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A 3D Mathematical Breast Texture Model with
Parameters Automatically Inferred from Clinical Breast

CT Images
Zhijin Li, Ann-Katherine Carton, Serge Muller, Thomas Almecija, Pablo Milioni de Carvalho, and Agnès

Desolneux

Abstract— A numerical realistic 3D anthropomorphic
breast model is useful for evaluating breast imaging applica-
tions. A method is proposed to model small and medium-scale
fibroglandular and intra-glandular adipose tissues observed in
the center part of clinical breast CT images. The method
builds upon a previously proposed model formulated as
stochastic geometric processes with mathematically tractable
parameters. In this work, the medium-scale parameters were
automatically and objectively inferred from breast CT images.
We hypothesized that a set of random ellipsoids exhibiting
cluster interaction is representative to model the medium-
scale intra-glandular adipose compartments. The ellipsoids
were reconstructed using a multiple birth, death and shift
algorithm. Then, a Matérn cluster process was used to fit
the reconstructed ellipsoid centers. Finally, distributions of
the ellipsoid shapes and orientations were estimated using
maximum likelihood estimators. Feasibility was demonstrated
on 16 volumes of interests (VOI).

To assess the realism of the 3D breast texture model, β
and LFE metrics computed in simulated projection images
of simulated texture realizations and clinical images were
compared. Visual realism was illustrated.

For 12 out of 16 VOIs, our hypothesis on clustering in-
teraction process is confirmed. The average β values from
simulated texture images (3.7 to 4.2) of the 12 different
VOIs are higher than the average β value from 2D clinical
images (2.87). LFE of simulated texture images and clinical
mammograms are similar. Compared to our previous model,
whereby simulation parameters were based upon empirical
observations, our inference method substantially augments
the ability to generate textures with higher visual realism and
larger morphological variety.

Index Terms— X-ray breast imaging, virtual clinical trials,
3D breast texture model, stochastic geometry, statistical
parameter inference.
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A 3D anthropomorphic software model of the breast
may serve as a useful tool in the development and

performance evaluation of breast x-ray imaging appli-
cations [1]–[6]. To be effective, a 3D anthropomorphic
software model of the breast must be realistic for the
envisioned task.

An overview of the advances of anthropomorphic breast
phantoms primarily used in breast x-ray imaging appli-
cations was recently published by Glick and Ikejimba
[7]. Three types of 3D phantoms have been proposed.
First, clinical image-based phantoms are in essence re-
constructed clinical images from breast CT acquisitions
whereby different tissue types are assigned using a segmen-
tation algorithm [8]–[10]. Secondly, mathematical phan-
toms use mathematical models to define the various
anatomical components of the breast [11]–[25]. Thirdly,
hybrid phantoms combine the two previous approaches;
clinical image-based phantoms are enriched with math-
ematically defined anatomical components [26]. As an
alternative to 3D breast phantoms, Bochud et al. [27] and
Castella et al. [28] developed the clustered lumpy back-
grounds (CLB), a mathematical model using elements of
stochastic geometry to synthesize stationary, random 2D
mammography texture images. Because of its 2D nature,
the CLB is only appropriate to evaluate 2D mammography
applications [29] and not for 3D imaging applications such
as digital breast tomosynthesis (DBT) and breast CT. A
3D adaptation of the CLB has been explored [30].

Each of the above phantoms offer advantages and have
limitations in terms of mathematical traceability, the
capability to generate independent random realizations,
morphological variability with respect to the population of
women being imaged and the realism of images simulated
from these breast phantoms compared to clinical images.
In particular, simulated x-ray images of 3D clinical image-
based phantoms have high visual realism, but they lack
finer details due to the image acquisition and segmentation
process. On the other hand, the anatomical structures in
mathematical phantoms often have a geometric appear-
ance. To design VCT that will answer clinical questions,
it is essential to understand what level of realism is needed
depending on the VCT objective. Also, knowledge of the
realism constraints of the breast phantoms is key. Today,
there is no clear answer on how to validate phantom
realism.
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Phantom image realism has been extensively assessed by
statistical image properties [17], [31]–[33] and to a lesser
extent by psychophysical experiments [25], [34], [35]. The
more extensive reporting using statistical image properties
can be attributed to the practicality of the objective mea-
sures, while psychophysical experiments involving humans
are time consuming.

Statistical breast image properties have traditionally
been characterized by the power spectral index β, a second
order metric that depends on the slope of the image power
spectrum [20], [31], [32]. Hereby it is assumed that the im-
age texture is locally stationary and has a power spectrum
completely characterized by a power-law function, which
has been observed in clinical screen-film mammography
[31], full field digital mammography (FFDM) [36], DBT
[37] and breast CT images [38]. Despite that β contains
useful information regarding the breast texture, it does not
fully capture the texture characteristics. Phantom images
and clinical images with the same β value may have a very
different visual appearance [17] [33]. According to Abbey
et al. [33], the power spectral index should be considered
a necessary condition for phantom realism, but not a
sufficient condition. To describe image texture more fully,
Abbey et al. [17] proposed the Laplacian Fractional En-
tropy (LFE), a higher-order non-Gaussian statistical met-
ric. LFE is based upon the response histograms obtained
by convolving the image by Gabor filters representative of
receptive fields in the virtual cortex. LFE is the entropy
of a response histogram relative to the expected response
histogram from a Gaussian process. LFE is a measure
of to which extent a response histogram deviates from a
Gaussian form. Preliminary results have demonstrated the
usefulness of LFE to differentiate clinical and phantom x-
ray images [33] [39].

In terms of psychophysical experiments, “fool-the-
reader” evaluations have been proposed [25], [34], [35],
aiming to measure the ability of human observers to dis-
tinguish simulated phantom images from clinical images.
To our knowledge, there are no publications evaluating
task-driven phantom texture realism.

A continuous effort is ongoing to improve the realism of
mathematical and hybrid phantoms [20], [26]. For the early
generation mathematical phantoms, the breast anatomy
was defined using empirical but qualitative descriptions of
breast anatomy found in the literature [11], [21]–[24]. More
recently, mathematical phantom design is often driven by
ways to increase statistical realism of simulated phantom
images in comparison with clinical images [20], [26]. To
our knowledge, no work reports on improvements based
on objective and automatic inference of morphological
characteristics extracted from clinical fully 3D images,
such as from breast CT or MRI reconstructed images. In
the field of material science however, objective and auto-
matic inference methods have been successfully applied to
describe and simulate heterogeneous structures [40], [41].

