ). Following Planinić and Soulier [START_REF] Planinić | The tail process revisited[END_REF], the spectral tail process (Θ t ) satisfies the time-change formula: for every measurable function f :

( p , d p ) → R such that f (λ x) = f (x) for all λ > 0, we have for all t, s ∈ Z, E[f (B s (Θ t ))1 1(Θ -s = 0)] = E |Θ s | α f (Θ t ) . (2.2)
The regular variation property of (X t ), denoted by RV α , is determined by the (tail)-index α > 0 and the spectral tail process.

Furthermore, Segers et al. [START_REF] Segers | Polar decomposition of regularly varying time series in star-shaped metric spaces[END_REF] characterized regular variation of random elements with values in star-shaped metric spaces. Their results are based on weak convergence in the spirit of (2.1). Our focus will be on a special star-shaped space: the sequence space ( p , d p ). Using the p-modulus function

• p , the p -valued stationary process (X t ) has the property RV α if and only if relation (2.1) holds with |X 0 | replaced by X [0,h] p . Equivalently, (Proposition 3.1 in Segers et al. [START_REF] Segers | Polar decomposition of regularly varying time series in star-shaped metric spaces[END_REF]), for every h ≥ 0,

P x -1 X [0,h] ∈ • | X [0,h] p > x w -→ P Y Q (p) (h) ∈ • , x → ∞ , (2.3) the Pareto(α) variable Y is independent of Q (p) (h) ∈ R d (h+1) , such that Q (p) (h) p = 1 a.s. We call Q (p) (h) the spectral component of X [0,h] in p .
2.2. Main result. We start by giving our main result on large deviations of the sequence X [0,n] , that we embed in the space ( ˜ p , dp ). The proof is postponed to Section 8.1.

Theorem 2.1. Consider an R d -valued stationary time series (X t ) satisfying RV α for some α > 0. For a given p > 0, assume that there exists a sequence (x n ) such that n P(|X 0 | > x n ) → 0 as n → ∞. Furthermore, assume that for every δ > 0,

AC : lim k→∞ lim sup n→∞ P X [k,n] ∞ > δ x n | |X 0 | > δ x n = 0, CS p : lim →0 lim sup n→∞ P( x -1 n X [0,n] p > δ) n P(|X 0 | > x n ) = 0,
n/x p n → 0 if p < α, and there exists κ > 0 such that n/x α-κ n → 0 if p = α. Then, there exists c(p) > 0 such that

lim n→+∞ P( X [0,n] p > x n ) nP(|X 0 | > x n ) = c(p) . (2.4) Moreover, c(p) < ∞ if p ≥ α, in particular, c(∞) ≤ c(p) ≤ c(α) = 1. If c(p) < ∞ there exists Q (p) ∈ ˜ p such that Q (p)
p = 1 a.s. and

P(x -1 n X [0,n] ∈ • | X [0,n] p > x n ) w -→ P(Y Q (p) ∈ •), n → ∞ , (2.5) 
in the space ( ˜ p , dp ) where Y is Pareto(α) distributed, independent of Q (p) .

First, notice that under RV α , AC and CS α we obtain c(α) = 1. This motivates the study of extremal α -blocks since they reach high levels at a constant rate regardless of the temporal dependencies traced through c(p) in (2.4). Second, notice that for p > α the result of Theorem 2.1 holds under RV α and AC solely. Indeed, condition CS p holds for p > α by a Karamata-type argument; see Remark 5.1. We state Theorem 2.1 under the one-sided anti-clustering condition AC. We use this condition together with a telescoping sum argument to compensate for the classical two-sided condition (5.1) used in Kulik and Soulier [START_REF] Kulik | Heavy-Tailed Time Series[END_REF]. Conditions similar to CS p are standard when dealing with sum functionals acting on (X t ); see e.g., Mikosch and Wintenberger [START_REF] Mikosch | Precise large deviations for dependent regularly varying sequences[END_REF]. We refer to Section 5 for a thorough discussion on the conditions AC, CS p , and the growth conditions imposed on (x n ).

We refer to a relation of the type (2.4) as large deviation probabilities motivated by the following observation. Write S (p)

k = k t=0 |X t | p , for k ≥ 1.
Then |X| p is regularly varying with index α/p. Relation (2.4) implies that

P( X [0,n] p > x n ) = P S (p) n > x p n ∼ c(p) n P(|X 0 | > x n ) → 0 , n → ∞ .
Thus the left-hand probability describes the rare event that the sum process

S (p)
n exceeds the extreme threshold x p n . Relation (2.5) extends the large deviation result for X [0,n] p in (2.4) to one for the process X [0,n] in the sequence space ( ˜ p , dp ). Motivated by inference of the spectral cluster process Q (p) , we establish (2.5) employing weak convergence in the spirit of the polar decomposition from (2.3).

Remark 2.2. Recall Hult and Lindskog [START_REF] Hult | Regular variation for measures on metric spaces[END_REF] introduced regular variation for random elements assuming values in a general complete separable metric space by extending the vague convergence approach (see Resnick [START_REF] Resnick | Heavy-Tail Phenomena: Probabilistic and Statistical Modeling[END_REF]) to M 0convergence; see also Lindskog et al. [START_REF] Lindskog | Regularly varying measures on metric spaces: hidden regular variation and hidden jumps[END_REF]. Relation (2.5) provides a family of Borel sets in ( ˜ p , dp ) for which the weak limit of the self-normalized blocks X [0,n] / X [0,n] p exists. This result implies that the sequence of measures

µ n (•) := P(x -1 n X [0,n] ∈ •)/P( X [0,n] p > x n ) → µ(•) := ∞ 0 P(y Q (p) ∈ •) d(-y -α ) , n → ∞ ,
in the M 0 -sense in ( ˜ p , dp ). By the portmanteau theorem for measures (Theorem 2.4. in Hult and Lindskog [START_REF] Hult | Regular variation for measures on metric spaces[END_REF])

µ n (A) = P(x -1 n X [0,n] ∈ A)/P( X [0,n] p > x n ) → µ(A)
, for all Borel sets A in ( ˜ p , dp ) satisfying µ(∂A) = 0 and 0 ∈ A. This approach is discussed in Kulik and Soulier [START_REF] Kulik | Heavy-Tailed Time Series[END_REF].

Spectral cluster process representation

3.1. The spectral cluster process in p . From (2.1) recall the spectral tail process Θ of a stationary sequence (X t ) satisfying RV α . We start by showing a representation of the spectral cluster process Q (p) from (2.5) in terms of Θ. We deduce that the spectral cluster process is also well defined in ( p , d p ). The proof is deferred to Section 8.3. In addition, if c(p) < ∞ then the distribution of the spectral cluster process Q (p) is given by

P(Q (p) ∈ •) = (c(p)) -1 E Θ/ Θ α α p 1 1(Θ/ Θ p ∈ • ) , (3.2) in the space ( p , d p ).
This result provides a new representation of the distribution of Q (p) for fixed p. In what follows, under the assumptions of Theorem 2.1, the spectral cluster processes are assumed to be defined in the space ( p , d p ) via (3.2). Proposition 3.1 also relates distinct spectral cluster processes to each other by the change-of-norms transform in (3.2). In the next section we deal with the case p = α.

3.2.

The spectral cluster process in α . In view of (3.2) the process Θ/ Θ α is the candidate for the α -spectral cluster process Q (α) introduced in (2.5), and it plays a key role for characterizing Q (p) in general. The following result shows that Θ/ Θ α is well defined in ( α , d α ) under AC. Proposition 3.2. Let (X t ) be a stationary sequence satisfying RV α with spectral tail process (Θ t ). Then the following statements are equivalent:

i) Θ α < ∞ a.s. and Θ/ Θ α is well defined in α . ii) |Θ t | → 0 a.s. as t → ∞.
iii) The time of the largest record T * := inf{s : s ∈ Z such that |Θ s | = sup t∈Z |Θ t |} is finite a.s. Moreover, these statements hold under AC.

A proof of Proposition 3.2 is given in Lemma 3.6 of Buriticá et al. [START_REF] Buriticá | Some variations on the extremal index[END_REF], appealing to results by Janssen [START_REF] Janssen | Spectral tail processes and max-stable approximations of multivariate regularly varying time series[END_REF].

From (2.3) recall the sequence of spectral components (Q (α) (h)) h≥0 of the vectors (X [0,h] ) h≥0 , satisfying the property Q (α) (h) α = 1 a.s. Our next result relates this sequence of spectral components to Θ/ Θ α . Proposition 3.3. Let (X t ) be a stationary time series satisfying RV α and

lim t→∞ |Θ t | = 0 a.s. Then Q (α) (h) d -→ Q (α) (∞) as h → ∞ in ( α , d α ) with Q (α) (∞) d = Θ/ Θ α .
This result gives raise to the interpretation of Θ/ Θ α as the spectral component of (X t ) in α . The proof is given in Section 8.3. We deduce the following almost sure relation in terms of the spectral cluster process in α . Proposition 3.4. Let (X t ) be a stationary sequence satisfying RV α with spectral tail process (Θ t ). Under the assumptions AC and CS α , we deduce the a.s. representations

Q (α) = Θ/ Θ α and Θ = Q (α) /|Q (α) 0 | in ( α , d α ).
Proposition 3.4 follows directly from Propositions 3.1 and 3.2.

