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Abstract. We present a tool to automatically perform the data-size
analysis of imperative programs written in C. This tool, called pymwp,
is inspired by a classical work on complexity analysis [10], and allows
to certify that the size of the values computed by a program will be
bounded by a polynomial in the program’s inputs. Strategies to provide
meaningful feedback on non-polynomial programs and to “tame” the non-
determinism of the original analysis were implemented following recent
progresses [3], but required particular care to accommodate the growing
complexity of the analysis.
The Python source code is intensively documented, and our numerous
example files encompass the original examples as well as multiple test
cases. A pip package should make it easy to install pymwp on any plat-
form, but an on-line demo is also available for convenience.

Keywords: Static Program Analysis · Automatic Complexity Analysis · Pro-
gram Verification

1 Introduction

The tool we are presenting, pymwp, performs static analysis of C source code.
In a nutshell, static program analysis opens up the possibility of specifying not
only the behavior of the program, but also its resource consumption, and to
obtain this specification by only observing (as opposed to executing) the program,
also making the result more platform-independent. As real-time and embedded
systems grow in usage and importance, certifying that programs will run on any

platform in reasonable time or using sparsely their memory is becoming as crucial
as the specification of their correctness. Multiple approaches compete and co-
exist in this difficult tasks (some of which are discussed in Sect. 5), and our work
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the DIM RFSI project ”CoHOp”.
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takes inspiration from an original approach stemming from the “Copenhagen
school” [5,11]’s take on implicit computational complexity [6], that focus on
studying the transitions between states (e.g. commands) instead of the states
in isolation. One of the core idea is that operations in themselves may not be
“dangerous”, but that the sequence of some operations can be.

That principle motivated the development of the “mwp analysis” that studies
the relationship between the resource requirements of a computation and the
way data might flow during the computation [10]. In a nutshell, this analysis
attaches flows from the inputs to the outputs of a program, and guarantees
that no variable will grow in an “unreasonable way” (read, getting bigger than
a polynomial w.r.t. the inputs’ sizes). While the theoretical development is of
interest and can facilitate the understanding of why this analysis is sound, we
refer the interested reader to our recent improvement of the analysis [3], or to the
original paper [10] for a more in-depth understanding, and will simply restate the
bare minimum to understand the interest and challenges of the implementation
we are presenting here.

2 Implementing a flow calculus developed abstractly

Language and Features The author of the original flow calculus considered only
an abstract imperative programming language, that they described as “very
rudimentary”, and our first task was to map their language to an actual pro-
gramming language. The C programming language, because of its central role
and close connection to simpler imperative language, was the ideal target, and
offered little resistance4. This also enabled to build on previous work using a
similar flow analysis to implement loop invariant detection [13,14] which was im-
plemented on C code. Following the choices made in the latter work, we decided
to implement the analysis in Python because of its vast collection of libraries
and its plasticity.

The source code is parsed using pycparser, that uses the C99 standard
(ISO/IEC 9899) [9]. pymwp support basic data-types, operations and decision
structures (if ... else and while). Our list of features from the C programming lan-
guages is still modest, but rapidly growing. It should also be noted that the sup-
ported fragment is already enough to determine that e.g. basic implementations
of the exponential function (using “naive” approach or a more subtle version
alike) do not have polynomial bounds (something that is expressed by the pres-
ence of the ∞ coefficient between variables).

Examples and Tests We took a particular attention to testing our implementa-
tion.

4 The only possible exception is a command loop Xi { C } that is iterating Xi times the
(sequence of) command(s) C, and have no direct counterpart in the C language. Map-
ping this structure to a restricted form of for loop is currently under development,
but will not impact our development nor its expressivity much. On the other hand,
small improvements such as the analysis of constants was also added.

https://github.com/eliben/pycparser
https://seiller.github.io/pymwp/features/
https://github.com/seiller/pymwp/blob/746da71a5490c5f21ebc5643ea20822f78876959/c_files/infinite/exponent_2.c
https://github.com/seiller/pymwp/blob/746da71a5490c5f21ebc5643ea20822f78876959/c_files/infinite/exponent_1.c
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– All the examples from the original paper [10] have been converted to C and
checked for consistency.

– Numerous C programs – from very basics to more demanding – have been
implemented and checked “by hand”.

– All the steps needed for the analysis – that we detail in the next section –
have unit tests, and so does the analysis in itself.

– All examples can be repeatedly profiled to analyze efficiency of the imple-
mentation.