In this article, we build upon a previously proposed 3D
mathematical breast texture model for small and medium-
scale fibroglandular tissue and intra-glandular adipose

tissue present in the center part of the breast [25]. The 3D
texture model is formulated as two stochastic geometric
processes with mathematically tractable characterization.
In previous work, the small and medium-scale texture
parameters were empirically determined based on visual
observations in segmented reconstructed breast CT im-
ages. For each of the four simulated BI-RADs breast
density classes, simulated breast textures had only a lim-
ited morphological variability and the visual realism of
simulated images of the breast texture was found to be fair
to high [25]. To allow for a larger variability in simulated
breast texture morphologies and to increase visual realism,
in this work, a method is proposed to objectively and
automatically assess the medium-scale parameters from
segmented clinical breast CT images. We hypothesized
that a set of random ellipsoids exhibiting cluster inter-
action is representative to model the medium-scale intra-
glandular adipose compartments. To reconstruct the el-
lipsoid set, a multiple birth, death and shift algorithm
is proposed. Then, we propose to fit the reconstructed
ellipsoid centers to a Matérn cluster process using the
minimum contrast estimator. Finally, distributions for the
shapes and orientations of the ellipsoids are estimated
from reconstructed ellipsoids using maximum likelihood
estimators. The feasibility of the method is demonstrated
on 16 volumes of interest, extracted from the segmented
breast CT images.

To evaluate the realism of our 3D mathematical breast
texture model of small and medium-scale fibroglandular
tissue and intra-glandular adipose tissue present in the
center part of the breast, we analyzed 2D simulated
texture projection images in terms of β and LFE and
we compared the values to previously published values
for clinical images. We also illustrate the visual realism
of 2D mammographic projections and 3D reconstructed
DBT slices. A more extensive psychophysical “fool-the-
reader” experiment was out of scope of this article and
was conducted in a previous publication [35].

II. MATERIALS AND METHODS

A. Breast computerized tomography data
To develop the 3D mathematical breast texture model of

small and medium-scale fibroglandular and intra-glandular
adipose tissues in the center portion of the breast, 3D
reconstructed volumes of 16 breasts from 16 patients,
acquired with a dedicated breast CT scanner prototype,
were used [42]. The selected breast volumes did not contain
any identified lesion and they were characterized by a
variety of volumetric breast densities. Fig. 1 illustrates
a coronal, a sagittal, and a transverse plane of four re-
constructed breast CT volumes of predominantly adipose,
scattered fibroglandular dense, heterogeneously dense, and
extremely dense breasts. First, all volume voxels were clas-
sified as either fibroglandular tissue or adipose tissue with
a previously developed automatic segmentation algorithm
[43], with the same aim of the algorithm by Caballo et al.
[44]. Next, a cubic volume of interest (VOI) with 3.5 cm



LI et al.: A 3D MATHEMATICAL BREAST TEXTURE MODEL WITH PARAMETERS AUTOMATICALLY INFERRED FROM CLINICAL BREAST CT IMAGES 3

Fig. 1. Illustration of a coronal, a sagittal and a transversal plane
from four reconstructed breast CT volumes used in this work to develop
the 3D mathematical breast texture model. According to the BI-RADS
reporting system, the breast tissues are almost entirely fatty, scattered
fibroglandular dense, heterogeneously dense, and extremely dense.

Fig. 2. Illustration of a coronal and sagittal plane from an original (a)
and a segmented (b) reconstructed breast CT scan. The yellow lines
in (b) indicate the VOI, selected in the central breast tissue region, as
input to construct the 3D mathematical breast texture model. The VOI
is 3.5 cm × 3.5 cm × 3.5 cm (c).

TABLE I
SUMMARY OF EXTRACTED AND SEGMENTED VOIS FROM 16 INPUT

BREAST CT VOLUMES IN TERMS OF THEIR DIMENSIONS IN NUMBER OF

VOXELS, ISOTROPIC VOXEL RESOLUTIONS AND VOLUMETRIC

FIBROGLANDULAR DENSITY.

VOI
VOI

dimension
(number of

voxels)

Voxel
resolution

(mm)

VOI
volumetric fi-
broglandular
density (%)

#1 99 × 99 × 99 0.357 57.2
#2 99 × 99 × 99 0.354 40.6
#3 94 × 94 × 94 0.376 25.1
#4 103 × 103 × 103 0.341 23.5
#5 103 × 103 × 103 0.343 17.4
#6 100 × 100 × 100 0.351 37.2
#7 112 × 112 × 112 0.314 32.9
#8 96 × 96 × 96 0.366 29.0
#9 97 × 97 × 97 0.361 25.7
#10 101 × 101 × 101 0.349 13.9
#11 128 × 128 × 128 0.275 14.5
#12 87 × 87 × 87 0.405 09.8
#13 107 × 107 × 107 0.329 27.1
#14 87 × 87 × 87 0.405 25.0
#15 124 × 124 × 124 0.283 20.5
#16 126 × 126 × 126 0.279 17.2

side length was extracted from the central region of each

segmented binary breast CT volume. The distances from
the chest wall and breast skin to the nearest VOI boundary
were larger than 2 cm, to ensure that the VOI contained
mainly fibroglandular and intra-glandular adipose tissue
and to avoid the potential presence of subcutaneous and
retromammary adipose tissue. The latter is characterized
by a different mathematical model. In addition, due to
the limited spatial resolution of the segmented breast
CT dataset, it would not be possible to well characterize
this part of the breast. Fig. 2 shows an original and
segmented breast CT reconstructed volume, and a 3D
rendering of the extracted cubic VOI. Table I summarizes
the characteristics of all 16 extracted and segmented VOIs
in terms of the number of voxels, the voxel size and the
volumetric fibroglandular density. The volumetric fibrog-
landular density was computed as the fraction of the voxels
containing fibroglandular tissue.

B. 3D breast texture model based on breast CT VOIs
The proposed 3D breast texture model was based on

observations from segmented breast CT VOIs. As shown in
Fig. 3, we hypothesized that medium-scale intra-glandular
adipose tissue compartments can be modeled using a
system of overlapping ellipsoids. Also, small scale irreg-
ularities observed at the boundaries between the fibrog-
landular and adipose tissues were modeled using elements
of stochastic geometry. An overview of the key steps used
to simulate 3D breast texture is shown in Fig. 4.

To model the medium-scale intra-glandular adipose tis-
sue, a Marked Point Process (MPP) [45] Y = {Φs, θ}, of
randomly oriented overlapping ellipsoids, defined inside a
3D cube W was proposed (Fig. 4, top). The fibroglandular
tissue was defined as the complement of Y. The MPP was
characterized by two distributions; Ps, distribution of a
point process [45] Φs = {xi, i ∈ N}, and Pθ, distribution
of a random vector θ. The point process Φs determines
the center points of the ellipsoids, while θ determines the
shapes and orientations of the ellipsoids. More specifically,
θ was set to (La, Lb, Lc, δϕa, δϕb, δϕc), where La, Lb and
Lc are half lengths of the principal axes of the ellipsoids
and δϕa, δϕb, δϕc are three random tilt angles of the
ellipsoids around the three principal axes. Each random
tilt angle is added to a deterministic rotation angle. The
deterministic rotation angles of an ellipsoid are the Euler
angles obtained by rotating the ellipsoid, originally aligned
with the global coordinate system, to an orientation where
its longest principal axis extends to a hypothetical nipple
position [46]. A hypothetical nipple position aims to model
a texture directionality observed in clinical breast images
[47].

