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Abstract

This paper presents a hybrid moment of fluid–level set (HyMOFLS) method of liquid/gas interface re-
construction for the application to simulate primary atomization of liquid fuel. This method combines
the moment of fluid (MOF) method and the level set framework in the coupled level set volume of fluid
(CLSVOF) method. In this hybrid framework, the MOF and CLSVOF methods are used to reconstruct the
interface in the under-resolved and the resolved regions of the flow, respectively. An interface surface reso-
lution metric, computed using local interface curvature and mesh spacing, called interface resolution quality
(IRQ) is introduced to identify and classify these two flow regions in the computational domain. Such a
strategy classifies/tags each computational cell with MOF or CLSVOF method based on a threshold value
for the IRQ in each cell. The MOF method uses liquid volume fraction as well as centroids of liquid and gas
phases for liquid/gas interface reconstruction in a computational cell. The CLSVOF method uses the level
set for describing the interface and liquid volume fraction for mass conservation. The phase centroids in the
HyMOFLS method are computed and transported on-the-fly during the cell tagging process. The transport
of the liquid volume fraction, level set, and the phase centroids are performed using a directionally split
algorithm. This algorithm is coupled with the Navier-Stokes equations solver that uses ghost fluid method
and consistent mass and momentum flux computation for the momentum equation. Various numerical tests
that exhaustively assess the capabilities, accuracy, and computational time consumption of the HyMOFLS
method under multiple flow conditions and configurations. The results from these tests suggests that the
hybrid framework is capable of capturing the liquid/gas interface belonging to thin and under-resolved struc-
tures that are often encountered in simulations of turbulent atomization of liquids. Following these tests,
a detailed parametric study on the threshold value of IRQ is presented to test its effect on the interface
reconstruction accuracy. Finally, this hybrid framework is employed to simulate turbulent jet injection and
pre-filming planar Airblast atomziation cases of engineering applications. For these complex and turbulent
primary atomization cases the HyMOFLS method is found to tag the MOF and CLSVOF methods to re-
gions of the flow appropriately. The proposed HyMOFLS method is found to achieve a balance between the
accuracy and the computational cost of reconstructing the liquid/gas interface for various interface and flow
configurations.
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1. Motivation and objectives

The numerical simulations of liquid fuel primary atomization provides insights into the understanding of
the droplet breakup. With the increase in the computational power over the past decades, it has become pos-
sible to perform detailed numerical simulations of primary atomization process [1] on large scale geometries
[2]. The atomization process is turbulent, multiphase (liquid and gas phases), multi-scale (varying drop
sizes), and multi-physics (presence of various physical events such as Rayleigh-Taylor, Kelvin-Helmholtz,
and Rayleigh-Plateau instabilities) in nature. The simulation of such a complex process requires accurate
numerical methods and schemes that can handle – large discontinuities across liquid/gas interface, jump in
pressure and viscosity, singular nature of the surface tension force acting on the location of the interface,
and finally, accurate description and transport of the liquid/gas interface.

Two of the most prominent methods of handling the discontinuities in the material properties across the
interface are continuum surface force (CSF) model [3] and ghost fluid method (GFM) [4]. These methods
depend on the numerical methods responsible for the description and transport of the interface. The
prominent classes of methods for this purpose are the volume of fluid (VOF) method [5, 6, 7] and the
level set (LS) [8, 9, 10] method. The former tracks the liquid volume fraction thereby ensuring mass
conservation while the latter tracks the interface in the form of the iso-contour of an signed distance level
set function thereby computing accurate geometrical properties of the phase interface. There have been
many improvements made over the years for the VOF method [11, 12, 13, 14] and LS method [15, 10, 16]. A
combined strategy of coupled level set volume of fluid (CLSVOF) method [17, 18, 19] exploits the advantage
of both the VOF and LS methods. This method has been successful in simulating liquid fuel primary
atomization process as shown by Ménard et al. [18]. Another type of interface tracking and reconstruction
includes the refined level set grid (RLSG) method [20] which locally refines the LS mesh to control the
errors arising from the interface transport and to compute the interface curvature accurately. Desjardins
and Pitsch [21] presented a spectrally refined interface (SRI) in which a polynomial reconstruction of the
LS function is created in each computational cell leading to higher accuracy of the small scale transport.

In order to well understand the primary atomization, it is necessary to capture the small and often
under-resolved liquid structures (URLS). When such liquid structures are of the size of the computational
mesh spacing, it can lead to inaccuracies in the computation of the interface geometrical properties and in
the reproduction of physics of droplet breakup. The recently developed moment of fluid (MOF) method
[22, 23, 24, 25, 26] of liquid/gas interface reconstruction specifically addresses this aspect. This method uses
liquid volume fraction along with centroids of liquid and gas phases in each computational cell to reconstruct
the interface thereby simultaneously conserving the volume and preserving the accurate orientation of the
interface. It has been shown [27] that the MOF method yields relatively lower interface reconstruction errors
and higher order of grid convergence of this error. There have been various implementations and extensions
made in the recent past to the original MOF method [22] – the analytical interface reconstruction [28, 29]
in two dimensions [30, 31] and extended to three dimensions [32], extension to compressible flow simulations
[33], accurate capture of the thin ligaments [34], two-plane interface reconstruction [35], and to many other
applications and grid types [36, 37, 38, 39, 40, 41, 42, 43, 44].

In a recent study, Asuri Mukundan et al. [45] compared the MOF and CLSVOF methods for variety
of tests and found that the MOF method outperformed the CLSVOF method in terms of accuracy of
interface reconstruction. However, the MOF method was found to be computationally expensive than the
CLSVOF method in simulating primary atomization simulations [46]. Naturally, a numerical method having
high accuracy and modest computational cost requirement is required to be employed for simulating large
scale applications. Thus, to that end, we have developed in this work a hybrid moment of fluid–level set
(HyMOFLS) method as a combination of MOF and CLSVOF methods. The coupling between these two
methods is purely in choosing the way the interface reconstruction need to be made with a choice between
MOF-based and level set-based method. The rationale behind the development of HyMOFLS method is to
use the MOF method in the simulations only when it is necessary while the CLSVOF method almost all
the time for interface reconstruction. The necessity is driven by the presence of URLS in the computational
domain. The obvious question at this juncture is, how to identify under-resolved regions of the flow?
To answer that question, a metric for surface resolution called interface resolution quality (IRQ) [47] is
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employed in this work that classifies and distinguishes the under-resolved from the resolved flow regions.
Such a criterion is not new and has been been employed before [27]. Based on the threshold value for the
IRQ criterion, a computational cell is classified/tagged as to whether it belongs to URLS or not; and by
extension, a decision whether MOF method [45] is necessary to reconstruct the interface in that cell or not.

This paper is organized as follows. Section 2 presents the framework of the HyMOFLS method imple-
mented in our solver followed by the canonical tests including Zalesak’s notched disk, 2D, and 3D droplet
deformation comparing the results between the HyMOFLS, MOF, and CLSVOF methods. Then, a detailed
parametric study on the threshold value of the IRQ criterion is presented in which the optimal value is
found such that a balance exist between the accuracy and computational costs for the HyMOFLS method.
Section 3 presents the solution procedure employed to solve the Navier-Stokes equations along with the
discretization of various terms and time integration scheme employed in our flow solver. The numerical
validation tests are presented in Section 4 to assess the capabilities of the hybrid framework for a convection
dominated two-phase shear layer, Rayleigh-Taylor instability, binary droplet collision case, and Rayleigh-
Plateau instability. Finally, Section 5 presents the results from the numerical simulations of engineering
applications – turbulent jet atomization under diesel engine-like condition and planar pre-filming Airblast
atomization using the HyMOFLS method.

2. Hybrid MOF-Level set (HyMOFLS) method

This section describes in detail the hybrid moment of fluid–level set (HyMOFLS) approach for liquid/gas
interface reconstruction implemented in our in-house Navier-Stokes equations solver ARCHER [48]. The
HyMOFLS method involves the coupling between the moment of fluid (MOF) method [45] and the coupled
level set volume of fluid (CLSVOF) method [18]. On one hand, the MOF method, as presented by Asuri
Mukundan et al. [45], has been shown to have higher order accuracy especially in capturing under-resolved
liquid structures (URLS) such as thin ligaments and small droplets; however, incurs high computational cost.
On the other hand, the CLSVOF method yields lesser computational cost by reaching relatively lower order
of accuracy than the former method. The motivation for the development of the HyMOFLS method stems
from the requirement of increased accuracy to be achieved at a modest computational expense by coupling
MOF and CLSVOF methods. The rationale to couple the more accurate MOF method with the level set
is to use the former for capturing the interface of under-resolved flow regions while the latter for resolved
flow regions of the computational domain. The presence of the under-resolved regions in the computational
domain is determined using local mesh spacing ∆x and the local interface curvature κ (see Section 2.3 for
more details on coupling procedure). A similar method for interface reconstruction has been explored by
Jemison et al. [27] in the past. The description of the CLSVOF and MOF methodologies along with the
HyMOFLS coupling procedure are presented in the following subsections.

2.1. Coupled level set volume of fluid (CLSVOF) method

2.1.1. Level set

The level set methods [9, 49, 50] use a contiguous signed distance function φ(x, t) to describe the location
of the interface between two phases where x and t represent the spatial location and time instant, respectively.
The value of φ(x, t) > 0 defines the liquid phase, φ(x, t) < 0 defines the gas phase, and φ(x, t) = 0 defines
the location of the liquid/gas interface. The signed distance represent the distance between any point in the
computational domain to the interface.

The geometrical properties of the interface are directly computed from the level set function φ. For
example, the unit normal of the interface is computed as

n =
∇φ

‖∇φ‖2
. (1)

The curvature of the interface is then computed as:

κ = −∇ · n = −∇ ·
(

∇φ

‖∇φ‖2

)
, (2)
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It is to be remarked that the interface unit normal points towards the liquid phase and the curvature is
positive for convex surfaces while negative for concave surfaces in this work.

The transport of this interface with a velocity u is described by the solution of the transport equation
given as:

∂φ

∂t
+ u ·∇φ = 0. (3)

In order to mitigate the discontinuities in the solution of this equation and to avoid singularities in the
distance function φ, we have implemented a fifth-order WENO scheme for discretizing the convective term
in Equation (3). The temporal derivative is discretized using forward Euler scheme. A directionally split
advection algorithm [51] is used for solving this transport equation. Due to the very nature of this transport
and high velocity gradients, spreading and stretching of the level set function may occur thereby losing
its distance function property (‖∇φ‖2 = 1). A redistancing algorithm [49] is thus applied to regain this
property.

The main drawback of the level set methods is the experienced mass loss especially in the under-resolved
regions of the computational domain. One way to mitigate this problem is by coupling level set with the
volume of fluid (VOF) method as presented by Sussman and Puckett [17].

2.1.2. Volume fraction

The VOF method [5, 52, 11] uses the liquid volume fraction which is the fraction of the liquid in a
computational cell. Within this work, the liquid/gas interface is represented in a piecewise linear interface
calculation (PLIC) sense with the idea that a planar interface approximates the reference/original interface.
The liquid volume fraction F is defined as

F (x, t) =
1

| CΩ |

∫
CΩ

H(φ(x), t)dx, (4)

where CΩ represents a computational cell in the numerical simulation domain Ω and H is the Heaviside
function expressed as

H(φ(x)) =

{
1, ifφ(x) > 0

0, otherwise
(5)

with the sign convention of the level set function φ taken as

φ(x) =

{
> 0, ifx is inside liquid phase

< 0, ifx is inside gas phase,
(6)

Thus, F obey the bounds of 0 ≤ F ≤ 1. The gas phase volume fraction is given as 1 − F . The physical
properties of the phases α in a computational cell, which can be density ρ or viscosity µ, is determined using
F as α(x) = αliqF (x)+αgas(1−F (x)). This expression involves an assumption that the physical properties
are constant within each phase.

The interface described within the context of VOF method is advected according to the following trans-
port equation

∂F

∂t
+ u ·∇F = 0. (7)

A directionally-split algorithm proposed by Weymouth and Yue [51] is used for advecting the liquid volume
fraction. To be consistent with this algorithm, the following modified form of the transport equation for
incompressible divergence free flow is solved

∂F

∂t
+ ∇ · (Fu) = c (∇ · u); c =

{
1, F > 0.5

0, otherwise.
(8)

In each direction of advection, the liquid volume fraction is advected along one-dimensional velocity which
is not divergence-free. Thus, the dilatation term c (∇ · u) appear in the modified form of the equation;
otherwise, jetsam and flotsam occurs in the computational domain and the bounds of F will not be respected.
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Due to the directionally-split nature of the transport, the advection directions are swapped between
consecutive time steps, i.e.,

tn → tn+1 : x− y − z
tn+1 → tn+2 : y − z − x
tn+2 → tn+3 : z − x− y

repeat.

(9)

It is to be remarked that there is no mass loss observed in the computational domain using this directionally-
split algorithm.

2.1.3. Coupling level set and VOF methods (CLSVOF method)

The main idea of coupling level set framework with VOF method is to exploit the advantage of each of
the methodologies which is to minimize the loss of mass and to preserve the description as well as geometrical
properties of the interface. To that end, the coupling between the two methods are carried out according to
the procedure described by Ménard et al. [18] in the context of coupled level set volume of fluid (CLSVOF)
method. Within this CLSVOF framework, the unit normal of the liquid/gas interface is computed using the
least mean square approach [17]. The coupling mainly involves in the mutual correction of the level set and
the liquid volume fraction values in the computational domain. In order to ensure that an accurate measure
of level set and the geometrical properties of the interface are preserved, care is taken in correcting the level
set signed distance function based on the liquid volume fraction in each computational cell. The redistancing
procedure for the level set function is performed as described by [18] to regain the signed distance function
property. The reader is referred to the work of Ménard et al. [18] for more details on the implementation of
the CLSVOF method.

