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LARGE DEVIATIONS OF `p–BLOCKS OF REGULARLY

VARYING TIME SERIES AND APPLICATIONS TO

CLUSTER INFERENCE

GLORIA BURITICÁ, THOMAS MIKOSCH, AND OLIVIER WINTENBERGER

Abstract. In the regularly varying time series setting, a cluster of ex-
ceedances is a short period for which the supremum norm exceeds a high
threshold. We propose to study a generalization of this notion consider-
ing short periods, or blocks, with `p−norm above a high threshold. Our
main result derives new large deviation principles of extremal `p−blocks,
which guide us to define and characterize spectral cluster processes in
`p. We then study cluster inference in `p to motivate our results. We
design consistent disjoint blocks estimators to infer features of cluster
processes. Our estimators promote the use of large empirical quantiles
from the `p−norm of blocks as threshold levels which eases implemen-
tation and also facilitates comparison for different p > 0. Our approach
highlights the advantages of cluster inference based on extremal `α–
blocks, where α > 0 is the index of regular variation of the series. We
focus on inferring important indices in extreme value theory, e.g., the
extremal index.

1. Introduction

For various applications of extreme value statistics with stationary time
series, it is natural to wonder how a recorded high level can affect the fu-
ture behavior of the sequence or how time dependencies perturb inferential
methodologies. For example, for high quantile marginal estimation it is well
known that the inference procedures tailored for independent observations
are disturbed by temporal dependencies and must be corrected to produce
accurate estimates; cf. Leadbetter [24], Embrechts et al. [18]. We aim to
model extremal time dependencies in the setting of Rd-valued stationary reg-
ularly varying time series (Xt)t∈Z with generic element X0; see Section 2.1
for a definition, cf. Basrak and Segers [4]. In this framework, an exceedance
of a high threshold by the norm |Xt| at time t might trigger consecutive
exceedances in some small time interval around t. These short periods with
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acknowledge the support of the French Agence Nationale de la Recherche (ANR) under
reference ANR20-CE40-0025-01 (T-REX project).

1
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at least one exceedance were introduced implicitly in the seminal paper by
Davis and Hsing [11]. We refer to them as clusters (of exceedances). They
were further reviewed in Basrak and Segers [4] and Basrak et al. [3].

The main motivation for studying clusters (of exceedances) can be traced
back to Theorem 2.5 in Davis and Hsing [11]. For weakly dependent reg-
ularly varying time series, the point process with atoms at a−1

n X[0,n] =

a−1
n (X0, . . . ,Xn) admits a limit distribution that can be characterized in

terms of three features: the index of regular variation, the distribution of
cluster (of exceedances), and the extremal index of (|Xt|), denoted by θ|X|,
where an are moderate threshold levels satisfying nP(|X0| > an) → 1 as
n → ∞. In this setting, clusters are modeled as rare events of X[0,n] when
its supremum norm exceeds the high level xn such that P(‖X[0,n]‖∞ > xn) ∼
θ|X|nP(|X0| > xn) → 0. From the last relation we also see that θ|X| arises
when comparing the extremal behavior of blocks of maxima in (Xt) with
the corresponding behavior of the blocks in an iid sequence (X′t) with the
same marginal distribution. In particular θ|X| describes how the blocks of
maxima reach high levels compared to the iid setting.

In view of the previous discussion a cluster (of exceedances) is tied to-
gether with the extremal index by the supremum norm. Our main theo-
retical result extends the aforementioned ideas from the `∞–norm to `p–
norms for p < ∞. In Theorem 2.1 we investigate the behavior of X[0,n]

when its `p–norm exceeds high levels (xn) satisfying P(‖X[0,n]‖p > xn) =

P(
∑n

t=1 |Xt|p > xpn) → 0 as n → ∞. We call this a large deviation result
since it describes the probability that the partial sums ‖X[0,n]‖

p
p exceed the

extreme threshold xpn. This leads us to a new definition of a cluster process
in the space `p = `p(Rd) and, in the limiting case p = ∞, one recovers the
classical clusters (of exceedances). Similarly, large deviation principles for
sums were considered by Nagaev [31], Cline and Hsing [9] in the independent
heavy-tailed case, and by Mikosch and Wintenberger [27, 28, 29], Mikosch
and Rodionov [30] in the dependent heavy-tailed case. We extend large de-
viation principles to `p–norms ‖X[0,n]‖p, and extremal `p–blocks, i.e., blocks
X[0,n] with large `p–norm.

We apply our findings to cluster inference. For this purpose we divide the
sample X1, . . . ,Xn into disjoint blocks (Bt)1≤t≤bn/bnc, Bt := X(t−1) bn+[1,bn],
for a sequence of block lengths (bn) such that bn →∞ and bn/n→ 0. Then
we select blocks whose `p–norms exceed a high threshold xbn . Our goal is
to infer features of the cluster processes from these extremal `p–blocks. In
Theorem 4.2 we design consistent disjoint blocks methods with thresholds
chosen as order statistics of `p–norms. Hereby we must choose a number
kn = kn(p) of blocks with large `p–norm such that n/(bnkn)→∞, kn →∞.
The sequence (kn) appeals to the classical bias-variance trade-off in extreme
value statistics; see for example Resnick [33]. When choosing a small
number of blocks kn for inference the variance of the estimates increases
while a large number kn leads to strong bias. This calls for a rigorous
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definition of extremal `p–blocks with the goal of revealing how p plays a
key role for tuning the sequence kn = kn(p). Moreover, we can derive
the same quantity by using extremal `p–blocks for different values of p if
we apply a change-of-norm technique. Our large deviations result allows
us then to compare the different estimators through the tuning parameter
kn(p). The key argument of our analysis is the relationship we stress between
the sequence kn = kn(p) and the large deviations of `p–norms.

One advantage of using empirical `p–norm thresholds is that they adapt
to the block lengths (bn) and take into account the value of p. In the ex-
isting literature for p = ∞ no detailed advice is given as to how (bn) and
(xbn) must be chosen; see for example Drees, Rootzén [16], Drees, Neblung
[15], Cissokho, Kulik [8], Drees et al. [14], who assume growth conditions
on the sequence (xn) such as nP(|X0| > xn) → 0 as n → ∞. It is common
practice to replace xbn by an upper order statistic of (|Xt|)1≤t≤n; see for
example the blocks estimator of the extremal index proposed by Hsing [20].
In our setting, the order statistics of the `p–norms adapt naturally to dif-
ferent values of p. Asymptotic normality of our estimators could be derived
by combining arguments from Theorem 4.3 in Cissokho and Kulik [8] and
the large deviation arguments developed below; this topic is the subject of
ongoing work and will not be presented here.

The case when p and the index α of regular variation of (Xt) coincide
is rather specific. The relation P(‖X[0,n]‖α > xn) ∼ nP(|X0| > xn) → 0
indicates that serial dependence does not affect large deviations of the `α–
norm. From this relation we see that the `α–norm of the series reaches high
levels at the same rate as in the iid case. Consequently, when p coincides
with the index α, the temporal dependencies of the sequence do not perturb
the number kn = kn(α) of extremal `α–blocks we can consider for inference.
In practice, this fact might ease tuning the parameter kn. Hereby we focus
on inferring classical indices of serial dependence based on extremal `α–
blocks. We apply our inference procedure to estimate the extremal index
using extremal `α–blocks. We also consider inference of cluster indices as
defined by Mikosch and Wintenberger [28] on partial sum functionals by
considering extremal `α–blocks. Our simulation study supports the fact
that `α–cluster inference is robust regarding the number kn of extremal `α–
blocks we can choose.

The previous indices are based on functionals that are shift-invariant with
respect to the backward shift in sequence spaces; see Kulik and Soulier
[23] for details. We extend cluster inference to functionals acting on `p by
studying αth-power sum functionals acting on `p. The key argument for this
extension is the random shift analysis of Janssen [22] expressed in terms of
the αth moment of the cluster process. A similar idea has been investigated
in Drees et al. [17] and Davis et al. [10] for inference of the tail process.
Here we focus on cluster inference.
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1.1. Outline of the paper. In Section 2, after introducing preliminaries
on regular variation, we present the main large deviation principle (The-
orem 2.1). In Section 3 we study `p-valued cluster processes which were
introduced in Theorem 2.1. We apply this theorem in Section 4 where we
deal with inference for shift-invariant functionals acting on these cluster
processes (see Theorem 4.2), choosing thresholds as empirical quantiles of
the `p–norms of blocks. We continue with an in-depth analysis of the as-
sumptions of Theorem 2.1; see Section 5. In Section 6 we consider inference
for non-shift-invariant functionals. We also illustrate our approach of `p-
based cluster inference for p = α and compare it with the case p = ∞; see
Section 7. We defer all proofs to Section 8.

1.2. Notation. For integers i and a < b we write i+[a, b] = {i+a, . . . , i+b}.
It is convenient to embed the vectors x[a,b] ∈ Rd(b−a+1) in (Rd)Z by assigning

zeros to indices i 6∈ [a, b], and we then also write x[a,b] ∈ (Rd)Z. We write
x := (xt) = (xt)t∈Z, and define truncation at level ε > 0 from above and
below by xε = (xtε)t∈Z, xε = (xt

ε)t∈Z, where xtε = xt 11(|xt| > ε), xεt =
xt11(|xt| ≤ ε).

We focus on the sequence space `p, p ∈ (0,∞] equipped with the metric

dp(x,y) :=

{
‖x− y‖p =

(∑
t∈Z |xt − yt|p

)1/p
, p ∈ (1,∞) ,

‖x− y‖pp , p ∈ (0, 1) ,
x,y ∈ `p ,

and the supremum distance in the case p =∞. We know that dp makes `p

a separable Banach space for p ∈ (1,∞], and a separable complete metric
space for p ∈ (0, 1). Recall the backshift operator acting on x ∈ (Rd)Z:

Bkx = (xt−k)t∈Z, k ∈ Z. Then we define the shift-invariant space ˜̀p = `p/ ∼
as the quotient space with respect to the equivalence relation ∼ in `p: x ∼ y

if there exists k ∈ Z such that Bkx = y. An element of ˜̀p is denoted by
[x] = {Bkx : k ∈ Z}. For ease of notation, we often write x instead of [x],

and we notice that any element in `p can be embedded in ˜̀p by using the

equivalence relation. We define for [x], [y] ∈ ˜̀p,
d̃p([x], [y]) := inf

k∈Z

{
dp(B

ka,b) : a ∈ [x] ,b ∈ [y]
}
.

For p ∈ (0,∞], d̃p is a metric on ˜̀p and turns it into a complete metric space;
see Basrak et al. [3].

2. Preliminaries and main result

2.1. About regular variation of time series. We consider an Rd-valued
stationary process (Xt). Following Davis and Hsing [11], we call it regularly
varying if the finite-dimensional distributions of the process are regularly
varying. This notion involves the vague convergence of certain tail measures;
see Resnick [33]. Avoiding the concept of vague convergence and infinite
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limit measures, Basrak and Segers [4] showed that regular variation of (Xt)
is equivalent to the weak convergence relations: for every h ≥ 0,

P
(
x−1(Xt)[−h,h] ∈ · | |X0| > x

) w−→ P
(
Y (Θt)[−h,h] ∈ ·

)
, x→∞ ,

(2.1)

where Y is Pareto(α)-distributed, i.e., it has tail P(Y > y) = y−α, y > 1,
independent of the vector (Θt)[−h,h] in (Rd)2h+1 and |Θ0| = 1. Accord-
ing to Kolmogorov’s consistency theorem, one can extend the latter finite-
dimensional vectors to a sequence Θ = (Θt)t∈Z in (Rd)Z called the spectral
tail process of (Xt).

Following Planinić and Soulier [32], the spectral tail process (Θt) satisfies
the time-change formula: for every measurable function f : (`p, dp) → R
such that f(λx) = f(x) for all λ > 0, we have for all t, s ∈ Z,

E[f(Bs(Θt))11(Θ−s 6= 0)] = E
[
|Θs|α f

(
(Θt)

)]
.(2.2)

The regular variation property of (Xt), denoted by RVα, is determined by
the (tail)-index α > 0 and the spectral tail process.