Consistent cluster inference based on spectral cluster processes

Let X 1 , . . . , X n be a sample from a stationary sequence (X t ) satisfying RV α for some α > 0, and choose p > 0. We split the sample into disjoint blocks

B t := X (t-1)b+[1,b] , t = 1, . . . , m n , where b = b n → ∞ and m = m n := [n/b n ] → ∞.
Throughout we assume that the sequence (x n ) satisfies the conditions of Theorem 2.1 for p > 0. We denote

k = k n := [m n P( B p > x bn )] → ∞. Then, in particular P( B 1 p > x b ) → 0, m n → ∞ and k n → ∞.

4.1.

Cluster functionals and mixing. The real-valued function g on ˜ p is a cluster functional if it vanishes in some neighborhood of the origin and P(Y Q (p) ∈ D(g)) = 0 where D(g) denotes the set of discontinuity points of g. In what follows, it will be convenient to write G + ( ˜ p ) for the class of non-negative functions on p which vanish in some neighborhood of the origin.

For asymptotic theory we will need the following mixing condition.

Condition MX p . There exists an integer sequence b n → ∞ such that m n → ∞, k n → ∞, and for every Lipschitz-continuous f ∈ G + ( ˜ p ), the sequence (x n ) satisfies E e -1 k m t=1 f (x -1 b Bt) = E e -1 k m/k t=1 f (x -1 b Bt) k + o(1) , n → ∞ . (4.1) with m n := n/b n and k n := m n P( B p > x bn ) .
If MX p is required in the sequel we will refer to the sequences (b n ), (m n ) and (k n ) chosen in this condition.

Remark 4.1. Condition MX p is similar to the mixing conditions A, A in Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF], Basrak et al. [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF], respectively. These are defined in terms of sequences (f (X t )) while our functionals f act on blocks. MX p holds under mild conditions, for example, under strong mixing with quite general rate; cf. Lemma 6.2. in Basrak et al. [START_REF] Basrak | An invariance principle for sums and record times of regularly varying stationary sequences[END_REF].

Consistent cluster inference.

The following result is the basis for an empirical procedure for spectral cluster inference built on disjoint blocks. The proof is given in Section 8.4.1. 

g ∈ G + ( ˜ p ), (4.2) 1 k m t=1 g B -1 p,(k+1) B t P -→ ∞ 0 E g(yQ (p) ) d(-y -α ), n → ∞ . such that B p,(1) ≥ B p,(2) ≥ • • • ≥ B p,(m) .
By virtue of Proposition 3.1 we can derive the same spectral cluster statistic by letting the functionals g p : ˜ p → R act on Q (p) for different pairs (p, g p ). This opens the road to different ways to estimate the same constant, for example, c(q) for q > 0. To compare inference procedures tuned with different p, we observe that Theorem 4.2 promotes the use of order statistics of the sample of p -norms. The sequence (k n ) in (4.2) corresponds to the number of extreme blocks used for inference. The large deviation principles of Theorem 2.1 allow us then to compare the sequences k n = k n (p). For inference through Q (p) the relation and(x n ) is a sequence satisfying AC and nP(|X 0 | > x n ) → 0. For p ∈ (0, α], the sequence (x n ) must satisfy the additional condition CS p , which restricts the range of possible values for k n , but allows us to consider continuous functionals on ( ˜ p , dp ). One advantage of choosing p = α is that c(α) = 1, thus the choice of k n = k n (α) does not rely on the serial dependencies summarized in c(p).

k n = [m n P( B p > x bn )] ∼ c(p) n P(|X 0 | > x bn ) , (4.3) justifies taking k n larger as p decreases, for p ∈ (α, ∞], since c(•) is a non- increasing function of p,

Applications.

In this section we apply Theorem 4.2 for inference on some indices related to the extremes in a time-dependent sample and focus on cluster inference using Q (α) . We illustrate our estimators for a regularly varying linear process in Section 7.

4.3.1.

The extremal index. The extremal index of a regularly varying stationary time series has interpretation as a measure of clustering of serial exceedances, and was originally introduced in Leadbetter [START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF] and Leadbetter et al. [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF]. If (X t ) is iid with the same marginal distribution as (X t ) then the extremal index θ |X| relates the expected number of serial exceedances of (|X t |) with the serial exceedances of (|X t |). Assuming AC and additional mixing assumptions (see e.g. Theorem 2.3. in [START_REF] Buriticá | Some variations on the extremal index[END_REF]), the extremal index θ |X| of (|X t |) exists and equals c(∞).

We aim at applying Theorem 4.2 with p = α. In this setting, the changeof-norm formula in (3.1) leads to the identities

θ |X| = c(∞) = E Θ α ∞ Θ α α = E[ Q (α) α ∞ ].
Then, letting p = α and g

(x) = x α ∞ / x α α 1 1( x α > 1)
on the right-hand side of (4.2), we obtain

∞ 0 E g(yQ (α) ) d(-y -α ) = ∞ 0 E Q (α) α ∞ Q (α) α α 1 1( Q (α) α α > y -α ) d(-y -α ) = E[ Q (α) α ∞ ] = c(∞) .
Next we introduce a new consistent disjoint blocks estimator of the extremal index defined from exceedances of α -norm blocks.

Corollary 4.3. Assume the conditions of Theorem 4.2 for p = α. Then

1 k m t=1 B t α ∞ B t α α 1 1( B t α > B α,( k+1 
) ) P -→ c(∞) , n → ∞ . (4.4)
An advantage of inferring the extremal index using extremal α -blocks is that the tuning parameter k n of the estimator does not rely on the clustering effect of the series since c(α) = 1 in Equation (4.3). Remark 4.4. We can compare this estimator of c(∞) with one based on the clusters (of exceedances). Motivated by the blocks estimator of the extremal index in Hsing [START_REF] Hsing | Extremal index estimation for a weakly dependent stationary sequence[END_REF], we let g(x) := j∈Z 1 1(|x t | > 1) act on large ∞ -blocks. Choosing p = ∞ and using this g on the right-hand side of (4.2), we can find an integer sequence

k = k n (∞) → ∞ such that 1 k n t=1 1 1(|X t | > B ∞,(k+1) ) -1 P -→ c(∞) , n → ∞ . (4.5) Arguing as for (4.3), k n ∼ m n P( B ∞ > x b ) ∼ c(∞) nP(|X 0 | > x b
). Thus, the number of extreme blocks used in (4.5) shrinks when c(∞) < 1, compared to its implementation in an iid setting. In practice, this can make the choice of k n sensitive to the temporal ties.

4.3.2.

A cluster index for sums. In this section we assume that α ∈ (0, 2) and E[X] = 0 for α ∈ (1, 2). We study the partial sums S n := n t=1 X t , n ≥ 1, and introduce a normalizing sequence (a n ) such that n

P(|X 0 | > a n ) → 1.
Starting with Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF], α-stable central limit theory for (S n /a n ) was proved under suitable anti-clustering and mixing conditions.

In this setting, the quantity c(1) appears naturally and was coined cluster index in Mikosch and Wintenberger [START_REF] Mikosch | The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains[END_REF]. For d = 1 it can be interpreted as an equivalent of the extremal index for partial sums rather than maxima. Indeed, consider a real-valued regularly varying stationary sequence (X t ) with index of regular variation α ∈ (0, 2) satisfying

P(X ≤ -x) = o P(X > x) or X d = -X. Consider an iid sequence (X t ) with X d = X and partial sums (S n ). Then a -1 n S n d -→ ξ α and a -1 n S n d -→ ξ α , both ξ α and ξ α are α-stable and E[e iuξα ] = E[e iuξ α ]
c (1) .

Under the assumptions of Proposition 3.1 and for p = α we have c(1

) = E[ Q (α) α 1 ]. For α ∈ (0, 1], take p = α and g(x) = x α 1 / x α α 1 1( x α > 1)
on the right-hand side of (4.2). Then an application of Theorem 4.2 with p = α and g as mentioned yields a consistent estimator of c(1). 

= k n → ∞, 1 k m t=1 B t α 1 B t α α 1 1( B t α > B α,(k+1) ) P -→ c(1) , n → ∞ . (4.6)
The estimator on the left-hand side of (4.6) has the advantage that k n ∼ n P(|X 0 | > x bn ). Relation (4.6) holds by virtue of (4.3) regardless of the temporal dependence in the series. Remark 4.6. For α ∈ (1, 2) the function g applied in (4.6) to extremal α -blocks is no longer bounded. If c(1) < ∞ we can apply Theorem 4.2 with p = 1 and g(x) = x α α / x α 1 1 1( x 1 > 1) to obtain a consistent estimator of c(1). Indeed, the right-hand side of (4.2) turns into

∞ 0 E g(yQ (1) ) d(-y -α ) = ∞ 0 E Q (1) α α Q (1) α 1 1 1( Q (1) α 1 > y -α ) d(-y -α ) = E[ Q (1) α α ] = (c(1)) -1
, where the last identity follows from Proposition 3.1. Then Theorem 4.2 for p = 1 and g as above yields a consistent estimator of c(1). Note that c(1) ∈ [1, ∞) for α ∈ (1, 2). Hence the number k n of extremal 1 -blocks for this estimator does not decrease in comparison with the iid case. This feature can also make this estimator robust for cluster inference.