2.2. Moment of Fluid (MOF) method

The CLSVOF method has been shown [48, 53, 54] to be successful in simulating the incompressible
multiphase flows for various configurations. However, such a state-of-the-art numerical method can still fail
in the computation of the geometrical properties for under-resolved interface topologies [18]. To test this
hypothesis, we consider a 2D liquid ligament placed in [0, 1]× [0, 1] domain. The domain is discretized using
a 322 mesh resulting in an equidistant mesh spacing of ∆x = ∆y = 0.03125. The thickness of the ligament
is specifically chosen to be 1.5∆x which is qualifies it to be under-resolved (since thickness < 2∆x). This is
because at least two computational cells are needed for a an interface to be resolved typically for an interface
reconstruction method. The test comprises of advection of this ligament along the x−direction (horizontal
direction) of the doubly periodic domain with a velocity of u = 1.0, v = 0.0, and CFL = 0.5 with predictor-
corrector time integration scheme using CLSVOF method [18] in the ARCHER solver. The Navier-Stokes
equations are not solved in this test but only the phase interface transport equations pertaining to liquid
volume fraction (i.e., Equation (7)) and level set (i.e., Equation (3)) are solved. The conclusion of the test
is determined at the time instant t = T = 1.0 at which the ligament comes back to its initial location. The
results from this test shown in Figure 1 demonstrates that the shape of the ligament is deformed at the end
of the advection process. This highlights the limitation of the interface reconstruction method in capturing
the under-resolved liquid structure that is physically relevant. Such under-resolved liquid ligaments are
commonly observed in a large scale simulations of liquid atomization.

One of the ways to accurately capture the under-resolved liquid structures and preventing artificial
breakup was demonstrated by Ahn and Shashkov [55] using the moment of fluid (MOF) method [22].
In one of our previous works [45], we have shown the higher accuracy of MOF method for simulating
the incompressible multiphase flows. When the MOF method is used for the same test of under-resolved
ligament advection under the same test conditions and using numerical schemes, we get the result as shown
in Figure 2. Upon comparing Figures 1 and 2, we find that there are no corrugations or change of shape of
the under-resolved liquid ligament. This goes to show that MOF method is able to preserve the interface
orientation and shape of the liquid structure during advection.
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(a) t = 0 (b) t = T/2 (c) t = T

Figure 1: Phase interface shape of liquid ligament obtained using CLSVOF method of interface reconstruction. The velocity field
employed for advecting the ligament is u = 1, v = 0, w = 0 with the advection direction from left to right in the computational
domain.

(a) t = 0 (b) t = T/2 (c) t = T

Figure 2: Phase interface shape of liquid ligament obtained using MOF method of interface reconstruction. The velocity field
employed for advecting the ligament is u = 1, v = 0, w = 0 with the advection direction from left to right in the computational
domain.

2.2.1. Interface reconstruction

The MOF method is to be considered as a superset of the classical VOF method as it uses both liquid
phase volume fraction (zeroth moment of liquid volume) as well as centroids/center of mass (COM) of liquid
and gas phase in each computational cell to reconstruct the interface. Within the context of the MOF
method, the liquid volume fraction (defined in Equation (4)) and the liquid phase centroid are computed as

F =

∫
ω
dx∫

Ω
dx
, (10)

xCOM =

∫
ω
xdx∫

Ω
dx

, (11)

while the gas phase volume fraction and its corresponding phase centroid or center of mass (COM) are
defined as

F gas =

∫
ω/Ω

dx∫
Ω
dx

, (12)

xgas
COM =

∫
ω/Ω

xdx∫
Ω
dx

, (13)

where xCOM is the phase centroid, and ω is the domain of the liquid packet (with its volume denoted by
| ω |) inside the computational cell CΩ (with its volume denoted by | CΩ |) and ω/Ω represents the region
within the computational cell outside the liquid phase (i.e., gas phase region).

The MOF method [45] employed in this work was developed in a PLIC sense to approximate the refer-
ence/original interface. Thus, the equation of the reconstructed interface plane in 3D (line in 2D) is given
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as ax + by + cz + d = 0 where interface unit normal n = [a, b, c]T . The interface reconstruction involves
determining the components of unit normal n and the distance d which is the shortest distance of the compu-
tational cell center to the interface. This is carried out as the solution to a constrained optimization problem
wherein both n and d have to be simultaneously determined such that volume is conserved (Equation (14))
and centroid defect EMOF is minimized (Equation (15))∣∣F ref − F act(n, d)

∣∣ = 0, and (14)

EMOF(n, d) =
∥∥xref

COM − xact
COM(n, d)

∥∥
2
. (15)

The centroid defect EMOF is the distance between the phase centroids of the reference and reconstructed
interfaces. It is to be remarked that all the variables with the superscript “ref” pertain to the reference (or
original) interface while those with “act” pertain to the actual (or reconstructed) interface. For the purpose
of illustration, Figure 3 shows a typical 3D computational cell with an interface and its 2D front view with
the reference interface (solid curved line) and PLIC reconstructed interface (dashed straight line) based on
liquid as reference fluid.

x

y

z

xCΩ

Reference
interface

Reconstructed
interface

(a) 3D hexahedral computational cell.

x

y

n

d

xact
COM

xref
COM

xCΩ

(b) Front view with centroids.

Figure 3: Exemplary computational cell with liquid phase (shown in gray region), reference interface (curved solid line), and
reconstructed interface (straight dashed line) with liquid centroids and interface unit normal and shorted cell center–interface
distance.

The MOF method [45] in our in-house solver ARCHER reconstructs the liquid/gas interface in the
following manner based on the methodology of Jemison et al. [27]. First, the reference phase (between
liquid and gas phases) is chosen such that its centroid is farthest from the cell center. Second, the shortest
distance of the interface to the cell center, i.e., the value of d is determined by solving Equation (14) upto the
machine precision using a geometric method [56]. Then, the interface unit normal n = [a, b, c]T is expressed
in polar coordinates as n = [sin Φ cos Θ, sin Φ sin Θ, cos Φ]T . Next, an initial guess for this unit normal is
computed from the gradient of the local value of the level set function. Using this initial guess and the
determined value of d, the (chosen) reference phase centroid xref

COM is computed. Once the coordinates of
the centroid are determined, the Gauss-Newton iterative minimization algorithm is used for reducing the
centroid defect EMOF is minimized giving the optimized value of the interface unit normal n, i.e., giving out
the optimal interface orientation. This algorithm as presented in Ref. [45] is given in Algorithm 1 where
g(Φ,Θ, d) = xref

COM − xact
COM(Φ,Θ, d) is the objective function to be minimized, J is the Jacobian matrix of

this objective function, ctr is the iteration counter number, tolg and tolJ are the tolerance values. For
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Algorithm 1 Gauss-Newton minimization algorithm.

1: function GaussNewton(a0, b0, c0, d0,Φ0,Θ0, F ref ,xref
COM)

2: ctr = 1
3: tolg = 10−8

4: tolJ = 10−13

5: loop
6: dctr ←| F ref − F act(nctr−1, d) |= 0 . Equation (14)
7: | ωctr |← actr−1, bctr−1, cctr−1, dctr . Compute liquid volume
8: xact,ctr

COM ← (actr−1, bctr−1, cctr−1, dctr, F ref) . Equations (11) and (13)

9: gctr(Φctr−1,Θctr−1, dctr) = xref
COM − xact,ctr

COM

10: Jctr(g) =
[
∂gctr

∂Φ
∂gctr

∂Θ

]
. Jacobian matrix

11: Q =
∥∥∥(Jctr

)T · g∥∥∥
2

12: if ((Q ≤ tolJ) .or. (‖gctr‖2 < tolg)) then
13: exit
14: else if (ctr == 20) then
15: exit
16: else

17: (Φ{ctr+1},Θ{ctr+1}) = (Φctr,Θctr) +
((

Jctr
g

)T
Jctr
g

)−1 (
Jctr
g

)T
gctr

18: ctr = ctr + 1
19: end if
20: end loop
21: xref

COM ← xact,ctr
COM

22: return (Φ,Θ)
23: end function

more details on the implementation of the MOF method and the algorithms on minimization of the centroid
defect, the reader is referred to the work of Asuri Mukundan et al. [45].

2.2.2. Computation of reference centroid

The methodology involved in the computation of the phase centroid is explained as follows. It is to
be remarked that the interface reconstruction is needed only in the mixed cells (i.e., cells with both liquid
and gas phases), thus, the centroid computation is performed only for such cells. For the cells with only
liquid phase (full cell) or gas phase (empty cell), the location of the centroid coincide with that of the
computational cell center. In fact, it is sufficient to know the coordinates of the centroid of one phase to
compute those for the other phase since the phase centroids are linked to each other in each computational
cell according to the following relation,

Vliqx
liq
COM + Vgasx

gas
COM = VcellxCΩ

, (16)

where Vliq is the volume of liquid, Vgas is the volume of gas, xCΩ
is the coordinates of the cell center, and

Vcell is the volume of the computational cell, i.e., Vcell = ∆x×∆y ×∆z.
We now consider an exemplary hexahedral computational cell with the liquid/gas interface shown in

Figure 4a. The liquid phase under the interface is shown in gray color in Figure 4b and the unit normal
of the interface points towards the liquid phase. The basic idea of the phase centroid computation revolves
around the triangulation of the corresponding phase in the cell. The premise of this algorithm pivots to
the equispaced hexahedral cells (i.e., ∆x = ∆y = ∆z) in the mesh for discretizing the domain. Thus, the
total number of vertices in each cell 8 and total number of faces in a cell is 6 remains constant. For the
sake of simplicity and without loss of generality, the steps described below pertain to the computation of
coordinates of the centroid of the liquid phase for the hexahedral cell shown in Figure 4a. The algorithm

8



x

y

z

xCΩ

(a) 3D hexahedral computational cell.

x

y

xCΩ

(b) Front view with liquid phase shown in gray.

Figure 4: Exemplary computational cell used in ARCHER flow solver mesh.

for the computation of centroid of the gas phase can be derived in a straightforward manner based on the
below procedure. The following steps are implemented to compute the coordinates of the phase centroid.

(a) First, the computational cell is transformed from its global coordinates (i.e., (x1, y1, z1) . . . (x2, y2, z2))
to local coordinates ((0, 0, 0) . . . (1, 1, 1)) (c.f. Figures 5a and 5b).

(b) Then, the coordinates of the points of intersection of the interface with the cell faces are computed. The
cell formed by the intersection of the original hexahedral computational cell and the interface will be
called as truncated cell (shown in Figure 5c).

(c) Using the vertices of this truncated cell, the barycenter of the liquid phase is computed within the local
coordinate system of the computational cell (shown in Figure 5d).

(d) Then, each face of this truncated cell is triangulated to subsequently form tetrahedral elements (see
Figure 5e).

(e) Using the liquid phase barycenter as apex of tetrahedron, triangulation is performed to form tetrahedra
as shown in Figure 5f.

(f) The volume Vtetra and barycenter xtetra of each tetrahedron are then computed. The expression for the
volume of tetrahedron with vertices a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3), and d = (d1, d2, d3)
is given as

Vtetra =
1

6

∣∣∣ det(a− d, b− d, c− d)
∣∣∣ (17)

The barycenter of the tetrahedron (xtetra, ytetra, ztetra) is computed as

xtetra =
1

4
(a1 + b1 + c1 + d1)

ytetra =
1

4
(a2 + b2 + c2 + d2)

ztetra =
1

4
(a3 + b3 + c3 + d3)

(18)

It is to be noted that the barycenter and the centroid of tetrahedron coincide. Hence, barycenter of
tetrahedron will be hereon referred as centroid of tetrahedron.

(g) The liquid phase centroid in this 3D hexahedral computational cell is then computed as the volume
weighted average of the centroids of each tetrahedron weighted using the tetrahedral volume. This is
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expressed mathematically as

xCOM =

Ntetra∑
itetra=1

Vitetra
xitetra

Ntetra∑
itetra=1

Vitetra

(19)

The steps described are pictorially illustrated in Figure 5. The overall algorithm for this methodology is

(x2, y2, z2)

(x1, y1, z1)

xCΩ

(a) Cell in global coordinates

(1, 1, 1)

(0, 0, 0)

(0.5, 0.5, 0.5)

(b) Cell in local coordinates

(c) Cell face-interface intersection points (d) Liquid phase barycenter and truncated cell

(e) Formation of diagonals on cell faces (f) Tetrahedral elements

Figure 5: Step-by-step pictorial representation of liquid phase centroid computation.

given in Algorithm 2.
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Algorithm 2 Computation of reference phase centroid.

1: function compute centroid(F, a, b, c, d)
2: Nfaces = 6
3: Nvertices = 8

4: db = (d−
(
a∆x

2 + b∆y
2 + c∆z

2

)
)/∆x

5: for i = 1, Nvertices do
6: φ(i) = ax(i) + by(i) + cz(i) + db
7: num = num + nint(sign(1, φ(i)))
8: end for

9: sφ =
Nvertices∑
i=1

φi

10:

11: if ((num 6= 8) .or. (num 6= -8)) then . Cell has interface
12: Find cell face-interface intersection points . Figure 5c
13: Get vertices list for truncated cell . Figure 5d
14: Get list of points forming each face of truncated cell
15: Discretize truncated cell into tetrahedra . Figures 5e and 5f
16: Compute volume of tetrahedra . Equation (17)

17: Compute barycenter of tetrahedra: xtetra = 1
4

4∑
i=1

xi . Equation (18)

18: xCOM =

Ntetra∑
itetra=1

Vitetraxitetra

Ntetra∑
itetra=1

Vtetra

19: else . Empty or full cell

20: xCOM =

Nvertices∑
i=1

x(i)

Nvertices

21: end if
22: end function

2.2.3. Phase transport

The transport of the liquid phase (and gas phase) within the context of MOF method involves the
transport of the liquid volume fraction F and the reference phase centroids xref

COM. The transport of F (see
Equation (7)) along with the numerical methods for discretization of the various terms have been shown in
Section 2.1.2. The transport of the phase centroid is carried out as an approximated Lagrangian particle
associated with its corresponding volume packet (also referred as flux volume) consistent to the literature
[22]. Accordingly, the centroid is transported according to the following equation

∂xCOM

∂t
= u(xCOM), (20)

where u(xCOM) is the velocity at the location of the centroid xref
COM linearly interpolated from the cell

face-centered velocity (see Figure A.43). The reader is referred to Appendix A of Ref. [22] for the detailed
derivation of the Equation (20). It is to be remarked that phase centroids for liquid and gas phase are
stored for a mapped unit computational cell, hence, their value is always in the range [0, 1]. During the
advection step, each phase centroid coordinate is remapped back to the physical computational cell [45].
This transport equation is solved using a directionally-split advection algorithm with an Eulerian Implicit–
Lagrangian Explicit (EI–LE) scheme. The first order time integration of Equation (20) gives

xn+1
COM = xnCOM + u(x∗COM)∆t. (21)

In the case of Eulerian Implicit (EI) scheme with x∗COM = xn+1
COM, the final transport equation derives to be

xn+1
COM = E × (xnCOM − (ui+1/2,jxi−1/2 − ui−1/2,jxi+1/2)) (22)
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where E = 1/(1− (ui+1/2,j − ui−1/2,j)). On the other hand, for the Lagrangian Explicit (LE) scheme with
x∗COM = xnCOM, the transport equation derives to be

xn+1
COM = LxnCOM − (ui+1/2,jxi−1/2 − ui−1/2,jxi+1/2) (23)

with L = 1 + ui+1/2,j − ui−1/2,j . The derivation of Equations (22) and (23) are detailed in Appendix A.
The consistency in the advection of phase centroid and liquid volume fraction is achieved by alternating
between the EI and LE scheme of advection between consecutive time steps of the simulation, i.e.,

tn → tn+1 : x(EI)→ y(LE)→ z(EI),

tn+1 → tn+2 : y(EI)→ z(LE)→ x(LE),

tn+2 → tn+3 : z(EI)→ x(EI)→ y(LE),

repeat.