Furthermore, Segers et al. [34] characterized regular variation of random
elements with values in star-shaped metric spaces. Their results are based
on weak convergence in the spirit of (2.1). Our focus will be on a special
star-shaped space: the sequence space (`p, dp). Using the p-modulus function
‖ · ‖p, the `p−valued stationary process (Xt) has the property RVα if and
only if relation (2.1) holds with |X0| replaced by ‖X[0,h]‖p. Equivalently,
(Proposition 3.1 in Segers et al. [34]), for every h ≥ 0,

P
(
x−1X[0,h] ∈ · | ‖X[0,h]‖p > x

) w−→ P
(
Y Q(p)(h) ∈ ·

)
, x→∞ ,

(2.3)

the Pareto(α) variable Y is independent of Q(p)(h) ∈ Rd (h+1), such that

‖Q(p)(h)‖p = 1 a.s. We call Q(p)(h) the spectral component of X[0,h] in `p.

2.2. Main result. We start by giving our main result on large deviations
of the sequence X[0,n], that we embed in the space (˜̀p, d̃p). The proof is
postponed to Section 8.1.

Theorem 2.1. Consider an Rd-valued stationary time series (Xt) satisfying
RVα for some α > 0. For a given p > 0, assume that there exists a sequence
(xn) such that nP(|X0| > xn) → 0 as n → ∞. Furthermore, assume that
for every δ > 0,

AC : limk→∞ lim supn→∞ P
(
‖X[k,n]‖∞ > δ xn | |X0| > δ xn

)
= 0,

CSp : limε→0 lim supn→∞
P(‖x−1

n X[0,n]

ε
‖p > δ)

nP(|X0| > xn)
= 0,
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n/xpn → 0 if p < α, and there exists κ > 0 such that n/xα−κn → 0 if p = α.
Then, there exists c(p) > 0 such that

lim
n→+∞

P(‖X[0,n]‖p > xn)

nP(|X0| > xn)
= c(p) .(2.4)

Moreover, c(p) < ∞ if p ≥ α, in particular, c(∞) ≤ c(p) ≤ c(α) = 1. If

c(p) <∞ there exists Q(p) ∈ ˜̀p such that ‖Q(p)‖p = 1 a.s. and

P(x−1
n X[0,n] ∈ · | ‖X[0,n]‖p > xn)

w−→ P(YQ(p) ∈ ·), n→∞ ,

(2.5)

in the space (˜̀p, d̃p) where Y is Pareto(α) distributed, independent of Q(p).

First, notice that under RVα, AC and CSα we obtain c(α) = 1. This
motivates the study of extremal `α–blocks since they reach high levels at a
constant rate regardless of the temporal dependencies traced through c(p)
in (2.4). Second, notice that for p > α the result of Theorem 2.1 holds
under RVα and AC solely. Indeed, condition CSp holds for p > α by a
Karamata–type argument; see Remark 5.1. We state Theorem 2.1 under
the one-sided anti-clustering condition AC. We use this condition together
with a telescoping sum argument to compensate for the classical two-sided
condition (5.1) used in Kulik and Soulier [23]. Conditions similar to CSp are
standard when dealing with sum functionals acting on (Xt); see e.g., Mikosch
and Wintenberger [27]. We refer to Section 5 for a thorough discussion on
the conditions AC, CSp, and the growth conditions imposed on (xn).

We refer to a relation of the type (2.4) as large deviation probabilities

motivated by the following observation. Write S
(p)
k =

∑k
t=0 |Xt|p, for k ≥ 1.

Then |X|p is regularly varying with index α/p. Relation (2.4) implies that

P(‖X[0,n]‖p > xn) = P
(
S(p)
n > xpn

)
∼ c(p)nP(|X0| > xn)→ 0 , n→∞ .

Thus the left-hand probability describes the rare event that the sum process

S
(p)
n exceeds the extreme threshold xpn.
Relation (2.5) extends the large deviation result for ‖X[0,n]‖p in (2.4)

to one for the process X[0,n] in the sequence space ( ˜̀p, d̃p). Motivated by

inference of the spectral cluster process Q(p), we establish (2.5) employing
weak convergence in the spirit of the polar decomposition from (2.3).

Remark 2.2. Recall Hult and Lindskog [21] introduced regular variation
for random elements assuming values in a general complete separable metric
space by extending the vague convergence approach (see Resnick [33]) to M0-
convergence; see also Lindskog et al. [26]. Relation (2.5) provides a family

of Borel sets in (˜̀p, d̃p) for which the weak limit of the self-normalized blocks
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X[0,n]/‖X[0,n]‖p exists. This result implies that the sequence of measures

µn(·) := P(x−1
n X[0,n] ∈ ·)/P(‖X[0,n]‖p > xn)

→ µ(·) :=

∫ ∞
0

P(yQ(p) ∈ ·) d(−y−α) , n→∞ ,

in the M0–sense in (˜̀p, d̃p). By the portmanteau theorem for measures
(Theorem 2.4. in Hult and Lindskog [21])

µn(A) = P(x−1
n X[0,n] ∈ A)/P(‖X[0,n]‖p > xn)→ µ(A) ,

for all Borel sets A in (˜̀p, d̃p) satisfying µ(∂A) = 0 and 0 6∈ A. This approach
is discussed in Kulik and Soulier [23].

3. Spectral cluster process representation

3.1. The spectral cluster process in `p. From (2.1) recall the spectral
tail process Θ of a stationary sequence (Xt) satisfying RVα. We start by

showing a representation of the spectral cluster process Q(p) from (2.5) in
terms of Θ. We deduce that the spectral cluster process is also well defined
in (`p, dp). The proof is deferred to Section 8.3.

Proposition 3.1. For p, α > 0 assume ‖Θ‖p + ‖Θ‖α < ∞ a.s. Under the
assumptions of Theorem 2.1 the constant c(p) defined in (2.4) admits the
representation

c(p) = E
[
‖Θ/‖Θ‖α‖αp

]
.(3.1)

In addition, if c(p) <∞ then the distribution of the spectral cluster process

Q(p) is given by

P(Q(p) ∈ ·) = (c(p))−1E
[
‖Θ/‖Θ‖α‖αp 11(Θ/‖Θ‖p ∈ · )

]
,(3.2)

in the space (`p, dp).

This result provides a new representation of the distribution of Q(p) for
fixed p. In what follows, under the assumptions of Theorem 2.1, the spectral
cluster processes are assumed to be defined in the space (`p, dp) via (3.2).
Proposition 3.1 also relates distinct spectral cluster processes to each other
by the change-of-norms transform in (3.2). In the next section we deal with
the case p = α.

3.2. The spectral cluster process in `α. In view of (3.2) the process

Θ/‖Θ‖α is the candidate for the `α−spectral cluster process Q(α) introduced

in (2.5), and it plays a key role for characterizing Q(p) in general. The
following result shows that Θ/‖Θ‖α is well defined in (`α, dα) under AC.

Proposition 3.2. Let (Xt) be a stationary sequence satisfying RVα with
spectral tail process (Θt). Then the following statements are equivalent:

i) ‖Θ‖α <∞ a.s. and Θ/‖Θ‖α is well defined in `α.
ii) |Θt| → 0 a.s. as t→∞.
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iii) The time of the largest record T ∗ := inf{s : s ∈ Z such that |Θs| =
supt∈Z |Θt|} is finite a.s.

Moreover, these statements hold under AC.

A proof of Proposition 3.2 is given in Lemma 3.6 of Buriticá et al. [7],
appealing to results by Janssen [22].

From (2.3) recall the sequence of spectral components (Q(α)(h))h≥0 of the

vectors (X[0,h])h≥0, satisfying the property ‖Q(α)(h)‖α = 1 a.s. Our next
result relates this sequence of spectral components to Θ/‖Θ‖α.

Proposition 3.3. Let (Xt) be a stationary time series satisfying RVα and

limt→∞ |Θt| = 0 a.s. Then Q(α)(h)
d−→ Q(α)(∞) as h→∞ in (˜̀α, d̃α) with

Q(α)(∞)
d
= Θ/‖Θ‖α.

This result gives raise to the interpretation of Θ/‖Θ‖α as the spectral
component of (Xt) in `α. The proof is given in Section 8.3. We deduce the
following almost sure relation in terms of the spectral cluster process in `α.

Proposition 3.4. Let (Xt) be a stationary sequence satisfying RVα with
spectral tail process (Θt). Under the assumptions AC and CSα, we deduce

the a.s. representations Q(α) = Θ/‖Θ‖α and Θ = Q(α)/|Q(α)
0 | in (˜̀α, d̃α).

Proposition 3.4 follows directly from Propositions 3.1 and 3.2.

4. Consistent cluster inference based on spectral cluster
processes

Let X1, . . . ,Xn be a sample from a stationary sequence (Xt) satisfying
RVα for some α > 0, and choose p > 0. We split the sample into disjoint
blocks Bt := X(t−1)b+[1,b], t = 1, . . . ,mn, where b = bn → ∞ and m =
mn := [n/bn]→∞. Throughout we assume that the sequence (xn) satisfies
the conditions of Theorem 2.1 for p > 0. We denote k = kn := [mnP(‖B‖p >
xbn)] → ∞. Then, in particular P(‖B1‖p > xb) → 0, mn → ∞ and kn →
∞.

4.1. Cluster functionals and mixing. The real-valued function g on ˜̀p

is a cluster functional if it vanishes in some neighborhood of the origin and
P(YQ(p) ∈ D(g)) = 0 where D(g) denotes the set of discontinuity points

of g. In what follows, it will be convenient to write G+(˜̀p) for the class

of non-negative functions on ˜̀p which vanish in some neighborhood of the
origin.

For asymptotic theory we will need the following mixing condition.

Condition MXp. There exists an integer sequence bn → ∞ such that

mn → ∞, kn → ∞, and for every Lipschitz-continuous f ∈ G+( ˜̀p), the
sequence (xn) satisfies

E
[
e−

1
k

∑m
t=1 f(x−1

b Bt)
]

=
(
E
[
e−

1
k

∑bm/kc
t=1 f(x−1

b Bt)
])k

+ o(1) , n→∞ .

(4.1)



LARGE DEVIATION PRINCIPLES OF `p–BLOCKS 9

with mn := bn/bnc and kn := bmnP(‖B‖p > xbn)c.

If MXp is required in the sequel we will refer to the sequences (bn), (mn)
and (kn) chosen in this condition.

Remark 4.1. Condition MXp is similar to the mixing conditions A, A′
in Davis and Hsing [11], Basrak et al. [2], respectively. These are defined
in terms of sequences (f(Xt)) while our functionals f act on blocks. MXp

holds under mild conditions, for example, under strong mixing with quite
general rate; cf. Lemma 6.2. in Basrak et al. [3].

4.2. Consistent cluster inference. The following result is the basis for
an empirical procedure for spectral cluster inference built on disjoint blocks.
The proof is given in Section 8.4.1.

Theorem 4.2. Assume the conditions of Theorem 2.1 hold for p > 0 with

c(p) < ∞ together with MXp. Then ‖B‖p,(k+1)/xb
P−→ 1 and for every

g ∈ G+( ˜̀p),

(4.2)
1

k

m∑
t=1

g
(
‖B‖−1

p,(k+1)Bt

) P−→
∫ ∞

0
E
[
g(yQ(p))

]
d(−y−α), n→∞ .

such that ‖B‖p,(1) ≥ ‖B‖p,(2) ≥ · · · ≥ ‖B‖p,(m) .

By virtue of Proposition 3.1 we can derive the same spectral cluster statis-
tic by letting the functionals gp : ˜̀p → R act on Q(p) for different pairs
(p, gp). This opens the road to different ways to estimate the same constant,
for example, c(q) for q > 0. To compare inference procedures tuned with
different p, we observe that Theorem 4.2 promotes the use of order statistics
of the sample of `p–norms. The sequence (kn) in (4.2) corresponds to the
number of extreme blocks used for inference. The large deviation principles
of Theorem 2.1 allow us then to compare the sequences kn = kn(p). For

inference through Q(p) the relation

kn = [mnP(‖B‖p > xbn)] ∼ c(p)nP(|X0| > xbn) ,(4.3)

justifies taking kn larger as p decreases, for p ∈ (α,∞], since c(·) is a non-
increasing function of p, and (xn) is a sequence satisfying AC and nP(|X0| >
xn) → 0. For p ∈ (0, α], the sequence (xn) must satisfy the additional
condition CSp, which restricts the range of possible values for kn, but allows

us to consider continuous functionals on (˜̀p, d̃p). One advantage of choosing
p = α is that c(α) = 1, thus the choice of kn = kn(α) does not rely on the
serial dependencies summarized in c(p).