Note that since the analysis is focused with the dependencies between input
and output, some of our program examples may not terminate but still “pass”
the analysis (e.g. have assignment without ∞ coefficients): this comes from the
fact that our analysis is interested with the data-size analysis, and not with
termination. However, if a program pass the analysis and is known to terminate,
then it has an execution time that is bounded by a polynomial in the program’s
input’s size.

3 Implementation structure

3.1 Package architecture

The pymwp package follows a modular architecture pattern where each module
performs designated tasks and has minimal dependencies. This organization is
significant for three reasons: it creates a flexible design that is easy to extend,
it makes the source code unit-testable, and it enables using the implementation
in two different ways: through command line interface or by importing selected
modules in a Python script.

The design pattern creates separation of concerns between individual mod-
ules. New functionality, such as adding optimization steps or support for ad-
ditional C language features, can be introduced by ”plugging-in” new modules.
Existing functionality can be improved or replaced similarly as needed.

Importing minimal dependencies and using classes and functions to imple-
ment modules, enables unit testing the package thoroughly. Most modules are
testable in isolation without mocks or stubs. Test suites are run using pytest,
and pytest-mock is used to mock the built-in functionality when necessary.
Continuous integration is used to execute unit tests on a build server on every
opened pull request and commit to master. Second automation script runs unit
tests against multiple Python versions to ensure continued compatibility across
different runtimes. This testing strategy provides assurance that new changes do
not break existing functionality, and if issues are discovered, it raises alerts and
indicates which module is the source of failure.

The pymwp package can be used through a command line interface to perform
analysis on C program files. An alternative use case is importing its modules in
a Python script and performing computation steps without executing an end-to-
end analysis. Modular package architecture is essential for accommodating these
two use cases.

https://github.com/seiller/pymwp/tree/746da71a5490c5f21ebc5643ea20822f78876959/c_files/original_paper
https://github.com/seiller/pymwp/tree/746da71a5490c5f21ebc5643ea20822f78876959/c_files/basics
https://github.com/seiller/pymwp/tree/746da71a5490c5f21ebc5643ea20822f78876959/tests
https://github.com/seiller/pymwp/blob/746da71a5490c5f21ebc5643ea20822f78876959/tests/test_analysis.py
https://seiller.github.io/pymwp/utilities/#profiling
https://github.com/seiller/pymwp/actions
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The implementation includes type annotations, uses self-documenting code
style, and a build-time linter to ensure PEP8-style compliance and high code
quality.

3.2 Overview of modules

The modules are precisely documented and discussed in the documentation, but
we briefly discuss them below, in the order in which they are best discovered.

At the core of the analysis’ mechanism is a mathematical structure called
a “semi-ring”, that we implemented and improved compared to the original de-
velopment. The semi-ring we implemented is the original “mwp”-semiring [10],
endowed with an additional ∞ value i representing failure [3] in a “local” way:
instead of simply stopping the analysis – as was done in the original paper –, it
is carried on in our implementation. This choice allows to not only “flag” the
program as not respecting the polynomial data size growth, but to specifically
“flag” the actual variables not respecting the bounds. We believe this is an impor-
tant added value for usability, as it now pinpoints the exact part of the program
where data grow “out of proportions” instead of simply stopping, providing us-
able feedback to the programmer. Furthermore, the actual semi-ring used is a
parameter of the analysis, with the hope that finer semi-ring would allow for
more precise analyses, or even analyses on different metrics on the programs –
something we briefly discuss in our research paper [3, Section 3.2].

Monomial and polynomial are classes used to represent possible choices: in-
stead of containing single values, the (unique) matrix representing the flows
produced by our analysis contains polynomials, which are ordered lists of mono-
mials. A monomial, in turn, is a value from the semi-ring along with a list of
possible choices that could lead to obtain it, a technique we used to “tame”
the non-determinism of the original analysis. Monomials are represented as or-
dered list w.r.t. an ordering having the interesting property that the product
of monomials (when leading to non-zero results) is monotonous. This is used to
implement more efficient algorithms for, e.g., multiplication of polynomials in a
way reminiscent of work based on Gröbner bases.

Matrix represents matrices and basic operations on them. Note that since it is
possible to obtain dense matrices with our analysis (as illustrated by the dense.c example),
it is not possible to use algorithms optimised for sparse matrices. A more fine-
grained study to obtain the ”average density” of matrices, using existing static
dependences (or other data-flow) analysis like liveness analysis, could be under-
taken to better justify or revise this choice.