Remark 4.7. Arguing as in Cissokho and Kulik [START_REF] Cissokho | Estimation of cluster functionals for regularly varying time series: sliding blocks estimators[END_REF], Kulik and Soulier [START_REF] Kulik | Heavy-Tailed Time Series[END_REF], and assuming CS 1 , we can extend Theorem 4.2 for p = ∞ to hold for 1 -functionals. Then we can find k

= k n (∞) → ∞ such that, with g(x) := 1 1( x 1 > 1) and p = ∞ in (4.2), m t=1 1 1( B t 1 > B ∞,(k+1) ) n t=1 1 1(|X t | > B ∞,(k+1) ) P -→ c(1) , n → ∞ . (4.7)
Here, following (4.3), we have

k n ∼ c(∞) nP(|X 0 | > x b
). This alternative estimator of c(1) based on extremal ∞ -blocks is consistent for α ∈ (0, 2). Then, as in the extremal index example, the tuning parameter k n in (4.7) is linked to the constant c(∞) ∈ (0, 1] and must be chosen carefully in agreement with the clustering effect of the series. Theorem 4.2 provides estimators of the parameters of the α-stable limit ξ α of (S n /a n ). Indeed, following the theory in Bartkiewicz et al. [START_REF] Bartkiewicz | Stable limits for sums of dependent infinite variance random variables[END_REF], we characterize the α-stable limit in terms of Q (1) ; the proof is given in Section 8.4.2.

Proposition 4.8. Consider a stationary regularly varying sequence (X t ) with index α ∈ (0, 1) ∪ (1, 2). We assume the mixing condition

E[e iu Sn/an ] = (E[e iu S bn /an ]) mn + o(1) , n → ∞ , u ∈ R d ,
and the anti-clustering condition, for every δ > 0,

lim l→∞ lim sup n→∞ n bn t=l E[(|X t /a n | ∧ δ) (|X 0 /a n | ∧ δ)] = 0 . (4.8) Then S n /a n d -→ ξ α for an α-stable random vector ξ α with characteristic function E[exp(iu ξ α )] = exp(-c α σ α (u) (1 -i β(u) tan(απ/2))), u ∈ R d , where c α := (Γ(2 -α)/|1 -α|)(1 ∧ α) cos(απ/2)
, and the scale and skewness parameters have representation

σ α (u) := c(1) E[|u t∈Z Q (1) t | α ] , β(u) := E[(u t∈Z Q (1) t ) α + -(u t∈Z Q (1) t ) α -] /E[|u t∈Z Q (1) t | α ] .
As for c(1), an application of Theorem 4.2 with p = 1 for α ∈ (1, 2) and p = α for α ∈ (0, 1) yields natural estimators of the parameters (σ α (u), β(u)) in the central limit theorem of Proposition 4.8.

5.

A discussion of the assumptions of the large deviation principle in Theorem 2.1

Consider a stationary sequence (X t ) satisfying RV α and let (x n ) be a threshold sequences such that n P(|X 0 | > x n ) → 0. In the conditions AC and CS p below we refer to the same sequence (x n ). In this section we will discuss the conditions of Theorem 2.1.

Anti-clustering condition AC. For every

δ > 0, lim k→∞ lim sup n→∞ P X [k,n] ∞ > δ x n | |X 0 | > δ x n = 0.
Condition AC ensures that a large value at present time does not persist indefinitely in the extreme future of the time series. This anti-clustering is weaker than the more common two-sided one: 

lim k→∞ lim sup n→∞ P max k≤|t|≤n |X t | > δ x n | |X 0 | > δ x n = 0. ( 5 
P |X t | > δ x n | |X 0 | > δ x n .
For m-dependent (X t ) the latter condition turns into n P(|X 0 | > δ x n ) → 0 which is always satisfied.

If p ≤ α an extra assumption is required for controlling the accumulation of moderate extremes within a block.

5.2.

Vanishing-small-values condition CS p . For p ∈ (0, α] we assume that for a sequence (x n ) satisfying nP(|X 0 | > x n ) → 0 and for every δ > 0, we have lim

→0 lim sup n→∞ P x -1 n X [1,n] p p -E x -1 n X [1,n] p p > δ n P(|X 0 | > x n ) = 0. (5.2)
We refer to (5.2) as condition CS p in what follows. If α < p < ∞ then by Karamata's theorem (see Bingham et al. [START_REF] Bingham | Regular Variation[END_REF]) and since n P(|X

0 | > x n ) → 0, E[ x -1 n X [1,n] | p p ] = n E[|x -1 n X | p ] = o(1) , n → ∞ . Also, if p < α, then E[|X| p ] < ∞. If we also have n/x p n → 0 then E[ x -1 n X [1,n] p p ] ≤ n x -p n E[|X| p ] → 0 , n → ∞ . If p = α, E[|X| α ] < ∞ and n/x α n → 0 then the latter relation remains valid. If E[|X| α ] = ∞ then E[|x -1 n X | α ] = x -α n (x n )
for some slowly varying function depending on , hence for every small κ > 0 and large n,

(x n ) ≤ x κ n . Then the condition nx -α+κ n → 0 also implies that E[ x -1 n X [1,n] α α ] = o(1)
. Thus we retrieve CS p as used in Theorem 2.1. In sum, under the aforementioned additional growth conditions on (x n ) centering in (5.2) can be avoided. This is similar to condition CS p in Theorem 2.1.

We mentioned that conditions of a similar type as CS p are standard when dealing with sum functionals acting on (X t ) (see for example Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF], Bartkiewicz et al. [START_REF] Bartkiewicz | Stable limits for sums of dependent infinite variance random variables[END_REF], Mikosch and Wintenberger [START_REF] Mikosch | Precise large deviations for dependent regularly varying sequences[END_REF][START_REF] Mikosch | The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains[END_REF][START_REF] Mikosch | A large deviations approach to limit theory for heavy-tailed time series[END_REF]), and are also discussed in Kulik and Soulier [START_REF] Kulik | Heavy-Tailed Time Series[END_REF].

Remark 5.1. Assume α < p < ∞. Then applications of Markov's inequality of order 1 and Karamata's theorem yield for δ > 0, as n → ∞,

P x -1 n X [1,n] p p > δ n P(|X 0 | > x n ) = P n t=1 |x -1 n X t | p > δ n P(|X 0 | > x n ) ≤ E[|x -1 n X 0 | p ] δ P(|X 0 | > x n ) P(|X 0 | > x n ) P(|X 0 | > x n ) → c p-α .
The right-hand side converges to zero as → 0. Here and in what follows, c denotes any positive constant whose value is not of interest. We conclude that (5.2) is automatic for p > α.

Remark 5.2. Condition CS p is challenging to check for p ≤ α. For p/α ∈ (1/2, 1], by Čebyshev's inequality,

P x -1 n X [1,n] p p -E[ x -1 n X [1,n] p p ] > δ /[n P(|X 0 | > x n )] ≤ δ -2 var x -1 n X [1,n] p p /[n P(|X 0 | > x n )] ≤ δ -2 E[|x -1 n X 0 | 2p P(|X 0 | > x n ) 1 + 2 n-1 h=1 | corr |x -1 n X 0 | p , |x -1 n X h | p | .
Now assume that (X t ) is ρ-mixing with summable rate function (ρ h ); cf. Bradley [START_REF] Bradley | Basic properties of strong mixing conditions. A survey and some open questions[END_REF]. Then the right-hand side is bounded by

δ -2 E[|x -1 n X | 2p P(|X 0 | > x n ) 1 + 2 ∞ h=1 ρ h ∼ δ -2 2p-α 1 + 2 ∞ h=1 ρ h , → 0 ,
where we applied Karamata's theorem in the last step, and CS p follows.

For Markov chains weaker assumptions such as the drift condition (DC) in Mikosch and Wintenberger [START_REF] Mikosch | The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains[END_REF][START_REF] Mikosch | A large deviations approach to limit theory for heavy-tailed time series[END_REF] can be used for checking CS p .

Remark 5.3. Condition CS p not only restricts the serial dependence of the time series (X t ) but also the level of thresholds (x n ). Indeed, for p/α < 1/2 and (X t ) iid, since n

-1/2 X [1,n] p p -E[ n -1/2 X [1,n]
p p ] converges in distribution to a Gaussian limit by virtue of the central limit theorem, CS p implies necessarily that

x n / √ n → ∞ as n P(|X 0 | > x n ) → 0.
5.3. Threshold condition. In Theorem 2.1 we assume growth conditions on (x n ): n/x p n → 0 if p < α and n/x α-κ n → 0 for some κ > 0 if p = α. For inference purposes it is tempting to decrease the threshold level x n such that more exceedances are included in the estimators. Indeed, the assumptions on (x n ) can be relaxed, justified by results such as Nagaev's large deviation principle in [START_REF] Nagaev | Large deviations of sums of independent random variables[END_REF], by adding a centering term as we will show in Lemma 5.4. However, in this section we aim at pointing at the difficulties that might arise while doing so in practice.

To motivate the results of this section we start by considering an iid sequence (X t ) satisfying RV α for some α > 0. Then, for p > α, (2. 

