
pymwp: A Tool for Guaranteeing Complexity

Bounds for C Programs ⋆

Clément Aubert1[0000−0001−6346−3043], Thomas Rubiano2, Neea
Rusch1[0000−0002−7354−5330], and Thomas Seiller2,3[0000−0001−6313−0898]

1 School of Computer and Cyber Sciences, Augusta University
2 LIPN—UMR 7030 Université Sorbonne Paris Nord

3 CNRS

Abstract. Complexity analysis offers assurance of program’s runtime
behavior, but large classes of programs remain unanalyzable by exist-
ing automated techniques. The mwp-flow analysis sidesteps many dif-
ficulties shared by existing approaches, and offers interesting features,
such as compositionality, multivariate bounds, and applicability to non-
terminating programs. It analyzes resource usage and determines if a
program’s variables growth rates are no more than polynomially related
to their inputs sizes. This sound calculus, however, is computationally
expensive to manipulate, and provides no feedback if the program does
not have polynomial bounds. Those two defaults were addressed in a
previous work, and prepared for the tool we present here: pymwp, a static
complexity analyzer for C programs based on our improved mwp-flow
analysis.

Keywords: Static Program Analysis · Automatic Complexity Analysis
· Program Verification

1 Introduction

Verifying program’s resource usage is particularly important for safety-critical
applications: if usage exceeds available capacity, program will fail at runtime. Al-
though automatic complexity analysis is an active research area, no mainstream
tools exist for this task. Prior attempts have been successful at e.g., analyzing
various programming languages and obtaining tight bounds [8,9,10], but are lim-
ited in scalability and often lack compositionality [6]. Implicit Computational
Complexity (ICC) [7] aims at finding syntactic criteria to guarantee program’s
runtime behavior. Since ICC systems offer some of the properties missed by other
analysis techniques, it is conjectured that it could bridge the gap in achieving re-
alistic complexity analysis. This prompted a series of work [2,5] that culminates
with the tool we present in this paper. Our tool is one of the first ICC-inspired
applications and the first mechanization of the specific technique it implements.

⋆ This research is supported by the Transatlantic Research Partnership. Rubiano and
Seiller are supported by the Île-de-France through the DIM RFSI project “CoHOp”.

https://face-foundation.org/transatlantic-study-research/transatlantic-research-partnership/

2 C. Aubert et al.

It gives early insight of the advancements ICC can provide in automatic com-
plexity analysis and program verification.

The contribution we present in this paper, pymwp [4], is a static analyzer
for C programs that computes sound worst-case complexity bounds for final val-
ues of input variables. It provides a certificate guaranteeing that the program
uses throughout its execution at most a polynomial amount of space so that if
it terminates, it will do so in polynomial time. It offers several useful features
not commonly found in alternative complexity analyzers: applicability to non-
terminating programs—e.g., iteration bounds are abstracted—, compositionality,
multivariate result, and full automation, because it requires no manual config-
uration or annotations. These features produce fast analysis, detailed feedback,
and makes pymwp suitable for integration in larger compilation toolchains.

In this paper we demonstrate pymwp from three perspectives. We start with
functionality, in Sect. 2, with brief theoretical foundations and system design.
This section gives sufficient background to the theoretical framework to under-
stand how the tool operates, computes results, and how to interpret those results.
We also highlight selected theoretical adjustments and system design approaches
that were essential to obtaining a practical application. The documentation, e.g.,
at https://statycc.github.io/pymwp/relation/ further explains and exem-
plifies the modules presented in this section.

Next, we present a specific implementation challenge related to evaluation of
the analysis result. This is relevant because the theory underlying pymwp does
not address this potentially exponential-time problem, however it is necessary
for implementing the analysis. In Sect. 3 we present the algorithm we developed
for pymwp to solve this problem efficiently.

