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On the Meshchersky Equation

In this short note we formulate a version of the momentum theorem for the variable mass systems. We deduce the momentum theorem from the fundamental laws of continuum mechanics.

The Main Theorem

Let D ⊂ R q be an open and bounded domain with C 1 -smooth boundary ∂D. The cases q = 1, 2, 3 are physically reasonable.

The space R q is endowed with an inertial frame of reference Ox 1 , . . . , x q , where x = (x 1 , . . . , x q ) are the standard Cartesian coordinates:

x = x i e i ∈ R q .
A theorem we formulate below has an invariant form but we use the Cartesian coordinates just for convenience.

Let (•, •) denote the standard inner product in R q . Note also that in the Cartesian frame there is no need to distinguish co-and contravariant components of tensors. 

Let

w(t, x) = w i (t, x)e i , w i ∈ C 1 (R q+1 ) stand for a vector field in R q and g t t 0 (x) be its flow:

d dt g t t 0 (x) = w(t, g t t 0 (x)), g t 0 t 0 (x) = x.
We assume that g t t 0 (x) is defined for all real t, t 0 and for all x ∈ R q . Introduce a notation D(t) = g t t 0 (D). Loosely speaking w is a velocity of the volume D(t).

Assume that the domain D(t) is filled with a continuous media with a mass density ρ(t, x) and a flow velocity field v(t, x) = v i (t, x)e i ;

v i , ρ ∈ C 1 (Ω), Ω = {(t, x) | x ∈ D(t), t ∈ R} ⊂ R q+1 .
The local conservation of mass equation [START_REF] Sedov | Mechanics of Continuous Media[END_REF] is

ρ t + div(ρv) = 0 or ρ t + ∂(ρv i ) ∂x i = 0. (1.1) 
Let F (t, x) = F i (t, x)e i , F i ∈ C(Ω) stand for a force per unit mass. So that the whole matter in D(t) experiences a net force

G(t) = D(t) ρ(t, x)F (t, x)dV,
where dV is the volume element. We denote the stress tensor by p ij (t, x). The boundary ∂D(t) experiences the following external contact net force

P (t) = ∂D(t) p n dS, p n = p ij n j e i ,
where n = n i e i is the outer unit normal to ∂D(t); dS is the area element of the surface;

p ij ∈ C 1 (Ω). The local equation of linear momentum balance is ρ v k t + ∂v k ∂x i v i = ρF k + ∂p kj ∂x j . (1.2) Let Q(t) = D(t) v(t, x)ρ(t, x)dV
stand for the linear momentum of D(t).

Theorem 1. The equation of linear momentum balance for the volume D(t) is as follows

Q = G + P + R, where R = - ∂D(t) v(v -w, n)ρdS.
Proof of the Theorem. By the well-known theorem from the integral calculus and due to (1.2) it follows that

d dt Q k = D(t) v k t ρ + v k ρ t + div (ρv k w) dV = D(t) F k - ∂v k ∂x j v j ρ + ∂p kl ∂x l + v k ρ t dV + D(t) div (ρv k w)dV.
Integration by parts gives

D(t) ∂v k ∂x j v j ρdV = ∂D(t) v k v j n j ρdS - D(t) v k div(ρv)dV, D (t) 
∂p kl ∂x l dV = ∂D(t)

p kl n l dS,

D(t) div (ρv k w)dV = ∂D(t)
ρv k w j n j dS.

To finish the proof it remains to employ (1.1).

The Theorem is proved. The angular momentum theorem is derived by the same way:

d dt D(t) x × vρdV = D(t)
x × F ρdV

+ ∂D(t)
x × p n dS + ∂D(t)

x × v(wv, n)ρdS.

Here we use p ij = p ji .