To model the small scale irregularities observed at the
boundaries of fibroglandular and intra-glandular adipose
tissues (Fig. 3), a 3D Uniform Poisson Point Process
[45] ΦV in the same cube W , defining the centers of a
3D Voronoi tessellation, was proposed (Fig. 4, bottom).
The process ΦV was parametrized by a scalar intensity
parameter λV , controlling the average number of Voronoi
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Fig. 3. Illustration of a VOI extracted from a segmented breast CT
volume. This figure illustrates that the medium-scale intra-glandular
adipose tissue compartments can be well approximated by overlapping
ellipsoids (marked in yellow). The small irregularities at the boundaries
of fibroglandular and adipose tissues were modeled by boundaries of a
3D Voronoi tessellation.

Fig. 4. Overview of the key steps used to create the 3D mathematical
breast texture. At one hand, a marked point process is defined serving as
the centers of a set of randomly orientated ellipsoids of various sizes. In
parallel, a uniform Poisson point process is defined, serving as the basis
of 3D Voronoi tessellation. These two process outcomes are combined.
To obtain the final texture, Voronoi cells with center inside ellipsoids are
turned off.

cells per unit volume [48]. Large values of λV give very
smooth intra-glandular adipose compartment boundaries
while smaller values of λV give irregular boundaries. Here,
the magnitude of λV was chosen to obtain visually similar
boundaries as observed in the original breast CT volumes
and in simulated mammography images of the segmented
breast CT volumes. The λV value was set equal to 10
points per mm3 to obtain 3D Voronoi cells with average
sizes equal to 0.1mm3.

The breast texture model produces discrete 3D volumes
in voxelized format as final output. Therefore, a vox-
elization process combining medium-scale ellipsoids and
small scale Voronoi cells was proposed (Fig. 4, right),
creating medium-scale fibroglandular and adipose tissues
with small irregularities at the boundaries, as observed
in breast CT VOIs. The 3D cube W was first discretized
into voxelized format at resolution ν, then every voxel was
assigned a value of either 0 or 1 depending on its position
relative to the small scale Voronoi cells and the medium-
scale ellipsoids. More specifically, all voxels belonging to
a Voronoi cell were assigned a value of 0, if the center of
the Voronoi cell fell inside one of the ellipsoids. All other
voxels were assigned a value of 1.

C. Estimating parameters of proposed 3D texture model

The parameters of the medium-scale texture model,
i.e. the marked point process Y = {Φs, θ}, were deter-
mined with an objective and automatic inference method.
We chose to adopt the inference from the reconstruction
pipeline proposed by Thiedmann et al. [40] since this
method allows to reconstruct the individual ellipsoids
composing the adipose compartments, that are occult in
the segmented breast CT VOIs.

First, a reconstruction step using a dynamic Monte
Carlo algorithm was designed to identify the centers, half-
axes and orientations of the ellipsoids in each breast CT
VOI. Next, statistical analyses were performed to deter-
mine the empirical distributions of Φs and θ. Finally, the
parameters of Ps and Pθ were estimated. The parameters
of Ps were estimated using a minimum contrast estimator
[45], minimizing the squared difference between the theo-
retical pair correlation function [49] of Φs and its empirical
counterpart measured from the reconstructed ellipsoids.
The parameters of Pθ were estimated using maximum-
likelihood method.

1) Reconstruction of ellipsoids from breast CT VOIs: Let D
be a segmented breast CT VOI defined in a 3D cube W ,
where D(x) = 1 if the voxel x is classified as fibroglandular
tissue, and D(x) = 0 if the voxel x is classified as adipose
tissue. The reconstruction step, aiming to find the optimal
configuration of ellipsoids for D, was formulated as an
optimization problem that can be solved using a dynamic
Monte Carlo algorithm. The probability density function
fY of the underlying MPP model Y was assumed to have
a Gibbsian form [50]:

fY(u) = 1
ZT

exp
(

− 1
T

E(u, D)
)

. (1)

Here u = {Ei}i is a configuration of 3D ellipsoids, where
∀i, Ei is a 3D ellipsoid characterized by its center point xi

and a parameter vector θ of its shape and orientation,
as described in Section II-B. The term E(u, D) refers to
the energy and T ∈ R+ is a temperature parameter. The
term ZT is a normalization constant that does not need to
be computed, since we use a Monte Carlo algorithm that
computes only the ratio of probabilities.

The energy term was further decomposed into two parts
[51], [52]:

E(u, D) = L(u, D) + P(u). (2)

The first part L(u, D) is a data fidelity term represent-
ing how well a configuration of ellipsoids u matches the
breast CT VOI D. It was formulated as

L(u, D) = 1 − |{x ∈ W |Du(x) = 0 and D(x) = 0}|
|{x ∈ W |Du(x) = 0 or D(x) = 0}|

. (3)

Here, | · | denotes the number of elements in a set and
Du is obtained by voxelizing the configuration of ellipsoids
u inside the cube W , that is,
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Du(x) =
{

0 if voxel x is inside an ellipsoid of u,

1 otherwise.
(4)

The second part P(·) is a prior term containing the
a-priori information of the underlying MPP model Y.
A model with minimum a-priori information on the dis-
tribution of the ellipsoids was chosen and a constraint
preventing high overlap ratio between ellipsoids was used
to formulate P(u). That is:

P(u) =
∑
E∈u

q(E , u \ E), (5)

with
q(E , u \ E) =

{
0 ν(E∩u\E)

ν(E) ≤ 0.95,

+∞ otherwise,
(6)

where ν(·) denotes the continuous 3D volume measure.
Finding the best configuration of ellipsoids u∗ is there-

fore equivalent to solving the following optimization prob-
lem:

u∗ = arg max
u

fY(u) = arg min
u

(L(u, D) + P(u)) . (7)

Since the analytical solution for (7) is not straightfor-
ward, we proposed to use a dynamic Monte Carlo Markov
Chain algorithm. More specifically, the special case of a
multiple birth, death and shift (MBDS) algorithm [52]
was adopted, with an iterative procedure aiming to solve
equation (7) through stochastically sampling, deleting and
modifying multiple ellipsoids. An overview of the key steps
of the complete algorithm is described in Fig. 5.

In summary, at each iteration, first a birth process
occurred, creating multiple random ellipsoids based on
some proposal distributions for the ellipsoid centers, half-
axis lengths and tilt angles. In this study, a Uniform
Poisson point process with intensity parameter γ equal
to 0.005 points per mm3 was used as the proposal process
to sample the ellipsoid centers. As of the proposal distri-
butions to sample the half-axis lengths La, Lb, Lc and
the tilt angles δϕa, δϕb, δϕc of the ellipsoids, Gaussian
and Uniform distributions with parameters empirically
determined in our previous study [25] were used. These
previously determined proposal distributions allowed to
accelerate the convergence of the algorithm, compared to
if random probability distributions were used to initialize
the algorithm.