Lastly, we discuss user interaction. pymwp is built to support multiple use
cases. While standard user interaction occurs over command-line interface, the
tool can easily be reused and integrated with other systems or pipelined, as we
explain in Sect. 4. We envision the developments presented in pymwp can lead to
future improvements in static analysis tools that should be usable in interactive
environments (e.g., IDEs) with nearly immediate feedback to the programmer.

2 Overview of pymwp

2.1 Foundations of the mwp-flow analysis – Briefly

The mwp-flow analysis [11] certifies polynomial bounds on the size of the values
manipulated by an imperative program. It computes the polynomial bound—
if it exists—by computing for each variable a vector tracking how it depends
on other variables. The vector values are determined by applying the rules of
the calculus to the commands of the program. A program is assigned a matrix
collecting those vectors. While this does not ensure termination, it provides a
certificate guaranteeing that the program uses throughout its execution at most
a polynomial amount of space, and as a consequence that if it terminates, it will
do so in polynomial time in the size of its inputs.

https://statycc.github.io/pymwp/relation/

pymwp: A Tool for Guaranteeing Complexity Bounds 3

Flows characterize controls from one variable to another. In increasing growth
rate, they can be of type 0—the absence of any dependency—maximum, weak
polynomial and polynomial. They form a semi-ring [3, A.1 and A.2], and we use
+ to denote max. However, the derivation may fail—some programs may not be
assigned a matrix—if at least one of the variables used in the body of a loop
depends “too strongly” on another, making it impossible to ensure polynomial
bounds. In its first declension, the rules of the calculus were non-deterministic:
multiple matrices could be assigned to the same program, to maximize the op-
portunities of finding bounds if they existed. The derivation stops if no bounds
could be inferred, leaving the program only partially analyzed.

We modified those two latter aspects of the theory [2]: having multiple ma-
trices was space- and time-consuming and stopping the derivation as soon as no
bound could be found was depriving the programmer from precious feedback. As
a result, the upgraded analysis now always provides a single matrix capturing all
the possible derivations as different choices that must be made. This required to
design the additional mechanism that decides whenever choices not leading to
an ∞ flow (that represents failure) exist. We return to the example below—that
uses the dummy condition while(0) but could have used an arbitrarily complex
condition—throughout this paper and in the demonstration.

Example 1. Analysis assigns to program foo the mwp-matrix on right.

int foo(int x, int y){

while (0){x=y+y;}

}

(

x y

x m+∞δ(0, 0) +∞δ(1, 0) 0
y ∞δ(0, 0) +∞δ(1, 0) + wδ(2, 0) m

)

The matrix captures the dependencies between variables x and y, from source
variable (row) to target variable (column). The complex coefficients in the x

column express that based on the 0th choice, one will get either ∞ and ∞ (if the
0th or 1st option is picked) or m and w (for the last option). It is easy, here, to
see that the only option that yields non-∞ coefficients is the last option, (2, 0).

2.2 Concretely implementing the abstract analysis

The pymwp tool takes as input a path to a C program, and returns the correspond-
ing matrix and the valid derivation choices if the program passes the analysis,
an indication of failure and, if requested, the corresponding matrix if not. We
decided to implement the tool on a subset of C programming language,4 because
it naturally maps to the syntax of the analysis, but the technique could be ap-
plied similarly to any imperative language. The name of the tool alludes to its
implementation language, Python, selected because of its flexibility and use in
previous related implementations [1,12,13].

Structures of representation We placed considerable attention in the tool
design to choosing suitable data structures. The internalization of the choices

4 List of supported features: https://statycc.github.io/pymwp/features/

https://statycc.github.io/pymwp/features/

4 C. Aubert et al.

pushes inside the matrices the non-determinism and introduce the need to de-
cide if a series of choices leading to non-∞ coefficients exist. In this section we
introduce selected representations and their roles in realizing the analysis.

In pymwp, the mwp-matrix is represented as a relation, whose properties
are the input variables of the program under analysis, and a matrix collecting
variable dependencies. We represent the matrix using native lists, with defined
basic operations e.g., sum, product, resize and fixpoint. We omit use of robust
matrix libraries to keep the tool dependencies as light as possible. Note that since
the analysis can produce dense matrices,5 it is not possible to use algorithms
optimized for sparse matrices.