4.3. Applications. In this section we apply Theorem 4.2 for inference on
some indices related to the extremes in a time-dependent sample and focus
on cluster inference using Q(α). We illustrate our estimators for a regularly
varying linear process in Section 7.
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4.3.1. The extremal index. The extremal index of a regularly varying sta-
tionary time series has interpretation as a measure of clustering of serial
exceedances, and was originally introduced in Leadbetter [24] and Leadbet-
ter et al. [25]. If (X′t) is iid with the same marginal distribution as (Xt) then
the extremal index θ|X| relates the expected number of serial exceedances of
(|Xt|) with the serial exceedances of (|X′t|). Assuming AC and additional
mixing assumptions (see e.g. Theorem 2.3. in [7]), the extremal index θ|X|
of (|Xt|) exists and equals c(∞).

We aim at applying Theorem 4.2 with p = α. In this setting, the change-
of-norm formula in (3.1) leads to the identities

θ|X| = c(∞) = E
[‖Θ‖α∞
‖Θ‖αα

]
= E[‖Q(α)‖α∞].

Then, letting p = α and g(x) =
(
‖x‖α∞/‖x‖αα

)
11(‖x‖α > 1) on the right-hand

side of (4.2), we obtain∫ ∞
0

E
[
g(yQ(α))

]
d(−y−α) =

∫ ∞
0

E
[‖Q(α)‖α∞
‖Q(α)‖αα

11(‖Q(α)‖αα > y−α)
]
d(−y−α)

= E[‖Q(α)‖α∞] = c(∞) .

Next we introduce a new consistent disjoint blocks estimator of the extremal
index defined from exceedances of `α-norm blocks.

Corollary 4.3. Assume the conditions of Theorem 4.2 for p = α. Then

1

k

m∑
t=1

‖Bt‖α∞
‖Bt‖αα

11(‖Bt‖α > ‖B‖α,(k+1))
P−→ c(∞) , n→∞ .(4.4)

An advantage of inferring the extremal index using extremal `α–blocks is
that the tuning parameter kn of the estimator does not rely on the clustering
effect of the series since c(α) = 1 in Equation (4.3).

Remark 4.4. We can compare this estimator of c(∞) with one based on the
clusters (of exceedances). Motivated by the blocks estimator of the extremal
index in Hsing [20], we let g(x) :=

∑
j∈Z 11(|xt| > 1) act on large `∞–blocks.

Choosing p = ∞ and using this g on the right-hand side of (4.2), we can
find an integer sequence k = kn(∞)→∞ such that(1

k

n∑
t=1

11(|Xt| > ‖B‖∞,(k+1))
)−1 P−→ c(∞) , n→∞ .(4.5)

Arguing as for (4.3), kn ∼ mnP(‖B‖∞ > xb) ∼ c(∞)nP(|X0| > xb). Thus,
the number of extreme blocks used in (4.5) shrinks when c(∞) < 1, com-
pared to its implementation in an iid setting. In practice, this can make the
choice of kn sensitive to the temporal ties.
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4.3.2. A cluster index for sums. In this section we assume that α ∈ (0, 2)
and E[X] = 0 for α ∈ (1, 2). We study the partial sums Sn :=

∑n
t=1 Xt, n ≥

1, and introduce a normalizing sequence (an) such that nP(|X0| > an)→ 1.
Starting with Davis and Hsing [11], α-stable central limit theory for (Sn/an)
was proved under suitable anti-clustering and mixing conditions.

In this setting, the quantity c(1) appears naturally and was coined cluster
index in Mikosch and Wintenberger [28]. For d = 1 it can be interpreted as
an equivalent of the extremal index for partial sums rather than maxima.
Indeed, consider a real-valued regularly varying stationary sequence (Xt)
with index of regular variation α ∈ (0, 2) satisfying P(X ≤ −x) = o

(
P(X >

x)
)

or X
d
= −X. Consider an iid sequence (X ′t) with X

d
= X ′ and partial

sums (S′n). Then a−1
n Sn

d−→ ξα and a−1
n S′n

d−→ ξ′α, both ξα and ξ′α are
α-stable and

E[e iuξα ] =
(
E[e iuξ

′
α ]
)c(1)

.

Under the assumptions of Proposition 3.1 and for p = α we have c(1) =

E[‖Q(α)‖α1 ]. For α ∈ (0, 1], take p = α and g(x) =
(
‖x‖α1 /‖x‖αα

)
11(‖x‖α > 1)

on the right-hand side of (4.2). Then an application of Theorem 4.2 with
p = α and g as mentioned yields a consistent estimator of c(1).

Corollary 4.5. We assume the conditions of Theorem 4.2 for p = α and
α ∈ (0, 1]. Then we have for k = kn →∞,

1

k

m∑
t=1

‖Bt‖α1
‖Bt‖αα

11(‖Bt‖α > ‖B‖α,(k+1))
P−→ c(1) , n→∞ .(4.6)

The estimator on the left-hand side of (4.6) has the advantage that kn ∼
nP(|X0| > xbn). Relation (4.6) holds by virtue of (4.3) regardless of the
temporal dependence in the series.

Remark 4.6. For α ∈ (1, 2) the function g applied in (4.6) to extremal
`α-blocks is no longer bounded. If c(1) <∞ we can apply Theorem 4.2 with
p = 1 and g(x) =

(
‖x‖αα/‖x‖α1

)
11(‖x‖1 > 1) to obtain a consistent estimator

of c(1). Indeed, the right-hand side of (4.2) turns into∫ ∞
0

E
[
g(yQ(1))

]
d(−y−α) =

∫ ∞
0

E
[‖Q(1)‖αα
‖Q(1)‖α1

11(‖Q(1)‖α1 > y−α)
]
d(−y−α)

= E[‖Q(1)‖αα] = (c(1))−1 ,

where the last identity follows from Proposition 3.1. Then Theorem 4.2
for p = 1 and g as above yields a consistent estimator of c(1). Note that
c(1) ∈ [1,∞) for α ∈ (1, 2). Hence the number kn of extremal `1-blocks
for this estimator does not decrease in comparison with the iid case. This
feature can also make this estimator robust for cluster inference.

Remark 4.7. Arguing as in Cissokho and Kulik [8], Kulik and Soulier
[23], and assuming CS1, we can extend Theorem 4.2 for p = ∞ to hold
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for `1-functionals. Then we can find k = kn(∞) → ∞ such that, with
g(x) := 11(‖x‖1 > 1) and p =∞ in (4.2),∑m

t=1 11(‖Bt‖1 > ‖B‖∞,(k+1))∑n
t=1 11(|Xt| > ‖B‖∞,(k+1))

P−→ c(1) , n→∞ .(4.7)

Here, following (4.3), we have kn ∼ c(∞)nP(|X0| > xb). This alternative
estimator of c(1) based on extremal `∞-blocks is consistent for α ∈ (0, 2).
Then, as in the extremal index example, the tuning parameter kn in (4.7)
is linked to the constant c(∞) ∈ (0, 1] and must be chosen carefully in
agreement with the clustering effect of the series.

Theorem 4.2 provides estimators of the parameters of the α-stable limit
ξα of (Sn/an). Indeed, following the theory in Bartkiewicz et al. [1], we

characterize the α-stable limit in terms of Q(1); the proof is given in Section
8.4.2.

Proposition 4.8. Consider a stationary regularly varying sequence (Xt)
with index α ∈ (0, 1) ∪ (1, 2). We assume the mixing condition

E[e iu
>Sn/an ] = (E[e iu

>Sbn/an ])mn + o(1) , n→∞ , u ∈ Rd ,

and the anti-clustering condition, for every δ > 0,

lim
l→∞

lim sup
n→∞

n
∑bn

t=lE[(|Xt/an| ∧ δ) (|X0/an| ∧ δ)] = 0 .(4.8)

Then Sn/an
d−→ ξα for an α-stable random vector ξα with characteristic

function E[exp(iu>ξα)] = exp(−cα σα(u) (1 − i β(u) tan(απ/2))), u ∈ Rd,
where cα := (Γ(2−α)/|1−α|)(1∧α) cos(απ/2), and the scale and skewness
parameters have representation

σα(u) := c(1)E[|u>
∑

t∈ZQ
(1)
t |α] ,

β(u) :=
(
E[(u>

∑
t∈ZQ

(1)
t )α+ − (u>

∑
t∈ZQ

(1)
t )α−]

)
/E[|u>

∑
t∈ZQ

(1)
t |α] .

As for c(1), an application of Theorem 4.2 with p = 1 for α ∈ (1, 2) and
p = α for α ∈ (0, 1) yields natural estimators of the parameters (σα(u), β(u))
in the central limit theorem of Proposition 4.8.

5. A discussion of the assumptions of the large deviation
principle in Theorem 2.1

Consider a stationary sequence (Xt) satisfying RVα and let (xn) be a
threshold sequences such that nP(|X0| > xn) → 0. In the conditions AC
and CSp below we refer to the same sequence (xn). In this section we will
discuss the conditions of Theorem 2.1.
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5.1. Anti-clustering condition AC. For every δ > 0,

lim
k→∞

lim sup
n→∞

P
(
‖X[k,n]‖∞ > δ xn | |X0| > δ xn

)
= 0.

Condition AC ensures that a large value at present time does not persist
indefinitely in the extreme future of the time series. This anti-clustering is
weaker than the more common two-sided one:

lim
k→∞

lim sup
n→∞

P
(

max
k≤|t|≤n

|Xt| > δ xn | |X0| > δ xn
)

= 0.(5.1)

A simple sufficient condition, which breaks block-wise extremal dependence
into pair-wise, is given by

lim
k→∞

lim sup
n→∞

n∑
t=k

P
(
|Xt| > δ xn | |X0| > δ xn

)
.

For m-dependent (Xt) the latter condition turns into nP(|X0| > δ xn)→ 0
which is always satisfied.

If p ≤ α an extra assumption is required for controlling the accumulation
of moderate extremes within a block.

5.2. Vanishing-small-values condition CSp. For p ∈ (0, α] we assume
that for a sequence (xn) satisfying nP(|X0| > xn)→ 0 and for every δ > 0,
we have

lim
ε→0

lim sup
n→∞

P
(∣∣∥∥x−1

n X[1,n]

ε∥∥p
p
− E

[∥∥x−1
n X[1,n]

ε∥∥p
p

]∣∣ > δ
)

nP(|X0| > xn)
= 0.(5.2)

We refer to (5.2) as condition CSp in what follows. If α < p <∞ then by
Karamata’s theorem (see Bingham et al. [5]) and since nP(|X0| > xn)→ 0,

E[‖x−1
n X[1,n]

ε
|pp] = nE[|x−1

n X
ε
|p] = o(1) , n→∞ .

Also, if p < α, then E[|X|p] <∞. If we also have n/xpn → 0 then

E[‖x−1
n X[1,n]

ε
‖pp] ≤ nx−pn E[|X|p]→ 0 , n→∞ .

If p = α, E[|X|α] < ∞ and n/xαn → 0 then the latter relation remains

valid. If E[|X|α] =∞ then E[|x−1
n X

ε
|α] = x−αn `(xn) for some slowly varying

function ` depending on ε, hence for every small κ > 0 and large n, `(xn) ≤
xκn. Then the condition nx−α+κ

n → 0 also implies that E[‖x−1
n X[1,n]

ε
‖αα] =

o(1). Thus we retrieve CSp as used in Theorem 2.1. In sum, under the
aforementioned additional growth conditions on (xn) centering in (5.2) can
be avoided. This is similar to condition CSp in Theorem 2.1.