(24)

The centroid transport procedure employed in this work is same as presented by Asuri Mukundan et al.
[45] following the work of Jemison et al. [27]. The transport procedure for the x−direction advection (without
loss of generality as y− and z− direction procedure follows the same way) of the reference liquid phase

centroid xliq
COM (the same procedure is employed for gas phase centroid xgas

COM) is explained below. To that
end, we consider the configuration of the three computational cells in 2D as shown in Figure 6. For the sake

i− 1 i i + 1

xi−1/2 xi+1/2

ui−1/2 ui+1/2

Figure 6: 3-cell stencil for advection of liquid centroid. Liquid depicted as dark fluid.

of simplicity, let us consider the ui−1/2,j 6= 0, ui+1/2,j 6= 0, ui−1/2,j 6= ui+1/2,j , and vi,j−1/2 = vi,j+1/2 = 0.
Now, considering the scenario as shown in Figure 6 in which the liquid from cell i− 1 moves into cell i, the
objective is to find the new centroid of the liquid phase in cell i. To that end, the advection procedure is
given as follows:

(a) First, we find the region and its amount of liquid volume entering (or displacing) to (or within) cell i
hereon called as departure region corresponding to the red dashed outlined region in Figure 7a. Thus,

CΩidepart
= [xi−1/2 − ui−1/2∆t, xi+1/2 − ui+1/2∆t]× [yj−1/2, yj+1/2]. (25)

(b) Next, we find the domain and volume of individual regions of liquid entering (or displacing) each from cell
i− 1 (dashed outlined region) and i (dashdotted outlined region) hereon called as intersected departure
regions as shown in Figure 7b. Therefore, we have

CΩi′,i = CΩi+i′ ∩ CΩidepart
∀i′ = −1, 0, 1. (26)

(c) Then, we compute the liquid phase centroid of each of these intersected departure region (c.f. Figure 7c)
using Equation (11).

(d) We then advect this centroid using EI–LE scheme according to Equation (20) (c.f. Figure 7d).
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(e) Finally, we compute the new liquid phase centroid for cell i as weighted average of all the centroids of
liquid phase packets entered (or displaced) within cell i with volume of each liquid packet given as

xn+1
COMi

=

1∑
i′=−1

xCOMΩ
i,i′
| CΩi′,i |

1∑
i′=−1

| CΩi′,i |
, (27)

where | CΩi′,i | represent the liquid volume of the corresponding intersected departure region.

i− 1 i i + 1

xi−1/2 − ui−1/2∆t xi+1/2 − ui+1/2∆t

ui−1/2 ui+1/2

(a) Step 1: Departure region

i− 1 i i + 1

xi−1/2 − ui−1/2∆t xi+1/2 − ui+1/2∆t

Vi−1 Vi

ui−1/2 ui+1/2

(b) Step 2: Individual departure regions

i− 1 i i + 1

xi−1/2 − ui−1/2∆t xi+1/2 − ui+1/2∆t

Vi−1 Vi

ui−1/2 ui+1/2

(c) Step 3: Compute phase centroid

i− 1 i i + 1

xi−1/2 − ui−1/2∆t xi+1/2 − ui+1/2∆t

Vi−1 Vi

ui−1/2 ui+1/2

(d) Step 4: Advect phase centroids

i− 1 i i + 1

(e) Step 5: Weighted averaged centroid

Figure 7: Step-by-step procedure of advection of liquid phase centroid.

It is to be remarked that the same procedure is employed for the advection of the gas phase centroid. The
reader is referred to the work of Asuri Mukundan et al. [45] for detailed explanations on the methodologies,
algorithms, and implementation of the MOF method.

2.3. HyMOFLS: coupling MOF and CLSVOF methods

In this work, we have developed a coupling between MOF and CLSVOF methods. Such a hybrid method
uses MOF method of liquid/gas interface reconstruction for under-resolved regions of the flow while CLSVOF
method for the resolved regions of the flow. One unique property of MOF method is that, it uses the centroid
while CLSVOF does not. Thus, an obvious question is – how are the centroid computation and transport
handled in the hybrid method? To that end, we have adopted a strategy in which the reference centroids are
computed on-the-fly only for those cells tagged with MOF interface reconstruction. Moreover, the centroid
transport is performed only for those cells that are tagged with MOF interface reconstruction method with
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the anticipation that this cell will again be tagged with MOF method in the next time step. The coupling
between the MOF and CLSVOF methods of interface reconstruction is achieved through the local interface
curvature computed as

κ(φ) = −∇ ·
(

∇φ

‖∇φ‖2

)
, (28)

where φ represents the level set signed distance function. The curvature is computed using finite difference
method with a nine-point stencil in two dimension, the details of which are explained in Ref. [57]. The
rationale in developing HyMOFLS method is that the MOF method is used for capturing the under-resolved
liquid structures (URLS) while the CLSVOF method is used for capturing resolved liquid structures (RLS).
Within this work, a liquid structure is defined as under-resolved when it is of the size of the computational
mesh spacing. The resolution of the liquid structures is determined according to interface resolution quality
(IRQ) [58] for each computational cell that belongs to a liquid structure. The IRQ is expressed as,

IRQ =
1

κ∆x
, (29)

where ∆x is the mesh spacing in the computational mesh used for the simulations. The curvature κ computed
in the computational cell center in our flow solver is associated to the surface of the liquid/gas interface (if
one such exist in the cell). It is to be remarked that the curvature used in Equation (29) is the sum of two
principal curvatures of the liquid structures, i.e., κ =| κ1 +κ2 |. Such a computation of curvature is inspired
from the work of Canu [58]; however, the drawback with this method of computation is that the curvature
becomes infinity on a saddle point of the interfacial surface.

In the past, an IRQ based criterion for differentiating the resolved and under-resolved droplets was used
by Wardle and Weller [59] wherein the gradient of liquid volume fraction was used rather than curvature
since diffused interface tracking method was employed in their study. An IRQ based differentiation between
resolved and under-resolved liquid structures was also used in the work of Anez et al. [1] which used diffused
interface tracking methodology. In contrast, our work is focused for the sharp interface capturing method
for which interface curvature is a relevant quantity for classification of the resolution of the liquid structures.
Moreover, the wrinkling in the interface can be well represented through the local variations in the inter-
face curvature. Hence, the under-resolved liquid structure/resolved liquid structure (URLS/RLS) criterion
implemented in this work is

IRQ =
1

κ∆x
=

{
< α,⇒ Under-resolved structure,

≥ α,⇒ Resolved liquid structure.
(30)

The value of α = 2 is chosen in this work based on the study by Canu [58]; higher value of α tends
towards using MOF method of interface reconstruction everywhere in the computational domain. This
value necessitates that a minimum of 8 computational cells spanning the length of the major axis of the
liquid structure to be classified as RLS else it is URLS. The reader is referred to Appendix B for the
derivation of this criterion (Equation (30)) and to Section 2.5 for the rationale behind choosing α = 2.
In order to find the effect of α on the interface reconstruction, a parametric study for various values of α
is performed and presented in Section 2.5. A similar formulation of the IRQ has also been employed by
Jemison et al. [27] with the condition that MOF method would be used for interface reconstruction when
there are less than 24 cells spanning the length of the major axis of the liquid structure. For more details
on the numerical aspect of the URLS/RLS crtierion, the reader is referred to Canu [58].

The HyMOFLS coupling works as follows. First, we compute the IRQ (Equation (29)) for each com-
putational cell containing the interface using the local mesh spacing and local interface curvature. Then,
the URLS/RLS criterion (Equation (30)) is checked in each such cell whose result determines whether the
cell belongs to an URLS or a RLS. When the cell belongs to URLS, then MOF method of interface recon-
struction is labeled/tagged and used in this cell, else, CLSVOF method is labeled/tagged and used in this
cell. The algorithm of cell-labelling with MOF and CLSVOF method based on the URLS/RLS criterion
is given in Algorithm 3. In this algorithm, the variables imin, imax, jmin, jmax, kmin, and kmax corre-
spond to the bounds on the computational cell numbers along the x−, y−, and z−directions. Moreover,
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once a cell is identified to be under-resolved (or resolved) the MOF (or CLSVOF) method is labeled to its
26-cell neighbors in 3D (8-cell neighbor in 2D). Such a neighboring cell labelling is performed to avoid local
inaccuracies/changes in the interface orientations.

Algorithm 3 URLS/RLS criterion to label cells with MOF and CLSVOF methods.

1: for k = kmin, kmax do
2: for j = jmin, jmax do
3: for i = imin, imax do
4: if ((F > ε) && (F < 1− ε)) then . ε = 10−12

5: if (IRQ(i, j, k) < α) then . URLS/RLS criterion
6: MOF activated for cell (i, j, k)
7: Tag 26-cell neighbors with MOF
8: else
9: CLSVOF activated for cell (i, j, k)

10: Tag 26-cell neighbors with CLSVOF
11: end if
12: end if
13: end for
14: end for
15: end for

The full algorithm of the implementation of the computation of IRQ value, URLS/RLS criterion (Equa-
tion (30)) along with the 26-cell neighbor labelling is presented in Algorithm 4. This algorithm of URLS/RLS
criterion is implemented in the simulations on multiple processors, hence, care has been taken in ensuring
the communications of the MOF and CLSVOF label for each cell are not overwritten for the same cell from
other processors (see line numbers 14 and 15 in Algorithm 4). An illustration of tagging of cells (and its
neighbors) with MOF and CLSVOF methods within the HyMOFLS framework is shown in Figure 8.

In a typical multiphase flows simulations, not all computational cells will be occupied by the liquid
structures. In fact, these structures span only a small concentrated region of the whole computational
domain. Thus, in order to reduce the computational costs, only the cells containing the interface are
checked for determining whether MOF or CLSVOF method need to be used for interface reconstruction. To
that end, the liquid volume fraction F in each cell is compared with a threshold value of ε = 10−12 in this
algorithm. Moreover, as seen in Algorithm 4, the steps involved in tagging a cell to MOF/CLSVOF method
and computation of phase centroid for these corresponding cells are split over three loops to mitigate the
issues with the miscommunication and over-writing of the tagged label in a cell among the processors. Such
miscommunications and over-writings often occurs for the computational cells that are on the processor
boundaries.

2.4. Computational comparison tests

Having described the HyMOFLS method, numerical tests are now performed to find the accuracy of the
interface reconstruction and transport. The default value of the parameter α is chosen to be 2 for the tagging
of computational cells with MOF or CLSVOF method. Three different tests are presented in this subsection
– notched disk rotation, 2D, and 3D droplet deformation. For each test, the results from HyMOFLS, MOF,
and CLSVOF interface reconstruction methods such as the shapes of phase interface, error norms (symmetric
difference error and geometric error), computational time will be compared. Finally, a parametric study of
the threshold value α along with an alternative cell tagging criterion are presented. In each test, the CFL
is fixed to a value of 0.5 and the time integration is performed using forward Euler method.

The error norms considered for the quantitative analyses are:

� Symmetric difference error: This error measures the difference in volume in three dimensions (area in
two dimensions) between the two interfaces (reference and reconstructed interfaces) giving a measure
of the accuracy in the orientation of the interface normal in addition to the amount of liquid volume
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Algorithm 4 Cell labelling algorithm

1: function check under resolved cells(φ, F,∆x)
2: MOF label(:, :, :) = 0
3: CLSVOF label(:, :, :) = 0
4: for ((k = kmin, kmax); (j = jmin, jmax); (i = imin, imax)) do
5: κ(i, j, k)⇐ −∇ · (∇φ(i, j, k))/ ‖∇φ(i, j, k)‖2
6: IRQ ⇐ 1/(κ(i, j, k)∆x)
7: if ((F > ε) && (F < 1− ε)) then . Cell with liquid/gas interface; ε = 10−12

8: if ((IRQ < α)) then . URLS/RLS criterion
9: MOF label(i, j, k) = 2

10: CLSVOF label(i, j, k) = 0
11: end if
12: end if
13: end for
14: call MPI SendRecv(MOF label)
15: call MPI SendRecv(CLSVOF label)
16: for ((k = kmin-1, kmax+1); (j = jmin-1, jmax+1); (i = imin-1, imax+1)) do
17: if (MOF label(i, j, k) == 2) then
18: temp(-1:1, -1:1, -1:1) = MOF label(i-1:i+1, j-1:j+1, k-1:k+1))
19: MOF label(i-1:i+1,j-1:j+1,k-1:k+1) = max(1,temp(-1:1,-1:1,-1:1))
20: CLSVOF label(i-1:i+1, j-1:j+1, k-1:k+1) = 0
21: end if
22: end for
23: for ((k = kmin, kmax); (j = jmin, jmax); (i = imin, imax)) do
24: if (MOF label(i, j, k) > 0) then
25: xref

COM(i, j, k) = compute centroid(F, a, b, c, d)
26: end if
27: end for
28: Where(MOF label == 2) MOF label = 1
29: end function
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Figure 8: Narrow band of the MOF method tagged cells (red cells with 1) and CLSVOF method tagged cells (blue cells with
0) around the interface (shown in black solid line).
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xref
COM

xact
COM

Esymm

Reference interface

Reconstructed interface

Figure 9: Illustration of symmetric difference area error shown in grey with reference interface (solid line) and reconstructed
interface (dashed line).

encompassed under the interface. It is shown as the gray region in Figure 9. The computation of this
error can be mathematically expressed as

Esymm =| ωref ∪ ωact − ωref ∩ ωact | (31)

This expression can be simplified in terms of the Heaviside function as

Esymm =
∑
i,j,k

∫
CΩi,j,k

∣∣∣H(n · (x− xCΩ) + d)−H(φexact(x))
∣∣∣dx, (32)

where φexact is the level set function of the exact interface that determined analytically. The integral
in this expression is evaluated using quadrature method by dividing each computational cell CΩi,j,k

into 128 subcells in each coordinate direction.