For each variable pair, the matrix contains a polynomial, an ordered list of
ordered monomials. A monomial is a pair containing a coefficient value and a
list of deltas. Each delta captures a choice of derivation rules that internalizes
the nondeterminism. A delta is a pair (i, j) where i is the value and j is the
index in the domain (or, command at which a choice was made). To ease the
analysis, the deltas are sorted— δ(i, j) is smaller than δ(m,n) iff either j < n or
(j = n) and (i < m)— and no two deltas can have the same index.

Example 2. Consider the dependency flow ∞δ(0, 0) +∞δ(1, 0) +wδ(2, 0), intro-
duced in Example 1. In pymwp, its representation is

Polynomial (Monomial ("i" ,(0,0)), Monomial ("i" ,(1,0)),

→֒ Monomial ("w" ,(2,0)))

where coefficients i and w are the ∞- and w-flows, respectively, and the
tuples are the deltas. To represent the complete mwp-matrix from the example,
we would create a relation with 2 variables and a matrix of 4 polynomials.

These design decisions allow us to capture mwp-matrices in a singular—
although complex—relation. Performing the analysis then becomes a matter of
iteratively mapping commands to vectors, collecting those vectors in matrices,
then composing the relations.

Workflow We describe next, at a high level, the general procedure of performing
the mwp analysis. Recall, the input is a path to a C file. The file may contain
multiple functions. Each function is treated as a program under analysis, thus
we refer to “program” in the remainder of this description.

1. Parse the input file to obtain an abstract syntax tree (AST).
2. For each program in the AST:

(a) Create an initial relation, R, whose matrix is an identity matrix.
(b) Sequentially for each statement in program body:

i. Recursively apply derivation rules to obtain Ri.
ii. Compose the Ri with previous relation: R = R ◦Ri.
iii. If no valid choice remains,6 terminate analysis.

5 For example, https://statycc.github.io/pymwp/demo/#other_dense.c.
6 We omit the details here; see [2, Section 4.4] on how this determination is made.

https://statycc.github.io/pymwp/demo/#other_dense.c

pymwp: A Tool for Guaranteeing Complexity Bounds 5

(c) Evaluate matrix to find valid derivation choices.
(d) Append to result: (relation R, valid choices, success flag). The success

flag is true when a polynomial bound can be derived and false otherwise.

3. Return result.

3 Efficiently evaluating the matrix

The final step of the analysis is the evaluation, which finds a series of choices not
leading to ∞-coefficients. While only one matrix needs to be searched, the task
is challenging because polynomials can represent arbitrarily complex decision
surfaces. A naive strategy is to iterate all choices, observe the matrix obtained
for each series of choices, and retain those that yield ∞-free matrices.

Example 3. A naive evaluation of Example 1’s matrix enumerates all choices,
and observe that only one choice, (2,0), produces a matrix without ∞ coefficients:

choice: (0,0) (1,0) (2,0)
(

m+∞δ(0, 0) +∞δ(1, 0) 0
∞δ(0, 0) +∞δ(1, 0) + wδ(2, 0) m

)

⇒

(

∞ 0
∞ m

) (

∞ 0
∞ m

) (

m 0
w m

)

Unfortunately, this approach is exponential. For a matrix, whose size depends
on the number of variables V , and an index i that captures the number of choices
introduced during analysis, the complexity is V 2

× 3i. Since variable pairs are
represented in the matrix as polynomials containing deltas, the evaluation of
both terms is dependent on i. For larger programs, that introduce many choices,
the i increases rapidly, and makes exhaustive search computationally prohibitive.
A more sophisticated solution was necessary to achieve efficient analysis.

Efficient evaluation Our efficient evaluation starts by constructing a set S of
all the δ values attached to an ∞ coefficient present in the matrix. The inputs
to the procedure are S, i, and allowed choices e.g., (0, 1, 2) in our case.