After the birth process, each existing ellipsoid was exam-
ined with respect to the energy of its current configuration,
to determine whether a death process or a shift process
would be performed. More specifically, a probability value
pd = rγ

1+rγ , where

r = exp
(

E(u, D) − E(u \ E , D)
T

)
(8)

was first computed representing the potential energy de-
crease if the death process were to be performed. Then, pd

Fig. 5. Steps of the multiple birth, death and shift algorithm.

was compared with a random value v uniformly sampled
between 0 and 1. If pd > v, then the death process was
performed. Otherwise the shift process was performed.
The death process consisted of deleting the examined
ellipsoid from the configuration, while the shift process
consisted of replacing the examined ellipsoid by a new
ellipsoid. The shift process aims to improve the accuracy
of covering intra-glandular adipose tissues by ellipsoids,
as illustrated in Fig. 6. The shift process was designed in
analogy to the Legendre ellipsoid associated with a convex
body in classical mechanics [53]. More specifically, for an
ellipsoid E in a configuration u, let DE be the binary
volume obtained by voxelizing E inside cube W under the
same rule as described in (4). For a segmented breast CT
VOI D, we define KE(D) as
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KE(D) = {x ∈ W |D(x) = 0 and DE(x) = 0}. (9)

Then from KE(D), we define a new ellipsoid ED as

ED = {y ∈ R3|(y − µ)T Σ−1(y − µ) ≤ 1}, (10)

where
µ =

∑
x∈KE (D) x

|KE(D)|
is the center of mass of KE(D), and

Σ =
∑

x∈KE (D) 5(x − µ)(x − µ)T

|KE(D)|
is a positive-definite real symmetric matrix [53]. The shift
of E consists in replacing E by the ellipsoid ED. The idea
is that, when KE(D) is a convex body, ED is the unique
ellipsoid centered at the center of mass of KE(D), having
the same moment of inertia as KE(D) about any axis
passing through the center of mass [54]. The birth, death
and shift processes were repeated until the largest change
in the energy values for the 10 most recent iterations did
not exceed a pre-defined value ϵ, indicating the conver-
gence of the algorithm. The value of ϵ was set to 0.001
in our study. The algorithm was implemented using the
C++ language. To quantify the reconstruction accuracy,
the Dice coefficient d was computed for each breast CT
VOI D and its corresponding Du obtained from the MBDS
algorithm [55], that is

d(D, Du) = 2|{x ∈ W |D(x) = 0 and Du(x) = 0}|
|{x ∈ W |D(x) = 0}| + |{x ∈ W |Du(x) = 0}|

.

Fig. 6. Illustration of the shift process in the MBDS algorithm. The shift
process, which replaces an initial ellipsoid (yellow) by its corresponding
Legendre ellipsoid (green), aims to improve the covering accuracy of the
intra-glandular tissue.

2) Statistical analyses of reconstructed ellipsoids: After the
reconstruction step, empirical statistical analyses were
performed for each breast CT VOI to study the distri-
bution Ps of reconstructed ellipsoid centers, and the dis-
tributions Pθ of half-axis lengths and random tilt angles.

a) Distribution of reconstructed ellipsoid centers: To ana-
lyze the distribution Ps of the reconstructed ellipsoid cen-
ters Φs, the pair correlation function (PCF) was estimated
for each breast CT VOI. PCF is a second-order statistical
descriptor for point processes that is often used to visualize
interactions between pairs of points [49]. For a Poisson
point process where there is no interaction between any
pair of points, the PCF has a constant value of 1. For
a point process exhibiting clustering interaction between
points, its theoretical PCF is expected to be greater than
1 [49]. For a stationary and isotropic point process, the
theoretical PCF, g(r), depends only on the interpoint

distance r = ∥c1 − c2∥, for any pair of spatial positions
c1 and c2.

In this study, only small VOIs, measuring 3.5 cm ×
3.5 cm × 3.5 cm, were considered. Based on preliminary
empirical characterizations [25], we hypothesized that the
ellipsoid centers follow a stationary and isotropic point
process in such small VOIs. In addition, based on empirical
measurements [25], we hypothesized that the ellipsoid cen-
ters exhibit a clustering interaction, since overlaps between
ellipsoids were observed. To estimate the empirical PCF
of the reconstructed ellipsoid centers,the analytical PCF
estimator described in [56, p.232] was applied:

ĝ(r; Φs) =
∑

p1,p2∈Φs∩W,p1 ̸=p2

k(∥p1 − p2∥ − r)
4πr2λ̂2ν(Wp1 ∩ Wp2)

, (11)

where Φs is the collection of all ellipsoid centers recon-
structed from a breast CT VOI, k(·) is a smoothing kernel
function, ν(·) is the volume measure, Wp1 and Wp2 denotes
the translation of cube W by points p1 and p2 respectively,
and λ̂ is the empirically estimated intensity parameter of
Φs, expressed as

λ̂ = |Φs|
ν(W ) . (12)

The Epanechnikov smoothing kernel [45] was used for
k(·):

k(s) =
{

3
4δ (1 − x2

δ2 ) if − δ ≤ s ≤ δ,

0 otherwise,
(13)

for any s ∈ R, where δ is a bandwidth parameter and was
set to 0.26

3
√

λ̂
based on a rule-of-thumb defined in [57].

The estimation of the PCF was performed using the
pcf3est function implemented in the R software package
spatstat version 1.61 [57] using the default setting.

Next, Poisson envelope tests [58] of the estimated PCFs
were performed to check if the reconstructed ellipsoid
centers can be modeled as Poisson point process.

b) Distributions of ellipsoid half-axis lengths and random
tilt angles: To analyze the distribution of the half-axis
lengths La, Lb, Lc and tilt angles δϕa, δϕb, δϕc, we as-
sumed them to be independent random variables that were
independent from the ellipsoid centers Φs. Histograms of
La, Lb, Lc, δϕa, δϕb and δϕc of the reconstructed ellipsoids
were constructed.

3) Estimation of model parameters: Parametric models
were proposed to estimate the distributions of the ellipsoid
centers, half-axis lengths and random tilt angles. To model
the cluster interaction between ellipsoid centers, a three-
dimensional Matérn cluster process [49] was used and
the minimum contrast estimator (MCE) [45] introduced
in Section II-C was applied to estimate its parameters.
Regarding the half-axis lengths and random tilt angles,
Gaussian and Uniform distributions were considered and
their parameters were estimated using maximum likeli-
hood estimators.

a) Matérn cluster process for reconstructed ellipsoid cen-
ters: A 3D Matérn cluster process ΦM is a two-step
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stationary and isotropic point process that is entirely
determined by three parameters: intensity parameters κ,
λ0, and radius R. To construct a 3D Matérn cluster
process, first a set of “parent points” {yi}i∈I ⊂ R3

was sampled from a Uniform Poisson point process with
intensity parameter κ. Here I denotes the set of all indices
for the “parent points”. For each “parent point” yi, a
sphere with radius R centered at yi was generated. Then,
inside each sphere, a set of “children points” was sampled
from another Uniform Poisson point process with intensity
parameter λ0. A realization of the Matérn cluster process
was obtained as the collection of all “children points”. The
MCE method [45] was applied to obtain estimations κ̂,
λ̂0, and R̂ of respectively κ, λ0, and R by minimizing the
squared difference between the empirical and theoretical
PCF. That is,