P X [0,n] p > x n (n x -p n E[|X| p ] + 1) 1/p = P S (p) n -E[S (p) n ] > x p n (1 + o(1)) → 0 . (5.3)
Following Nagaev [START_REF] Nagaev | Large deviations of sums of independent random variables[END_REF], a large deviation result for the centered process holds:

P S (p) n -E[S (p) n ] > x p n ∼ n P(|X 0 | > x n ) , n → ∞ , provided n/x α-κ n → 0 for p/α ∈ (1/2, 1
) and some κ > 0, and √ n log n/x p n → 0 for p/α < 1/2. These conditions are satisfied for extreme thresholds satisfying n/x p n → 0. In this case the centering term E[S

n ] in (5.3) is always negligible which allows us to derive (2.4). Next, we extend the previous ideas to regularly varying time series. Lemma 5.4. Consider an R d -valued stationary process (X t ) satisfying the conditions RV α , AC, CS p and c(p) < ∞ for some p > 0. If p < α then

lim n→∞ P X [0,n] p > x n n x -p n E[|X| p ] + 1 1/p n P(|X 0 | > x n ) = c(p) . (5.4) If p = α then lim n→∞ P X [0,n] α > x n nE[|X/x n 1 | α ] + 1 1/α n P(|X 0 | > x n ) = c(α) = 1 . (5.5) Moreover, if also E[|X| α ] < ∞ then equation (5.4) holds for p = α.
The proof is given in Section 8.2. Now the restrictions on the level of the thresholds (x n ) are the ones implicitly implied by condition CS p in (5.2); see Remark 5.3.

We define an auxiliary sequence of levels:

z n := z n (p) =      x n n x -p n E[|X| p ] + 1 1/p if p < α, x n nE[|X/x n 1 | α ] + 1 1/α if p = α , x n if p > α .
For thresholds satisfying the growth conditions n/x p n → 0 we have z n ∼ x n , while for moderate thresholds satisfying CS p and n/x p n → ∞ this is no longer the case.

For the purposes of inference Lemma 5.4 is not as satisfactory as (2.4) in Theorem 2.1. Indeed, the level z n in the selection of the exceedances is not the original threshold x n . For any moderate threshold x n with z n /x n → ∞ the use of x n instead of z n might yield to a different limit. As a toy example, consider the problem of inferring the constant c(q)/c(p) for p < α, q > p. Then an application of Lemma 5.4 ensures that

P( X [0,n] q > z n (q) | X [0,n] p > z n (p)) → P( Y Q (p) q > 1) = E[ Q (p) α q ] = c(q)/c(p), n → ∞ .
However, choosing the same moderate threshold z n = z n (q), we would have

P( X [0,n] q > z n | X [0,n] p > z n ) ∼ P( X [0,n] q > z n ) P(n 1/p E[|X| p ] 1/p > z n ) → 1 if q < α, 0 if q > α, n → ∞ .
By this argument, the growth conditions on (x n ) are justified to simplify inference procedures. Otherwise, the choice of the threshold sequence becomes delicate.

Inference beyond shift-invariant functionals

So far we only considered inference for shift-invariant functionals acting on ( ˜ p , dp ) such as maxima and sums. Following the shift-projection ideas in Janssen [START_REF] Janssen | Spectral tail processes and max-stable approximations of multivariate regularly varying time series[END_REF], jointly with continuous mapping arguments, we extend inference to functionals on ( p , d p ). 6.1. Inference for cluster functionals in ( p , d p ). Let g : ( p , d p ) → R be a bounded measurable function. We define the functional

ψ g : ( p , d p ) → R by [z] → ψ g ([z]) := j∈Z |z * -j | α g (B j z * t ) t∈Z , (6.1) 
where z * t := z t-T * (z) , for t ∈ Z, such that T * (z) := inf{s ∈ Z : |z s | = z ∞ } and B : p → p is the backward-shift map.

We link the distribution of the spectral cluster process Q (α) from Equation (3.2) and the distribution of the class [Q (α) ] through the mappings (6.1) in the next proposition whose proof is given in Section 8.5.1.

Proposition 6.1. The following relation holds for every real-valued bounded measurable function g on

α E[g(Q (α) )] = E[ψ g ([Q (α) ])] ,
where ψ g is as in (6.1). This relation remains valid if α is replaced by p, whenever the spectral cluster process in p is well defined.

For p ≤ α the mappings in (6.1) are continuous functionals on ( ˜ p , dp ) and we can extend Theorem 4.2 to continuous functionals on ( p , d p ) evaluated at the spectral cluster process Q (p) taking values in ( p , d p ). Theorem 6.2. Assume the conditions of Theorem 4.2 for p ≤ α. Then for any continuous bounded function g : p ∩ {x :

x p = 1, |x 0 | > 0} → R, g (p) := 1 k m t=1 b j=1 W j,t (p) g B j-1 B t B t p =:ψg(Bt/ Bt p) 1 1( B t p > B p,(k+1) ) (6.2) P -→ E[g(Q (p) )] , n → ∞ , where W j,t (p) = |X (t-1)b+j | α / B t α p for all j = 1, . . . , b.
The proof is given in Section 8.5.2.

Applications.

Examples of non-shift-invariant functionals on ( p , d p ) are measures of serial dependence, probabilities of large deviations such as the supremum of a random walk and ruin probabilities, and functionals of the spectral tail process Θ. We study these examples in the remainder of this section.

Measures of serial dependence. Define g

h (x t ) = |x h | α x 0 |x 0 | x h |x h | .
Then the following result is straightforward from Theorem 6.2. Corollary 6.3. Assume the conditions of Theorem 6.2 for p = α. Then

g (α) h := 1 k m t=1 b-h j=1 W j,t W j+h,t X j,t |X j,t | X j+h,t |X j+h,t | =:ψg h (Bt/ Bt p) 1 1( B t α > B α,(k+1) ). P -→ E[g h (Q (a) )], n → +∞,
where the weights W j,t = W j,t (α) are defined in Theorem 6.2, satisfying b j=1 W j,t = 1, and X j,t := X (t-1)b+j for j = 1, . . . , b.

The function g h gives a summary of the magnitude and direction of the time series h lags after recording a high-level exceedance of the norm, and satisfies the relation h∈Z E[g h (Q (α) )] = 1. Example 6.4. Let (X t ) be a linear process satisfying the assumptions in Example 7, then

E[g h (Q (α) )] = t∈Z |ϕ t | α |ϕ t+h | α sign(ϕ t )sign(ϕ t+h ) ϕ α α 2 , h ∈ Z .
This function is proportional to the autocovariance function of a finite variance linear process with coefficients (|ϕ t | α sign(ϕ t )). In particular, for α = 1 it is proportional to the autocovariance function of a finite variance linear process with coefficients (ϕ t ).

6.2.2.

Large deviations for the supremum of a random walk. We start by reviewing Theorem 4.5 in Mikosch and Wintenberger [START_REF] Mikosch | A large deviations approach to limit theory for heavy-tailed time series[END_REF]; the proof is given in Section 8.5.3. Proposition 6.5. Consider a univariate stationary sequence (X t ) satisfying RV α for some α ≥ 1, AC, CS 1 , and c(1) < ∞. Then for all p ≥ 1, ) α α ] was suggested in Section 4.3.2. A consistent estimator of the term in (6.3) is given next. Corollary 6.6. Assume the conditions of Theorem 6.2 for p = 1. Then

P(sup 1≤t≤n S t > x n ) nP(|X 1 | > x n ) -c(p) E lim s→∞ sup t≥-s t i=-s Q (p) i α + → 0, n → ∞. (6.3) If α ≥ 1, then Q (1) α α ≤ Q (1) α 1 = 1 and a consistent estimator of c(1) = 1/E[ Q (1
m t=1 sup 1≤j≤b X t,j Bt 1 α + 1 1( B t 1 > B 1,(k+1) ) m t=1 Bt α α Bt α 1 1 1( B t 1 > B 1,(k+1) ) -c(1) E lim s→∞ sup t≥-s t i=-s Q (1) i α + P -→ 0 , n → ∞ , where X t,j := X (t-1)b+j , for 1 ≤ j ≤ b, 1 ≤ t ≤ m.
Following the same ideas and using Theorem 4.9 in [START_REF] Mikosch | A large deviations approach to limit theory for heavy-tailed time series[END_REF], one can also derive a consistent estimator for the constant in the related ruin problem. Cluster-based approaches with the goal to improve inference on Θ 1 for Markov chains were considered in Drees et al. [START_REF] Drees | Statistics for tail processes of Markov chains[END_REF]; see also Davis et al. [10] and Drees et al. [START_REF] Drees | Cluster based inference for extremes of time series[END_REF] for related cluster-based procedures on (Θ t ) |t|≤h for fixed h ≥ 0. Our approach can be seen as an extension for inference on the α -valued sequence (Θ t ).

Consider the continuous re-normalization function

ζ(x) = x/|x 0 | on {x ∈ α : |x 0 | > 0}.
We derive the following result from Theorem 6.2; the proof is given in Section 8.5.4. Proposition 6.7. Assume the conditions of Theorem 6.2 for p = α. Let ρ : ( α , d α ) → R be a homogeneous continuous function and

ρ ζ (x) := (ρ α ∧ 1) • ζ(x). Then for k = k n → ∞, ρ ζ (α) := 1 k m t=1 ψ ρ ζ (B t ) 1 1( B t p > B p,( k+1 
) ) P -→ P(ρ(Y Θ) > 1) , n → ∞ ,
where

ψ ρ ζ (B t ) is defined in (6.2) and the Pareto(α) random variable Y is independent of Θ.
Classical examples of such functionals are ρ(x) = max i≥0,j≥i (x i -x j ) + , functionals related to large deviations such as ρ(x) = sup t≥0 ( t i=0 x i ) + , or measures of serial dependence such as ρ(x) = |x h |.

Cluster inference implementation for regularly varying linear process

In this section we illustrate the index estimators of Corollaries 4.3 and 4.5 for a regularly varying linear process

X t := j∈Z ϕ j Z t-j , t ∈ Z,
where (Z t ) is an iid real-valued regularly varying sequence with (tail)-index α > 0, and (ϕ j ) are real coefficients such that j∈Z |ϕ j | 1∧(α-ε) < ∞ for some ε > 0.