Step 1. Simplify S in two ways, iteratively until convergence: replace elements that
can be represented by a single shorter sequence, then remove supersets.

Step 2. We now need to negate the remaining elements of S, because they represent
the choices that yield ∞ coefficients, and the desired output is a representa-
tion of valid choices. We proceed by initially considering all choices as valid,
then eliminating those that lead to failure.

(a) Compute the cross product of the remaining elements in S.
(b) Create a choice vector of size i, whose elements represent the allowed

choices.
(c) Eliminate those choices that lead to infinity.
(d) Discard invalid and redundant choice vectors.

The result is a disjunction of the remaining choice vectors.

6 C. Aubert et al.

Example 4. An example of an efficient evaluation could be:

S = ((0,0),(2,1),(1,2)),((1,0),(2,1)),((0,0)) (Initial δ-set)

S = ((1,0),(2,1),((0,0)) (Post-simplification)

(0,0),(1,0) => [[2],[0,1,2],[0,1,2]] (Choice vector 1)

(0,0),(2,1) => [[1,2],[0,1],[0,1,2]] (Choice vector 2)

[[[2],[0,1,2],[0,1,2]], [[1,2],[0,1],[0,1,2]]] (Result)

To apply the result, we select a choice vector, then choose one value at each
vector index. This yields a bounded derivation result. The result captures how
e.g., sequences of choices (2, 0), (0, 1), (1, 2) and (1, 0), (1, 1), (2, 2) are valid. How-
ever, any choice containing (0, 0) is always invalid because it is not allowed by
the result. Since this is a positional representation, it can be compacted further
by omitting the index, e.g., sequence (2, 0), (0, 1), (1, 2) equal to [201].

Note that unlike the naive approach, this evaluation is independent of the
number of variables or the maximum value of i. Its efficiency is only concerned
with the longest unique sequence of derivation choices that leads to infinity. In
practice these sequences are short after applying the described simplifications.
This makes the remaining steps computationally trivial and evaluation result
can be obtained nearly instantly. It also provides a compact representation of
valid choices, even in cases where the representation is arbitrarily complex.

4 User Interaction

There are multiple ways to use and interact with pymwp. It can be used as a stan-
dalone command-line tool, or as imported Python modules. It can be integrated
into other services as a Python package, as we show with the pymwp online demo,
which is a web application with pymwp as a package dependency. pymwp does
not modify the input program—it is read-only—so it can be run in parallel or
independent of other processes. Therefore, it could be integrated into more so-
phisticated compilation toolchains. The development version is available as open-
source software [4], but the easiest installation is through the Python Package
Index (PyPI): pip install pymwp. The default interaction command is

pymwp /path/to/file.c [args]

where the first positional argument, path to a C file, is required. Optional argu-
ments can be added in place of [args]. The current list of supported arguments
is defined in pymwp –-help. By default, pymwp displays a log of debugging in-
formation and analysis result on the screen and saves the result to a file. These
default behaviors are customizable by specifying optional arguments.

Example 5. Analysis of Example 1 program with pymwp.7 Observe that the ob-
tained matrix and available choices match with the original example.

7 https://statycc.github.io/pymwp/demo/#basics_while_2.c

https://statycc.github.io/pymwp/demo/
https://statycc.github.io/pymwp/demo/#basics_while_2.c

pymwp: A Tool for Guaranteeing Complexity Bounds 7

$ pymwp basics/while_2.c

...

MATRIX

--

x | +m+i.delta(0,0)+i.delta(1,0) +o

y | +i.delta(0,0)+i.delta(1,0)+w.delta(2,0) +m

--

[12:46:00] INFO (analysis): CHOICES: [[[2]]]

...