Relation class represents the variables of a C program and a matrix of poly-
nomials. Relation list holds a list of relations and enables representing multiple
intermediate matrices and variables during analysis and performing operations
on them collectively.

Delta graphs class (currently in a separate branch) introduces a data struc-
ture designed to keep track of assignment leading to infinite coefficients. The in-
formation is kept within a graph whose vertices are monomials populated during
the analysis by adding those monomials that appear with an infinite coefficient.

https://seiller.github.io/pymwp/
https://seiller.github.io/pymwp/semiring/
https://seiller.github.io/pymwp/monomial/
https://seiller.github.io/pymwp/polynomial/
https://seiller.github.io/pymwp/matrix/
https://github.com/seiller/pymwp/blob/746da71a5490c5f21ebc5643ea20822f78876959/c_files/other/dense.c
https://seiller.github.io/pymwp/relation/
https://seiller.github.io/pymwp/relation_list/
https://github.com/seiller/pymwp/blob/946a5b44692325095392694950ed03807f059b52/pymwp/delta_graphs.py
https://github.com/seiller/pymwp/tree/delta_graphs
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This graph is structured in layers where each layer corresponds to the size of
the monomials it contains; this extra structure is used to implement efficiently
a “fusion” method which simplifies the structure by performing some algebraic
simplifications. This is discussed in more details in our research paper [3, Section
5.2].

Analysis is the most important class, that calls pycparser to parse the C

source code given as input, and then proceed to analyze the obtained Abstract
Syntax Tree (AST). The compute relation method recursively analyses each
AST node and applies the rules of the modified flow calculus to obtain a relation
list corresponding to all possible matrices of that AST node. Relations are iter-
atively composed, resulting in one final relation that represents all variables of
the C program under analysis and its corresponding matrix. Next, this relation is
evaluated to determine which flows stay within polynomial bounds. Analysis re-
turns the relation and a list of passing choices. This list is empty when no choices
exist, indicating the analyzed program does not have polynomial bounds.

4 Obstacles: computing with matrices of choices

Our main challenge was the efficiency of our analysis. Unlike the original flow
calculus, where analysis is performed on a matrix representing singular deriva-
tion and matrices are resized repeatedly, each matrix in our implementation
represents multiple derivations, and as such their sizes can grow quickly and op-
erations on them become more costly. In the analysis of program flows, all non-
determinism is contained in assignment and operations, meaning a very simple
program of n lines can have 3n different derivations and becomes untractable,
as exemplified by explosion.c.

Running analysis evaluation phase to check all possible flows is particularly
costly if no prior optimization is performed. Hence, removing redundant, useless
and uninteresting choices and unnecessary operations, especially when we focus
on worst cases, is required to be able to carry out the analysis in a timely manner.

When adding or multiplying polynomials, which consist of monomials, we
check if a monomial is contained or included by another, and exclude all redun-
dant cases (cf. a4ec807 or 6f8e694). This is also be done when inserting monomi-
als, that way we keep polynomials free of implementation choices that we would
otherwise have to handle in during evaluation. Profiling – using cProfile – was
carried out to ensure this similification resulted in performance gain.

Choices that lead to “infinite” flow also are saved and removed from the
possible choices in the evaluation. This elimination of choices is done using clique
detection and deletion over a weighted graphs representing a distance between
monomials (in delta graphs.py).

To address the need to resize matrices frequently, we implemented a suitable
data structure and method to handle this efficiently. First by modelling analysis
state as a relation, which combines program variables and its associated matrix,
and allows comparing this data for equality. Then, during analysis while com-

https://github.com/seiller/pymwp/blob/946a5b44692325095392694950ed03807f059b52/pymwp/delta_graphs.py#L274
https://seiller.github.io/pymwp/analysis/
https://github.com/seiller/pymwp/blob/746da71a5490c5f21ebc5643ea20822f78876959/pymwp/analysis.py#L74
https://github.com/seiller/pymwp/blob/746da71a5490c5f21ebc5643ea20822f78876959/pymwp/analysis.py#L61
https://github.com/seiller/pymwp/blob/746da71a5490c5f21ebc5643ea20822f78876959/c_files/other/explosion.c
https://github.com/seiller/pymwp/commit/a4ec8073508de9df0ae64e7bf99fdf9462453fd2
https://github.com/seiller/pymwp/commit/6f8e6941854e2a6bae66cbbeaed6540ed7e03065
https://github.com/seiller/pymwp/issues/17
https://docs.python.org/3/library/profile.html
https://github.com/seiller/pymwp/blob/5edf5f20a25bf13862ac609a4189d412ac09689a/pymwp/delta_graphs.py
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posing relations, the homogenisationmethod checks if resizing is necessary and
omits it otherwise.