� Geometric error: this error measures the difference in the shape between reference and reconstructed
interfaces. It is computed as

Egeo =

∫
Ω

∣∣∣F (x, T )− F (x, 0)
∣∣∣dx. (33)

Both these error norms are computed for all the following time-periodic numerical tests at the end of their
time period, i.e., at t = T where T is the time period. The computational time presented in these tests
correspond to the average CPU time consumption per timestep which is computed as tavg

CPU = ttotal×Nproc/Nx
where Nx is the number of computational cells along x−direction in the domain.

2.4.1. Notched disk rotation

In this test case, a notched Zalesak’s disk is revolved around the center of a [0, 1] × [0, 1] domain. The
disk with a diameter of D = 0.30 contains a notch with its width 0.06 and length 0.2 with its center located
at the (0.5, 0.75). The test concludes when the disk comes back to its initial position after one full revolution
around the center of the domain based on the following velocity field

u =
π

3.14
(0.5− y), and (34)

v =
π

3.14
(x− 0.5). (35)

In order to check the order of convergence of the error norms, multiple mesh resolutions ranging from 322

to 10242 have been used to discretize the domain.
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Figure 10 shows the phase interface shape after one full rotation of the notched disk around the domain
center for HyMOFLS, MOF, and CLSVOF methods obtained using 642 mesh resolution (i.e., D/∆x =
19.2). The final interface solution (dashed lines) are compared against the initial (exact) solution (black
solid line) for each method of interface reconstruction. By the formulation of the HyMOFLS method, the
cells containing the interface are tagged either with MOF or CLSVOF method of interface reconstruction.
Consequently, the interface gets the red color when the cell is tagged with MOF method and blue color
with CLSVOF method as shown in Figure 10a. From this figure, we can draw two inferences: first, the
HyMOFLS method is able to capture the sharp corners relatively accurately than CLSVOF method even
for such a coarse mesh resolution; second, the sharp corners of the disk are prone to high change in the
curvature and the cell tagging algorithm is appropriately assigning these areas of the interface with MOF
interface reconstruction method.

(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 10: Phase interface shape of Zalesak’s disk after one rotation for 642 grid (i.e., D/∆x = 19.2) at initial (solid line) and
final (dashed line) time instants. Black color correspond to initial interface while red, blue, and green colors correspond to
interface reconstruction using MOF, CLSVOF, and numerical interpolation between MOF and CLSVOF tagged label values
respectively.

The effect of increasing mesh resolution on the final shape of the notched disk can be seen from Figures 11
and 12 shown for the 1282 and 2562 mesh resolutions. The final shapes of the interface become better and
regions of the domain with MOF method tagging is reducing with increasing mesh resolution albeit such an
observation is natural.

(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 11: Phase interface shape of Zalesak’s disk after one rotation for 1282 grid (i.e., D/∆x = 38.4) at initial (solid line)
and final (dashed line) time instants. Black color correspond to initial interface while red, blue, and green colors correspond to
interface reconstruction using MOF, CLSVOF, and numerical interpolation between MOF and CLSVOF tagged label values
respectively.
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(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 12: Phase interface shape of Zalesak’s disk after one rotation for 2562 grid (i.e., D/∆x = 76.8) at initial (solid line)
and final (dashed line) time instants. Black color correspond to initial interface while red, blue, and green colors correspond to
interface reconstruction using MOF, CLSVOF, and numerical interpolation between MOF and CLSVOF tagged label values
respectively.

The convergence of the error norms are shown in Figures 13a and 13b. It can be observed that the
HyMOFLS method consistently produces almost the error estimate of the same order of magnitude as
that of MOF method even for coarse mesh resolutions. Such accuracy of the HyMOFLS is obtained by
consuming less average CPU time per time step compared to MOF method even for high mesh resolution (c.f.
Figure 13c). Obviously, the CLSVOF method will consume least time due to the absence of computation
and advection of phase centroid. Moreover, a second-order convergence of the symmetric and geometric
shape errors is observed in Figures 13a and 13b. Finally, the values of the error norms for the HyMOFLS,
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Figure 13: Error estimates for Zalesak’s notched disk rotation test for HyMOFLS ( ), MOF ( ), and CLSVOF ( ) methods
along with first-order convergence ( ) and second-order convergence ( ) lines.

MOF, and CLSVOF methods along with the order of convergence (given within parentheses) are given in
Table 1. The average CPU time consumption per timestep in seconds is summarized in Table 2.

2.4.2. 2D droplet deformation

The velocity field used for the rotation of notched disk is linear and hence tagging the cells with MOF
and CLSVOF methods will be straightforward. In contrast, the numerical simulations of the atomization
applications will involve more complex non-linear velocity field in which the liquid structure will be present.
To that end, as a first step, we test the deformation of a 2D droplet of liquid under a non-linear velocity
field given as

u = −2 sin2(πx) sin(πy) cos(πy) cos(πt/T )

v = 2 sin2(πy) sin(πx) cos(πx) cos(πt/T )
(36)
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Table 1: Summary of error estimates for Zalesak’s disk test with spatial order of error convergence given within parentheses.

Nx HyMOFLS MOF CLSVOF
Esymm Egeo Esymm Egeo Esymm Egeo

32 4.17E-04 (−) 1.92E-04 (−) 3.95E-04 (−) 1.18E-04 (−) 1.65E-03 (−) 6.15E-04 (−)
64 6.63E-05 (2.65) 3.42E-05 (2.49) 5.99E-05 (2.72) 1.95E-05 (2.60) 2.96E-04 (2.48) 1.13E-04 (2.44)
128 1.58E-05 (2.07) 7.47E-06 (2.20) 1.53E-05 (1.97) 6.19E-06 (1.66) 8.31E-05 (1.83) 2.52E-05 (2.17)
256 3.52E-06 (2.17) 2.26E-06 (1.72) 3.21E-06 (2.25) 1.27E-06 (2.29) 2.20E-05 (1.92) 7.32E-06 (1.78)
512 9.19E-07 (1.82) 5.52E-07 (2.03) 7.42E-07 (2.11) 2.70E-07 (2.23) 5.22E-06 (2.08) 1.41E-06 (2.38)
1024 2.22E-07 (2.05) 1.24E-07 (2.15) 1.58E-07 (2.23) 6.01E-08 (2.17) 1.39E-06 (1.91) 4.61E-07 (1.61)

Table 2: Summary of average CPU time consumption per timestep (in seconds) for Zalesak’s disk test.

Nx HyMOFLS MOF CLSVOF
32 1.44E-02 1.71E-02 9.66E-03
64 4.01E-02 7.81E-02 8.14E-03
128 2.05E-01 3.39E-01 1.55E-01
256 8.67E-01 1.3240E+00 6.95E-01
512 3.31E+00 4.76E+00 2.68E+00
1024 6.75E+00 9.58E+00 5.18E+00

The droplet has a diameter D = 0.3 having its center located at (0.5, 0.75) inside a [0, 1]× [0, 1] domain. In
this test, the 2D droplet is subjected to the following velocity which progressively entrap the droplet into
vortex thereby stretching it into small filament-like structure at the moment of maximum deformation and
returns back to its original shape at the final time instant. The time period of this test is kept to T = 8,
i.e., the maximum deformation moment is at t = T/2 = 4 and the final time instant is t = T = 8. To study
the convergence of the error metrics, this test has been carried out for various mesh resolutions ranging
from 322 to 10242. The solution obtained on the 10242 grid (i.e., D/∆x = 307.2) will be used as reference
solution against which the results obtained on coarser mesh resolutions are compared.

Figure 14 shows the shape of the interfaces at the maximum deformation time instant and final time
instant for HyMOFLS, MOF, and CLSVOF methods for 642 mesh resolution (i.e., D/∆x = 19.2) with the
reference solution (shown in solid black line) computed on 10242 grid. By the formulation of the HyMOFLS
method, the cells containing the interface are tagged either MOF (red color) or CLSVOF (blue color) method
of interface reconstruction. From this figure, it is obvious that the MOF and HyMOFLS methods behave
similarly especially when capturing the thin filament-like region at the tail of the shape. Moreover, the
interface shape at the final time instant is better with HyMOFLS method than the MOF method. The
reason for this super-performance behavior is unclear and is under investigation. The MOF method is
tagged for the tail of the stretched droplet in Section 2.4.2 is an anomaly. This is because this tail region
does not experience high curvature but merely due to its under-resolved nature of the liquid structure, the
curvature computed using classical nine-point stencil method is leading to a high value since ‖∇φ‖2 is far
from unity. This results in the phenomenon of over-tagging with MOF method. Such a phenomenon can be
solved by improving the method of computation of curvature.

The effect of the interface shape and capture of the tail of the deformed droplet with increasing mesh
resolution is shown in Figures 15 and 16 for 1282 and 2562 mesh resolutions respectively. It can be seen that
not only the tail is progressively better captured but also the interface shape at the time final time instant
becomes increasingly closer to the reference solution.

The quantitative error metrics and their respective mesh convergence are shown in Figure 17 for this
test. From the convergence of the symmetric difference error shown in Figure 17a, we can see that this error
metric converges at the rate of first-order with respect to the increasing mesh resolution. The second-order
accuracy of the MOF method is lost due to the first-order of the Eulerian Implicit–Lagrangian Explicit
(EI–LE) numerical scheme used for the discretization of the advection equation of the phase centroids (c.f.
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(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 14: Phase interface shape of 2D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 642 grid (i.e., D/∆x = 19.2) shown along with reference solution (black line) computed on 1024× 1024 grid. The blue
dashed line represent CLSVOF tagged regions, red dashed line represent MOF tagged region, and green dashed line correspond
to numerical interpolation between MOF and CLSVOF tagged label values.

(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 15: Phase interface shape of 2D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 1282 grid (i.e., D/∆x = 38.4) shown along with reference solution (black line) computed on 1024×1024 grid. The blue
dashed line represent CLSVOF tagged regions, red dashed line represent MOF tagged region, and green dashed line correspond
to numerical interpolation between MOF and CLSVOF tagged label values.

Equation (20)). The convergence of the geometric error metric displays a second-order accuracy since it
measures the error in the shape and not the exact error in the interface reconstruction. Moreover, the
velocity is non-linear and within the context of reversible test, the errors from the numerical scheme for
centroid advection created from t = 0 to T/2 cancels those from t = T/2 to T . Thus, it is unaffected with
the numerical scheme for the discretization of the advection equation of phase centroid. As expected, the
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(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 16: Phase interface shape of 2D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 2562 grid (i.e., D/∆x = 76.8) shown along with reference solution (black line) computed on 1024×1024 grid. The blue
dashed line represent CLSVOF tagged regions, red dashed line represent MOF tagged region, and green dashed line correspond
to numerical interpolation between MOF and CLSVOF tagged label values.

HyMOFLS method is consistently consuming less average CPU time per timestep in comparison to the
full MOF method. A summary of the error norms along with their order of convergence (given within
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Figure 17: Error estimates for 2D droplet deformation test for HyMOFLS ( ), MOF ( ), and CLSVOF ( ) methods along with
first-order convergence ( ) and second-order convergence ( ) lines.

parentheses) for HyMOFLS, MOF, and CLSVOF methods are listed in Table 3.
The advantage of the HyMOFLS method is that the MOF method is used only when it is necessary.

The high computational expense of the MOF method is directly associated to the number of calls to the
Gauss-Newton algorithm Algorithm 1. This is because four interface reconstructions are performed in this
algorithm to compute the derivative of the objective function before finally determining the optimal values of
the components of interface unit normal. Therefore, in order to evaluate the step-up that that was obtained
from HyMOFLS method, we now present in Table 5 the comparison between the MOF and HyMOFLS
methods in terms of the total number of Gauss-Newton algorithm calls, total number of iterations, and
average number of iterations per Gauss-Newton call for this test using 642 mesh resolution. The total
CPU time taken for the MOF method is 221.41 s while for the HyMOFLS method is 185.98 s each using
4 processors run in Myria supercomputer at CRIANN [60]. It can be clearly seen that the HyMOFLS
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Table 3: Summary of error estimates for 2D droplet deformation test with spatial order of error convergence given within
parentheses.

Nx HyMOFLS MOF CLSVOF
Esymm Egeo Esymm Egeo Esymm Egeo

32 1.32E-03 (−) 1.33E-03 (−) 1.20E-03 (−) 1.27E-03 (−) 2.32E-03 (−) 2.02E-03 (−)
64 1.01E-03 (0.39) 1.70E-04 (2.97) 9.97E-04 (0.27) 2.51E-04 (2.34) 1.10E-03 (1.08) 2.71E-04 (2.90)
128 5.44E-04 (0.89) 1.55E-05 (3.46) 5.25E-04 (0.93) 4.39E-05 (2.52) 5.52E-04 (0.99) 2.70E-05 (3.33)
256 2.76E-04 (0.98) 3.36E-06 (2.21) 2.76E-04 (0.93) 3.15E-06 (3.80) 2.76E-04 (1.00) 3.85E-06 (2.81)
512 1.38E-04 (1.00) 6.27E-07 (2.42) 1.38E-04 (1.00) 5.23E-07 (2.59) 1.38E-04 (1.00) 6.22E-07 (2.63)
1024 6.90E-05 (1.00) 1.35E-07 (2.22) 6.90E-05 (1.00) 1.26E-07 (2.05) 6.90E-05 (1.00) 1.38E-07 (2.17)

Table 4: Summary of average CPU time consumption per timestep (in seconds) for 2D droplet deformation test.