8 C. Aubert et al.

References

1. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: LQICM On C Toy Parser (3 2021),
https://github.com/statycc/LQICM_On_C_Toy_Parser

2. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: mwp-analysis improvement
and implementation: Realizing implicit computational complexity. In: Felty,
A.P. (ed.) 7th International Conference on Formal Structures for Computation
and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics,
vol. 228, pp. 26:1–26:23. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.FSCD.2022.26

3. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: mwp-analysis improvement
and implementation: Realizing implicit computational complexity (Mar 2022),
https://hal.archives-ouvertes.fr/hal-03596285, preliminary technical report

4. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: pymwp: MWP analysis in Python
(10 2022), https://github.com/statycc/pymwp/

5. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: Realizing Implicit Computational
Complexity (Mar 2022), https://hal.archives-ouvertes.fr/hal-03603510, pre-
sented at the 28th International Conference on Types for Proofs and Programs
(Recording)

6. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Grove, D., Blackburn, S.M. (eds.) Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015. pp. 467–478. Association for Computing Machinery (2015).
https://doi.org/10.1145/2737924.2737955

7. Dal Lago, U.: A short introduction to implicit computational com-
plexity. In: Bezhanishvili, N., Goranko, V. (eds.) ESSLLI. Lecture
Notes in Computer Science, vol. 7388, pp. 89–109. Springer (2011).
https://doi.org/10.1007/978-3-642-31485-8_3

8. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, Carste-
nand Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swider-
ski, S., Thiemann, R.: Analyzing program termination and complexity auto-
matically with aprove. Journal of Automated Reasoning 58(1), 3–31 (2017).
https://doi.org/10.1007/s10817-016-9388-y

9. Hainry, E., Jeandel, E., Péchoux, R., Zeyen, O.: Complexityparser: An automatic
tool for certifying poly-time complexity of Java programs. In: Cerone, A., Ölveczky,
P.C. (eds.) Theoretical Aspects of Computing - ICTAC 2021 - 18th International
Colloquium, Virtual Event, Nur-Sultan, Kazakhstan, September 8-10, 2021, Pro-
ceedings. Lecture Notes in Computer Science, vol. 12819, pp. 357–365. Springer
(2021). https://doi.org/10.1007/978-3-030-85315-0_20

10. Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ML. In: Madhusu-
dan, P., Seshia, S.A. (eds.) Computer Aided Verification - 24th Interna-
tional Conference, CAV 2012. LNCS, vol. 7358, pp. 781–786. Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7_64

11. Jones, N.D., Kristiansen, L.: A flow calculus of mwp-bounds for complexity
analysis. ACM Transactions on Computational Logic 10(4), 28:1–28:41 (2009).
https://doi.org/10.1145/1555746.1555752

12. Moyen, J., Rubiano, T., Seiller, T.: Loop quasi-invariant chunk detection. In:
D’Souza, D., Kumar, K.N. (eds.) Automated Technology for Verification and
Analysis - 15th International Symposium, ATVA 2017, Pune, India, October 3-
6, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10482. Springer
(2017). https://doi.org/10.1007/978-3-319-68167-2_7

https://github.com/statycc/LQICM_On_C_Toy_Parser
https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://hal.archives-ouvertes.fr/hal-03596285
https://github.com/statycc/pymwp/
https://hal.archives-ouvertes.fr/hal-03603510
https://types22.inria.fr/
https://youtu.be/L68Gs5ak0z4
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1007/978-3-642-31485-8_3
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-85315-0_20
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1145/1555746.1555752
https://doi.org/10.1007/978-3-319-68167-2_7

pymwp: A Tool for Guaranteeing Complexity Bounds 9

13. Moyen, J., Rubiano, T., Seiller, T.: Loop quasi-invariant chunk motion by peel-
ing with statement composition. In: Bonfante, G., Moser, G. (eds.) Proceed-
ings 8th Workshop on Developments in Implicit Computational Complexity
and 5th Workshop on Foundational and Practical Aspects of Resource Analy-
sis, DICE-FOPARA@ETAPS 2017, Uppsala, Sweden, April 22-23, 2017. Elec-
tronic Proceedings in Theoretical Computer Science, vol. 248, pp. 47–59 (2017).
https://doi.org/10.4204/EPTCS.248.9, http://arxiv.org/abs/1704.05169