We mentioned that conditions of a similar type as CSp are standard when
dealing with sum functionals acting on (Xt) (see for example Davis and
Hsing [11], Bartkiewicz et al. [1], Mikosch and Wintenberger [27, 28, 29]),
and are also discussed in Kulik and Soulier [23].
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Remark 5.1. Assume α < p <∞. Then applications of Markov’s inequal-
ity of order 1 and Karamata’s theorem yield for δ > 0, as n→∞,

P
(
‖x−1

n X[1,n]

ε
‖pp > δ

)
nP(|X0| > xn)

=
P
(∑n

t=1 |x
−1
n Xt

ε
|p > δ

)
nP(|X0| > xn)

≤ E[|x−1
n X0

ε
|p]

δ P(|X0| > εxn)

P(|X0| > εxn)

P(|X0| > xn)
→ c εp−α .

The right-hand side converges to zero as ε → 0. Here and in what follows,
c denotes any positive constant whose value is not of interest. We conclude
that (5.2) is automatic for p > α.

Remark 5.2. Condition CSp is challenging to check for p ≤ α. For p/α ∈
(1/2, 1], by Čebyshev’s inequality,

P
(∣∣∥∥x−1

n X[1,n]

ε∥∥p
p
− E[

∥∥x−1
n X[1,n]

ε∥∥p
p
]
∣∣ > δ

)
/[nP(|X0| > xn)]

≤ δ−2var
(∥∥x−1

n X[1,n]

ε∥∥p
p

)
/[nP(|X0| > xn)]

≤ δ−2E[|x−1
n X0

ε
|2p
]

P(|X0| > xn)

[
1 + 2

n−1∑
h=1

| corr
(
|x−1
n X0

ε
|p, |x−1

n Xh

ε
|p
)
|
]
.

Now assume that (Xt) is ρ–mixing with summable rate function (ρh); cf.
Bradley [6]. Then the right-hand side is bounded by

δ−2 E[|x−1
n X

ε
|2p
]

P(|X0| > xn)

[
1 + 2

∞∑
h=1

ρh

]
∼ δ−2ε2p−α

[
1 + 2

∞∑
h=1

ρh

]
, ε→ 0 ,

where we applied Karamata’s theorem in the last step, and CSp follows.
For Markov chains weaker assumptions such as the drift condition (DC) in
Mikosch and Wintenberger [28, 29] can be used for checking CSp.

Remark 5.3. Condition CSp not only restricts the serial dependence of
the time series (Xt) but also the level of thresholds (xn). Indeed, for p/α <

1/2 and (X′t) iid, since
(
‖n−1/2X′[1,n]‖

p
p − E[‖n−1/2X′[1,n]‖

p
p]
)

converges in

distribution to a Gaussian limit by virtue of the central limit theorem, CSp
implies necessarily that xn/

√
n→∞ as nP(|X0| > xn)→ 0.

5.3. Threshold condition. In Theorem 2.1 we assume growth conditions
on (xn): n/xpn → 0 if p < α and n/xα−κn → 0 for some κ > 0 if p = α.

For inference purposes it is tempting to decrease the threshold level xn
such that more exceedances are included in the estimators. Indeed, the
assumptions on (xn) can be relaxed, justified by results such as Nagaev’s
large deviation principle in [31], by adding a centering term as we will show
in Lemma 5.4. However, in this section we aim at pointing at the difficulties
that might arise while doing so in practice.

To motivate the results of this section we start by considering an iid
sequence (Xt) satisfying RVα for some α > 0. Then, for p > α, (2.4) holds
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with limit c(p) = 1 and S
(p)
n =

∑n
t=1 |Xi|p has infinite expectation. If p < α

the process (S
(p)
n ) has finite expectation and by the law of large numbers,

for n/xpn → 0,

P
(
‖X[0,n]‖p > xn (nx−pn E[|X|p] + 1)1/p

)
= P

(
S(p)
n − E[S(p)

n ] > xpn(1 + o(1))
)
→ 0 .(5.3)

Following Nagaev [31], a large deviation result for the centered process holds:

P
(
S(p)
n − E[S(p)

n ] > xpn

)
∼ nP(|X0| > xn) , n→∞ ,

provided n/xα−κn → 0 for p/α ∈ (1/2, 1) and some κ > 0, and
√
n log n/xpn →

0 for p/α < 1/2. These conditions are satisfied for extreme thresholds sat-

isfying n/xpn → 0. In this case the centering term E[S
(p)
n ] in (5.3) is always

negligible which allows us to derive (2.4). Next, we extend the previous
ideas to regularly varying time series.

Lemma 5.4. Consider an Rd-valued stationary process (Xt) satisfying the
conditions RVα, AC, CSp and c(p) <∞ for some p > 0. If p < α then

lim
n→∞

P
(
‖X[0,n]‖p > xn

(
nx−pn E[|X|p] + 1

)1/p)
nP(|X0| > xn)

= c(p) .(5.4)

If p = α then

lim
n→∞

P
(
‖X[0,n]‖α > xn

(
nE[|X/xn

1|α] + 1
)1/α)

nP(|X0| > xn)
= c(α) = 1 .(5.5)

Moreover, if also E[|X|α] <∞ then equation (5.4) holds for p = α.

The proof is given in Section 8.2. Now the restrictions on the level of the
thresholds (xn) are the ones implicitly implied by condition CSp in (5.2);
see Remark 5.3.

We define an auxiliary sequence of levels:

zn := zn(p) =


xn
(
nx−pn E[|X|p] + 1

)1/p
if p < α,

xn
(
nE[|X/xn

1|α] + 1
)1/α

if p = α ,

xn if p > α .

For thresholds satisfying the growth conditions n/xpn → 0 we have zn ∼ xn,
while for moderate thresholds satisfying CSp and n/xpn → ∞ this is no
longer the case.

For the purposes of inference Lemma 5.4 is not as satisfactory as (2.4) in
Theorem 2.1. Indeed, the level zn in the selection of the exceedances is not
the original threshold xn. For any moderate threshold xn with zn/xn →∞
the use of xn instead of zn might yield to a different limit. As a toy example,
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consider the problem of inferring the constant c(q)/c(p) for p < α, q > p.
Then an application of Lemma 5.4 ensures that

P(‖X[0,n]‖q > zn(q) | ‖X[0,n]‖p > zn(p))

→ P(‖YQ(p)‖q > 1) = E[‖Q(p)‖αq ] = c(q)/c(p), n→∞ .

However, choosing the same moderate threshold zn = zn(q), we would have

P(‖X[0,n]‖q > zn | ‖X[0,n]‖p > zn) ∼
P(‖X[0,n]‖q > zn)

P(n1/pE[|X|p]1/p > zn)

→

{
1 if q < α,

0 if q > α, n→∞ .

By this argument, the growth conditions on (xn) are justified to simplify in-
ference procedures. Otherwise, the choice of the threshold sequence becomes
delicate.

6. Inference beyond shift-invariant functionals

So far we only considered inference for shift-invariant functionals acting
on (˜̀p, d̃p) such as maxima and sums. Following the shift-projection ideas
in Janssen [22], jointly with continuous mapping arguments, we extend in-
ference to functionals on (`p, dp).

6.1. Inference for cluster functionals in (`p, dp). Let g : (`p, dp)→ R be

a bounded measurable function. We define the functional ψg : (˜̀p, d̃p)→ R
by

[z] 7→ ψg([z]) :=
∑
j∈Z
|z∗−j |αg

(
(Bjz∗t )t∈Z

)
,(6.1)

where z∗t := zt−T ∗(z), for t ∈ Z, such that T ∗(z) := inf{s ∈ Z : |zs| = ‖z‖∞}
and B : `p → `p is the backward-shift map.

We link the distribution of the spectral cluster process Q(α) from Equa-
tion (3.2) and the distribution of the class [Q(α)] through the mappings (6.1)
in the next proposition whose proof is given in Section 8.5.1.

Proposition 6.1. The following relation holds for every real-valued bounded
measurable function g on `α

E[g(Q(α))] = E[ψg([Q
(α)])] ,

where ψg is as in (6.1). This relation remains valid if α is replaced by p,
whenever the spectral cluster process in `p is well defined.

For p ≤ α the mappings in (6.1) are continuous functionals on (˜̀p, d̃p) and
we can extend Theorem 4.2 to continuous functionals on (`p, dp) evaluated

at the spectral cluster process Q(p) taking values in (`p, dp).
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Theorem 6.2. Assume the conditions of Theorem 4.2 for p ≤ α. Then for
any continuous bounded function g : `p ∩ {x : ‖x‖p = 1, |x0| > 0} → R,

ĝ(p) :=
1

k

m∑
t=1

b∑
j=1

Wj,t(p) g
(Bj−1Bt

‖Bt‖p

)
︸ ︷︷ ︸

=:ψg(Bt/‖Bt‖p)

11(‖Bt‖p > ‖B‖p,(k+1))(6.2)

P−→ E[g(Q(p))] , n→∞ ,

where Wj,t(p) = |X(t−1)b+j |α/‖Bt‖αp for all j = 1, . . . , b.

The proof is given in Section 8.5.2.

6.2. Applications. Examples of non-shift-invariant functionals on (`p, dp)
are measures of serial dependence, probabilities of large deviations such as
the supremum of a random walk and ruin probabilities, and functionals of
the spectral tail process Θ. We study these examples in the remainder of
this section.

6.2.1. Measures of serial dependence. Define gh(xt) = |xh|α
x>0
|x0|

xh
|xh| . Then

the following result is straightforward from Theorem 6.2.

Corollary 6.3. Assume the conditions of Theorem 6.2 for p = α. Then

ĝ
(α)
h :=

1

k

m∑
t=1

b−h∑
j=1

Wj,tWj+h,t

X>j,t
|Xj,t|

Xj+h,t

|Xj+h,t|︸ ︷︷ ︸
=:ψgh (Bt/‖Bt‖p)

11(‖Bt‖α > ‖B‖α,(k+1)).

P−→ E[gh(Q(a))], n→ +∞,

where the weights Wj,t = Wj,t(α) are defined in Theorem 6.2, satisfying∑b
j=1Wj,t = 1, and Xj,t := X(t−1)b+j for j = 1, . . . , b.

The function gh gives a summary of the magnitude and direction of the
time series h lags after recording a high-level exceedance of the norm, and
satisfies the relation

∑
h∈Z E[gh(Q(α))] = 1.

Example 6.4. Let (Xt) be a linear process satisfying the assumptions in
Example 7, then

E[gh(Q(α))] =

∑
t∈Z |ϕt|α|ϕt+h|αsign(ϕt)sign(ϕt+h)(

‖ϕ‖αα
)2 , h ∈ Z .

This function is proportional to the autocovariance function of a finite vari-
ance linear process with coefficients (|ϕt|α sign(ϕt)). In particular, for α = 1
it is proportional to the autocovariance function of a finite variance linear
process with coefficients (ϕt).
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6.2.2. Large deviations for the supremum of a random walk. We start by
reviewing Theorem 4.5 in Mikosch and Wintenberger [29]; the proof is given
in Section 8.5.3.

Proposition 6.5. Consider a univariate stationary sequence (Xt) satisfying
RVα for some α ≥ 1, AC, CS1, and c(1) <∞. Then for all p ≥ 1,∣∣∣ P(sup1≤t≤n St > xn)

nP(|X1| > xn)

− c(p)E
[

lim
s→∞

(
supt≥−s

∑t
i=−sQ

(p)
i

)α
+

] ∣∣∣→ 0, n→∞.(6.3)

If α ≥ 1, then ‖Q(1)‖αα ≤ ‖Q(1)‖α1 = 1 and a consistent estimator of

c(1) = 1/E[‖Q(1)‖αα] was suggested in Section 4.3.2. A consistent estimator
of the term in (6.3) is given next.

Corollary 6.6. Assume the conditions of Theorem 6.2 for p = 1. Then∣∣∣∑m
t=1

(
sup1≤j≤b

Xt,j
‖Bt‖1

)α
+

11(‖Bt‖1 > ‖B‖1,(k+1))∑m
t=1

‖Bt‖αα
‖Bt‖α1

11(‖Bt‖1 > ‖B‖1,(k+1))

− c(1)E
[

lim
s→∞

(
supt≥−s

∑t
i=−sQ

(1)
i

)α
+

]∣∣∣ P−→ 0 , n→∞ ,

where Xt,j := X(t−1)b+j, for 1 ≤ j ≤ b, 1 ≤ t ≤ m.