Nx HyMOFLS MOF CLSVOF
32 1.12E-02 1.20E-02 5.60E-03
64 4.98E-02 5.24E-02 2.38E-02
128 2.25E-01 3.58E-01 1.01E-01
256 9.02E-01 3.17E+00 4.88E-01
512 3.14E+00 5.83E+00 2.05E+00
1024 7.09E+00 12.46E+00 5.30E+00

takes lesser number of Gauss-Newton iterations and lesser average CPU time consumption than that for the
MOF method emphasizing the fruitfulness of this hybrid framework. However, it is to be remarked that the
average number of iterations obtained from our implementation of MOF and HyMOFLS method is observed
to be taking more number of Gauss-Newton iterations for the convergence in computation of the actual
centroid xact

COM and EMOF than the study by Jemison et al. [27]. This goes to show that the estimation of
our initial guess for the MOF method can be improved.

Table 5: Summary of total number of Gauss-Newton calls and iterations for interface reconstruction for MOF and HyMOFLS
methods for 2D droplet deformation test using 642 mesh resolution.

Metric of measurement MOF HyMOFLS
t = 4.0 t = 8.0 t = 4.0 t = 8.0

Total number of Gauss-Newton calls 2214 493 952 65
Total number of iterations for convergence 3549 1317 2060 256
Average number of iterations per call 1.60 2.67 2.16 3.94

2.4.3. 3D droplet deformation

The test of the non-linear velocity on the interface reconstruction is now extended to three dimensions. In
this test [61], a spherical droplet of diameter D = 0.3 is placed at (0.35, 0.35, 0.35) within a [0, 1]×[0, 1]×[0, 1]
domain. This droplet is now subjected to the following velocity field [62]

u(x, y, z, t) = 2 sin2(πx) sin(2πy) sin(2πz) cos(πt/3) (37)

v(x, y, z, t) = − sin(2πx) sin2(πy) sin(2πz) cos(πt/3) (38)

w(x, y, z, t) = − sin(2πx) sin(2πy) sin2(πz) cos(πt/3) (39)

which stretches the interface to form a thin membrane at the time instant of maximum deformation (t = T/2)
and the interface comes back to its spherical shape at the final time instant of t = T = 3. The objectives of
this test are to capture the thin membrane of the stretched sphere at t = T/2 and to recover the spherical
shape of the droplet at t = T . In order to study the convergence rate of the error metrics, six mesh
resolutions ranging from 323 to 5123 including 1923 have been utilized to discretize the domain.
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Figure 18 shows the phase interface of the 3D droplet at the maximum deformation time instant (top
row) and the final time instant (bottom row) for 1923 mesh resolution. The red regions indicating the
MOF method tagged regions while the blue regions indicating the CLSVOF method tagged region. The
following inferences are drawn from this figure: first, all the three interface reconstruction methods are
able to capture the flat thin membranes in the maximum deformed spheres (see Sections 2.4.3 to 2.4.3)
using this mesh resolution at the time instant of maximum deformation; second, the HyMOFLS method is
producing relatively more spherical shape at the final time instant with less surface deformation than the
MOF and CLSVOF method; and third, HyMOFLS method is using MOF at the exact regions where there
is high change in the curvature and at the thin membrane region. However, the flat thin membrane with
small curvature value with thickness spanning 4 computational cells is tagged with MOF method. This
MOF tagging, called over-tagging, is unnecessary and is occurring as the curvature is not well computed in
ARCHER when the interface spans over few cells (in this case 4 cells) resulting in value of IRQ for these
cells satisfying the under-resolved criterion. When the curvature computation is improved, it is envisaged
that this thin membrane will be tagged entirely with CLSVOF method thereby reducing the total CPU time
even further.

(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 18: Phase interface shape of 3D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 1923 grid (i.e., D/∆x = 57.6). Red region represent MOF method tagged region and blue region represent CLSVOF
method tagged region.

In order to emphasize the importance of the mesh resolution on the interface capture, Figures 19 and 20
show the phase interface for the 1283 (D/∆x = 38.4) and 2563 (D/∆x = 76.8) mesh resolutions. It can
be seen that for a coarse mesh resolution of 1283, there are no significant differences in the phase interface
shape at the maximum deformation time instant between HyMOFLS and MOF method. And as the mesh
resolution is doubled to 2563, the final shape tends to be more spherical and less surface deformations.

With the qualitative comparisons shown above, we now present the quantitative comparisons of the
results among HyMOFLS, MOF, and CLSVOF methods. To that end, the error metrics as well as the
average CPU time consumption are shown in Figure 21. From this figure, we can see that both the symmetric
difference error and geometric shape error approximately follows the second-order convergence rate with
respect to the spatial mesh resolution. And the average CPU time consumed per timestep of the iteration
in the test is consistently lower for the HyMOFLS method compared to the MOF method. One more
observation is that this average CPU time consumption for the HyMOFLS method tend towards that for
the CLSVOF method as seen in Figure 21c. This is because with the increase in mesh resolution, the
interface becomes increasingly well resolved thereby leading to increase in the number of cells tagged with
CLSVOF method and hence, the HyMOFLS method virtually becomes CLSVOF method. Finally, the
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(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 19: Phase interface shape of 3D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 1283 grid (i.e., D/∆x = 38.4). Red region represent MOF method tagged region and blue region represent CLSVOF
method tagged region.

(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 20: Phase interface shape of 3D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 2563 grid (i.e., D/∆x = 76.8). Red region represent MOF method tagged region and blue region represent CLSVOF
method tagged region.

Table 6 summarizes the error estimate values for HyMOFLS, MOF, and CLSVOF method for various mesh
resolutions with the error convergence order (given within parentheses) for each column of the error estimate.

Finally, in order to evaluate the step-up that was obtained by combining MOF with CLSVOF method
within the HyMOFLS framework, we now present in Table 8 the comparison between the MOF and Hy-
MOFLS methods in terms of the total number of Gauss-Newton algorithm calls, total number of iterations,
and average number of iterations per Gauss-Newton call for this test using 643 mesh resolution. The total
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Figure 21: Error estimates for 3D droplet deformation test for HyMOFLS ( ), MOF ( ), and CLSVOF ( ) methods along with
first-order convergence ( ); second-order convergence ( ) lines.

Table 6: Summary of error estimates for 3D droplet deformation test with spatial order of error convergence given within
parentheses.

Nx HyMOFLS MOF CLSVOF
Esymm Egeo Esymm Egeo Esymm Egeo

32 7.12E-03 (−) 5.80E-03 (−) 6.83E-03 (−) 5.62E-03 (−) 8.52E-03 (−) 7.77E-03 (−)
64 2.82E-03 (1.34) 2.30E-03 (1.57) 2.99E-03 (1.19) 2.35E-03 (1.26) 3.78E-03 (1.17) 3.50E-03 (1.15)
128 7.96E-04 (1.83) 5.23E-04 (2.14) 8.38E-04 (1.84) 5.38E-04 (2.13) 9.47E-04 (1.99) 7.72E-04 (2.18)
192 3.93E-04 (1.74) 2.05E-04 (2.31) 3.91E-04 (1.88) 1.87E-04 (2.60) 4.64E-04 (1.83) 3.12E-04 (2.23)
256 3.11E-04 (1.36) 1.92E-04 (1.45) 3.14E-04 (1.42) 1.80E-04 (1.48) 3.39E-04 (1.50) 2.35E-04 (1.72)
512 1.53E-04 (1.02) 9.05E-05 (1.09) 1.43E-04 (1.14) 7.11E-05 (1.12) 1.56E-04 (1.12) 9.56E-05 (1.30)

Table 7: Summary of average CPU time consumption per timestep (in seconds) for 3D droplet deformation test.

Nx HyMOFLS MOF CLSVOF
32 1.27E+01 1.62E+01 7.80E+00
64 4.06E+01 5.91E+01 2.76E+01
128 1.42E+02 2.23E+02 1.10E+02
256 3.87E+02 7.92E+02 2.77E+02
512 5.94E+02 1.41E+03 5.21E+02
1024 2.37E+03 5.74E+03 2.12E+03

CPU time taken for the MOF method is 2848.77 s and for the HyMOFLS method is 2106.38 s on 8 processors
run in Myria supercomputer at CRIANN [60]. It can be seen again that the HyMOFLS method takes less
number of Gauss-Newton iteration to minimize the centroid error in interface reconstruction.

Table 8: Summary of total number of Gauss-Newton calls and iterations for interface reconstruction for MOF and HyMOFLS
methods for 3D droplet deformation test using 643 mesh resolution.

Metric of measurement MOF HyMOFLS
t = 1.5 t = 3.0 t = 1.5 t = 3.0

Total number of Gauss-Newton calls 40931 17052 17492 4860
Total number of iterations for convergence 195580 83335 90965 30548
Average number of iterations per call 4.78 4.89 5.20 6.29
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2.5. Parametric study

The HyMOFLS method consists of tagging computational cells with MOF and CLSVOF method based
on the IRQ URLS/RLS criterion (see Equation (30)) which employs a threshold value α. This subsection
presents a parametric study on the value of α and highlights the choice of α = 2 chosen in the numerical
tests presented above. To that end, we recall the criterion for tagging cell with MOF method (for cells
belonging to URLS) and CLSVOF method (for cells belonging to resolved liquid structures) in Algorithm 5
where i, j, and k are the indices of the computational cell. This IRQ criterion exploits the value of local

Algorithm 5 α based cell tagging algorithm.

1: if (IRQ(i, j, k) < α) then
2: MOF activated for cell (i, j, k)
3: else
4: CLSVOF activated for cell (i, j, k)
5: end if

interface curvature and local mesh spacing. However, at times, when the computation of curvature is not
highly accurate, there arises a situation that a cell is wrongly tagged as MOF cell leading to a scenario called
over-tagging. Such a scenario has been shown in Section 2.4.2 for the 2D droplet deformation test using 642

mesh resolution. In this case, the tail of the stretched droplet spanning few cells is being assigned to MOF
method even though the curvature of this structure is not very high. One way to approach this issue is to
have an another criterion | ‖∇φ(i, j, k)‖2 − 1 |> δ (where φ is the level set function) in addition to the IRQ
criterion for the cell tagging algorithm. The value of δ can be chosen appropriately similar to the procedure
described for α in the following subsection. The investigation of this combined criterion is beyond the scope
of this work and is not presented here. However, the IRQ criterion is able to detect the thin structures as
shown in Sections 2.4.2 and 2.4.3.

With this premise, we now present the parametric study of α for the interface reconstruction in 2D and
3D droplet deformation tests. To that end, we have chosen 642 and 643 mesh resolutions for respective tests
to be performed using HyMOFLS method for the values of α = 0.5, 1, 2, 6.

2.5.1. 2D droplet deformation

First, we find the effect of α on the results of interface reconstruction for 2D droplet deformation test.
Figure 22 present the results with the shapes of the phase interface along with the result for α = 2 which
was also shown in Figure 14. By qualitative inspection, we find that the result for α = 2 is matching more
with the reference results than for all the other α values.

Upon quantitative comparison of the error norms for the various values of α from Table 9, we see that
the α = 1, 2, 6 give approximately the same error. The plot of the evolution of the error norms as a function
of α is shown in Figure 23. In fact, it can be seen that the error remains constant for all values of α ≥ 1.
Based on this test, it was not possible to choose the exact value of α is optimal for the cell tagging criterion.

Table 9: Summary of error norms for various α values for parametric study within the framework of HyMOFLS method for
2D droplet deformation test.

XXXXXXXXXXError Norm
α

0.5 1.0 2.0 6.0

Esymm 1.08E-03 1.02E-03 1.01E-03 1.01E-03
Egeo 2.58E-04 1.74E-04 1.70E-04 1.69E-04

2.5.2. 3D droplet deformation

Next, we apply the same method of analysis to the 3D droplet deformation test. The shapes of the phase
interface of the droplets at the mid and the final time instant are shown in Figure 24 for different values of
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(a) α = 0.5 (b) α = 1.0 (c) α = 2.0 (d) α = 6.0

Figure 22: Effect of α on the phase interface shape for 2D droplet deformation test using 642 grid (i.e., D/∆x = 19.2) shown
along with reference solution (black line) computed on 1024 × 1024 grid. Blue dashed line represent CLSVOF tagged regions,
red dashed line represent MOF tagged regions, and green dashed line correspond to numerical interpolation between MOF and
CLSVOF tagged label values.
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Figure 23: Variation of error norms (Esymm: , Egeo: ) with α for 2D droplet deformation test.

α. The error norms for various values of α are shown in Table 10 and the plots of the evolution of these
error norms shown in Figure 25. Evidently, it can be seen that there are no significant differences in the

Table 10: Summary of error norms for various α values for parametric study within the framework of HyMOFLS method for
3D droplet deformation test.

XXXXXXXXXXError Norm
α

0.5 1.0 2.0 6.0

Esymm 3.05E-03 2.89E-03 2.82E-03 2.92E-03
Egeo 2.75E-03 2.41E-03 2.30E-03 2.31E-03

interface shapes for all values of α. However, it is unsurprising to see the increase in the amount of MOF
method usage (red colored regions) in the interface with this increase in α value. In terms of quantitative
comparison, it is again evident that the value of α = 2 gives relatively the lowest error, hence, it validates
our choice of the default value of α = 2 for the HyMOFLS algorithm.
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(a) α = 0.5 (b) α = 1.0 (c) α = 2.0 (d) α = 6.0

Figure 24: Effect of α on the phase interface shape for 3D droplet deformation test using 643 grid (i.e., D/∆x = 19.2). Red
region represent MOF method labeled region and blue region represent CLSVOF method labeled region.
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Figure 25: Variation of error norms (Esymm: , Egeo: ) with α for 3D droplet deformation test.