https://doi.org/10.4204/EPTCS.248.9
http://arxiv.org/abs/1704.05169

10 C. Aubert et al.

A Detailed demonstration of pymwp

This demo installs pymwp on the local system, then uses it to analyze C programs.
We assume Unix-like system with gcc and wget installed. Lines starting with $

are commands to run in a terminal, backslash \ is a line wrap for long commands,
and other lines are output. Long or irrelevant output is omitted using

A.1 Setup

Installation First check minimum system requirements. The Python version
must be 3.7 or higher, and pip must match Python version. If the output indicates
otherwise, update the system before proceeding.

$ python3 --version && pip --version

Python 3.10.5

pip 22.2.2 from ../site-packages/pip (python 3.10)

Next, install the specified version of pymwp from Python Package Index.

$ pip install pymwp==0.2.1

...

Successfully installed pymwp-0.2.1

Double-check that pymwp was added to path.

$ pymwp --version

pymwp 0.2.1

This means installation completed successfully.

Obtain programs for analysis We can use pymwp to analyze any program con-
structed using the supported C language syntax.8 For a quick start, we download
a set of suitable programs from the pymwp development repository.

Download a pymwp release as a zip file. It includes the example programs we will
analyze during this demo.

$ wget -O pymwp.zip \

https://github.com/statycc/pymwp/archive/refs/tags/0.2.1.zip

Extract contents of the zip file to a directory, then change to that directory. For
the remainder of this demo, we consider pymwp_demo as the working directory.

$ unzip pymwp.zip -d pymwp_demo && cd pymwp_demo

Copy the example programs to the working directory.

$ cp -R pymwp-0.2.1/c_files/* ./

8 See documentation: https://statycc.github.io/pymwp/features/ .

https://statycc.github.io/pymwp/features/

pymwp: A Tool for Guaranteeing Complexity Bounds 11

Check that example programs were copied successfully. The programs are cate-
gorized into subdirectories and readme.md includes their descriptions.

$ ls

basics implementation_paper infinite not_infinite original_paper

→֒ other pymwp-0.2.1 readme.md

This completes the setup. We are ready to start using pymwp.

A.2 Default behavior and arguments

pymwp requires one positional argument as input: a path to a C file. That file is pre-
processed using a system C compiler then converted to an abstract syntax tree.
Debugging information and analysis result are logged to the screen. The analysis
result is also written to a file. This behavior is customizable to accommodate
various runtime scenarios. For a list of all available options, specify –-help flag.

$ pymwp --help

usage: pymwp [-h] [-o OUT] [--logfile LOGFILE] [--cpp_path CPP_PATH]

[--cpp_args CPP_ARGS] [--headers HEADERS] [--no_cpp]

[--no_eval] [--no_save] [-s] [--version] [input_file]

Implementation of MWP analysis on C code in Python.

positional arguments:

input_file C source code file to analyze

optional arguments:

-h, --help show this help message and exit

-o OUT, --out OUT file where to store analysis result

--cpp_path CPP_PATH C pre-processor [default: gcc]

--cpp_args CPP_ARGS C pre-processor arguments [default: -E]

--headers HEADERS C headers dir paths, separate by comma

--no_cpp disable C pre-processor

--no_save do not write analysis result to a file

--no_eval skip evaluation

--fin ensure completion even on failure

--logfile LOGFILE write console output to a file

-s, --silent disable console output

--version show program’s version number and exit

A.3 Program analysis

Polynomially-bounded examples

Example 6. Consider a program that contains a while loop with a binary oper-
ation. It should seem familiar because it is the same example introduced in the
paper (cf. Example 1). We re-introduce it in this demo to see it in action. This
program is polynomially bounded in inputs.

12 C. Aubert et al.

$ cat basics/while_2.c

/*

* This program tests that a simple while program results in the correct

→֒ analysis.