κ̂, λ̂0, R̂ = arg min
κ,λ0,R

∑
r∈R

(ĝ(r; Φs) − g(r; κ, λ0, R))2
,

with equality constraint λ̂ = 4
3πR̂3κ̂λ̂0,

(14)

where R is a range of interpoint distances for the MCE
estimator and was set to vary from 0.2 mm to 30 mm with a
step size of 0.2 mm, ĝ(r, Φs) is the empirical PCF estimator
given in (11), g(r; κ, λ0, R) is the theoretical PCF given in
[56, p.376]:

g(r; κ, λ0, R) =
{

1 + 3(R− r
2 )2(2R+ r

2 )
8πκλ0R6 if 0 < r ≤ 2R,

1 if r > 2R,
(15)

and λ̂ is the empirically estimated intensity parameter
given in (12). The equality constraint in (14) was based on
the theoretical intensity parameter λ of the the 3D Matérn
cluster process [56, p.376]:

λ = 4
3πR3κλ0. (16)

The optimization (14) was numerically solved with func-
tion fmincon implemented in the Matlab software (version
2016b) using the default setting. All optimizations were
ran with an initial condition κ = 0.1, λ0 = 0.1 and R =
1. Convergence was considered to be reached when the
squared difference between the empirical and theoretical
PCF was non-decreasing, within a tolerance value of 10−6.
Once the 3D Matérn cluster process for each breast CT
VOI was estimated, an envelope test [58] was performed
to statistically evaluate the Matérn cluster hypothesis.

b) Gaussian and Uniform distributions for ellipsoid half-
axis lengths and random tilt angles: Based on histograms of
ellipsoid half-axis lengths La, Lb, Lc and tilts angles δϕa,
δϕb, δϕc, Gaussian distributions were used to model La,
Lb, Lc, δϕb and δϕc, while a Uniform distribution was
used to model δϕa. Parameters of these distributions were
then estimated using maximum likelihood estimators [59].
Kolmogorov-Smirnov tests (α = 0.05) of goodness-of-fit
[60] were performed to verify the statistical validity of the
estimation.

D. Evaluation of simulated texture images

Using the ray-tracing algorithm implemented in CatSim
[61], mammographic and DBT projection images were
simulated of breast textures generated with the above
proposed model. CatSim was configured to model the
topology of the GE Healthcare Senographe Pristina mam-
mography system (GE Healthcare, Buc, France). Projec-
tion images were created by considering a mono-energetic
x-ray spectrum (23 keV) and only quantum noise as noise
source. Detector blur was simulated by filtering the pre-
sampled images with an empirically assessed convolution
kernel. The photon flux was tuned to match the signal-
to-noise ratio (SNR) of simulated images with real images
acquired under automatic exposure mode. X-ray scatter
from the simulated breast texture was not modeled. The
photon flux was tuned so that the SNR of simulated
projection images matches the SNR for real acquisitions
when using automatic exposure conditions. Mechanical
breast texture deformation to mimic breast compression
during the DBT image acquisition was not modeled. For
the visual assessment, the 2D mammography projection
images were processed with eContrast3.1 (GE Healthcare’s
commercial 2D image processing), while for the statistical
texture evaluation, no additional processing was applied.
DBT projection images were reconstructed using the com-
mercially available ASIR-DBT algorithm for Pristina.

For each investigated VOI from the reconstructed breast
CT volumes, 30 breast texture cubes were realized with
50 mm sides and 35 mm thickness using the corresponding
set of medium-scale texture parameters estimated in this
work. Small-scale Voronoi tessellations were also simu-
lated, with intensity parameter defined in Section II-B. For
each simulation condition, the same relative hypothetical
nipple position was chosen as in the corresponding breast
CT volume, and an isotropic voxel size was set equal to
100 µm.

The power-law index, β, and Laplacian Fractal Entropy
(LFE) were used to evaluate the statistical properties
of the generated breast textures in 2D mammographic
projection images.

β was computed following the method described by
Mainprize et al. [62]. In summary, the pixel signal inten-
sities in the mammographic projections were converted to
log-intensities. Four 256 × 256 regions of interest (ROIs)
were extracted from the central, uniform thickness region
of the simulated mammographic projections such that
adjacent subregions overlapped by 50% in the horizontal
and vertical directions. A spatial cosine window function
was used to reduce spectral leakage in the power spec-
trum estimates. The 2D power spectrum was determined
for each of the four ROIs and then the average power
spectrum for the four ROIs was computed. The power
spectral index β was then computed as the inverse of the
slope of the linear fit to the log-log plot of the radially
averaged power spectrum, as a function of frequency. The
0.15 cycles/mm to 0.7 cycles/mm spatial frequency range
was used for the linear fit. These β values were compared
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to previously published values for clinical mammography
images [62].

LFE was computed following the method described by
Abbey et al. [33]. A set of 11 Gabor filters was used.
Each 2D projection image was converted to log-intensities.
Gabor filters spanning 11 center frequencies varying from
0.125 cycles/mm to 4.0 cycles/mm were evaluated at 0◦,
30◦, 60◦, 90◦, 130◦ and 150◦ orientations. The Gabor
filters were sine-phase with a bandwidth of 1.4 octaves
and an aspect ratio of 1. Responses were obtained by
convolving each Gabor filter with a log-intensity converted
projection image. The response histograms were calculated
in the 256 × 256 central region of each filtered image and
the LFE values were calculated at different frequencies.
The histograms binned the central 99% of the responses,
with an additional 1% bin for the remaining extreme
values. The LFE estimate for a single filter were averaged
across the six filter orientations. These LFE values were
compared to previously published LFE values for a small
set of 20 clinical mammography images [39].

III. RESULTS

A. Estimating parameters of proposed 3D texture model
1) Reconstruction of ellipsoids from breast CT VOIs: Fig. 7

illustrates the convergence of the MBDS algorithm in
terms of the energy decrease as a function of the number of
iterations for four segmented breast CT VOI (#1, #3, #7
and #11). For these four VOIs, convergence was reached
after respectively 6174, 7488, 8172, and 7722 iterations.
For the 12 other segmented breast CT VOIs a similar
convergence pattern was observed (not shown). For all
VOIs, the algorithm was stopped at the 9000th iteration
to obtain the final reconstructed sets of ellipsoids. The
average runtime for 9000 iterations per breast CT VOI was
approximately 20 minutes on a single PC with an Intel(R)
Xeon(R) 12-core CPU E5-2630 and 64 Gb memory.

Fig. 7. Illustration of the convergence of the MBDS algorithm in terms
of energy defined in (2) as a function of the number of iterations for
breast CT VOI #1, #3 #7 and #11. Convergence was reached after
about 8000 iterations for all four VOIs.