3. Coupling with momentum solver

3.1. Incompressible Navier-Stokes equations

In order to describe the incompressible multiphase flow, the following conservative form of the incom-
pressible Navier-Stokes equations are solved

∇ · u = 0, (40)

∂ρu

∂t
+ ∇ · (ρu⊗ u) = −∇P + ∇ · (2µD) + B, (41)

where u is the velocity field, ρ is density, µ is dynamic viscosity, P is the pressure field, D is the strain
rate tensor given as D = 1

2 (∇u + (∇u)T ), and B is the sum of the body and surface tension forces.
B = Bb + Bst where Bb is the force due to body gravity and Bst is the force due to surface tension which
is given as Bst = σκδIn. σ represent the surface tension, n is the liquid/gas interface unit normal, κ is the
curvature of the interface, and δI is the Dirac delta function centered on surface of the interface. In this
work, we neglect force due to gravity unless explicitly specified. The mass conservation is ensured through
the solution of Equation (7).
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In the context of multiphase flows, an interface Γ separates the liquid from the gaseous phase. The
material properties such as density and viscosity are constant within each phase, i.e., ρ = ρliq and µ = µliq

in liquid phase and ρ = ρgas and µ = µgas in gaseous phase. But these properties are subject to a jump at
the interface; the jump condition can be written as [ρ]Γ = ρliq − ρgas and [µ]Γ = µliq − µgas. The velocity
field remain continuous across the interface, hence [u]Γ = 0. However, the pressure is not continuous across
the interface and it is possible to write the pressure jump [18] across an inert interface as

[P ]Γ = σκ(φ) + 2[µ]Γ (∇u · n) · n. (42)

3.2. Flow solver

The flow solver used in this work is ARCHER [48] whose capabilities have been shown in the past works
[45, 63, 64, 65]. This solver is structured, parallel, and developed for direct numerical simulations (DNS) of
complex and turbulent multiphase flows with the application to study primary breakup of liquid fuel jet. The
interface between the phases is represented through level set (see Section 2.1.1) and the mass conservation is
ensured using volume fraction (see Section 2.1.2). It has been validated for various cases of complex turbulent
flow configurations [53, 54] thus, the numerical methods employed in this solver are tailored for treating
turbulence in the system. A staggered grid configuration is used with central finite difference scheme for
least numerical dissipation. The scalar variables such as liquid volume fraction, density, viscosity, level set
function, and pressure are stored in the cell center while the vector variables such as components of velocity
and vorticity are stored in cell faces. A consistent mass and momentum flux computation [48] technique is
employed in the solver that facilitates to perform simulations of large density ratio between liquid and gas
phases.

3.2.1. Numerical method

A second-order central difference scheme is employed for discretization of the spatial derivatives to avoid
any dissipation. However, the convection term is discretized using fifth-order WENO scheme to ensure a
robust behavior of the solution. Ghost Fluid Method (GFM) [4] is employed for the spatial discretization of
the Poisson equation (Equation (49)) for taking into account the force due to surface tension as a pressure
jump. The resulting linear system of symmetric and positive definite matrix with five diagonals is solved
using multigrid algorithm for preconditioning a conjugate gradient (CG) method [66]. The curvature of the
interface κ (c.f. Equation (2)) is computed using finite difference approximation of the level set function φ
with the interpolation to the cell-interface crossing point. The atomization process is turbulent and hence,
the turbulent inflow condition is generated in the simulations using the synthetic turbulence method of Klein
et al. [67].

A formulation proposed by Sussman et al. [68] is used for discretizing the viscous term. With this method,
second-order accurate in regions away from the liquid/gas interface and first-order accurate near the interface
is achieved. The time integration of the Navier-Stokes equations is based on a predictor-corrector scheme
with the time step size ∆t is determined based on a CFL condition similar to that of Kang et al. [69]. For
a value of CFL = γ, the time steps size is computed by satisfying the inequality

∆t ≤ γ(
(CCFL+VCFL)

√
(CCFL+VCFL)2+4(GCFL)2+4(SCFL)2

2

) (43)

where CCFL, VCFL, GCFL, and SCFL represent the CFL conditions based on convective, viscous, gravity,
and surface tension (capillary) forces. Now, considering the components of velocity u = [u, v, w]T and
acceleration due to gravity g = [gx, gy, gz]

T , each CFL number is computed as

CCFL =
max(| u |)

∆x
+

max(| v |)
∆y

+
max(| w |)

∆z
, (44)

VCFL = max

(
µliq

ρliq
,
µgas

ρgas

)
×
(

2

(∆x)2
+

2

(∆y)2
+

2

(∆z)2

)
, (45)
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GCFL =

√
| gx |
∆x

+

√
| gy |
∆y

+

√
| gz |
∆z

, and (46)

SCFL =

√
σmax (| κ |)
ρgas(∆x)2

(47)

3.2.2. Projection method

The momentum conservation equation (see Equation (41)) is solved using a projection method using
the procedure of Ménard et al. [18] with the predictor-corrector time integration scheme. The algorithm of
implementation of this projection method in ARCHER is given in Algorithm 6.

Algorithm 6 Projection method in ARCHER solver.

1: Compute u∗ (Predictor step):

u∗ =
1

ρn+1

(
ρnun − ∆t

V

(
∇ · (un ⊗ (ρnun)) +∇ · (2µnDn) + B

))
(48)

where V = ∆x×∆y ×∆z is the total volume of a computational cell.
2: Solve for pressure Pn+1 (Poisson equation for pressure):

∇ ·
(

1

ρn+1

(
∇Pn+1

))
=

∇ · u∗
∆t

(49)

3: Compute un+1 (Corrector step):

un+1 = u∗ +
∆t

ρn+1
(−∇Pn+1) (50)

4. Numerical validation tests

Several two-phase flows validation tests are now performed to assess the behavior of the HyMOFLS
framework of liquid/gas interface reconstruction. First, a two-phase double shear layer under extreme
convective conditions is presented followed by the Rayleigh-Taylor instability, and finally, the results from
the binary droplet collision are presented and compared against the experimental observations [70].

4.1. Two-phase double shear layer

The two-phase double shear layer destabilization under highly convective regime is an empirical test
used in our flow solver ARCHER to assess the stability of the numerical simulation when an interface
reconstruction method is employed. In this test, a low speed liquid layer is destabilized by the high speed
gas flowing above and below it under highly convective conditions of infinite Reynolds number (i.e., Re =
∞, ν = 0) and infinite Weber number (We = ∞, σ = 0). Under such conditions, the chances that Navier-
Stokes equation becomes unstable are very high especially when the liquid/gas interface reconstruction is
not accurate. This is because the inaccurate interface reconstruction can lead to inaccuracy in density
computation and this error is propagated to the velocity components through Navier-Stokes equations
thereby destabilizing the entire system. This test specifically assess the accuracy of interface reconstruction
under extreme environment thereby giving the true capability of the HyMOFLS method. Furthermore,
numerical simulations of liquid jet/sheet atomization processes involve complex topological structures arising
under various flow conditions that need to be well captured.

To perform this test, we consider an L× L double shear layer configuration as shown in Figure 26 with
L = 0.003 being the length and width of the 2D domain with δ = L/10 being the width of the liquid layer.
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The density ratio between liquid and gas is taken to be 1000. The viscous and surface tension forces are
assumed to be many orders of magnitude smaller than the convective term, therefore, are neglected. Thus,
the flow Reynolds number Re = ∞ and liquid based Weber number We = ∞. A divergence free initial

L

L δLiquid

Gas

Gas

Figure 26: Configuration of a 2D double shear layer.

velocity field is prescribed in the domain given as

u = A− 0.04 cos

(
2πx

L

)(
L

x

)(−2

δ

)
exp

(
−2y

δ

)
, (51)

v = 0.04 sin

(
2πx

L

)
exp

(
−2y

δ

)
, (52)

in which the value for A is taken as

A =

{
30 , in gas phase

2 , in liquid phase.
(53)

Five mesh resolutions are considered in this test case ranging from 322 to 5122 with doubly periodic boundary
conditions. The simulations are performed until the physical time t = 3 × 10−3. The objective in this test
is to maintain the total kinetic energy and maximum velocity devoid of intermittent bursts anywhere in the
domain. The results shown for this test pertain to those obtained on a 1282 mesh resolution.

First, the plots of the time evolution of the total kinetic energy (sum of kinetic energies of liquid and
gas phase) and maximum cell centered velocity magnitude in the computational domain are shown in
Figure 27. The cell centered velocity ‖uc‖2 is computed as ‖uc‖2 =

√
(uc)2 + (vc)2 and the maximum cell

centered velocity is computed according to the expression (‖uc‖2)
max

= max
∀ domain

‖uc‖2. Due to the periodic

boundary conditions, the total kinetic energy Ekin must remain constant over time. From Figure 27a, it
can be observed that the kinetic energy remains almost constant over all times with a reduction in value
observed after t = 2× 10−3. This reduction could be attributed to the artificial diffusion introduced by the
numerical discretization schemes used in the solver.

Next, focusing on Figure 27b that shows the time evolution of the maximum cell centered velocity mag-
nitude, there are no intermittent velocity bursts observed. This emphasizes on the ability of the HyMOFLS
method to reconstruct the liquid/gas interface accurately. As shown by Asuri Mukundan et al. [45], the
non-burst of the velocity goes to show that the interface reconstruction method is accurate for capturing
especially under-resolved liquid structures even under extreme convective flow conditions.
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Figure 27: Time evolution of total kinetic energy and maximum cell centered velocity magnitude for 1282 mesh resolution.

Finally, the phase interface of the destabilized shear layer for multiple time instants using the HyMOFLS
method is shown in Figure 28. It can be seen that there are few pockets of regions in the computational
domain away from the interface that are having higher velocity than those near the interface. The blue color
of the interface indicate that CLSVOF tagging of those regions (see Section 2.3).

(a) t = 1.07 ms (b) t = 2.00 ms

Figure 28: Phase interface (solid line) colored by interface method label and contour of magnitude of velocity for two-phase
double shear layer test using HyMOFLS method for 1282 mesh resolution. Blue color of interface indicate CLSVOF interface
reconstruction chosen within the context of HyMOFLS method.

4.2. Rayleigh-Taylor instability

Next, we employ the HyMOFLS method to simulate the the growth of a Rayleigh-Taylor instability. An
extensive number of works in the past have focused on studying and analyzing this instability, for example,
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Refs. [71, 72, 73]. Although these tests were performed devoid of surface tension effect, the recent works
[19, 20, 21] have presented the results that includes this effect for the realistic simulation of the growth of
the instability. In this test, the initial perturbed interface between the heavier (more dense) liquid on top
and lighter (less dense) liquid on the bottom is allowed to grow exponentially over time. In this work, we
follow the configuration as described by Desjardins and Pitsch [21] for spectrally refined interface approach
for liquid/gas interface reconstruction. In order to study the mesh convergence of this test, five mesh
resolutions ranging from 32×128 to 512×2048 have been employed to discretize the computational domain.
The mesh convergence study is performed for an error metric of depth of penetration of the mushroom head.

The initial interface is given by the zero-level of the iso-contour of the level set function φ (within the
context of ARCHER solver) is expressed as

φ(x, y) = y +A cos(2πx), (54)

where A = 0.05 is chosen for this test case. This initial interface is placed inside a [0, 1]× [0, 4] computational
domain with the periodic boundary condition along the horizontal direction while wall boundary condition
along the vertical direction. The densities of the top fluid and bottom fluid (denoted as fluid 1 and fluid 2,
respectively) are ρ1 = 1.225 kg/m3 and ρ2 = 0.1694 kg/m3, respectively. The dynamic viscosity of the two
fluids are taken as µ1 = µ2 = 3.13× 10−3 kg/ms with the surface tension coefficient being σ = 0.1337 kg/s2,
and the acceleration due to gravity is g = 9.81 m/s2. This test is run upto a physical time of t = 1.2 s.

Figure 29 shows the time evolution of the phase interface for the finest mesh resolution 512 × 2048
colored using the URLS/RLS tagging algorithm. The blue color indicate that the interface is reconstructed
using CLSVOF method and the red color indicate that for MOF method within the context of HyMOFLS
method. Since the mesh resolution 512×2048 is well resolving the interfacial regions, the URLS/RLS tagging
algorithm of HyMOFLS method is determining all the regions of the interface to be well resolved and hence
tagging it with CLSVOF method of interface reconstruction. It is to be remarked that these results agree
well with the literature Desjardins and Pitsch [21] (c.f. Figures 22 and 23 in this reference).
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(a) t = 0.7 s (b) t = 0.8 s (c) t = 0.9 s (d) t = 1.0 s (e) t = 1.1 s (f) t = 1.2 s

Figure 29: Time evolution of phase interface for Rayleigh-Taylor instability test using HyMOFLS method with 512 × 2048
mesh resolution. Blue color of interface indicate CLSVOF tagged regions within the context of HyMOFLS method.

Due to the growing instability, the denser liquid (top liquid) accelerates and pushes its way through the
lighter liquid (bottom liquid) forming a mushroom head-like structure hereon called as spike. The depth (in
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vertical y−direction) until which the denser fluid penetrates into the lighter fluid is defined within this work
as the spike penetration. An error in this spike penetration for each mesh resolution is determined as the
difference between the spike penetration of a given mesh resolution with respect to the reference solution.
The solution computed on the 512× 2048 is considered as the reference solution against which the error is
measured for all the remaining coarser mesh resolutions. To that end, we first show the plots of the phase
interface for various mesh resolution overlapped over each other with the arrow indicating increasing mesh
resolution for t = 1.0, 1.1, and 1.2 in Figure 30. It can be clearly seen that there are overlap among the phase
interfaces for different mesh resolutions. Next, we show the mesh convergence of the spike penetration error

(a) t = 1.0 s (b) t = 1.1 s (c) t = 1.2 s

Figure 30: Overlap of phase interfaces for various mesh resolutions for Rayleigh-Taylor instability using HyMOFLS method.
Arrow indicates increasing mesh resolutions from 32 × 128 ( ), 64 × 256 ( ), 128 × 512 ( ), 256 × 1024 ( ), to
512 × 2048 ( ).

at different time instants along with the first-order and second-order error convergence lines in Figure 31.
It is apparent that the error converges along a second-order slope which indicates that higher the mesh
resolution lower is the spike penetration error which validates our observation on overlap in phase interface
(c.f. Figure 30).
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Figure 31: Mesh convergence of spike penetration error for Rayleigh-Taylor instability test at t = 1.0 s ( ); t = 1.1 s ( ); t = 1.2 s
( ) shown along with first-order convergence ( ) and second-order convergence ( ) lines.