*/

int foo(int x, int y){

while (0) {x = y + y;}

}

Analyzing while_2.c with pymwp we obtain, as expected, a polynomial bound—
note that the returned choice is 2, as discussed in Example 1.

$ pymwp basics/while_2.c

...

[12:46:00] INFO (analysis):

MATRIX

--

x | +m+i.delta(0,0)+i.delta(1,0) +o

y | +i.delta(0,0)+i.delta(1,0)+w.delta(2,0) +m

--

[12:46:00] INFO (analysis): CHOICES: [[[2]]]

[12:46:00] INFO (file_io): saved result in output/while_2.json

[12:46:00] INFO (analysis): Total time: 0.1 s (83 ms)

Example 7. Next an example with a conditional statement and 4 input variables.

$ cat not_infinite/notinfinite_3.c

int foo(int X0, int X1, int X2, int X3){

if (X1 == 1){

X1 = X2+X1;

X2 = X3+X2;

}

while(X0<10){

X0 = X1+X2;

}

}

$ pymwp not_infinite/notinfinite_3.c

...

--

X0 | +m+i.delta(0,2)+i.delta(1,2) +o +o +o

X1 | +p.delta(1,0).delta(2,2)+i.delta(0,2)+i.delta(1,2)+w.delta(2,2)..

X2 | +i.delta(0,0).delta(1,2)+p.delta(0,0).delta(2,2)+i.delta(1,0)....

X3 | +i.delta(0,1).delta(0,2)+p.delta(0,1).delta(2,2)+i.delta(1,1)....

--

[13:05:50] INFO (analysis): CHOICES: [[[0, 1, 2], [0, 1, 2], [2]]]

...

pymwp: A Tool for Guaranteeing Complexity Bounds 13

Note the increased size of the output matrix (concatenated for brevity). This is
expected: matrix size increases with variable count. Also observe the i-coefficients
(∞) in the matrix: they indicate failure along respective derivation paths. The
output of CHOICES shows that the program is polynomially bounded in inputs,
but not all derivation choices yield that bound. Every derivation choice is valid
for the if statement, but only one choice is valid for the while loop. For any
sequence of choices that meet these constraints, a polynomial bound is guaran-
teed.

Examples without polynomial bound

Example 8. Consider an exponential program

$ cat infinite/exponent_1.c

/*

* This program tests that a simple program computing the

* exponentiation results in matrix with infinite coefficient in them.

* Inspired from https://stackoverflow.com/a/213897

*/

int main(int x, int n, int p, int r){

p = x;

while (n > 0)

{

if (n % 2 == 1)

r = p * r;

p = p * p;

n = n / 2;

}

}

We confirm with pymwp that no polynomial bound exists for this program.

$ pymwp infinite/exponent_1.c

...

[13:09:03] INFO (analysis): RESULT: main is infinite

[13:09:03] INFO (file_io): saved result in output/exponent_1.json

[13:09:03] INFO (analysis): Total time: 0.1 s (83 ms)

We can obtain more details about this failure by repeating the analysis with spe-
cific instructions to compute the final matrix. This allows locating the source(s)
of failure: here, it originates from variables p and r, i.e., the 3rd and 4th rows.

$ pymwp infinite/exponent_1.c --fin

...

MATRIX

--

x | +m +o +m+i.delta(0,2)+i.delta(1,2)+i.delta(2,2) +i.delta(0,1)...

n | +o +m +i.delta(0,2)+i.delta(1,2)+i.delta(2,2) +i.delta(0,1)+...

p | +o +o +i.delta(0,2)+i.delta(1,2)+i.delta(2,2) +i.delta(0,1)+...

14 C. Aubert et al.

r | +o +o +i.delta(0,2)+i.delta(1,2)+i.delta(2,2) +m+i.delta(0,1)..

--

Example 9. Increasing the number of input variables and program statements
makes it difficult to determine if a polynomial bound exists.