Fig. 8 illustrates the quality of the final reconstructed
sets of ellipsoids in comparison with the input segmented
breast CT VOIs #1, #3, #11, and #12. Each set of
final reconstructed sets of ellipsoids was discretized into
voxelized cubes with the same dimensions and voxel sizes
as their corresponding input segmented breast CT VOIs.
As a measure for the resemblance of the final reconstructed

sets of ellipsoids and input segmented VOIs, Fig. 8 also
shows a 2D projection image of each VOI computed by
averaging the VOI in the direction perpendicular to the
transversal plane. Fig. 8 shows that the distribution and
morphology of the medium-scale fibroglandular and intra-
glandular adipose tissues in the final reconstructed VOIs
agree fairly well with the input segmented breast CT VOIs
#1, #3 and #11. Medium scale textures in projection
images obtained from final reconstructed sets of ellipsoids
and input segmented breast CT VOIs also share fairly
similar visual appearance for VOIs #1, #3 and #11.
This result was consistent for VOIs #2, #4, #6, #7, #8,
#9, #10, #13 and #14 (not shown). However, for VOI
#12, the distribution and morphology of the medium-
scale fibroglandular and intra-glandular adipose tissues
was found to differ greatly in the final reconstructed VOI
and the input segmented breast CT VOI. This result was
consistent for VOIs #5, #15 and #16 (not shown).

Fig. 9 shows the Dice coefficients [55] computed for
all the 16 final reconstructed sets of ellipsoids and input
segmented breast CT VOIs. For most of the input VOIs,
the Dice coefficient was found to be greater than 65%,
indicating fairly good reconstruction quality. There is a
tendency that the Dice coefficient increases with increasing
VOI volumetric fibroglandular density.

2) Statistical analyses of reconstructed ellipsoids: Fig. 10
compares the empirical PCFs, estimated for the recon-
structed ellipsoid centers, and a theoretical Poisson point
process for VOI #1, #3, #11, and #12. Fig. 10 also shows
the envelopes constructed for the envelope tests allowing
to evaluate the goodness of fit of the empirical PCFs with
a Poisson point process. For VOI #1, #3 and #11 the
empirical PCFs were not completely contained inside the
envelope at all interpoint distances. This indicates that a
Poisson point process is not a suitable model for the em-
pirical distributions of ellipsoid centers in these VOIs. For
VOI #1, #3 and #11 the reconstructed ellipsoid centers
also exhibit a clustering effect since the empirical PCF
values are greater than 1 for small interpoint distances.
This finding confirms our hypothesis that a clustering
interaction process describes well the medium-scale intra-
glandular adipose compartments. Similar results were ob-
tained for VOI #2, #4, #6, #7, #8, #9, #10, #11, #13
and #14 (not shown).

For VOI #12, the empirical PCF was completely con-
tained within the Poisson envelopes at all interpoint
distances and the reconstructed ellipsoid centers do not
exhibit a clustering effect, since the empirical PCF val-
ues are not greater than 1 at any interpoint distances.
Similar results were obtained for VOI #5, #15 and #16
(not shown). For these VOIs, the MBDS algorithm was
found to perform many more death operations than shift
operations for ellipsoids generated during birth operation.
As a consequence, the reconstructed ellipsoid centers were
found to be closely related to the initial proposal process
used for the birth operation, which was a Poisson point
process. These findings indicate that the Poisson point
process might be a good candidate to model the empirical
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Fig. 8. Coronal slices, sagittal slices and 2D projections of the input segmented breast CT VOIs #1, #3, #11, #12 and corresponding VOIs
with reconstructed ellipsoids representing the medium-scale fibroglandular and adipose tissues. The reconstructed ellipsoids were obtained after
9000 iterations of the MBDS algorithm. All images are 3.5 cm × 3.5 cm. Input and reconstructed VOIs have the same spatial resolution. The 2D
projections were obtained by averaging the VOIs in the direction perpendicular to the transverse plane. For VOI #1, #3 and #11, the distribution
and morphology of the medium-scale fibroglandular and intra-glandular adipose tissues in reconstructed VOIs agree fairly well with the input
segmented breast CT VOIs. For VOI #12, the distribution and morphology of the medium-scale fibroglandular and intra-glandular adipose tissues
in the reconstructed VOI differ greatly from the original input segmented breast CT VOI.

distributions of the ellipsoid centers in VOI #12, VOI #5,
#15 and #16.

For the remainder of the result section, only the 12
VOIs were considered, for which the Poisson point process
model of the ellipsoid centers was rejected and for which
a clustering interaction of the ellipsoids was observed.

Fig. 11 shows the histograms of the half-axis lengths La,
Lb, Lc and the tilt angles δϕa, δϕb, δϕc of the reconstructed
ellipsoids for VOI #1, #3, #7 and #11. Based upon a
visual assessment, we decided to model the La, Lb, Lc,
δϕb and δϕc distributions as Gaussian distributions and
the δϕa distribution as a Uniform distribution. Similar
observations were made for VOI #2, #4, #6, #8, #9,
#10, #11, #13 and #14 (not shown).

3) Estimation of model parameters: Fig. 12 shows empirical
and theoretical PCFs of the Matérn cluster processes fitted
to the ellipsoid centers reconstructed for VOI #1, #3, #7
and #11. Fig. 12 also shows the envelopes constructed for
the envelope tests allowing to evaluate the goodness of fit
of the empirical PCFs with a Matérn cluster process. At all
interpoint distances, the empirical PCFs were completely

inside the envelope. This is an indication that the Matérn
cluster process can be considered to be a suitable model for
describing the spatial arrangement of the ellipsoids, repre-
senting the intra-glandular adipose tissue. Similar findings
were obtained for the other eight breast CT VOIs (#2, #4,
#6, #8, #9, #10, #13 and #14) whereby a clustering
interaction was found to be representative to model the
medium-scale intra-glandular adipose compartments.

The p-values of the Kolmogorov-Smirnov tests com-
puted to support the hypothesis that La, Lb, Lc, δϕb, δϕc

are distributed as Gaussian distributions and that δϕa are
distributed as Uniform distributions are shown under the
histograms in Fig. 11. It was found that 21 out 24 p-values
are larger than 0.05, indicating strong evidence to retain
the null hypotheses and thus that the La, Lb, Lc, δϕb, δϕc

are distributed as Gaussian distributions and that δϕa are
distributed as Uniform distributions.

Table II lists the parameters estimated for the 12 VOIs
whereby a clustering interaction was found to be represen-
tative to model the medium-scale intra-glandular adipose
compartments.
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TABLE II
ESTIMATED MEDIUM-SCALE MODEL PARAMETERS FROM 12 INPUT VOIS WHEREBY A CLUSTERING INTERACTION WAS FOUND TO BE

REPRESENTATIVE TO MODEL THE MEDIUM-SCALE INTRA-GLANDULAR ADIPOSE COMPARTMENTS. HERE N (µ, σ) DENOTES THE GAUSSIAN

DISTRIBUTION WITH MEAN µ, STANDARD DEVIATION σ; AND U(l, u) DENOTES THE UNIFORM DISTRIBUTION WITH LOWER BOUND l AND UPPER

BOUND u.