In this setting, (X t ) is regularly varying with the same (tail)-index α > 0, and the distributions of Z t and X t are tail-equivalent; see Davis and Resnick [START_REF] Davis | Limit theory for moving averages of random variables with regularly varying tail probabilities[END_REF]. The spectral cluster process of (X t ) is given by Q Kulik and Soulier [23], (15.3.9). Then

(α) t = (ϕ t+J / (ϕ t ) α ) Θ Z 0 , t ∈ Z, where lim x→∞ P(±Z 0 > x)/P(|Z 0 | > x) = P(Θ Z 0 = ±1), Θ Z 0 is independent of a random shift J with distribution P(J = j) = |ϕ j | α / (ϕ t ) α α ; see
c(∞) = max t∈Z |ϕ t | α / ϕ α α , c(1) = t∈Z |ϕ t | α / ϕ α α . For the causal AR(1) model given by X t = ϕ X t-1 + Z t , t ∈ Z, |ϕ| < 1, one retrieves θ |X| = c(∞) = 1 -|ϕ| α and c(1) = (1 -|ϕ| α )/(1 -|ϕ|) α .
We aim to illustrate the estimators of θ |X| and c(1) built on extremal αblocks for the causal AR(1) model with student(α) noise. Guided by (4.3), we take

k = k n = n/b 2 n as k n = [m n P( B α > x bn )] ∼ n P(|X 0 | > x bn ) = o(n/b 1+κ
n ), for κ > 0 sufficiently small using the Potter bound. For estimation of α, we follow the bias-correction procedure in de Haan et al. [START_REF] Haan | Adapting extreme value statistics to financial time series: dealing with bias and serial dependence[END_REF]. This estimator is plugged into (4.4), (4.6), resulting in the estimators θ |X| , c(1), as a function of block lengths. Figures 7.1 and 7.2 present boxplots (in blue) of these estimators as a function of b n and for different sample sizes n. For comparison, we also show boxplots (in white) of the estimators in (4.5) and (4.7) based on extremal ∞ -blocks. Inference based on α -block, coupled with a Hill-type estimate of α, seems to be robust compared to the ∞ -blocks approach. In all examples the block length b = 32 gives nice results for the α -approach in terms of bias and dispersion. Instead, the ∞ -estimator appears to be highly sensitive to the block length choice. Also, notice that the bias for large block lengths decreases as n increases. Indeed, if we fix n, the relation n/b 2 → 0 as b → ∞ restricts the block length for small sample sizes. We also refer to Buriticá et al. [START_REF] Buriticá | Some variations on the extremal index[END_REF] for further simulation experiences showing that the estimator of the extremal index in (4.4) compares favorably with various classical estimators as regards bias. (in white). We simulate 1 000 samples (X t ) t=1,...,n from an AR(1) model with student(α) for α = 0.7 and ϕ = 0.8 (left column), ϕ = 0.5 (right column) were considered. Rows correspond to n = 8 000, 4 000, 2 000 from top to bottom. We recall from Remark 5.1 that (5.2) in CS p is always satisfied for p > α. Moreover, for p ≤ α, under the growth conditions on (x n ) in Theorem 2.1, centering with the expectation in (5.2) is not necessary. Proposition 8.2. Assume the conditions of Lemma 8.1. Then,

lim n→∞ P( X [0,n] p > x n ) n P(|X 0 | > x n ) = c(p) , ( 8 
P(x -1 n X [0,n] ∈ • | X [0,n] p > x n ) w -→ P(Y Q (p) ∈ •), n → ∞ , (8.2) 
in the space ( ˜ p , dp ) where the Pareto(α) random variable Y and Q (p) are independent.

Proof of Lemma 8.1. Choose some > 0, δ ∈ (0, 1). Since

a -1 n X [0,n] p p
is a sum of non-negative random variables we have the following bounds via truncation

P x -1 n X [0,n] p p > 1) ≤ P( x -1 n X [0,n] p p > 1 ≤ P x -1 n X [0,n] p p > (1 -δ p ) + P x -1 n X [0,n] p p > δ p . (8.3)
By CS p and in view of Remark 5.1 we have lim

↓0 lim sup n→∞ P x -1 n X [0,n] p p > δ p /(nP(|X 0 | > x n )) = 0 . (8.4)
Now, for any choice of u > 0, it remains to determine the limits of the terms P

x -1 n X [0,n] p p > u)/(nP(|X 0 | > x n )).
We start with a telescoping sum representation

P( x -1 n X [0,n] p p > u) -P(|x -1 n X 0 | p p > u) = n i=1 P( x -1 n X [0,i] p p > u) -P( x -1 n X [0,i-1] p p > u) = n i=1 E 1 1( x -1 n X [0,i] p p > u) -1 1( x -1 n X [1,i] p p > u) 1 1(|X 0 | > x n )
, where we used stationarity in the last step and the fact that the difference of the indicator functions vanishes on {|X 0 | ≤ x n }. We also observe that the second term on the left-hand side is of the order o(n

P(|X 0 | > x n )). For any fixed k write A k = {max k≤t≤n |X t | > x n }. Regular variation of (X t ) ensures that, as n → ∞, P( x -1 n X [0,n] p p > u) n P(|X 0 | > x n ) ∼ -α 1 n n i=1 E 1 1( x -1 n X [0,i] p p > u) -1 1( x -1 n X [1,i] p p > u) |X 0 | > x n ∼ -α E 1 1( x -1 n X [0,k-1] p p > u) -1 1( x -1 n X [1,k-1] p p > u) ×1 1(A c k ) |X 0 | > x n + -α O P(A k | |X 0 | > x n )
, where the second term vanishes, first letting n → ∞ and then k → ∞, by virtue of AC. Now the regular variation property of (X t ) implies that

lim n→∞ P( x -1 n X [0,n] p p > u) nP(|X 0 | > x n ) = lim k→∞ -α P k-1 t=0 | Y Θ t | p 1 1(|Y Θ t | > 1) > u -P k-1 t=1 | Y Θ t | p 1 1(|Y Θ t | > 1) > u) , by a change of variable this term equals = lim k→∞ E ∞ 1 1 k-1 t=0 |yΘ t | p 1 1(|yΘ t | > ) > u -1 1 k-1 t=1 |yΘ t | p 1 1(|yΘ t | > ) > u d(-y -α ) = lim k→∞ E ∞ 0 1 1 yΘ [0,k-1] p p > u -1 1 yΘ [1,k-1] p p > u d(-y -α ) .
In the last step we used the fact that the integrand vanishes for 0 ≤ y ≤ . The integrand is non-negative and bounded by 1 1(y > ) which is integrable. Thus we may take the limit as k → ∞ inside the integral to derive the quantity

E ∞ 0 1 1 yΘ [0,∞] p p > u -1 1 yΘ [1,∞] p p > u d(-y -α ) .
By monotone convergence as ↓ 0 we get the limit

u -α/p E Θ [0,∞] α p -Θ [1,∞] α p = u -α/p c(p) . (8.5)
An application of this formula and a telescoping sum argument yield

E (Θ t ) t≥0 α p -(Θ t ) t≥1 α p . (8.6) = E Θ α α (Θ t ) t≥0 / Θ α α p -(Θ t ) t≥1 / Θ α α p = s∈Z E |Θ s | α (Θ t ) t≥0 / Θ α α p -(Θ t ) t≥1 / Θ α α p = s∈Z E (Θ t ) t≥-s / Θ α α p -(Θ t ) t≥-s+1 / Θ α α p = E[ Θ α p / Θ α α ] = c(p).
Now an appeal to (8.3) with u = 1 and u = 1 -δ p yields

c(p) ≤ lim inf n→∞ P( x -1 n X [0,n] p p > 1 n P(|X 0 | > x n ) ≤ lim sup n→∞ P( x -1 n X [0,n] p p > 1 n P(|X 0 | > x n ) ≤ (1 -δ p ) -α/p c(p) .
The limit relation (8.1) follows as δ ↓ 0.

Proof of Proposition 8.2. Consider any bounded Lipschitz-continuous function f

: ( ˜ p , d p ) → R. The statement is proved if we can show that lim n→∞ E[f (x -1 n X [0,n] ) | X [0,n] p > x n ] = c(p) -1 E Θ/ Θ α α p f Y Θ/ Θ p .
In view of Lemma 8.1 it suffices to show

lim n→∞ E[f (x -1 n X [0,n] ) 1 1( X [0,n] p > x n )] n P(|X 0 | > x n ) = E Θ/ Θ α α p f Y Θ/ Θ p .
In these limit relations we may replace f

(x -1 n X [0,n] ) by f (x -1 n X [0,n]
) since by (8.4) for any δ > 0, some

K f > 0, lim ε ↓ 0 lim sup n→∞ P |f (x -1 n X [0,n] ) -f (x -1 n X [0,n] )| > δ , X [0,n] p > x n n P(|X 0 | > x n ) ≤ lim ε↓0 lim sup n→∞ P K f d p (x -1 n X [0,n] , 0) > δ n P(|X 0 | > x n ) ≤ lim ε↓0 lim sup n→∞ P K f x -1 n X [0,n] p p > δ(p) n P(|X 0 | > x n ) = 0 ,
where δ(p) = δ p for p ≥ 1 and = δ for p ∈ (0, 1). We also have for δ ∈ (0, 1),

G n, = E f x -1 n X [0,n] 1 1 x -1 n X [0,n] p > 1 -1 1 x -1 n X [0,n] p > 1 n P(|X 0 | > x n ) ≤ c P( x -1 n X [0,n] p > 1 ≥ x -1 n X [0,n] p n P(|X 0 | > x n ) ≤ c P x -1 n X [0,n] p > δ n P(|X 0 | > x n ) + c P 1 ≥ x -1 n X [0,n] p > 1 -δ n P(|X 0 | > x n ) = G (1) n, ,δ + G (2)
n, ,δ .