Following the same ideas and using Theorem 4.9 in [29], one can also
derive a consistent estimator for the constant in the related ruin problem.

6.2.3. Application: a cluster-based method for inference on (Θt). Exploit-

ing the relation (Q
(α)
t )/|Q(α)

0 |
d
= (Θt) discussed in Section 3.2, we propose

cluster-based estimation methods for the spectral tail process.
Cluster-based approaches with the goal to improve inference on Θ1 for

Markov chains were considered in Drees et al. [17]; see also Davis et al. [10]
and Drees et al. [14] for related cluster-based procedures on (Θt)|t|≤h for
fixed h ≥ 0. Our approach can be seen as an extension for inference on the
`α-valued sequence (Θt).

Consider the continuous re-normalization function ζ(x) = x/|x0| on {x ∈
`α : |x0| > 0}. We derive the following result from Theorem 6.2; the proof
is given in Section 8.5.4.

Proposition 6.7. Assume the conditions of Theorem 6.2 for p = α. Let
ρ : (`α, dα) → R be a homogeneous continuous function and ρζ(x) := (ρα ∧
1) ◦ ζ(x). Then for k = kn →∞,

ρ̂ζ
(α) :=

1

k

m∑
t=1

ψρζ (Bt) 11(‖Bt‖p > ‖B‖p,(k+1))
P−→ P(ρ(Y Θ) > 1) , n→∞ ,

where ψρζ (Bt) is defined in (6.2) and the Pareto(α) random variable Y is
independent of Θ.
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Classical examples of such functionals are ρ(x) = maxi≥0,j≥i(xi − xj)+,

functionals related to large deviations such as ρ(x) = supt≥0(
∑t

i=0 xi)+, or
measures of serial dependence such as ρ(x) = |xh|.

7. Cluster inference implementation for regularly varying
linear process

In this section we illustrate the index estimators of Corollaries 4.3 and
4.5 for a regularly varying linear process

Xt :=
∑
j∈Z

ϕjZt−j , t ∈ Z,

where (Zt) is an iid real-valued regularly varying sequence with (tail)-index

α > 0, and (ϕj) are real coefficients such that
∑

j∈Z |ϕj |1∧(α−ε) < ∞ for
some ε > 0.

In this setting, (Xt) is regularly varying with the same (tail)-index α >
0, and the distributions of Zt and Xt are tail-equivalent; see Davis and

Resnick [12]. The spectral cluster process of (Xt) is given by Q
(α)
t =

(ϕt+J/‖(ϕt)‖α) ΘZ
0 , t ∈ Z, where limx→∞ P(±Z0 > x)/P(|Z0| > x) =

P(ΘZ
0 = ±1), ΘZ

0 is independent of a random shift J with distribution
P(J = j) = |ϕj |α/‖(ϕt)‖αα; see Kulik and Soulier [23], (15.3.9). Then

c(∞) = maxt∈Z|ϕt|α/‖ϕ‖αα , c(1) =
(∑

t∈Z|ϕt|
)α
/‖ϕ‖αα .

For the causal AR(1) model given by Xt = ϕXt−1 + Zt, t ∈ Z, |ϕ| < 1, one
retrieves θ|X| = c(∞) = 1− |ϕ|α and c(1) = (1− |ϕ|α)/(1− |ϕ|)α.

We aim to illustrate the estimators of θ|X| and c(1) built on extremal `α–
blocks for the causal AR(1) model with student(α) noise. Guided by (4.3),
we take k = kn = bn/b2nc as

kn = [mnP(‖B‖α > xbn)] ∼ nP(|X0| > xbn) = o(n/b1+κ
n ),

for κ > 0 sufficiently small using the Potter bound. For estimation of α, we
follow the bias-correction procedure in de Haan et al. [19]. This estimator is

plugged into (4.4), (4.6), resulting in the estimators θ̂|X|, ĉ(1), as a function
of block lengths. Figures 7.1 and 7.2 present boxplots (in blue) of these esti-
mators as a function of bn and for different sample sizes n. For comparison,
we also show boxplots (in white) of the estimators in (4.5) and (4.7) based on
extremal `∞–blocks. Inference based on `α–block, coupled with a Hill-type
estimate of α, seems to be robust compared to the `∞–blocks approach. In
all examples the block length b = 32 gives nice results for the `α–approach
in terms of bias and dispersion. Instead, the `∞–estimator appears to be
highly sensitive to the block length choice. Also, notice that the bias for
large block lengths decreases as n increases. Indeed, if we fix n, the relation
bn/b2c → 0 as b → ∞ restricts the block length for small sample sizes. We
also refer to Buriticá et al. [7] for further simulation experiences showing
that the estimator of the extremal index in (4.4) compares favorably with
various classical estimators as regards bias.
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Figure 7.1. Boxplot of estimates θ̂|X| as a function of bn from (4.4) for infer-

ence through Q(α) (in blue) and from (4.5) through Q(∞) (in white). 1 000
simulated samples (Xt)t=1,...,n from a causal AR(1) model with student(α)
noise with α = 1.3 and ϕ = 0.8 (left column), ϕ = 0.5 (right column) were
considered. Rows correspond to results for n = 8 000, 4 000, 2 000 from top
to bottom.

8. Proofs

8.1. Proof of Theorem 2.1. Recall the properties of the sequence (xn)
from Section 5, in particular nP(|X0| > xn) → 0. The main result in The-
orem 2.1 follows by applications of Lemma 8.1 and Proposition 8.2 below;
their proofs are given at the end of this section.

Lemma 8.1. Consider an Rd-valued stationary time series (Xt) satisfying
the conditions RVα, AC, CSp. If p < α, assume also n/xpn → 0 and, if
p = α, n/xα−κn → 0 for some κ > 0. Then the following relation holds

lim
n→∞

P(‖X[0,n]‖p > xn)

nP(|X0| > xn)
= c(p) ,(8.1)

where c(p) is given in (3.1).
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Figure 7.2. Boxplot of estimates ĉ(1) as a function of bn from (4.6) for

inference through Q(α) (in blue) and from (4.7) for inference through Q(∞)

(in white). We simulate 1 000 samples (Xt)t=1,...,n from an AR(1) model
with student(α) for α = 0.7 and ϕ = 0.8 (left column), ϕ = 0.5 (right
column) were considered. Rows correspond to n = 8 000, 4 000, 2 000 from
top to bottom.

We recall from Remark 5.1 that (5.2) in CSp is always satisfied for p > α.
Moreover, for p ≤ α, under the growth conditions on (xn) in Theorem 2.1,
centering with the expectation in (5.2) is not necessary.

Proposition 8.2. Assume the conditions of Lemma 8.1. Then,

P(x−1
n X[0,n] ∈ · | ‖X[0,n]‖p > xn)

w−→ P(YQ(p) ∈ ·), n→∞ ,

(8.2)

in the space (˜̀p, d̃p) where the Pareto(α) random variable Y and Q(p) are
independent.

Proof of Lemma 8.1. Choose some ε > 0, δ ∈ (0, 1). Since ‖a−1
n X[0,n]‖

p
p

is a sum of non-negative random variables we have the following bounds via
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truncation

P
(
‖x−1

n X[0,n]
ε
‖pp > 1) ≤ P(‖x−1

n X[0,n]‖pp > 1
)

≤ P
(
‖x−1

n X[0,n]
ε
‖pp > (1− δp)

)
+ P

(
‖x−1

n X[0,n]

ε
‖pp > δp

)
.(8.3)

By CSp and in view of Remark 5.1 we have

lim
ε↓0

lim sup
n→∞

P
(
‖x−1

n X[0,n]

ε
‖pp > δp

)
/(nP(|X0| > xn)) = 0 .(8.4)

Now, for any choice of u > 0, it remains to determine the limits of the terms
P
(
‖x−1

n X[0,n]
ε
‖pp > u)/(nP(|X0| > xn)). We start with a telescoping sum

representation

P(‖x−1
n X[0,n]

ε
‖pp > u)− P(|x−1

n X0ε
|pp > u)

=
∑n

i=1

(
P(‖x−1

n X[0,i]
ε
‖pp > u)− P(‖x−1

n X[0,i−1]
ε
‖pp > u)

)
=

∑n
i=1E

[(
11(‖x−1

n X[0,i]
ε
‖pp > u)− 11(‖x−1

n X[1,i]
ε
‖pp > u)

)
11(|X0| > εxn)

]
,

where we used stationarity in the last step and the fact that the difference
of the indicator functions vanishes on {|X0| ≤ εxn}. We also observe that
the second term on the left-hand side is of the order o(nP(|X0| > xn)). For
any fixed k write Ak = {maxk≤t≤n |Xt| > εxn}. Regular variation of (Xt)
ensures that, as n→∞,

P(‖x−1
n X[0,n]

ε
‖pp > u)

nP(|X0| > xn)

∼ ε−α
1

n

n∑
i=1

E
[
11(‖x−1

n X[0,i]
ε
‖pp > u)− 11(‖x−1

n X[1,i]
ε
‖pp > u)

∣∣ |X0| > εxn
]

∼ ε−αE
[(

11(‖x−1
n X[0,k−1]

ε
‖pp > u)− 11(‖x−1

n X[1,k−1]
ε
‖pp > u)

)
×11(Ack)

∣∣ |X0| > εxn
]

+ ε−αO
(
P(Ak | |X0| > εxn)

)
,

where the second term vanishes, first letting n → ∞ and then k → ∞, by
virtue of AC. Now the regular variation property of (Xt) implies that

lim
n→∞

P(‖x−1
n X[0,n]

ε
‖pp > u)

nP(|X0| > xn)

= lim
k→∞

ε−α
(
P
(∑k−1

t=0 |ε YΘt|p11(|YΘt| > 1) > u
)

−P
(∑k−1

t=1 |εYΘt|p11(|YΘt| > 1) > u)
))
,

by a change of variable this term equals

= lim
k→∞

E
[∫∞
ε

(
11
(∑k−1

t=0 |yΘt|p11(|yΘt| > ε) > u
)

−11
(∑k−1

t=1 |yΘt|p11(|yΘt| > ε) > u
))
d(−y−α)

]
= lim

k→∞
E
[∫∞

0

(
11
(
‖yΘ[0,k−1]

ε
‖pp > u

)
− 11

(
‖yΘ[1,k−1]

ε
‖pp > u

))
d(−y−α)

]
.
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In the last step we used the fact that the integrand vanishes for 0 ≤ y ≤ ε.
The integrand is non-negative and bounded by 11(y > ε) which is integrable.
Thus we may take the limit as k → ∞ inside the integral to derive the
quantity

E
[∫∞

0

(
11
(
‖yΘ[0,∞]

ε
‖pp > u

)
− 11

(
‖yΘ[1,∞]

ε
‖pp > u

))
d(−y−α)

]
.

By monotone convergence as ε ↓ 0 we get the limit

u−α/pE
[
‖Θ[0,∞]‖αp − ‖Θ[1,∞]‖αp

]
= u−α/p c(p) .(8.5)

An application of this formula and a telescoping sum argument yield

E
[
‖(Θt)t≥0‖αp − ‖(Θt)t≥1‖αp

]
.(8.6)

= E
[
‖Θ‖αα

(
‖(Θt)t≥0/‖Θ‖α‖αp − ‖(Θt)t≥1/‖Θ‖α‖αp

)]
=

∑
s∈Z

E
[
|Θs|α

(
‖(Θt)t≥0/‖Θ‖α‖αp − ‖(Θt)t≥1/‖Θ‖α‖αp

)]
=

∑
s∈Z

E
[(
‖(Θt)t≥−s/‖Θ‖α‖αp − ‖(Θt)t≥−s+1/‖Θ‖α‖αp

)]
= E[‖Θ‖αp /‖Θ‖αα] = c(p).

Now an appeal to (8.3) with u = 1 and u = 1− δp yields

c(p) ≤ lim inf
n→∞

P(‖x−1
n X[0,n]‖

p
p > 1

)
nP(|X0| > xn)

≤ lim sup
n→∞

P(‖x−1
n X[0,n]‖

p
p > 1

)
nP(|X0| > xn)

≤ (1− δp)−α/p c(p) .