VOI κ (points
per mm3)

λ0 (points
per mm3) R (mm) pLa (mm) pLb

(mm) pLc (mm) pδϕa (rad) pδϕb
(rad) pδϕc (rad)

#1 4.24×10−3 2.81 × 10−2 4.22 N (5.48, 1.34) N (2.72, 0.55) N (1.90, 0.48) U(− π
2 , π

2 ) N (−0.05, 0.35) N (−0.04, 0.53)

#2 4.72×10−2 4.33 × 10−2 1.22 N (6.06, 1.53) N (2.79, 0.59) N (2.04, 0.52) U(− π
2 , π

2 ) N ((0, 0.26) N (0.01, 0.39)

#3 3.24×10−3 5.98 × 10−3 5.98 N (6.21, 1.41) N (2.77, 0.58) N (2.10, 0.57) U(− π
2 , π

2 ) N (−0.09, 0.4) N (0, 0.26)

#4 1.01×10−4 1.52 × 10−2 10.41 N (5.98, 1.42) N (2.82, 0.56) N (2.06, 0.53) U(− π
2 , π

2 ) N (−0.23, 0.43) N (0.04, 0.51)

#6 5.65×10−4 1.19 × 10−2 6.98 N (5.93, 1.47) N (2.81, 0.58) N (2.04, 0.52) U(− π
2 , π

2 ) N (−0.38, 0.53) N (−0.01, 0.47)

#7 2.87×10−4 1.92 × 10−2 5.82 N (5.88, 1.44) N (2.75, 0.56) N (2.03, 0.52) U(− π
2 , π

2 ) N (−0.15, 0.38) N (0.01, 0.5)

#8 1.10×10−3 1.79 × 10−2 5.15 N (5.87, 1.45) N (2.74, 0.59) N (2.04, 0.53) U(− π
2 , π

2 ) N (−0.19, 0.51) N (0, 0.47)

#9 1.75×10−3 1.84 × 10−2 4.47 N (6.11, 1.49) N (2.80, 0.57) N (2.10, 0.53) U(− π
2 , π

2 ) N (−0.15, 0.43) N (0.02, 0.49)

#10 1.37×10−2 6.43 × 10−3 3.64 N (6.17, 1.44) N (2.85, 0.58) N (2.12, 0.54) U(− π
2 , π

2 ) N (−0.18, 0.47) N (−0.02, 0.45)

#11 3.41×10−3 3.09 × 10−2 3.85 N (6.06, 1.39) N (2.79, 0.56) N (2.10, 0.54) U(− π
2 , π

2 ) N (−0.28, 0.47) N (−0.01, 0.43)

#13 8.21×10−4 1.38 × 10−2 6.61 N (5.97, 1.36) N (2.78, 0.58) N (2.04, 0.53) U(− π
2 , π

2 ) N (−0.15, 0.43) N (0.03, 0.48)

#14 6.64×10−4 5.72 × 10−3 9.99 N (6.19, 1.47) N (2.79, 0.61) N (2.18, 0.59) U(− π
2 , π

2 ) N (0, 0.26) N (−0.01, 0.38)

Fig. 9. Dice coefficients for all 16 reconstructed sets of ellipsoids
and input segmented breast CT VOIs, as a function of VOI volumetric
fibroglandular density. For the majority of the input VOIs, the Dice
coefficients were found to be greater than 65%, indicating fairly good
reconstruction quality. There is a tendency that the dice coefficient tends
increases with increasing volumetric fibroglandular VOI density.

B. Evaluation of simulated texture images

1) Visual image texture evaluation: Fig. 13 gives exam-
ples of 2D mammographic projection images and DBT
reconstructed slices simulated from the texture volumes
generated using the method proposed in this article. Ra-
diologists reported that these images were highly realistic
in comparison with clinical images. For a more profound
psychophysical evaluation on the visual realism of simu-
lated images from our texture volumes, we refer to our
previously published article [35]. The simulated texture
images were found to have an increased morphological

variety compared to texture images generated from our
previous model [25].

2) Statistical image texture evaluation: Fig. 14 shows an
example power spectrum plotted versus spatial frequency
on a log-log scale and the corresponding linear fit used to
estimate β. From a comparison of several cases, a fit with
an upper limit of 0.7 cycles/mm was found to lie just inside
the “linear” inverse power-law region. Therefore, the linear
regression of the power spectrum was calculated across
a frequency interval [0.15 cycles/mm, 0.7 cycles/mm] to
determine values of the power-law exponent β. Table III
shows the power-law exponents β for the simulated mam-
mographic projections of the 30 texture realizations gen-
erated for each of the 12 sets of model parameters. For the
ensemble of all texture types, β was found to range from
3.5 to 4.4 while β was found to vary from 2.3 to 3.6 for the
2686 mammograms previously analyzed by Mainprize et
al. [62]. Note that Mainprize et al. limited the fit to extract
β from the mammography power spectra to between 0.15
cycles/mm and 1.0 cycles/mm. Mainprize et al. showed a
small decrease in β when the maximum of the frequency
range was varied from 0.7 cycles/mm to 1.0 cycles/mm.
Therefore, we believe it is justified to compare the results
from both studies.

Fig. 15 shows the LFE results determined for the
simulated mammographic projections of the 30 texture
realizations generated for each of the 12 sets of model
parameters as well as the previously reported LFE of a set
of 20 mammograms [39]. There is a general agreement in
the LFE results of the simulated textures and the clinical
mammograms.

IV. DISCUSSION AND CONCLUSION

This work describes a method to mathematically model
small and medium-scale fibroglandular and intra-glandular
adipose tissues present in the center part of the breast.
The method builds upon a previously proposed 3D solid
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VOI #1 VOI #3 VOI #11 VOI #12

Fig. 10. Comparison of the empirical PCFs, estimated from the reconstructed ellipsoid centers, and the theoretical Poisson PCFs for VOI #1,
#3, #11 and #12. For VOI #1, #3 and #11, the empirical PCFs are not completely contained within the Poisson envelopes (gray surfaces)
indicating that a Poisson point process is not a suitable candidate to model the distributions of ellipsoid centers in these VOIs. For VOI #1, #3
and #11, PCF values larger than one for small interpoint distances indicate clustering interaction between reconstructed ellipsoid centers. For VOI
#12, the empirical PCF of reconstructed ellipsoid centers is completely contained within the Poisson envelopes, indicating that a Poisson point
process is a good candidate to model the distribution of ellipsoid centers. For VOI #12, PCF values are not larger than one for any interpoint
distance, indicating no clustering interaction between reconstructed ellipsoid centers.

VOI #1 VOI #3

VOI #7 VOI #11

Fig. 11. Histograms of the half-axis lengths La, Lb, Lc and the tilt angles δϕa, δϕb, δϕc of reconstructed ellipsoids for VOI #1, #3, #7
and #11. Visual observations indicate that La, Lb, Lc, δϕb and δϕc can be modeled as Gaussian distributions and δϕa can be modeled as
a Uniform distribution. Numbers under the histograms indicate p-values of Kolmogorov-Smirnov tests, with estimated Gaussian distributions as
null-hypotheses for La, Lb, Lc, δϕb, δϕc and estimated Uniform distribution for δϕa. These p-value indicate that the estimated distributions
provide statistically good fit to the histograms.

breast texture model formulated as stochastic geometric
processes with mathematically tractable characterization
[25]. In this work, we objectively infer the medium-scale
parameters from segmented clinical breast CT images.
Compared to our previous model, whereby simulation
parameters were based upon empirical observations, the
here proposed inference method substantially augmented
the ability to generate textures with larger morphological
variety.