Applying (8.4) to G (1)
n, ,δ and using the calculations in the proof of Lemma 8.1 leading to (8.5) for

G (2) n, ,δ , we conclude that lim ↓0 lim sup n→∞ G n, ≤ lim ↓0 lim sup n→∞ G (1) n, ,δ + lim ↓0 lim sup n→∞ G (2) n, ,δ = 0 + c (1 -δ) -α/p -1 ↓ 0 , δ ↓ 0 .
Thus it suffices to show lim

↓0 lim n→∞ E f x -1 n X [0,n] 1 1 x -1 n X [0,n] p > 1 n P(|X 0 | > x n ) = E Θ/ Θ α α p f Y Θ/ Θ p . (8.7)
This is the goal of the remaining proof. to j ∈ {k -1, . . . , n} for any fixed k ≥ 1. Therefore we have as n → ∞,

II -O P(A k | |X 0 | > x n ) ∼ -α n n j=k-1 E f (0 n-j , x -1 n X [0,j] ) 1 1 { x -1 n X [0,j] p > 1} -f (0 n-j+1 , x -1 n X [1,j] ) 1 1 { x -1 n X [1,j] p > 1} 1 1(A c k ) |X 0 | > x n = -α n n j=k-1 E f (0 n-j , x -1 n X [0,k-1] , 0 j-k ) 1 1 x -1 n X [0,k-1] p > 1 -f (0 n-j+1 , x -1 n X [1,k-1] , 0 j-k ) 1 1 x -1 n X [1,k-1] p > 1 |X 0 | > x n .
Next we apply shift-invariance and regular variation in ˜ p :

∼ -α E f x -1 n X [0,k-1] 1 1 x -1 n X [0,k-1] p > 1 -f x -1 n X [1,k-1] 1 1 x -1 n X [1,k-1] p > 1 |X 0 | > x n → -α E f Y Θ [0,k-1] 1 1 Y Θ [0,k-1] p > 1 -f Y Θ [1,k-1] 1 1 Y [1,k-1] p > 1 = E f Y Θ [0,k-1] 1 1 1 Y [0,k-1] 1 p > 1 -f Y [1,k-1] 1 1 1 Y Θ [1,k-1] 1 p > 1 =: J k, .
By Proposition 3.2 we have Θ α < ∞ a.s., |Θ t | a.s.

-→ 0 as |t| → ∞, hence T := inf t≥0 {t : Y |Θ t | < 1} < ∞ a.s. Then by monotone convergence as k → ∞,

J k, = -α E f Y Θ [0,∞] 1 1 1 Y Θ [0,∞] 1 p > 1 -f Y Θ [1,∞] 1 1 1 Y Θ [1,∞] 1 p > 1 1 1(T < k) +O(P(T ≥ k)) → -α E f Y Θ [0,∞] 1 1 1 Y Θ [0,∞] 1 p > 1 -f Y Θ [1,∞] 1 1 1 Y Θ [1,∞] 1 p > 1 = ∞ 0 E f y Θ [0,∞] 1 1 y Θ [0,∞] p > 1 -f y Θ [1,∞] 1 1 y Θ [1,∞] p > 1 d(-y -α ) =: J .
In the last step we changed variables, u = y, and observed that the integrand vanishes for y < . Finally, we want to let ↓ 0. We start by inter-changing expectation and integral in J , and change variables, u = y Θ [0,∞] α , in the first term of the integrand and then proceed similarly for the second term with the convention that it is zero on { Θ [1,∞] α = 0}:

J = E ∞ 0 Θ [0,∞] α α f y Θ [0,∞] Θ [0,∞] α 1 1 y Θ [0,∞] Θ [0,∞] α p > 1 -Θ [1,∞] α α f y Θ [1,∞] Θ [1,∞] α 1 1 y Θ [1,∞] Θ [1,∞] α p > 1 d(-y -α ) = ∞ t=1 ∞ 0 E |Θ t | α f y Θ [0,∞] Θ [0,∞] α 1 1 y Θ [0,∞] Θ [0,∞] α p > 1 -f y Θ [1,∞] Θ [1,∞] α 1 1 y Θ [1,∞] Θ [1,∞] α p > 1 d(-y -α ) +E ∞ 0 f y Θ [0,∞] Θ [0,∞] α 1 1 y Θ [0,∞] Θ [0,∞] α p > 1 d(-y -α ) .
Next we apply the time-change formula (2.2) to each summand.

J = ∞ t=1 ∞ 0 E f yΘ [-t,∞] Θ [-t,∞] α 1 1 yΘ [-t,∞] Θ [-t,∞] α p > 1 -f yΘ [1-t,∞] Θ [1-t,∞] α 1 1 yΘ [1-t,∞] Θ [1-t,∞] α p > 1 d(-y -α ) +E ∞ 0 f yΘ [0,∞] Θ [0,∞] α 1 1 yΘ [0,∞] Θ [0,∞] α p > 1 d(-y -α ) .
This is a telescoping sum in t with value

J = E ∞ 0 f y Θ Θ α 1 1 y Θ Θ α p > 1 d(-y -α ) .
By monotone convergence we have lim

↓0 J = E ∞ 0 f y Θ Θ α 1 1 y Θ Θ α p > 1 d(-y -α ) . (8.8)
Combining the arguments above, we proved (8.7) as desired. 8.2. Proof of Lemma 5.4. The case p < α. Choose some > 0, δ ∈ (0, 1). We have the following bounds via truncation Moreover, we observe that by Karamata's theorem for p < α

I 1 -I 2 := P x -1 n X [0,n] p p -E x -1 n X [0,n] p p > 1 + δ p -P x -1 n X [0,n] p p -E x -1 n X [0,n] p p ≤ -δ p ≤ P( x -1 n X [0,n] p p -E x -1 n X [0,n] p p > 1 ≤ P x -1 n X [0,n] p p -E x -1 n X [0,n] p p > 1 -δ p +P x -1 n X [0,n] p p -E x -1 n X [0,n]
E x -1 n X [0,n] p p = nE |X 0 /x n | p 1 1(|X 0 | > x n ) = O n P(|X 0 | > x n ) = o(1) .
Thus centering in I 1 and I 3 is not needed, and one can follow the lines of the proof of Lemma 

P(Q (p) (h) ∈ •) = 1 c(p, h) h k=0 E Θ -k+[0,h] α p Θ -k+[0,h] α α 1 1 Θ -k+[0,h] Θ -k+[0,h] p ∈ • , (8.9) 
where c(p, h)

:= h k=0 E[ Θ -k+[0,h] α p / Θ -k+[0,h] α α ].
In particular, c(α, h) = h + 1 and (8.10)

P(Q (α) (h) ∈ •) = P Θ -U (h) +[0,h] / Θ -U (h) +[0,h] α ∈ • ,
where U (h) is uniformly distributed on {0, . . . , h} and independent of Θ.

Lemma 8.4. Assume |Θ t | → 0 as t → ∞ and let f : ˜ α ∩ {x : x p = 1} → (0, ∞) be any bounded Lipschitz-continuous function in ( ˜ α , dα ). Then, for every p ≥ α,

c(p,h) h+1 E[f (Q (p) (h))] → E[ Θ/ Θ α α p f (Θ/ Θ p )] , (8.11) as h → +∞ We conclude from (8.11) for f (x) ≡ 1 that lim h→∞ c(p, h)/(h + 1) = c(p). If 0 < c(p) < ∞, lim h→∞ E[f (Q (p) (h))] = c(p) -1 E[ Θ/ Θ α α p f (Θ/ Θ p )]. (8.12)
Finally, the portmanteau theorem yields

Q (p) (h) d -→ Q (p) (∞) in ( ˜ p ∩ {x :
x p = 1}, dp ) where Q (p) (∞) is well defined in view of the right-hand side of (8.12). This finishes the proof of the proposition.