4.3. Binary droplet head-on collision

So far, we have assessed the capability and accuracy of HyMOFLS method coupled with ARCHER
solver for 2D cases. We now test it for the binary droplet head-on collision in which two individual droplets
collide head-on such that their centers are oriented along the same axis. Such droplet collisions scenarios
are realistically possible in a typical atomization simulation. Once the two droplets collide, there are three
outcomes – droplet coalescence, bounce back with, and without satellite droplet. The aim of this test is
to compare the results from the simulations using HyMOFLS method and experiments [70] in a qualitative
fashion. To that end, we have chosen the configuration, initial, and boundary conditions for this test as
described by Tanguy and Berlemont [66]. Two identical droplets of diameter D = 800µm are placed inside a
6D×12D×6D (Lx×Ly×Lz) domain with their respective centers located at (0, Ly/9, 0) and (0,−Ly/9, 0)
with Weber number We = 23. These droplets are made to collide head-on with relative velocity of 1.44 m/s
and an impact parameter of 0. The computational domain with slip wall boundary conditions on all its faces
is discretized using a 128×256×128 mesh resulting in equidistant mesh spacing of ∆x = ∆y = ∆z = 37.5 µm
leading to D/∆x = 21.33. The simulation is performed with a CFL = 0.25. The results from the simulation
are compared with the experimental study by Ashgriz and Poo [70] with droplet Weber number We = 23
and impact parameter of 0.05 which is close to zero.

The comparison of the results between the simulation and experiments is shown in Figure 32. The
simulation results are observed to be agreeing well with the experimental observations along with the repro-
duction of the morphology of the droplets before, during, and after head-on collision as seen in Figure 32b.
Next, it can be seen from Figure 32c that the hybrid framework is appropriately tagging the interfacial
regions with the MOF (red regions) and CLSVOF (blue regions) methods. Overall, it can be inferred that
the HyMOFLS method is shown to be capable and accurate in simulating droplet collision phenomenon.

4.4. Rayleigh-Plateau instability

As a final validation case, we test the HyMOFLS interface reconstruction framework for the simulation
of Rayleigh-Plateau instability which is driven mainly by the surface tension forces. Similar to the work
of Ménard et al. [18], we chose a L × L × L domain with L = 150µm. The initial profile for the level set
function is given according to the following expression

φ(x, y, z) = a0 − r +A0 cos(2πx/λ), (55)

where A0 is the amplitude of the initial disturbance set to 10% of the radius of ligament (i.e., cylinder) with

the radius R = 33.4 µm, λ being the wavelength set to λ = 2L, a0 = kλ/2π, and r =
√
y2 + z2 are chosen

for this test. The initial condition is chosen in order to have the wavenumber satisfying kλ = 0.7 which
correspond to fastest growth rate [74]. The instability/disturbance is set along the x direction with the
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(a) Experimental snapshots from Ashgriz and Poo [70]

(b) Simulations with HyMOFLS method

(c) Simulations with HyMOFLS method colored by cell tagging method.

Figure 32: Binary droplet collision comparison between experiments [70] and simulations performed using HyMOFLS method
with cell tagging colors – red regions represent MOF method tagging and blue region represent CLSVOF method tagging.

boundary conditions in the computational domain chosen to be slip wall along x direction, slip wall along
the y− and z− planes, and outflow along y+ and z+ planes. The in-house Navier-Stokes solver ARCHER
[48] has been used to solve the Navier-Stokes equations in the simulations using the HyMOFLS method of
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interface reconstruction. The physical properties are chosen to be ρliq = 1000 kg/m3, µliq = 0.001 Ns/m2,
ρgas = 1 kg/m3, µgas = 1.879× 10−5 Ns/m2, and σ = 0.072 kg/s2. Due to the symmetry of the shape of
ligament under investigation, an eighth of the size of the cylindrical ligament is simulated using ARCHER.
The dispersion relation for this Navier-Stokes solver has been already shown in the past [18] to be having
satisfactory agreement with the linear theory of Weber [74]. Therefore, in this paper, we investigate the
convergence of the breakup time for various mesh resolutions. To that end, we have considered the mesh
resolutions shown in Table 11 with ∆x = ∆y = ∆z for all the cases. It is to be noted that in this table, Nx
represents the number of cells along x direction.

Table 11: List of mesh resolutions and number of computational cells per diameter for the Rayleigh-Plateau instability with
L = 150 µm.

Domain size Mesh resolution ∆x(= ∆y = ∆z)

L× L× L
323 4.6875 µm
643 2.3438 µm
1283 1.1719 µm
2563 0.5859 µm

The simulation is run for a long time for each mesh resolution to observe the breakup of the liquid
ligament into mother and satellite drops. Figure 33 show the series of snapshots pertaining to 1283 mesh
resolution displaying the development and propagation of the perturbation leading to the breakup into
mother and satellite drops. The qualitative observation of these instantaneous snapshots show that the
results are agreeing with those from the literature [18, 10].

Figure 33: Instantaneous snapshots of the breakup of liquid ligament for the simulation of Rayleigh-Plateau instability using
1283 mesh resolution.
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To quantitatively analyze this test case, the time instance of the breakup is computed. This breakup
time is defined as the time instance at which the first breakup event occurs in the simulation. A breakup
event within this context is defined as the moment at which more than one liquid structure is formed. At
each simulation time step, the number of liquid structures are found using a connected component labelling
(CCL) algorithm [75] and the breakup event is characterized by the moment at which there exist more
than one liquid structure in the computational domain. The plot of the evolution of the breakup time is
shown in Figure 34 for various mesh resolutions. From this plot, we can see that the breakup time indeed
is converged starting from Nx = 64 for the considered mesh resolutions for the HyMOFLS framework of
liquid/gas interface reconstruction.
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Figure 34: Plot of breakup time for Rayleigh-Plateau instability for various mesh resolutions to observe convergence. Nx

represents number of cells along x direction.

Finally, we present the CPU time consumption for the HyMOFLS method for various mesh resolutions
considered for this test. To that end, we have compartmentalized the total time consumption per iteration
into time taken for interface reconstruction subroutines (i.e., HyMOFLS framework subroutines), velocity
solver subroutines, and Poisson solver subroutines. The literature works [10, 19] found that the Poisson solver
to be the highest time consuming subroutine. Therefore, the results presented in this paper pertain to the
relative CPU time consumption for the interface reconstruction subroutines and velocity solver subroutines
compared to the Poisson solver. The relative time consumption for interface reconstruction subroutine
is computed as the ratio of its time consumption to that of the Poisson solver while the relative time
consumption for velocity solver subroutine is computed as the ratio of its time consumption to that of the
Poisson solver. Figure 35 show the plots of the time evolution of this quantity for the interface reconstruction
subroutine (solid black line) and velocity solver subroutine (dashed red line). It can be seen that for this
3D test case, the time taken for the interface reconstruction subroutines remains predominantly lesser than
that of the Poisson solver. The intermittent spike observed around 0.2 ms in the time evolution of interface
reconstruction relative time consumption (solid black line) is attributed to the beginning of tagging of the
computational cells with MOF method near and after the breakup event. These intermittent spikes are
profoundly visible for the lower mesh resolution while not for the higher mesh resolution. This is due to the
fact that with increasing mesh resolution the interface gets well resolved thereby eliminating the need for
MOF interface reconstruction within the HyMOFLS method. Based on the presented results, the HyMOFLS
framework has demonstrated its capability as a computationally feasible numerical method to simulate liquid
breakup.
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Figure 35: Relative CPU time consumption per iteration for interface reconstruction subroutine ( ) and velocity solver
subroutine ( ) relative to the time consumption of Poisson solver subroutine for Rayleigh-Plateau instability.

5. Engineering applications

The HyMOFLS method is developed with the objective to accurately and computationally efficiently sim-
ulate the fuel injection scenarios for real-time engineering applications. So far, the computational comparison
tests and validation tests have been performed for simple velocity profiles, flows under high convection, and
those that are dominated by surface tension under confined setting and environment. In order to assess the
capability of the HyMOFLS method to simulate the flows with fully developed turbulence, we now present
two injection simulations – turbulent liquid jet injection into quiescent gas and planar pre-filming Airblast
atomization. The simulation conditions for the former are inspired from the case presented by Ménard
et al. [18] which is Diesel-like liquid jet injection condition while the latter is inspired from the simulations
from the work of Warncke et al. [76]. On one hand, in the case of the Diesel fuel injection in a quiescent
gaseous environment, the shear between the liquid and the gas phase and subsequent liquid fuel breakup is
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caused solely due to the high speed of the liquid Diesel fuel. On the other hand, the liquid fuel sheet on the
pre-filmer plate is destabilized due to the high speed gas in the case of Airblast atomization.

5.1. Turblent liquid jet atomization

First, we apply the HyMOFLS method to the simulate turbulent liquid jet atomization inspired from the
Diesel injection systems. However, the Reynolds and Weber numbers are reduced from the real-time Diesel
injection for the sake of computational feasibility of the simulations. The parameters for this simulation are
given in Table 12.

Table 12: Operating condition for the turbulent liquid jet atomization simulation.

ρliq/ρgas µliq/µgas σ Reliq Weliq Reτ Dj/∆x lt/∆x
27.84 120 0.06 5800 11,600 58 42.74 4

The computational domain considered is 3D × 3D × 24D where D = 100 µm is the diameter of the
liquid jet. A uniform Cartesian grid of about 17 million cells is used to discretize the domain resulting in
an uniform mesh spacing of D/∆x = 42.67 throughout the domain. Although the smallest liquid structure
might not be captured with this employed mesh resolution, no sub-grid scale (SGS) models have been used
in the simulations. The liquid fuel is injected at a velocity of Uliq = 100 m/s. A fully developed turbulent
pipe flow velocity profile is imposed on the liquid inlet as the inflow conditions with the velocity fluctuations
u′ = 0.10U liq and the turbulent integral length scale lt = 0.1Dj . The turbulent inflow boundary conditions
are generated using the synthetic turbulence generation method of Klein et al. [67] in which correlated
random velocities with a prescribed length scale are generated. We considered this length scale to be equal
to lt. For the considered mesh resolution, we have lt/∆x ≈ 4 and the turbulent Reynolds number at injection
Reτ = ρju

′lt/µj = 58. The simulation is run upto a time of t∗ = tUliq/D = 20.
Figure 36 show several instantaneous snapshots from the simulations representing the time evolution of

the jet penetration in the domain with a time spacing of t∗ = 2.5 between each image. We observe that small
ligaments and droplets are being ejected from the mushroom head of the liquid jet due to the Rayleigh-
Taylor and Rayleigh-Plateau instabilities. Furthermore, we can observe the three dimensional waves on the
surface of the liquid column in the Figure 36 caused by the transverse velocity gradients. These instability
waves are vital in the detachment or breakup of the liquid column of the jet into ligaments and droplets.

Upon further analysis of the jet, we find three zones of instability and breakup in this jet as shown in
Figure 37. First zone is the near nozzle zone which is upto five jet diameters downstream in which there is
no observation of breakup but only generation of waves on the liquid column. In the second zone (or the
transition zone), the gas enter the dense part of the liquid jet causing the waves to roll up and leading to
first breakup of the liquid ligaments. The third and final zone is chaotic in nature in which many ligaments
and drops are ejected from the liquid core thereby leading to primary atomization.

Since we have used HyMOFLS which uses MOF and CLSVOF methods of interface reconstruction, it is
interesting to see the regions where these methods are activated/used. To that end, we present snapshots
from the simulations of the liquid jet at multiple time instants with each region colored with red (MOF
tagged region) and blue (CLSVOF tagged region) colors in Figure 38. It can be observed that the MOF
method is used appropriately for both high curvature regions (waves formed on the liquid column) and the
small (under-resolved) liquid structures (ligaments and droplets near the mushroom head breakage).

The initial conditions of this simulation pushes our Navier-Stokes solver towards its limits of operation.
Moreover, it can be seen that the results are comparable to those observed in experimental investigation
[77] as well as previous numerical studies [18, 10, 19]. Moreover, as can be seen in Figure 38, as the jet
grows downstream, the number of cells tagged with MOF (red cells) are increasing. Therefore, in order to
assess the efficiency of the HyMOFLS method with the MOF method, the time evolution of percentage of
total number of interfacial cells in the computational domain tagged with MOF method (red regions) and
CLSVOF method (blue regions) would be a good metric. To that end, the Figure 39 shows the plot of
the time evolution of the percentage of number of MOF and CLSVOF tagged cells for the total simulation
duration. It can be seen that when using the HyMOFLS framework, a maximum of 4% the total number of
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Figure 36: Time evolution of turbulent atomization of liquid diesel jet. ∆t∗ = 2.5 between each snapshot.

First zone Second zone Third zone

Figure 37: Zones of instabilities on surface of atomizing turbulent liquid jet.

computational cells are tagged with MOF method [45]. In our previous study [45], we have demonstrated the
ability of the MOF method to simulation primary atomization of turbulent liquid injection, however, yielding
higher computational cost. The result presented in Figure 39 demonstrates a significant step-up in terms
of computational efficiency for the HyMOFLS method compared to the MOF method. This justifies the
motivation and development of an accurate and robust numerical method for simulating primary atomization
at a low to modest computational cost.

5.2. Airblast atomization

Finally, we apply the HyMOFLS method to perform simulations of a more realistic fuel injection configu-
ration and operating condition relevant for aircraft engine. It is called planar pre-filming Airblast atomization
technique which is a common fuel injection technique. In this technique, a thin film of liquid fuel is injected
on a solid plate which is then destabilized by the high speed gas flowing above and below the plate. The
simulation presented in this work follows the experimental work of Gepperth et al. [78] and computational
work of Warncke et al. [76]. The computational domain as well as the inlet velocity profiles considered in
this work for the liquid and gas phases presented in this work are shown in Figures 40 and 41.

This simulation is performed in a 6.6 mm × 3.3 mm × 3.3 mm domain that is discretized using a 256 ×
256× 512 mesh with Shellsol D70 fuel which has similar properties of a Jet A-1 fuel with the liquid velocity
uliq = 0.5 m/s and gas velocity ugas = 50 m/s. The operating conditions of the simulations corresponding
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Figure 38: Turbulent atomization of liquid diesel jet. ∆t∗ = 3 between each image. Red regions correspond to MOF interface
reconstructed regions and blue regions correspond to CLSVOF interface reconstructed regions.
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Figure 39: Time evolution of the percentage of number of MOF cells ( ) and CLSVOF cells ( ) in the computational
domain for the whole simulation duration.

to altitude relight conditions are presented in Table 13. A turbulent flat velocity profile is imposed on the

Table 13: Operating condition for the turbulent liquid jet atomization simulation.