The limit relation (8.1) follows as δ ↓ 0.

Proof of Proposition 8.2. Consider any bounded Lipschitz-continuous

function f : ( ˜̀p, d̃p)→ R. The statement is proved if we can show that

lim
n→∞

E[f(x−1
n X[0,n]) | ‖X[0,n]‖p > xn]

= c(p)−1E
[
‖Θ/‖Θ‖α‖αp f

(
Y Θ/‖Θ‖p

)]
.

In view of Lemma 8.1 it suffices to show

lim
n→∞

E[f(x−1
n X[0,n]) 11(‖X[0,n]‖p > xn)]

nP(|X0| > xn)

= E
[
‖Θ/‖Θ‖α‖αp f

(
Y Θ/‖Θ‖p

)]
.
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In these limit relations we may replace f(x−1
n X[0,n]) by f(x−1

n X[0,n]
ε
) since

by (8.4) for any δ > 0, some Kf > 0,

lim
ε↓0

lim sup
n→∞

P
(
|f(x−1

n X[0,n])− f(x−1
n X[0,n]

ε
)| > δ , ‖X[0,n]‖p > xn

)
nP(|X0| > xn)

≤ lim
ε↓0

lim sup
n→∞

P
(
Kf dp(x

−1
n X[0,n]

ε
,0) > δ

)
nP(|X0| > xn)

≤ lim
ε↓0

lim sup
n→∞

P
(
Kf

∥∥x−1
n X[0,n]

ε∥∥p
p
> δ(p)

)
nP(|X0| > xn)

= 0 ,

where δ(p) = δp for p ≥ 1 and = δ for p ∈ (0, 1). We also have for δ ∈ (0, 1),

Gn,ε =
E
[
f
(
x−1
n X[0,n]

ε

) ∣∣11(‖x−1
n X[0,n]‖p > 1

)
− 11

(
‖x−1

n X[0,n]
ε
‖p > 1

)∣∣]
nP(|X0| > xn)

≤ c
P(
∥∥x−1

n X[0,n]‖p > 1 ≥ ‖x−1
n X[0,n]

ε
‖p
)

nP(|X0| > xn)

≤ c
P
(
‖x−1

n X[0,n]

ε
‖p > δ

)
nP(|X0| > xn)

+ c
P
(
1 ≥ ‖x−1

n X[0,n]
ε
‖p > 1− δ

)
nP(|X0| > xn)

= G
(1)
n,ε,δ +G

(2)
n,ε,δ .

Applying (8.4) to G
(1)
n,ε,δ and using the calculations in the proof of Lemma 8.1

leading to (8.5) for G
(2)
n,ε,δ, we conclude that

lim
ε↓0

lim sup
n→∞

Gn,ε ≤ lim
ε↓0

lim sup
n→∞

G
(1)
n,ε,δ + lim

ε↓0
lim sup
n→∞

G
(2)
n,ε,δ

= 0 + c
(
(1− δ)−α/p − 1

)
↓ 0 , δ ↓ 0 .

Thus it suffices to show

lim
ε↓0

lim
n→∞

E
[
f
(
x−1
n X[0,n]

ε

)
11
(
‖x−1

n X[0,n]
ε
‖p > 1

)]
nP(|X0| > xn)

= E
[
‖Θ/‖Θ‖α‖αp f

(
Y Θ/‖Θ‖p

)]
.(8.7)

This is the goal of the remaining proof.
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Choose any ε > 0. Noticing that x−1
n X[0,n]

ε
= x−1

n X[1,n]
ε

on {|x−1
n X0| ≤

ε}, we have

I := E
[
f
(
x−1
n X[0,n]

ε

)
11
(
‖x−1

n X[0,n]
ε
‖p > 1

)]
= E

[(
f
(
x−1
n X[0,n]

ε

)
11
(
‖x−1

n X[0,n]
ε
‖p > 1

)
−f
(
(0, x−1

n X[1,n]
ε
)
)

11
(
‖x−1

n X[1,n]
ε
‖p > 1

))
11(|X0| > εxn

)]
+E
[
f((0, x−1

n X[1,n]
ε
)) 11

(
‖x−1

n X[1,n]
ε
‖p > 1

)]
= E

[(
f
(
x−1
n X[0,n]

ε

)
11
(
‖x−1

n X[0,n]
ε
‖p > 1

)
−f
(
(0, x−1

n X[1,n]
ε
)
)

11
(
‖x−1

n X[1,n]
ε
‖p > 1

))
11(|X0| > εxn

)]
+E
[
f
(
(0, x−1

n X[0,n−1]
ε
)
)

11
(
‖x−1

n X[0,n−1]
ε
‖p > 1

)]
.

where we used the stationarity in the last step. Using the same idea recur-
sively, we obtain

I =
∑n

j=1E
[(
f
(
(0n−j , x−1

n X[0,j]
ε
)
)

11
(
‖x−1

n X[0,j]
ε
‖p > 1

)
−f
(
(0n−j+1, x−1

n X[1,j]
ε
)
)

11
(
‖x−1

n X[1,j]
ε
‖p > 1

))
11(|X0| > εxn)

]
+E
[
f
(
(0n, x−1

n X0ε
)
)

11
(
|X0| > εxn

)]
,

where 0k := {0}k for k ≥ 1. By regular variation of X0 the last right-hand
term is o(nP(|X0| > xn)). Therefore by regular variation of (Xt) we obtain
as n→∞,

I/
(
nP(|X0| > xn)

)
∼ ε−α

n

∑n
j=1E

[
f
(
(0n−j , x−1

n X[0,j]
ε
)
)

11
(
‖x−1

n X[0,j]
ε
‖p > 1

)
−f
(
(0n−j+1, x−1

n X[1,j]
ε
)
)

11
(
‖x−1

n X[1,j]
ε
‖p > 1

) ∣∣ |X0| > εxn
]

=: II .

Write Ak = {‖X[k,n]‖∞ > εxn} for fixed k ≥ 1. By AC, P(Ak | |X0| > εxn)
vanishes by first letting n → ∞ then k → ∞. Since each of the summands
in II is uniformly bounded in absolute value we may restrict the summation
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to j ∈ {k − 1, . . . , n} for any fixed k ≥ 1. Therefore we have as n→∞,

II −O
(
P(Ak | |X0| > εxn)

)
∼ ε−α

n

n∑
j=k−1

E
[(
f
(
(0n−j , x−1

n X[0,j]
ε
)
)

11
(
{‖x−1

n X[0,j]
ε
‖p > 1}

)
−f
(
(0n−j+1, x−1

n X[1,j]
ε
)
)

11
(
{‖x−1

n X[1,j]
ε
‖p > 1}

))
11(Ack)

∣∣ |X0| > εxn
]

=
ε−α

n

n∑
j=k−1

E
[
f
(
(0n−j , x−1

n X[0,k−1]
ε
,0j−k)

)
11
(
‖x−1

n X[0,k−1]
ε
‖p > 1

)
−f
(
(0n−j+1, x−1

n X[1,k−1]
ε
,0j−k)

)
11
(
‖x−1

n X[1,k−1]
ε
‖p > 1

) ∣∣ |X0| > εxn
]
.

Next we apply shift-invariance and regular variation in ˜̀p:

∼ ε−αE
[
f
(
x−1
n X[0,k−1]

ε

)
11
(
‖x−1

n X[0,k−1]
ε
‖p > 1

)
−f
(
x−1
n X[1,k−1]

ε

)
11
(
‖x−1

n X[1,k−1]
ε
‖p > 1

) ∣∣ |X0| > εxn
]

→ ε−αE
[
f
(
ε Y Θ[0,k−1]

ε

)
11
(
‖εY Θ[0,k−1]

ε
‖p > 1

)
−f
(
ε YΘ[1,k−1]

ε

)
11
(
‖εY[1,k−1]

ε
‖p > 1

)]
= E

[
f
(
ε Y Θ[0,k−1]

1

)
11
(
‖εY[0,k−1]

1
‖p > 1

)
−f
(
εY[1,k−1]

1

)
11
(
ε ‖YΘ[1,k−1]

1
‖p > 1

)]
=: Jk,ε .

By Proposition 3.2 we have ‖Θ‖α < ∞ a.s., |Θt|
a.s.−→ 0 as |t| → ∞, hence

T := inft≥0{t : Y |Θt| < 1} < ∞ a.s. Then by monotone convergence as
k →∞,

Jk,ε = ε−αE
[(
f
(
ε YΘ[0,∞]

1

)
11
(
‖ε Y Θ[0,∞]

1
‖p > 1

)
−f
(
ε Y Θ[1,∞]

1

)
11
(
‖ε Y Θ[1,∞]

1
‖p > 1

))
11(T < k)

]
+O(P(T ≥ k))

→ ε−αE
[
f
(
ε YΘ[0,∞]

1

)
11
(
‖ε Y Θ[0,∞]

1
‖p > 1

)
−f
(
ε Y Θ[1,∞]

1

)
11
(
‖ε Y Θ[1,∞]

1
‖p > 1

)]
=

∫ ∞
0

E
[
f
(
yΘ[0,∞]

ε

)
11
(
‖yΘ[0,∞]

ε
‖p > 1

)
−f
(
yΘ[1,∞]

ε

)
11
(
‖yΘ[1,∞]

ε
‖p > 1

)]
d(−y−α) =: Jε .

In the last step we changed variables, u = εy, and observed that the inte-
grand vanishes for y < ε.

Finally, we want to let ε ↓ 0. We start by inter-changing expectation
and integral in Jε, and change variables, u = y‖Θ[0,∞]‖α, in the first term
of the integrand and then proceed similarly for the second term with the
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convention that it is zero on {‖Θ[1,∞]‖α = 0}:

Jε = E
[ ∫ ∞

0

(
‖Θ[0,∞]‖αα f

(
yΘ[0,∞]

‖Θ[0,∞]‖α
ε

)
11
(∥∥ yΘ[0,∞]

‖Θ[0,∞]‖α
ε

∥∥
p
> 1
)

−‖Θ[1,∞]‖αα f
(

yΘ[1,∞]

‖Θ[1,∞]‖α
ε

)
11
(∥∥ yΘ[1,∞]

‖Θ[1,∞]‖α
ε

∥∥
p
> 1
))

d(−y−α)
]

=

∞∑
t=1

∫ ∞
0

E
[
|Θt|α

(
f
(

yΘ[0,∞]

‖Θ[0,∞]‖α
ε

)
11
(∥∥ yΘ[0,∞]

‖Θ[0,∞]‖α
ε

∥∥
p
> 1
)

−f
(

yΘ[1,∞]

‖Θ[1,∞]‖α
ε

)
11
(∥∥ yΘ[1,∞]

‖Θ[1,∞]‖α
ε

∥∥
p
> 1
))]

d(−y−α)

+E
[ ∫ ∞

0
f

(
yΘ[0,∞]

‖Θ[0,∞]‖α
ε

)
11

(∥∥ yΘ[0,∞]

‖Θ[0,∞]‖α
ε

∥∥
p
> 1

)
d(−y−α)

]
.

Next we apply the time-change formula (2.2) to each summand.

Jε =
∞∑
t=1

∫ ∞
0

E
[
f
(

yΘ[−t,∞]

‖Θ[−t,∞]‖α
ε

)
11
(∥∥ yΘ[−t,∞]

‖Θ[−t,∞]‖α
ε

∥∥
p
> 1
)

−f
(

yΘ[1−t,∞]

‖Θ[1−t,∞]‖α
ε

)
11
(∥∥ yΘ[1−t,∞]

‖Θ[1−t,∞]‖α
ε

∥∥
p
> 1
)]
d(−y−α)

+E
[ ∫ ∞

0
f
(

yΘ[0,∞]

‖Θ[0,∞]‖α
ε

)
11
(∥∥ yΘ[0,∞]

‖Θ[0,∞]‖α
ε

∥∥
p
> 1
)
d(−y−α)

]
.

This is a telescoping sum in t with value

Jε = E
[ ∫ ∞

0
f
(

yΘ
‖Θ‖α ε

)
11
(∥∥ yΘ
‖Θ‖α ε

∥∥
p
> 1
)
d(−y−α)

]
.