5 Limitations and strengths

This work is a proof of concept and has its set of limitations. The list of features
details what can and cannot be analyzed currently. Since the analysis does not
track memory uses, it handles pure functions only. Modelizing and managing
memory is not impossible, but is a feature for future enhancement. Analysis
of external function calls remains to be implemented, but functions calls can
be analyzed by clever inlining, as explained in the research paper. A feature
for saving analysis results in a file has been implemented in preparation for fu-
ture enhancement like exports of evaluation when including external functions.
Handling of operations is currently limited to binary operations, but analysis of
operations of greater arity can be handled by splitting such operations into mul-
tiple statements. Other significant future enhancements include adding support
for arrays and pointers.

The strength of the analysis is to focus only on characterizations of “chunks”
– i.e. sequences of commands – of any size of the program allowing to abstract
values and their encoding. Here the problems of intervals and sets of possible
values does not exist anymore. Of course this comes with imprecision we try to
minimize using eliminations and optimizations techniques. The implementation
itself is cross-platform compatible, heavily and continuously tested, and available
for installation through Python Package Index, making its installation and use
accessible and user-friendly.

There exists other static analysis tools with similar goals. Resource Aware ML
can statically and automatically determine upper and lower bounds of resource
usage and evaluate other metrics to include evaluation steps and heap space, but
RaML analyzes programs written in OCaml, not C. SPEED [8] and Costa [2] are
similarly designed for different programming languages. CerCo project aimed at
building a C compiler with built-in resource analysis, but focused on runtime.
By performing data size analysis on C programs, pymwp fits a niche not met by
these existing alternatives. Further its packaged design and minimal dependen-
cies enable its integration into larger systems, or it can be used independently
as a standalone tool.

6 Conclusion

This work attempts to answer questions [10] asked years ago, showing that,
taken as it was described, the analysis cannot scale to realistic program in a real
programming language as C: while the considered analysis is definitely powerful
and elegant, its mathematical nature let some costly operations go unchecked.
However we have shown that, extended and coupled to optimizations techniques,
its result allows the development of a novel, powerful and realistic static analysis

https://github.com/seiller/pymwp/blob/746da71a5490c5f21ebc5643ea20822f78876959/pymwp/relation.py#L345
https://seiller.github.io/pymwp/features/
https://github.com/seiller/pymwp/blob/746da71a5490c5f21ebc5643ea20822f78876959/pymwp/file_io.py#L28
https://www.raml.co/
http://cerco.cs.unibo.it/
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tool. We think that from here, much more can be done, but that our first steps
are encouraging.

We have the mathematical theory to handle function definitions and calls [3,
Section 4], other operators (unary or n-ary), and suspect that simple data-types
such as arrays or lists should oppose little to no resistance. This will open up
the possibility of composing analysis, and as such enable the call to external
libraries in the analyzed programs: to prepare for this, the outputting to files of
the result of the analysis was already implemented in the file io class. Adding
e.g. pointers to the theory will probably be a greater challenge, but there seems
to be no intrinsic reason for the analysis not to be able to handle them.

Another complementary direction we find very exciting is to certify the anal-
ysis using the Coq proof assistant [1], and to implement the analysis in certified
tools such as the Compcert compiler [12] (or, more precisely, its “static single
assignment” version compcert-ssa [4]) or certified-llvm [15]. The plasticity of
both tools and of the implemented analysis should allow to enable to port our
results and approaches to programs written in other languages than C. Further-
more, as complexity analysis is notably difficult in Coq [7], we believe a push in
this direction – allowed by the plastic nature of our tools – would be extremely
welcome.
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itracopoulos, C., Löwe, B. (eds.) Logic and Theory of Algorithms, 4th
Conference on Computability in Europe, CiE 2008, Athens, Greece, June
15-20, 2008, Proceedings. LNCS, vol. 5028, pp. 67–76. Springer (2008).
https://doi.org/10.1007/978-3-540-69407-6_7

6. Dal Lago, U.: A short introduction to implicit computational complexity. In:
Bezhanishvili, N., Goranko, V. (eds.) ESSLLI. LNCS, vol. 7388, pp. 89–109.
Springer (2011). https://doi.org/10.1007/978-3-642-31485-8_3
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