ρliq/ρgas µliq/µgas σ Regas Weliq.film

641.67 86.83 0.0275 13,333 10.69
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liquid and gas phase with their respective velocities as shown in Figure 41. The turbulence is generated only
in the gas phase using the synthetic turbulence generation method of Klein et al. [67] with the fluctuations
kept to 10% of the bulk gas velocity and the turbulent integral length scale set to 3% of the total gas channel
height of 8.1 mm. The faces of the solid pre-filmer plate on which the liquid fuel is injected is modeled using
staircase immersed boundary method (SIBM).

Figure 42 show the instantaneous snapshots of the top and side views of the atomizing liquid film from the
simulation. It can be seen in the top view (Figure 42a) that instability waves are formed on the liquid film on
top of the pre-filmer plate. It is speculated that these waves are due Kelvin-Helmholtz instability, however,
a more detailed investigation is needed to verify this conjecture. In fact, the simulations accurately captures
these waves especially near the edge of the pre-filmer plate when compared to the experimental investigations
[78, 76]. These waves carry the liquid to the edge of the pre-filmer solid plate thereby forming either a bag
which then breakups into droplets or form finger-like ligament structures which then subsequently breakup
into droplets due to Rayleigh-Plateau instability. Furthermore, the ligaments and varying sized cluster of
droplets produced downstream of the domain are visible in these instantaneous snapshots. Finally, the
zoomed portions beside the side view (Figure 42b) with the underlying computational mesh (vertical and
horizontal lines in the background) are shown to give insights into the thickness of liquid sheet as well as
size of a liquid ligament. It can be seen that for this instantaneous time step, the liquid sheet thickness is
spanning about 4∆x − 7∆x while the liquid ligament size varies in the range 7∆x − 10∆x demonstrating
that these liquid structures are well resolved in the simulation.

Hence, based on these results presented, HyMOFLS method is proved to be a viable interface reconstruc-
tion method that captures both resolved and under-resolved liquid structures for an atomization application.
Moreover, it was observed to strike a balance between the accuracy and computation cost, prevent the ar-
tificial/numerically induced premature breakup of the liquid structure from the coherent liquid structure.
These are the prominent desirable characteristics for a numerical method especially when used for simulating
practically relevant injection configuration and operating conditions.

6. Conclusions

A hybrid moment of fluid–level set (HyMOFLS) method has been developed for the purpose of the
liquid/gas interface reconstruction within the context of multiphase flows. This hybrid framework involves
the usage of an accurate moment of fluid (MOF) method coupled with the computationally cost effective
coupled level set volume of fluid (CLSVOF) method for interface reconstruction. The advantage of the
HyMOFLS method is that the accurate MOF method has been used only for reconstructing the under-
resolved liquid structures while the CLSVOF method is used for the resolved liquid structure. Within this
method, a narrow band of cells around the interface is tagged (or labeled) with either MOF or CLSVOF
method based on the interface resolution quality (IRQ) criterion proposed within the framework of the
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(a) Top view of liquid film (b) Side view of pre-filmer plate

Figure 42: Top and side views of the solid pre-filmer plate in Airblast atomizer. Flow direction is from top to bottom. The
zoomed subfigures show the Cartesian grid in the background depicting the computational thickness of the liquid sheet and
size of a liquid ligament.

HyMOFLS method. This criterion relates the interface curvature and mesh spacing to the resolution of the
interface thereby identifying the under-resolved regions in the flow. The results from canonical academic
verification tests such as Zalesak’s notched disk, 2D, and 3D droplet deformation have been presented which
compared the performance of the HyMOFLS, MOF, and CLSVOF methods. A parametric study has been
performed for the cell tagging (with MOF or CLSVOF) criterion within the framework of HyMOFLS method
for these verification tests.

Then, the HyMOFLS method has been applied to simulate the evolution of the double shear layer under
high convective conditions which yielded stable velocity results without any intermittent bursts thereby
deeming to be employed for the real-time engineering applications. This method is then assessed to simulate
the growth of Rayleigh-Taylor instability for which a second-order spike penetration error was observed.
The HyMOFLS method is then put to work to simulate the binary droplet collision wherein the simulation
results agreed with the experimental study. As a final validation test, the HyMOFLS method has been
employed to simulate the Rayleigh-Plateau instability which is a purely surface tension-driven instability.
The qualitative analyses of the results agreed well with the literature. On the quantitative aspect, first, we
observed that the breakup time is converged for the mesh resolutions considered and the time taken by the
interface reconstruction subroutines are lesser than the Poisson solver which is a typical trend observed in
the literature.

Finally, this hybrid framework has been employed to simulate primary atomization of liquid for two
configurations – turbulent jet atomization under diesel engine-like condition and planar pre-filming Airblast
atomization under aircraft altitude relight condition. Despite the complexity of the flow structures, the
method is found to be robust and stable in terms of simulating the high speed fuel injection scenarios. In
fact, this method is able to capture the surface waves formed on the liquid column for the Diesel jet injection.
Furthermore, a good qualitative agreement was found between the simulations and the experiments for the
Airblast atomization configuration. For many complex cases of liquid fuel atomization, the HyMOFLS
method has been shown to produce accurate results at in a computationally cost effective manner thereby
making it a viable numerical method for simulations of liquid fuel atomization processes.
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Although the Gauss-Newton iterative algorithm of finding the orientation of the unit normal in the MOF
method has been shown to be accurate, an analytical approach proposed by Lemoine et al. [30], Lemoine
[32] is an alterative methodology in achieving the same goal. New developments in the MOF interface
reconstruction algorithms are planned towards the implementation and usage of such analytical algorithms
for simulating complex turbulent multiphase flow processes.
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Appendix A. Discretization of centroid advection equation

This appendix details the numerical method behind the discretization of equation of the advection of the
phase centroid (see Equation (20)). The advection of the phase centroid is performed in tandem with that
of the liquid volume fraction. The advection equation of the phase centroid (liquid and gas phase centroids)
is given as

∂xCOM

∂t
= u(xCOM). (A.1)

This equation is discretized using Eulerian Implicit–Lagrangian Explicit (EI–LE) scheme.
Now, consider a 2D computational cell shown in Figure A.43 with the velocity on the cell faces,

x−coordinate of the left and right edges of the cell, and the centroid of liquid and gas phase marked.
Before proceeding to the presentation of discretization of Equation (A.1), let xi±1/2 = x± and the subscript

xi−1/2 xi+1/2

xliq
COM

ui−1/2 ui+1/2

x− x+

xliq
COM

xliq
COM − x− x+ − xliq

COM

u− u+

Figure A.43: Illustration of 2D computational cell with liquid centroid for discretization of phase centroid advection equation.

“COM” will be dropped hereon (i.e., xCOM = x). For the sake of simplicity, the subscript “COM” will be
dropped for the remainder of this appendix. Without loss of generality, the presentation of the discretization
of the advection equation is for the u−component of the velocity specifically for the liquid phase centroid
advection. The advection along y− and z−directions and for the gas phase are fairly straightforward to be
derived similar to that for the liquid phase. Now, discretizing the advection equation using explicit Euler
scheme for temporal derivative, we get

xn+1 − xn
∆t

= u(x). (A.2)
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The velocity u(x) is obtained as an interpolated velocity from those at the cell faces according to

u(x) =
uni+1/2(x− x−) + uni−1/2(x+ − x)

∆x
(A.3)

Now, substituting Equation (A.3) in Equation (A.2) and rearranging the terms, we get

xn+1 = xn +
uni+1/2∆t

∆x
(x− x−1) +

uni−1/2∆t

∆x
(x+ − x) (A.4)

Now, let un± =
un
i±1/2∆t

∆x which becomes the local cell-based CFL number. Hence, we get,

xn+1 = xn + un+(x− x−) + un−(x+ − x), (A.5)

where x+, x− are constants, un± are taken from time step tn. We have two choices for the x to be taken
either from time instant tn or tn+1 – leading to Lagrangian Explicit (LE) or Eulerian Implicit (EI) schemes,
i.e.,

x∗ =

{
xn ⇒ Lagrangian Explicit (LE) scheme

xn+1 ⇒ Eulerian Implicit (EI) scheme
(A.6)

Appendix A.1. Lagrangian Explicit (LE) scheme: x = xn

When the choice is made to take xn for the centroid x−coordinate, the equation simplifies to

xn+1 = xn + u+(xn − x−) + u−(x+ − xn). (A.7)

Upon grouping the terms that belong to xn, we get the final expression

xn+1 = Lxn − (u+x− − u−x+), (A.8)

where L = 1 + (u+ − u−) is the Lagrangian coefficient.

Appendix A.2. Eulerian Implicit (EI) scheme: x = xn+1

With x = xn+1 choice for the discretization of the advection equation, we get

xn+1 = xn + u+(xn+1 − x−) + u−(x+ − xn+1). (A.9)

Now, we group the terms belonging to xn+1, we get the final expression as

xn+1 = E × (xn − (u+x− − u−x+)) (A.10)

where E = 1/(1− (u+ − u−)) is the Eulerian coefficient.
In order to be consistent with the liquid volume fraction advection within the framework of directionally-

split advection operations, we switch between the EI and LE schemes between the coordinate directions of
advection and also between consecutive time steps in the simulation.

Appendix B. Liquid structure resolution criteria

This appendix details and derives the interface resolution quality (IRQ) criterion (see Algorithm 3) used
within the hybrid moment of fluid–level set (HyMOFLS) framework for tagging cells with moment of fluid
(MOF) and coupled level set volume of fluid (CLSVOF) methods of interface reconstruction. In the context
of HyMOFLS method, the differentiation between the resolved liquid structures (RLS) and under-resolved
liquid structures (URLS) is made using this criterion. The rationale behind the development of HyMOFLS
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method is to use MOF method for capturing URLS and CLSVOF method for capturing RLS. To that end,
let us first consider the expression of IRQ as given in Equation (29),

IRQ =
1

κ∆x
, (B.1)

where κ is the local curvature of the interface and ∆x is the local grid spacing. Albeit the IRQ identifies
the resolution of the liquid structure, following the work of Canu [58], the expression in Equation (B.2) is
applied to regions of the flow, i.e., it is evaluated in each computational cell containing liquid/gas interface.
Hence, Equation (B.2) within the context of ARCHER solver becomes,

IRQ(i, j, k) =
1

κ(i, j, k)∆x
=

{
< α,⇒ under-resolved region

≥ α,⇒ resolved region
, (B.2)

where i, j, and k are the computational cell indices. Since ARCHER solver has constant mesh spacing, i.e.,
∆x = ∆y = ∆z throughout the domain, therefore, the mesh spacing parameter becomes independent of
the cell indices. In order to give a context on the IRQ for different computational cells (and regions of the
domain), Figure B.44 shows the illustration of an interface topology containing to different curvature regions
marked by their respective (approximate constant) radii of curves R1 and R2. The size of the dashed and
dashdotted circles in this figure pertains to these radii values. From the concept of geometry, it is known
that curvature is the reciprocal of the radius of the curve, hence, the smaller the radius of the curve, large
is the curvature, and hence, according to Equation (B.2) smaller is the IRQ value. When this IRQ value
passes below the threshold of α, this cell present in this region is termed as the under-resolved region (URR)
else it is in the resolved region (RR).

R2

Under
-resolved

region

R1

Resolved region

Figure B.44: Radii of curves (approximate constant values) at
two regions of interface (black solid line) showing resolved re-
gion (RR) and under-resolved region (URR) on an underlying
computational grid.

R

R

R

Figure B.45: Radius of sphere for illustration of IRQ.

Now, let us derive Equation (B.2) from a geometrical and physical point of view. In a typical atomization
simulations, numerous liquid structures of varying sizes and shapes are produced. For the sake of simplicity
of the derivation and without loss of generality, consider a sphere (as shown in Figure B.45) as an idealized
scenario of the RR and URR presented above in Figure B.44. In mathematical terms, this sphere is set to
be under-resolved, when D < β∆x, where D is its diameter. As shown in Equation (28), the κ is computed
as

κ = −∇ ·
(

∇φ

‖∇φ‖2

)
, (B.3)
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where φ is the level set signed distance function. Now, we have

D < β∆x⇒ URR, (B.4)

Therefore, 2R < β∆x⇒ URR, (B.5)

⇒ 2R

β∆x
< 1⇒ URR, (B.6)

Therefore,
2

β

1
1
R∆x

< 1⇒ URR. (B.7)

Now, from the knowledge of geometry, we know the following relation between the local principal curvatures
and local radius of a sphere given as

κ1(i, j, k) =
1

R(i, j, k)
κ2(i, j, k) =

1

R(i, j, k)
, (B.8)

where i, j, k represent the computational cell indices. For the sake of clarity, these indices will be dropped
hereon for the remainder of this derivation. We also know that the total curvature of an object is computed
as κ =| κ1 + κ2 |. Therefore, we get

κ =

∣∣∣∣ 1

R
+

1

R

∣∣∣∣ =

∣∣∣∣ 2

R

∣∣∣∣ =
2

R
(∵ R > 0),

Therefore,
κ

2
=

1

R
.

(B.9)

We substitute in this relation into Equation (B.7) to get

2

β

1
κ
2 ∆x

< 1⇒ URLS

⇒ 4

β

1

κ∆x
< 1⇒ URLS

1

κ∆x
<
β

4
⇒ URLS

Therefore, IRQ <
β

4
⇒ URLS

Therefore, IRQ < α⇒ URLS

(B.10)

where α = β/4. Now, in this work, following the study by Canu [58], β = 8 is chosen, hence we obtain α = 2.
The value of β = 8 corresponds to the scenario, when there are 8 or less than 8 computational cells spanning
the diameter of the sphere, it is considered under-resolved region otherwise resolved region. Therefore, the
final under-resolved liquid structure/resolved liquid structure (URLS/RLS) criterion for distinguishing the
derivation of the criterion for detecting URLS arrives to the following condition,

IRQ =
1

κ∆x
=

{
< 2,⇒ Under-resolved structure,

≥ 2,⇒ Resolved liquid structure.
(B.11)

Since the value of IRQ is computed from the local curvature κ and the local mesh spacing ∆x, the URLS/RLS
criterion is checked in every computational cell that contains liquid structure, i.e., liquid/gas interface. This
means that for each computational cell containing a non-zero value of liquid volume fraction (deeming
it belonging to a liquid structure), the IRQ value is computed based on local κ and local ∆x in that
cell. The computed value for IRQ is then checked for the URLS/RLS criterion (Equation (B.11)) for the
purposes of tagging cells with MOF or CLSVOF method within the context of HyMOFLS method of interface
reconstruction.
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