By monotone convergence we have

lim
ε↓0

Jε = E
[ ∫ ∞

0
f
(
y Θ
‖Θ‖α

)
11
(∥∥y Θ

‖Θ‖α

∥∥
p
> 1
)
d(−y−α)

]
.(8.8)

Combining the arguments above, we proved (8.7) as desired. �

8.2. Proof of Lemma 5.4. The case p < α. Choose some ε > 0, δ ∈
(0, 1). We have the following bounds via truncation

I1 − I2 := P
(
‖x−1

n X[0,n]
ε
‖pp − E

[
‖x−1

n X[0,n]
ε
‖pp
]
> 1 + δp

)
−P
(
‖x−1

n X[0,n]

ε
‖pp − E

[
‖x−1

n X[0,n]

ε
‖pp
]
≤ −δp

)
≤ P(‖x−1

n X[0,n]‖pp − E
[
‖x−1

n X[0,n]‖pp
]
> 1
)

≤ P
(
‖x−1

n X[0,n]
ε
‖pp − E

[
‖x−1

n X[0,n]
ε
‖pp
]
> 1− δp

)
+P
(
‖x−1

n X[0,n]

ε
‖pp − E

[
‖x−1

n X[0,n]

ε
‖pp
]
> δp

)
=: I3 + I4 .

Taking into account CSp for p < α, we have

lim
ε↓0

lim sup
n→∞

(I2 + I4)/(nP(|X0| > xn)) = 0.
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Moreover, we observe that by Karamata’s theorem for p < α

E
[
‖x−1

n X[0,n]
ε
‖pp
]

= nE
[
|X0/xn|p 11(|X0| > εxn)

]
= O

(
nP(|X0| > εxn)

)
= o(1) .

Thus centering in I1 and I3 is not needed, and one can follow the lines of
the proof of Lemma 8.1 to conclude.

The case p = α. It requires only slight changes; we omit details. �

8.3. Proofs of the results of Section 3.

8.3.1. Proof of Proposition 3.1. The representation (3.2) follows by identi-
fying limε↓0 Jε as on the right-hand side of (8.8). In particular, taking f
as the constant map (xt) 7→ 1 in (3.2) we obtain the representation of the
constant c(p) in (3.1).

8.3.2. Proof of Proposition 3.3. Our goal is first to relate the sequence of
spectral components (Q(p)(h))h≥0 to (Θt). We start with two auxiliary
results whose proofs are given at the end of this section.

Lemma 8.3. Let (Xt) be a stationary time series satisfying RVα. Then
for h ≥ 0,

P(Q(p)(h) ∈ ·) =
1

c(p, h)

h∑
k=0

E
[‖Θ−k+[0,h]‖αp
‖Θ−k+[0,h]‖αα

11
(

Θ−k+[0,h]

‖Θ−k+[0,h]‖p
∈ ·
)]
,

(8.9)

where c(p, h) :=
∑h

k=0 E[‖Θ−k+[0,h]‖αp /‖Θ−k+[0,h]‖αα]. In particular, c(α, h) =
h+ 1 and

(8.10) P(Q(α)(h) ∈ ·) = P
(
Θ−U(h)+[0,h]/‖Θ−U(h)+[0,h]‖α ∈ ·

)
,

where U (h) is uniformly distributed on {0, . . . , h} and independent of Θ.

Lemma 8.4. Assume |Θt| → 0 as t→∞ and let f : ˜̀α ∩{x : ‖x‖p = 1} →
(0,∞) be any bounded Lipschitz-continuous function in (˜̀α, d̃α). Then, for
every p ≥ α,

c(p,h)
h+1 E[f(Q(p)(h))]→ E[‖Θ/‖Θ‖α‖αp f(Θ/‖Θ‖p)] ,(8.11)

as h→ +∞

We conclude from (8.11) for f(x) ≡ 1 that limh→∞ c(p, h)/(h+ 1) = c(p).
If 0 < c(p) <∞,

lim
h→∞

E[f(Q(p)(h))] = c(p)−1 E[‖Θ/‖Θ‖α‖αp f(Θ/‖Θ‖p)].(8.12)

Finally, the portmanteau theorem yields Q(p)(h)
d−→ Q(p)(∞) in (˜̀p ∩ {x :

‖x‖p = 1}, d̃p) where Q(p)(∞) is well defined in view of the right-hand side
of (8.12). This finishes the proof of the proposition. �
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Proof of Lemma 8.3. If ‖X[0,h]/x‖p > 1 then for sufficiently small ε > 0,
‖X[0,h]/x‖∞ > ε. Therefore, on {‖X[0,h]/x‖p > 1},

h∑
i=0

|Xi/x|α 11
(
|Xi/x| > ε

)
> 0 .

Using stationarity, we obtain

P(‖X[0,h]/x‖p > 1)

=
h∑
i=0

E
[ |Xi/x|α11

(
|Xi/x| > ε

)∑h
t=0 |Xt/x|α 11

(
|Xt/x| > ε

)11(‖X[0,h]/x‖p > 1)
]

=

h∑
i=0

E
[ |X0/x|α11

(
|X0/x| > ε

)∑h−i
t=−i |Xt/x|α 11

(
|Xt/x| > ε

)11(‖X[−i,h−i]/x‖p > 1)
]

= P(|X0| > xε)
h∑
i=0

E
[ |X0/x|α11(‖X[−i,h−i]/x‖p > 1)∑h−i

t=−i |Xt/x|α 11
(
|Xt/x| > ε

) ∣∣∣ |X0| > xε
]
.

Applying the definition (2.1) of regular variation and dominated conver-
gence, we obtain as x→∞,

P(‖X[0,h]/x‖p > 1)

P(|X0| > x)
→ ε−α

h∑
i=0

E
[ |εY Θ0|α11(‖εY Θ[−i,h−i]‖p > 1)∑h−i

t=−i |εY Θt|α 11
(
|Y Θt| > 1

) ]
=

h∑
i=0

∫ ∞
ε

E
[ 11(y ‖Θ[−i,h−i]‖p > 1)∑h−i

t=−i |Θt|α 11
(
y |Θt| > ε

)] d(−y−α) .

The left-hand side does not depend on ε. Therefore, letting ε ↓ 0, we arrive
at

lim
x→∞

P(‖X[0,h]/x‖p > 1)

P(|X0| > x)
=

h∑
i=0

∫ ∞
0

E
[11(y ‖Θ[−i,h−i]‖p > 1)

‖Θ[−i,h−i]‖αα

]
d(−y−α)

=

h∑
i=0

E
[ ‖Θ−i+[0,h]‖αp
‖Θ−i+[0,h]‖αα

]
= c(p, h) .(8.13)

This constant is finite since ‖Θi+[0,h]‖p ≤ (h+ 1)‖Θi+[0,h]‖∞.
Next we prove (8.9). For this reason, let A be a continuity set with respect

to the limit law in (8.9). An appeal to (8.13) yields

c(p, h)P(x−1X[0,h] ∈ A | ‖X[0,h]‖p > x)

∼
P(x−1X[0,h] ∈ A , ‖X[0,h]‖p > x)

P(|X0| > x)
=: I(x) .
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Proceeding as for the derivation of (8.13), we obtain

I(x) ∼
∫ ∞

0

h∑
i=0

E
[11(y ‖Θ[−i,h−i]‖p > 1)

‖Θ[−i,h−i]‖αα
11(yΘ[−i,h−i] ∈ A)

]
d(−y−α)

=

∫ ∞
1

h∑
i=0

E
[‖Θ[−i,h−i]‖αp
‖Θ[−i,h−i]‖αα

11
(
y

Θ[−i,h−i]

‖Θ[−i,h−i]‖p
∈ A

)]
d(−y−α) .

In the last step we changed the variable, u = y ‖Θ[−i,h−i]‖p > 0 a.s., observ-
ing that ‖Θ[−i,h−i]‖p ≥ |Θ0| = 1. This proves (8.9) and the lemma. �

Proof of Lemma 8.4. Assume f : ˜̀α ∩ {x : ‖x‖p = 1} → (0,∞) is any

bounded Lipschitz-continuous function in (˜̀α, d̃α). By Lemma 8.3 we have
for all p ≥ α,

c(p, h)

h+ 1
E[f(Q(p)(h))]− c(p)E[f(Q(p))] =

=
1

h+ 1

h∑
k=0

E
[(‖Θ−k+[0,h]‖αp
‖Θ−k+[0,h]‖αα

−
‖Θ‖αp
‖Θ‖αα

)
f(Θ−k+[0,h]/‖Θ−k+[0,h]‖p)

]
+

+ E
[‖Θ‖αp
‖Θ‖αα

(
f(Θ−k+[0,h]/‖Θ[−k+[0,h]‖p)− f(Θ/‖Θ‖p)

)]
=: I + II .

We will prove that I and II vanish as h → ∞. Since p ≥ α subadditivity
yields for k ∈ [0, h],

∣∣∣‖Θ−k+[0,h]‖αp
‖Θ−k+[0,h]‖αα

−
‖Θ‖αp
‖Θ‖αα

∣∣∣ =

∣∣∥∥‖Θ‖αΘ−k+[0,h]

∥∥α
p
−
∥∥‖Θ−k+[0,h]‖αΘ

∥∥α
p

∣∣
‖Θ−k+[0,h]‖αα‖Θ‖αα

≤

∣∣∥∥‖Θ‖αΘ−k+[0,h]

∥∥p
p
−
∥∥‖Θ−k+[0,h]‖αΘ

∥∥p
p

∣∣α/p
‖Θ−k+[0,h]‖αα‖Θ‖αα

.

Moreover, ∣∣∥∥‖Θ‖αΘ−k+[0,h]

∥∥p
p
−
∥∥‖Θ−k+[0,h]‖αΘ

∥∥p
p

∣∣
≤ ‖Θ−k+[0,h]‖pα

( −k−1∑
t=−∞

|Θt|p +
+∞∑

t=−k+h+1

|Θ|p
)

+
∣∣‖Θ‖α − ‖Θ−k+[0,h]‖α

∣∣p −k+h∑
t=−k

|Θt|p .
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Thus, |I| is bounded from above by

1

h+ 1
‖f‖∞

h∑
k=0

(
E
[‖Θ[−∞,−k−1]‖αp

‖Θ‖αα

]
+ E

[‖Θ[−k+h+1,∞]‖αp
‖Θ‖αα

]
+E
[‖Θ[−∞,−k−1]‖αα + ‖Θ[−k+h+1,+∞]‖αα

‖Θ‖αα

‖Θ−k+[0,h]‖αp
‖Θ−k+[0,h]‖αα

])
≤ 1

h+ 1
‖f‖∞

h∑
k=0

(
E
[‖Θ[−∞,−(k+1)]‖αp + ‖Θ[−∞,−(k+1)]‖αα

‖Θ‖αα

]
+E
[‖Θ[k+1,+∞]‖αp + ‖Θ[k+1,+∞]‖αα

‖Θ‖αα

])
.

Taking the limit as h→∞, the Cèsaro limit on the right-hand side converges
to zero.

We use the Lipschitz-continuity of f to obtain an upper bound of |II|:

|II| ≤ 1

h+ 1
c

h∑
k=0

E
[‖Θ−k+[0,h]‖αp
‖Θ−k+[0,h]‖αα

d̃α

( Θ−k+[0,h]

‖Θ−k+[0,h]‖p
,

Θ

‖Θ‖p

)]
.

Similar arguments as for |I| → 0 show that |II| → 0. �

8.4. Proofs of the results of Section 4.

8.4.1. Proof of Theorem 4.2. We start with a version of Theorem 4.2 for
deterministic thresholds (xb).

Lemma 8.5. Assume the conditions of Theorem 4.2. Then for every g ∈
G+( ˜̀p),

(8.14)
1

k

m∑
t=1

g(x−1
b Bt)

P−→
∫ ∞

0
E
[
g(yQ(p))

]
d(−y−α) , n→∞ ,

holds for sequences kn →∞ and mn := [n/bn]→∞ as in MXp.