Proof of Lemma 8.3. If X [0,h] /x p > 1 then for sufficiently small > 0,

X [0,h] /x ∞ > . Therefore, on { X [0,h] /x p > 1}, h i=0 |X i /x| α 1 1 |X i /x| > > 0 .
Using stationarity, we obtain

P( X [0,h] /x p > 1) = h i=0 E |X i /x| α 1 1 |X i /x| > h t=0 |X t /x| α 1 1 |X t /x| > 1 1( X [0,h] /x p > 1) = h i=0 E |X 0 /x| α 1 1 |X 0 /x| > h-i t=-i |X t /x| α 1 1 |X t /x| > 1 1( X [-i,h-i] /x p > 1) = P(|X 0 | > x ) h i=0 E |X 0 /x| α 1 1( X [-i,h-i] /x p > 1) h-i t=-i |X t /x| α 1 1 |X t /x| > |X 0 | > x .
Applying the definition (2.1) of regular variation and dominated convergence, we obtain as x → ∞, P( X [0,h] /x p > 1)

P(|X 0 | > x) → -α h i=0 E | Y Θ 0 | α 1 1( Y Θ [-i,h-i] p > 1) h-i t=-i | Y Θ t | α 1 1 |Y Θ t | > 1 = h i=0 ∞ E 1 1(y Θ [-i,h-i] p > 1) h-i t=-i |Θ t | α 1 1 y |Θ t | > d(-y -α ) .
The left-hand side does not depend on . Therefore, letting ↓ 0, we arrive at

lim x→∞ P( X [0,h] /x p > 1) P(|X 0 | > x) = h i=0 ∞ 0 E 1 1(y Θ [-i,h-i] p > 1) Θ [-i,h-i] α α d(-y -α ) = h i=0 E Θ -i+[0,h] α p Θ -i+[0,h] α α = c(p, h) . (8.13) This constant is finite since Θ i+[0,h] p ≤ (h + 1) Θ i+[0,h] ∞ .
Next we prove (8.9). For this reason, let A be a continuity set with respect to the limit law in (8.9). An appeal to (8.13) yields

c(p, h) P(x -1 X [0,h] ∈ A | X [0,h] p > x) ∼ P(x -1 X [0,h] ∈ A , X [0,h] p > x) P(|X 0 | > x) =: I(x) .
Proceeding as for the derivation of (8.13), we obtain

I(x) ∼ ∞ 0 h i=0 E 1 1(y Θ [-i,h-i] p > 1) Θ [-i,h-i] α α 1 1(y Θ [-i,h-i] ∈ A) d(-y -α ) = ∞ 1 h i=0 E Θ [-i,h-i] α p Θ [-i,h-i] α α 1 1 y Θ [-i,h-i] Θ [-i,h-i] p ∈ A d(-y -α ) .
In the last step we changed the variable,

u = y Θ [-i,h-i] p > 0 a.s., observ- ing that Θ [-i,h-i] p ≥ |Θ 0 | = 1.
This proves (8.9) and the lemma.

Proof of Lemma 8.4. Assume f : ˜ α ∩ {x : x p = 1} → (0, ∞) is any bounded Lipschitz-continuous function in ( ˜ α , dα ). By Lemma 8.3 we have for all p ≥ α,

c(p, h) h + 1 E[f (Q (p) (h))] -c(p)E[f (Q (p) )] = = 1 h + 1 h k=0 E Θ -k+[0,h] α p Θ -k+[0,h] α α - Θ α p Θ α α f (Θ -k+[0,h] / Θ -k+[0,h] p ) + + E Θ α p Θ α α f (Θ -k+[0,h] / Θ [-k+[0,h] p ) -f (Θ/ Θ p ) =: I + II .
We will prove that I and II vanish as h → ∞. Since p ≥ α subadditivity yields for k ∈ [0, h],

Θ -k+[0,h] α p Θ -k+[0,h] α α - Θ α p Θ α α = Θ α Θ -k+[0,h] α p -Θ -k+[0,h] α Θ α p Θ -k+[0,h] α α Θ α α ≤ Θ α Θ -k+[0,h] p p -Θ -k+[0,h] α Θ p p α/p Θ -k+[0,h] α α Θ α α .
Moreover,

Θ α Θ -k+[0,h] p p -Θ -k+[0,h] α Θ p p ≤ Θ -k+[0,h] p α -k-1 t=-∞ |Θ t | p + +∞ t=-k+h+1 |Θ| p + Θ α -Θ -k+[0,h] α p -k+h t=-k |Θ t | p .
Thus, |I| is bounded from above by

1 h + 1 f ∞ h k=0 E Θ [-∞,-k-1] α p Θ α α + E Θ [-k+h+1,∞] α p Θ α α +E Θ [-∞,-k-1] α α + Θ [-k+h+1,+∞] α α Θ α α Θ -k+[0,h] α p Θ -k+[0,h] α α ≤ 1 h + 1 f ∞ h k=0 E Θ [-∞,-(k+1)] α p + Θ [-∞,-(k+1)] α α Θ α α +E Θ [k+1,+∞] α p + Θ [k+1,+∞] α α Θ α α .
Taking the limit as h → ∞, the Cèsaro limit on the right-hand side converges to zero. We use the Lipschitz-continuity of f to obtain an upper bound of |II|:

|II| ≤ 1 h + 1 c h k=0 E Θ -k+[0,h] α p Θ -k+[0,h] α α dα Θ -k+[0,h] Θ -k+[0,h] p , Θ Θ p .
Similar arguments as for |I| → 0 show that |II| → 0. 

m t=1 g(x -1 b B t ) P -→ ∞ 0 E g(y Q (p) ) d(-y -α ) , n → ∞ , holds for sequences k n → ∞ and m n := [n/b n ] → ∞ as in MX p . Proof. If MX p holds for Lipschitz-continuous f ∈ G + ( ˜ p ), then it holds for functions g ∈ G + ( ˜ p ) of the form g(x t ) = 1 1(x t ∈ A) where A is a continuity- set of ˜ p and 0 ∈ A. It suffices to prove that E e -1 k m/k t=1 g(x -1 b Bt) k → e -E ∞ 0 g(y Q (p) )d(-y -α ) . (8.15) By stationarity, E 1 -e -1 k m/k t=1 g(x -1 b Bt) = O k -2 m E[g(x -1 b B 1 )] . (8.16)
Since g vanishes in some neighborhood of the origin there exists c g > 0 such that g(x) = g(x) 1 1( x p > c g ). Therefore and by virtue of Proposition 8.2 the right-hand side of (8.16) vanishes as n → ∞. Now a Taylor expansion argument shows that the left-hand side of (8.15) We continue with the proof of Theorem 4.2. Lemma 8.5 implies convergence of the empirical measures in M 0 ( ˜ p ):

P n (•) := 1 k m t=1 1 1(x -1 b B t ∈ • ) P -→ P (•) := ∞ 0 P(yQ (p) ∈ •)d(-y -α ) .
Using the argument in Resnick [START_REF] Resnick | Heavy-Tail Phenomena: Probabilistic and Statistical Modeling[END_REF], p. 81, we may conclude B p,(k+1) /x b P -→

1, and thus the joint convergence in (P n , B p,(k+1) /x b ) P -→ (P, 1) in M 0 ( ˜ p )× R + follows. Now (4.2) follows by an application of the continuous mapping theorem to the scaling function s(P (•), t) = P (t •). To prove continuity of s we use again the portmanteau theorem for M 0 ( ˜ p )-convergence in Hult and Lindskog [START_REF] Hult | Regular variation for measures on metric spaces[END_REF], Theorem 2.4. Thus it suffices to check whether the limit P n f (•/t) P -→ P f holds as (n, t) → (∞, 1) for Lipschitz-continuous f ∈ G + ( ˜ p ). But we have with Lemma 8.5

|P n f (•/t) -P f | ≤ |P n f (•/t) -P n f | + |P n f -P f | = |P n f (•/t) -P n f | + o P (1), n → ∞.
Then, for all 0 < t 0 ≤ t < 2, for t 0 ≤ 1, setting g(x) = ( x p ∧ f ∞ ) 1 1({x :

x p > c f /t 0 }), we have

|P n f (•/t) -P f | ≤ t -1 -1 P n g + o P (1) ≤ t -1 -1 c + o P (1) + o P (1) ,
for some c > 0, c f > 0 as above. Letting t → 1, continuity of s follows. 

P(|X t | > δ a n , |X 0 | > δ a n ) ,
from which (AC) is immediate. This condition also implies (TB). We show this in two steps. First, we identify the coefficients b(v) in (TB) in terms of the spectral tail process. Mikosch and Wintenberger [START_REF] Mikosch | Precise large deviations for dependent regularly varying sequences[END_REF] showed that Then, by the time-change formula in (2.2) we deduce

∞ > ∞ j=0 E[|Θ -j | ∧ 1] = ∞ j=0 E[|Θ j | α (|Θ j | -1 ∧ 1)] = ∞ j=0 E[|Θ j | α-1 ∧ |Θ j | α ] > ∞ j=0 E[|Θ j | α-1 1 1(|Θ j | > 1)],
and (8.17) holds. This finishes the proof of the fact that E[( j≥0 |Θ t |) α-1 ] < +∞, in particular c(1) < ∞. Applying the mean value theorem and dominated convergence we arrive at the relation

b ± (v) -b ± (v -1) → E ∞ j=0 u Θ j α ± - ∞ j=1 u Θ j α ± , v → ∞ .
Reasoning for the limit as for (8.6) and recalling that c(1) < ∞, we identify

E ∞ j=0 u Θ j α ± - ∞ j=1 u Θ j α ± = E ∞ j=-∞ u Θ j α ± Θ α α = E ∞ j=-∞ u Q (α) j α ± = c(1)E ∞ j=-∞ u Q (1) j α ± .
8.5. Proofs of the results of Section 6.