$ cat infinite/infinite_6.c

int foo(int X1, int X2, int X3, int X4){

if (X3 == 0){

X1 = X2+X1;

}

else{

X2 = X3+X1;

}

while(X4<100){

X1 = X1+X3;

X2 = X3+X4;

X3 = X4+X2;

X4 = X1+X2;

}

}

With pymwp we can easily determine the result. We omit the matrix here for
brevity, but a detailed analysis, with the –-fin flag, reveals that failure occurs
at all program variables inside the while loop.

$ pymwp infinite/infinite_6.c

...

[13:10:19] INFO (analysis): RESULT: foo is infinite

[13:10:19] INFO (file_io): saved result in output/infinite_6.json

[13:10:19] INFO (analysis): Total time: 1.0 s (1035 ms)

Analysis challenge After seeing the examples of programs with and without
polynomial bounds, we present the following challenge. The task is to determine
if this program is polynomially bounded in inputs. Note that it is unknown
whether the while loop will terminate, however this is not a problem for our
analysis.

$ cat other/dense_loop.c

...

int foo(int X0, int X1, int X2){

if (X0) {

X2 = X0 + X1;

}

else

{

X2 = X2 + X1;

}

pymwp: A Tool for Guaranteeing Complexity Bounds 15

X0 = X2 + X1;

X1 = X0 + X2;

while(X2){X2 = X1 + X0;}

}

Challenge solution The full matrix must be omitted here for brevity, but can
be inspected as an online demo.9 The matrix contains following information.

– For any source variable, where either XO or X1 is the target, the dependencies
are consistently polynomially bounded, for all choices.

– The situation is different between any source variable and X2 as the target.
Multiple deviation choices fail. From the matrix, we can also observe that
failures occur at the while loop, independent of the which branch of the
conditional statement was selected.

There are however multiple sequences of choices that still allow completing the
derivation. The generated choice vector captures the valid choices we can ap-
ply to complete the derivation. Therefore, the solution is yes, the program is
polynomially bounded in inputs.

$ pymwp other/dense_loop.c

...

[23:12:13] INFO (analysis):

MATRIX

--

X0 | +m.delta(0,0).delta(0,2)+p.delta(0,0).delta(1,2)+w.delta(0,0)....

X1 | +p.delta(0,0).delta(1,2)+p.delta(0,0).delta(2,2)+p.delta(1,0)....

X2 | +m.delta(0,1).delta(0,2)+p.delta(0,1).delta(1,2)+w.delta(0,1)....

--

[23:12:13] INFO (analysis): CHOICES: [[[0, 1, 2], [0, 1, 2], [0, 1, 2],

→֒ [0, 1, 2], [2]]]

[23:12:13] INFO (file_io): saved result in output/dense_loop.json

[23:12:13] INFO (analysis): Total time: 0.1 s (132 ms)

Explore further We suggest reading the readme.md file, in the working di-
rectory, that describes the examples. A formatted version of the readme is
available online.10 We then suggest analyzing more examples independently. Af-
ter developing sufficient familiarity with pymwp, create custom programs for anal-
ysis.

Clean up and exit Remove temporary files and examples.

$ cd .. && rm -rf pymwp.zip pymwp_demo

If you wish to remove pymwp from host system, run

9 https://statycc.github.io/pymwp/demo/#other_dense_loop.c
10 https://statycc.github.io/pymwp/examples/

https://statycc.github.io/pymwp/demo/#other_dense_loop.c
https://statycc.github.io/pymwp/examples/
https://statycc.github.io/pymwp/demo/#other_dense_loop.c
https://statycc.github.io/pymwp/examples/

16 C. Aubert et al.

$ pip uninstall -y pymwp

Found existing installation: pymwp 0.2.1

Uninstalling pymwp-0.2.1:

Successfully uninstalled pymwp-0.2.1

This completes the demonstration.

	pymwp: A Tool for Guaranteeing Complexity Bounds for C Programs