Proof. If MXp holds for Lipschitz-continuous f ∈ G+(˜̀p), then it holds for

functions g ∈ G+(˜̀p) of the form g(xt) = 11(xt ∈ A) where A is a continuity-

set of ˜̀p and 0 6∈ A. It suffices to prove that(
E
[
e−

1
k

∑bm/kc
t=1 g(x−1

b Bt)
])k → e−E

[ ∫∞
0 g(yQ(p))d(−y−α)

]
.(8.15)

By stationarity,

E
[
1− e−

1
k

∑bm/kc
t=1 g(x−1

b Bt)
]

= O
(
k−2mE[g(x−1

b B1)]
)
.(8.16)

Since g vanishes in some neighborhood of the origin there exists cg > 0 such
that g(x) = g(x) 11(‖x‖p > cg). Therefore and by virtue of Proposition 8.2
the right-hand side of (8.16) vanishes as n → ∞. Now a Taylor expansion
argument shows that the left-hand side of (8.15) is of the asymptotic order ∼
exp{−(m/k)E[g(x−1

b Bt)]}, and another application of Proposition 8.2 yields
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(8.15). We conclude by the portmanteau theorem for M0(˜̀p)–convergence
in Hult and Lindskog [21], Theorem 2.4. that (8.14) holds. �

We continue with the proof of Theorem 4.2. Lemma 8.5 implies conver-
gence of the empirical measures in M0(˜̀p):

Pn(·) :=
1

k

m∑
t=1

11(x−1
b Bt ∈ · )

P−→ P (·) :=

∫ ∞
0

P(yQ(p) ∈ ·)d(−y−α) .

Using the argument in Resnick [33], p. 81, we may conclude ‖B‖p,(k+1)/xb
P−→

1, and thus the joint convergence in (Pn, ‖B‖p,(k+1)/xb)
P−→ (P, 1) inM0( ˜̀p)×

R+ follows. Now (4.2) follows by an application of the continuous mapping
theorem to the scaling function s(P (·), t) = P (t ·). To prove continuity of

s we use again the portmanteau theorem for M0(˜̀p)–convergence in Hult
and Lindskog [21], Theorem 2.4. Thus it suffices to check whether the

limit Pn f(·/t) P−→ P f holds as (n, t) → (∞, 1) for Lipschitz-continuous

f ∈ G+( ˜̀p). But we have with Lemma 8.5

|Pn f(·/t)− P f | ≤ |Pn f(·/t)− Pn f |+ |Pn f − P f |
= |Pn f(·/t)− Pn f |+ oP(1), n→∞.

Then, for all 0 < t0 ≤ t < 2, for t0 ≤ 1, setting g(x) = (‖x‖p∧‖f‖∞) 11({x :
‖x‖p > cf/t0}), we have

|Pn f(·/t)− P f | ≤
∣∣t−1 − 1

∣∣Pn g + oP(1)

≤
∣∣t−1 − 1

∣∣ (c+ oP(1)
)

+ oP(1) ,

for some c > 0, cf > 0 as above. Letting t→ 1, continuity of s follows. �

8.4.2. Proof of Proposition 4.8. The result follows by a direct application of
Theorem 3.1 in Bartkiewicz et al. [1] on u>Sn for every u ∈ Rd such that
|u| = 1 by checking their conditions (AC), (TB). Condition (4.8) implies
that for all δ > 0,

lim
l→∞

lim sup
n→∞

n

bn∑
t=l

P(|Xt| > δ an , |X0| > δ an) ,

from which (AC) is immediate. This condition also implies (TB). We show
this in two steps. First, we identify the coefficients b(v) in (TB) in terms
of the spectral tail process. Mikosch and Wintenberger [27] showed that

b±(v)− b±(v − 1) = E
[( v∑

j=0

u>Θj

)α
±

]
− E

[( v∑
j=1

u>Θj

)α
±

]
,

where we suppress in the notation the dependence of the left-hand side on u
in what follows. (TB) amounts to verifying that b±(v)−b±(v−1) converges
as v →∞. For α ∈ (0, 1) this follows by concavity since ‖Θ‖α <∞ a.s. For
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1 < α < 2 this will follow by a convexity argument if E[(
∑

j≥0 |Θj |)α−1] <
∞. By subadditivity and Jensen’s inequality, it is enough to check

∞∑
j=0

(
E[|Θj |α−111(|Θj | > 1)] + E[|Θj | ∧ 1]

)
< +∞ .(8.17)

We start by showing

∞∑
j=0

E
[
|Θj | ∧ 1

]
<∞ .(8.18)

Condition (4.8) implies

lim
l→∞

lim sup
n→∞

n

bn∑
j=l

E
[
(|a−1

n Xj | ∧ 1) 11(|X0| > an)
]

= 0 ,

which yields the following Cauchy criterion: for every ε > 0 there exists K
sufficiently large such that for l ≥ K,h ≥ 0,

lim sup
n→∞

n
l+h∑
j=l

E
[
(|a−1

n Xj | ∧ 1) 11(|X0| > an)
]

=
l+h∑
j=l

E
[
|Y Θj | ∧ 1

]
≤ ε ,

where we used regular variation of (Xt) in the last step. Then, we conclude
(8.18) holds. By stationarity we can show similarly

∞∑
j=0

E[|Θ−j | ∧ 1] < +∞.(8.19)

Then, by the time-change formula in (2.2) we deduce

∞ >
∞∑
j=0

E[|Θ−j | ∧ 1] =
∞∑
j=0

E[|Θj |α (|Θj |−1 ∧ 1)]

=

∞∑
j=0

E[|Θj |α−1 ∧ |Θj |α] >

∞∑
j=0

E[|Θj |α−111(|Θj | > 1)],

and (8.17) holds. This finishes the proof of the fact that E[(
∑

j≥0 |Θt|)α−1] <

+∞, in particular c(1) < ∞. Applying the mean value theorem and domi-
nated convergence we arrive at the relation

b±(v)− b±(v − 1) → E
[( ∞∑

j=0

u>Θj

)α
±
−
( ∞∑
j=1

u>Θj

)α
±

]
, v →∞ .
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Reasoning for the limit as for (8.6) and recalling that c(1) <∞, we identify

E
[( ∞∑

j=0

u>Θj

)α
±
−
( ∞∑
j=1

u>Θj

)α
±

]
= E

[( ∞∑
j=−∞

u>Θj

)α
±

/
‖Θ‖αα

]
= E

[( ∞∑
j=−∞

u>Q
(α)
j

)α
±

]
= c(1)E

[( ∞∑
j=−∞

u>Q
(1)
j

)α
±

]
.

8.5. Proofs of the results of Section 6.

8.5.1. Proof of Proposition 6.1. Notice that ψg is bounded and measurable.

For p = α we have Q(α) d
= Θ/‖Θ‖α. Then the result follows from Propo-

sition 3.6 in Janssen [22]. For p > 0, assuming the spectral cluster process

Q(p) is well defined we have ‖Θ‖p <∞ a.s. and c(p) <∞. Then, we intro-

duce the Radon-Nikodym derivative of L(Q(p)) with respect to L(Θ/‖Θ‖p)
which by (3.2) is the function h : `p ∩ {x : ‖x‖p = 1} → R≥0 defined by
h(y/‖y‖p) := ‖y‖α/‖y‖p. Finally, the result follows by another application
of Proposition 3.6 in Janssen [22]. �

8.5.2. Proof of Theorem 6.2. The proof is given for p = α only; the case
p ≤ α extends in a natural way. Let g : `α → R be a continuous bounded
function. We start by proving that ψg defined in (6.1) is a continuous

bounded function on ˜̀α. Fix ε > 0 and [z] ∈ ˜̀α ∩ {[y] : ‖y‖α = 1}. Then

for all [x] ∈ ˜̀α ∩ {[y] : ‖y‖α = 1}, k ∈ Z and N ∈ N, we have

|ψg(x)− ψg(z)| =
∣∣∣∑
j∈Z
|x∗j |αg((x∗j+t)t)−

∑
j∈Z
|z∗j |αg((z∗j+t)t)

∣∣∣
=

∣∣∣∑
j∈Z
|x∗j − z∗j−k|αg((x∗j+t)t)−

∑
j∈Z
|z∗j |α

(
g((z∗j+t)t)− g((x∗j+t+k)t)

)∣∣∣
≤ ‖g‖∞dαα(B−kz∗,x∗) + 2‖g‖∞ dαα(z∗, z∗[−N,N ])

+
∑
|j|<N

|z∗j |α
∣∣g((z∗j+t)t)− g((x∗j+t+k)t)

∣∣ .
If [x] satisfies d̃αα(z,x) < ε(3‖g‖∞)−1 then there exists k0 ∈ Z such that

d̃αα(z,x) < dαα(B−k0z∗,x∗) < ε(3‖g‖∞)−1.

Furthermore, choose N0 ≥ 0 such that dαα(z∗, z∗[−N0,N0]) < ε(2 × 3‖g‖∞)−1

and consider the finite set C[z] ⊂ `α ∩ {y : ‖y‖α = 1}, defined by C[z] :=
{(z∗j+t)t ∈ `α : |j| < N0, |z∗j | > 0}. Notice that for every z̃ ∈ C[z] there

exists δ(z̃) such that if dαα(z̃,x) < δ(z̃) implies |g(z̃) − g(x)| < ε/3. Fi-
nally, define η(z) := min{δ(z̃) : z̃ ∈ C} ∧ ε(3‖g‖∞)−1. Then, noticing that
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|j|<N0

|z∗j |α ≤ ‖z‖αα = 1, we also obtain a bound for the last term. Hence,

for every [x] ∈ ˜̀α satisfying dαα(z,x) < η(z) we have |ψg(x)− ψg(z)| < ε.

This finishes the proof of the continuity of the function ψg on ˜̀α ∩ {y :
‖y‖α = 1}. We conclude with applications of Lemma 8.5 and Proposi-
tion 6.1. �

8.5.3. Proof of Proposition 6.5. Theorem 4.5 in Mikosch and Wintenberger
[29] yields immediately∣∣∣P(sup1≤t≤n St > xn)

nP(|X1| > xn)
− E

[(
sup
t≥0

t∑
i=0

Θi

)α
+
−
(

sup
t≥1

t∑
i=1

Θi

)α
+

]∣∣∣→ 0, n→∞ ,

(8.20)

and nP(|X1| > xn) → 0. We multiply the function inside the limiting
expected value by the constant 1 = ‖Θ‖αα/‖Θ‖αα. Moreover, since c(1) <∞,
then E[(

∑∞
t=1 |Θt|)α−1] < ∞; see Lemma 3.11 in Planinić and Soulier [32].

Then, by Fubini’s theorem,

E
[(

sup
t≥0

t∑
i=0

Θi

)α
+
−
(

sup
t≥1

t∑
i=1

Θi

)α
+

]
=

∑
j∈Z

E
[
|Θj |α

((
sup
t≥0

t∑
i=0

Θi

‖Θ‖α
)α

+
−
(

sup
t≥1

t∑
i=1

Θi

‖Θ‖α
)α

+

)]
.

At this point we apply the time-change formula for positive measurable
functions of Θ at every term of the sum in j ∈ Z; see Corollary 2.8. in
Dombry et al. [13]. By the same argument as in the proof of Proposition
8.2 we obtain the representation of the expectation in (8.20) in terms of the

univariate spectral cluster process Q(p).
Now we apply Theorem 6.2 to f(x) := limk→∞(supt≥−k

∑t
i=−k xi)

α
+ on

`1. It is uniformly continuous and bounded by one on the sphere of `p,
hence (6.2) holds for f . Similarly, the constant c(1)−1 can be estimated by
employing the function g(x) := ‖x‖α on `1 which is bounded by one on the
unitary `1-sphere for α ≥ 1. �

8.5.4. Proof of Proposition 6.7. The re-normalization function ζ is continu-
ous on the unit sphere of (`α, dα), except for sequences with x0 = 0. Then

P(ρ(Y Θ) > 1) = E
[
ρ(Θt)

α ∧ 1
]

= E
[
ρ(Q

(α)
t /|Q(α)

0 |)
α ∧ 1

]
= E

[
(ρα ∧ 1) ◦ ζ(Q(α))

]
.

The proof is finished by an application of Theorem 6.2. �
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