The average β values from simulated texture images
(3.7 to 4.2) of the 12 different VOIs are higher than
the average β value from 2D clinical images (2.87). We
attribute the higher β values to the lack of finer anatomical
components such as blood vessels, Cooper’s ligaments
and other fibers, which are depicted as higher frequencies

in images. These higher frequency components tend to
increase the magnitude of the power spectra towards the
upper frequency limit, thus reducing the slope β. Addition-
ally, the breast texture was not deformed so as to mimic
breast compression in breast x-ray imaging exams, which
may cause different image texture appearance and thus
shifts in β values. Finally, the thickness of the phantom
may impact the magnitude of the β values; only 3.5cm
thick texture cubes were considered, while the compressed
thicknesses of the real breasts in the article by [62] very
likely span a range of typically clinical values.

On the other hand, the 2D simulated mammographic
images of the 3D breast texture model and clinical mam-
mography images have similar LFE. At the lower fre-
quencies, due to the lack of finer anatomical details, the
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VOI #1 VOI #3

VOI #7 VOI #11

Fig. 12. Comparison of the empirical PCFs and the theoretical PCFs
of the Matérn cluster processes fitted to ellipsoid centers reconstructed
from VOI #1, #3, #7 and #11. The empirical PCFs fall inside the PCF
envelopes (gray surfaces) at all interpoint distances, indicating good fits.

TABLE III
POWER LAW SPECTRAL INDEX β VALUES COMPUTED ON

MAMMOGRAPHIC PROJECTIONS SIMULATED USING MODELS WITH

PARAMETERS ESTIMATED FROM 12 VOIS. MEAN AND STANDARD

DEVIATION VALUES WERE MEASURED ON 30 RANDOM SIMULATIONS

PER VOI.
Parameter set β value

VOI #1 4.14 ± 0.11
VOI #2 3.81 ± 0.12
VOI #3 3.79 ± 0.15
VOI #4 4.12 ± 0.17
VOI #6 4.14 ± 0.12
VOI #7 4.15 ± 0.12
VOI #8 4.10 ± 0.17
VOI #9 4.07 ± 0.13
VOI #10 3.71 ± 0.14
VOI #11 3.93 ± 0.15
VOI #13 4.06 ± 0.15
VOI #14 3.94 ± 0.12

simulated texture images are characterized by higher LFE
values than the clinical images. We believe that this is
due to the presence of regions of nearly uniform signal
intensities which increase the response histograms at lower
frequencies.

While this study shows that the phantom texture images
have higher second-order statistical properties compared
to clinical images, a previous psychophysical “fool-the-
reader” experiment performed on FFDM and DBT images
with radiologists showed that the simulated phantom tex-
ture images have high visual resemblance with clinical im-
ages [35]. This result confirms that psychophysical experi-
ments with radiologists have an added value in optimizing

phantom realism. More work is needed to understand
the phantom realism for task-based assessments such as
lesion detection and characterization tasks. In order to
be effective for evaluating the performance of breast x-
ray imaging applications, further validation is required
depending on its intended use.

The proposed method can be applied in any mathemat-
ical phantom model simulating medium-scale fibroglandu-
lar tissue and intra-glandular adipose tissue present in the
center part of the breast. Similarly to other mathematical
phantom models, the proposed texture model has the
advantage that it provides the user with a large number of
independent random texture samples, in a controlled and
reproducible environment. After execution of a large VCT,
the texture phantoms do not need to be stored as such;
knowledge of the random seeds and parameter settings
used to create the textured phantoms allow to recreate
the same phantoms.

We believe that the proposed method, to first infer 3D
model parameters from 3D breast CT volumes and then to
generate a 3D virtual breast texture model, may serve as
an example for modeling different anatomical body parts.
The model details require consideration on a case-by-
case basis. The proposed method needs a fully 3D image
datasets of the target anatomy part so that tissue types
can be distinguished from each other in a straightforward
manner and classified accordingly. We believe that it
would be very difficult to apply the proposed inference
approach to either projection images or pseudo-3D clinical
datasets since the gray level distributions from the various
anatomical parts can not be easily distinguished from each
other due to tissue type superimposition.

The proposed method has several opportunities for
further improvement.

First, the limited spatial resolution and high image
noise of the reconstructed breast CT volume dataset used
as input for our texture model, may lead to intrinsic
inaccuracies in the classification of the underlying adipose
and fibroglandular tissues.

Secondly, the performance of the reconstruction step
could be further investigated in a more theoretical and
quantitative fashion. Among the 16 extracted segmented
breast CT VOIs, the 12 segmented VOIs with higher
fibroglandular density satisfied our underlying hypothesis
that a clustering interaction process describes well the
medium-scale intra-glandular adipose compartments. The
4 segmented VOIs with lower fibroglandular density did
not exhibit a clustering interaction and require a different,
to be defined, underlying mathematical model. In a future
study, theoretical quantification of the reconstruction per-
formance as a function of the volumetric breast density
could be investigated.

Thirdly, to reduce the optimization complexity in the
inference step, the distributions of the ellipsoid half-axis
lengths and the ellipsoid centers were independently esti-
mated. This may be a simplification of a more complex
repartitioning of intra-glandular adipose compartments in
real breasts. The correlation between the half-axis lengths
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Fig. 13. Examples of 2D mammographic projection images (top) and DBT reconstructed slices (bottom) simulated from the texture volumes
generated using parameter sets derived from VOI #1, #2, #6, #7, #9 and #13. All images are 3.5 cm × 3.5 cm. Simulated texture images have
an increased morphological variety compared to texture images generated from our previous model [25].

Fig. 14. Power spectrum profile of a simulated 2D texture image.
The linear regression of the power spectrum was calculated across a
frequency interval [0.15 cycles/mm, 0.7 cycles/mm] to determine values
of the power-law exponent β.

Fig. 15. LFE (mean and standard deviation) computed from 30 2D
simulated texture images for each of the 12 model parameters. The LFE
data for the clinical mammography images are shown for reference [39].
The average LFE values from the simulated texture images are in close
agreement with the reference clinical data across all frequencies.

and the centers of the ellipsoids could be further inves-
tigated by studying the mark correlation function of the
reconstructed ellipsoids.

Fourthly, as mentioned above, the absence of texture
deformation, mimicking breast compression, may impact
the texture realism in simulated images. Therefore, the
simulated texture cubes could be deformed using a state-
of-the-art biomechanical breast model or a mathematical
model allowing to geometrically deform the texture cubes.
Next, the deformed texture could be evaluated in terms
of statistical image realism (β & LFE) and visual image
realism. A major limitation of this exercise however is the
realism of the deformation since the texture block does
not include a chest-wall and ligaments, present in a real
breast, which introduce constraints to the biomechanical
deformation process.

Finally, 12 sets of model parameters were obtained
from breast CT images of 12 different women. To further
augment morphological variability of simulated texture
realizations, the here proposed method could be applied
to a larger number of breast CT datasets from different
women. In a future study, it might be interesting to
analyze how the model parameters vary with respect to
BI-RADS breast density categories and breast texture
descriptors, allowing to create a unified model.
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