8.5.1. Proof of Proposition 6.1. Notice that ψ g is bounded and measurable.

For p = α we have Q (α) d = Θ/ Θ α . Then the result follows from Proposition 3.6 in Janssen [START_REF] Janssen | Spectral tail processes and max-stable approximations of multivariate regularly varying time series[END_REF]. For p > 0, assuming the spectral cluster process Q (p) is well defined we have Θ p < ∞ a.s. and c(p) < ∞. Then, we introduce the Radon-Nikodym derivative of L(Q (p) ) with respect to L(Θ/ Θ p ) which by (3.2) is the function h : p ∩ {x : x p = 1} → R ≥0 defined by h(y/ y p ) := y α / y p . Finally, the result follows by another application of Proposition 3.6 in Janssen [START_REF] Janssen | Spectral tail processes and max-stable approximations of multivariate regularly varying time series[END_REF]. 8.5.2. Proof of Theorem 6.2. The proof is given for p = α only; the case p ≤ α extends in a natural way. Let g : α → R be a continuous bounded function. We start by proving that ψ g defined in (6. At this point we apply the time-change formula for positive measurable functions of Θ at every term of the sum in j ∈ Z; see Corollary 2.8. in Dombry et al. [START_REF] Dombry | Tail measure and spectral tail process of regularly varying time series[END_REF]. By the same argument as in the proof of Proposition 8.2 we obtain the representation of the expectation in (8.20) in terms of the univariate spectral cluster process Q (p) . Now we apply Theorem 6.2 to f (x) := lim k→∞ (sup t≥-k t i=-k x i ) α + on 1 . It is uniformly continuous and bounded by one on the sphere of p , hence (6.2) holds for f . Similarly, the constant c(1) -1 can be estimated by employing the function g(x) := x α on 1 which is bounded by one on the unitary 1 -sphere for α ≥ 1. 8.5.4. Proof of Proposition 6.7. The re-normalization function ζ is continuous on the unit sphere of ( α , d α ), except for sequences with x 0 = 0. Then

P(ρ(Y Θ) > 1) = E ρ(Θ t ) α ∧ 1 = E ρ(Q (α) t /|Q (α) 0 |) α ∧ 1 = E (ρ α ∧ 1) • ζ(Q (α) ) .
The proof is finished by an application of Theorem 6.2.
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 2 Notation. For integers i and a < b we write i+[a, b] = {i+a, . . . , i+b}. It is convenient to embed the vectors x [a,b] ∈ R d(b-a+1) in (R d ) Z by assigning zeros to indices i ∈ [a, b], and we then also write x [a,b] ∈ (R d ) Z
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 31 For p, α > 0 assume Θ p + Θ α < ∞ a.s. Under the assumptions of Theorem 2.1 the constant c(p) defined in (2.4) admits the representation c(p) = E Θ/ Θ

Theorem 4 . 2 .

 42 Assume the conditions of Theorem 2.1 hold for p > 0 with c(p) < ∞ together with MX p . Then B p,(k+1) /x b P -→ 1 and for every

Corollary 4 . 5 .

 45 We assume the conditions of Theorem 4.2 for p = α and α ∈ (0, 1]. Then we have for k

  4) holds with limit c(p) = 1 and S (p) n = n t=1 |X i | p has infinite expectation. If p < α the process (S (p) n ) has finite expectation and by the law of large numbers, for n/x p n → 0,

6. 2 . 3 .

 23 Application: a cluster-based method for inference on (Θ t ). Exploiting the relation (Q t ) discussed in Section 3.2, we propose cluster-based estimation methods for the spectral tail process.
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 718181 Figure 7.1. Boxplot of estimates θ |X| as a function of b n from (4.4) for inference through Q (α) (in blue) and from (4.5) through Q (∞) (in white). 1 000 simulated samples (X t ) t=1,...,n from a causal AR(1) model with student(α) noise with α = 1.3 and ϕ = 0.8 (left column), ϕ = 0.5 (right column) were considered. Rows correspond to results for n = 8 000, 4 000, 2 000 from top to bottom.

Figure 7 . 2 .

 72 Figure 7.2. Boxplot of estimates c(1) as a function of b n from (4.6) for inference through Q (α) (in blue) and from (4.7) for inference through Q (∞)(in white). We simulate 1 000 samples (X t ) t=1,...,n from an AR(1) model with student(α) for α = 0.7 and ϕ = 0.8 (left column), ϕ = 0.5 (right column) were considered. Rows correspond to n = 8 000, 4 000, 2 000 from top to bottom.

p p > δ p =: I 3 + I 4 .

 34 Taking into account CS p for p < α, we have lim ↓0 lim sup n→∞ (I 2 + I 4 )/(n P(|X 0 | > x n )) = 0.
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  ± (v) -b ± (v -1) = Ewhere we suppress in the notation the dependence of the left-hand side on u in what follows. (TB) amounts to verifying that b ± (v)-b ± (v -1) converges as v → ∞. For α ∈ (0, 1) this follows by concavity since Θ α < ∞ a.s. For 1 < α < 2 this will follow by a convexity argument if E[( j≥0 |Θ j |) α-1 ] < ∞. By subadditivity and Jensen's inequality, it is enough to check∞ j=0 E[|Θ j | α-1 1 1(|Θ j | > 1)] + E[|Θ j | ∧ 1] < +∞ . (8.17)We start by showing∞ j=0 |Θ j | ∧ 1 < ∞ . (|a -1 n X j | ∧ 1) 1 1(|X 0 | > a n ) = 0 ,which yields the following Cauchy criterion: for every ε > 0 there exists K sufficiently large such that forl ≥ K, h ≥ 0(|a -1 n X j | ∧ 1) 1 1(|X 0 | > a n ) = l+h j=l E |Y Θ j | ∧ 1 ≤ ε ,where we used regular variation of (X t ) in the last step. Then, we conclude (8.18) holds. By stationarity we can show similarly ∞ j=0 E[|Θ -j | ∧ 1] < +∞. (8.19)
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 853 1) is a continuous bounded function on ˜ α . Fix > 0 and [z] ∈ ˜ α ∩ {[y] : y α = 1}. Then for all [x] ∈ ˜ α ∩ {[y] : y α = 1}, k ∈ Z and N ∈ N, we have|ψ g (x) -ψ g (z)| = j∈Z |x * j | α g((x * j+t ) t ) -j∈Z |z * j | α g((z * j+t ) t ) = j∈Z |x * j -z * j-k | α g((x * j+t ) t ) -j∈Z |z * j | α g((z * j+t ) t ) -g((x * j+t+k ) t ) ≤ g ∞ d α α (B -k z * , x * ) + 2 g ∞ d α α (z * , z * [-N,N ] ) + |j|<N |z * j | α g((z * j+t ) t ) -g((x * j+t+k ) t ) . If [x] satisfies dα α (z, x) < (3 g ∞ ) -1 then there exists k 0 ∈ Z such that dα α (z, x) < d α α (B -k 0 z * , x * ) < (3 g ∞ ) -1 . Furthermore, choose N 0 ≥ 0 such that d α α (z * , z * [-N 0 ,N 0 ] ) < (2 × 3 g ∞ ) -1 and consider the finite set C [z] ⊂ α ∩ {y : y α = 1}, defined by C [z] := {(z * j+t ) t ∈ α : |j| < N 0 , |z * j | > 0}. Notice that for every z ∈ C [z] there exists δ(z) such that if d α α (z, x) < δ(z) implies |g(z) -g(x)| < /3. Finally, define η(z) := min{δ(z) : z ∈ C} ∧ (3 g ∞ ) -1 . Then, noticing that |j|<N 0 |z * j | α ≤ z α α = 1,we also obtain a bound for the last term. Hence, for every [x] ∈ ˜ α satisfying d α α (z, x) < η(z) we have |ψ g (x) -ψ g (z)| < . This finishes the proof of the continuity of the function ψ g on ˜ α ∩ {y : y α = 1}. We conclude with applications of Lemma 8.5 and Proposition 6.1. Proof of Proposition 6.5. Theorem 4.5 in Mikosch and Wintenberger[START_REF] Mikosch | A large deviations approach to limit theory for heavy-tailed time series[END_REF] yields immediatelyP(sup 1≤t≤n S t > x n ) nP(|X 1 | > x n ) n P(|X 1 | > x n ) → 0.We multiply the function inside the limiting expected value by the constant 1 = Θ α α / Θ α α . Moreover, since c(1) < ∞, then E[( ∞ t=1 |Θ t |) α-1 ] < ∞; see Lemma 3.11 in Planinić and Soulier[START_REF] Planinić | The tail process revisited[END_REF]. Then, by Fubini's theorem,

  8.1 to conclude. The case p = α. It requires only slight changes; we omit details. 8.3. Proofs of the results of Section 3. 8.3.1. Proof of Proposition 3.1. The representation (3.2) follows by identifying lim ↓0 J as on the right-hand side of (8.8). In particular, taking f as the constant map (x t ) → 1 in (3.2) we obtain the representation of the constant c(p) in (3.1).8.3.2.Proof of Proposition 3.3. Our goal is first to relate the sequence of spectral components (Q (p) (h)) h≥0 to (Θ t ). We start with two auxiliary results whose proofs are given at the end of this section. Lemma 8.3. Let (X t ) be a stationary time series satisfying RV α . Then for h ≥ 0,

  is of the asymptotic order ∼ exp{-(m/k)E[g(x -1 b B t )]}, and another application of Proposition 8.2 yields (8.15). We conclude by the portmanteau theorem for M 0 ( ˜ p )-convergence in Hult and Lindskog [21], Theorem 2.4. that (8.14) holds.
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Choose any > 0. Noticing that x -1 n X [0,n] = x -1 n X [1,n] on {|x -1 n X 0 | ≤ }, we have

where we used the stationarity in the last step. Using the same idea recursively, we obtain

where 0 k := {0} k for k ≥ 1. By regular variation of X 0 the last right-hand term is o(n P(|X 0 | > x n )). Therefore by regular variation of (X t ) we obtain as n → ∞,

vanishes by first letting n → ∞ then k → ∞. Since each of the summands in II is uniformly bounded in absolute value we may restrict the summation