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ABSTRACT
We present a new method to model the mass distribution of galaxy clusters that combines a parametric and a free-form approach
to reconstruct cluster cores with strong lensing constraints. It aims at combining the advantages of both approaches, by keeping
the robustness of the parametric component with an increased flexibility thanks to a free-form surface of B-spline functions. We
demonstrate the capabilities of this new approach on the simulated cluster Hera, which has been used to evaluate lensing codes
for the analysis of the Frontier Fields clusters. The method leads to better reproduction of the constraints, with an improvement
by a factor of ∼3–4 on the root mean square error on multiple-image positions, when compared to parametric-only approaches.
The resulting models show a better accuracy in the reconstruction of the amplitude of the convergence field while conserving
a high fidelity on other lensing observables already well reproduced. We make this method publicly available through its
implementation in the LENSTOOL software.
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1 IN T RO D U C T I O N

Galaxy clusters are among the biggest structures that are grav-
itationally bound in the Universe, and they are located at the
intersection of the filamentary structures that form the cosmic web.
Hierarchical models of galaxy evolution and the standard Lambda
cold dark matter (�CDM) cosmological model predict that clusters
aggregate matter at the intersections of the cosmological filaments.
This hierarchical growth, in particular through merging events, is
continuously increasing cluster masses.

The study of galaxy clusters through high-resolution space-based
observations have significantly contributed to the study of the
importance of the dark matter (DM) content (Natarajan, Kneib &
Smail 2002; Limousin et al. 2007; Richard et al. 2010). In particular,
merging clusters present some of the strongest evidence for the
existence of DM. The now iconic Bullet Cluster (Clowe, Gonzalez
& Markevitch 2004; Bradač et al. 2006) is a well-studied example
of a collision between two galaxy clusters, showing evidence for a
clear separation between cluster members and the intra-cluster gas.
Thanks to the phenomenon of gravitational lensing, which refers to
the bending of the light near massive objects, it has been found that
the majority of the mass was contained in the cluster DM halo, instead
of the gas or the cluster members, as suggested by alternative theories
of gravity (Clowe et al. 2006). Analogous studies have strengthened
this result by showing that several other merging clusters present
similar offsets (Bradač et al. 2008; Merten et al. 2011; Harvey et al.
2015; Jauzac et al. 2016).

� E-mail: benjamin.beauchesne@epfl.ch

Gravitational lensing has proven to be very efficient in constraining
the mass distribution of galaxy clusters as it is independent of their
dynamical states (e.g. Kneib & Natarajan 2011; Hoekstra et al.
2013; Bartelmann & Maturi 2017 for detailed reviews). In the high-
mass density regions of the cluster core, the strong lensing regime,
characterized by large distortions and multiple images of background
sources, allows for a high-resolution mapping of the mass distribu-
tion. Different modelling techniques have been developed to take
benefit of that effect and reconstruct the mass of cluster cores.

Cluster modelling methods based on strong lensing can be divided
into two different classes. Methods belonging to the first class are
based on physically motivated analytical mass models, they are
usually referred to as parametric methods. The most commonly used
software for these parametric methods are GLAFIC1 (Oguri 2010),
LENSTOOL2 (Jullo et al. 2007), and LTM (Zitrin et al. 2009). They
reconstruct the overall mass distribution by breaking it down into
two type of components:

(i) cluster-scale components representing the mass contained in
the cluster DM haloes and the gas in the intra-cluster medium;

(ii) galaxy-scale components representing the mass of each cluster
galaxy member (the stellar mass as well as possibly attached DM
halo)

Each component is modelled with a finite number of analytical den-
sity profiles such as the Singular Isothermal Sphere potentials (SIS;
Binney & Tremaine 1987), the symmetric power-law surface density

1https://www.slac.stanford.edu/∼oguri/GLAFIC/
2https://git-cral.univ-lyon1.fr/lenstool/lenstool.
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profiles (Broadhurst et al. 2005; Zitrin et al. 2009), the Navarro–
Frenk–White potentials (NFW; Navarro, Frenk & White 1997),
the dual Pseudo Isothermal Ellipsoidal Mass Distribution potentials
(dPIE, Elı́asdóttir et al. 2007), or the Pseudo-Jaffe ellipsoidal profiles
(Keeton 2001).

Algorithms belonging to the second class are referred to as free-
Form (or also non-Parametric) methods. They usually decompose the
cluster mass distribution in a mesh of basis functions. The coefficients
and possibly the shape of these functions are optimized to best
reproduce the strong lensing constraints. Examples of software using
these methods include SWUNITED (Bradač et al. 2005; Bradač 2009),
GRALE3 (Liesenborgs, De Rijcke & Dejonghe 2006; Liesenborgs
et al. 2009), WSLAP (Diego et al. 2005, 2007), SAWLENS4 (Merten
et al. 2009, 2011), and LENSPERFECT5 (Coe et al. 2008, 2010).

Both classes have their advantages and drawbacks. Although
parametric methods give physical models by construction, the use
of analytical profiles is a strong assumption on the shape of the
mass distribution, and this technique may have reached its limits
in modelling some of the most complex galaxy clusters (Mahler
et al. 2018). At the other end of the spectrum, free-form methods
are by construction much more flexible to fit the observed data,
but they need a much higher number of constraints to match their
large degrees of freedom. As a consequence, their high flexibility
may lead to non-physical mass distributions, and because of their
tendency of overfitting their prediction and estimation of physical
quantities outside of the constrained area will be poor (Coe et al.
2008). While parametric methods were initially the most-suited due
to the small number of constraints accessible through strong lensing
(Kneib et al. 1993; Diego et al. 2005), the number of constraints has
continuously increased with time with the improvements of obser-
vations that culminated in imaging with the Hubble Frontier Fields
(HFF) survey (Lotz et al. 2017) and in spectroscopy with the Multi-
Unit Spectroscopic Explorer (MUSE; Bacon et al. 2010) instrument
that has dramatically increased the number of spectroscopically
confirmed multiply imaged systems (Lagattuta et al. 2019). Indeed,
while pre-HFF studies on the cluster Abell 2744 provided less than
10 spectroscopically confirmed multiple images (Merten et al. 2011;
Johnson et al. 2014; Richard et al. 2014), HFF images combined
with MUSE follow-up bring that number to almost 100 (Mahler
et al. 2018).

As part of the HFF initiative, multiple teams were invited to
model the six HFF clusters. This effort provided material for an un-
precedented comparison of these different techniques (Chirivı̀ et al.
2018; Remolina González, Sharon & Mahler 2018; Raney, Keeton &
Brennan 2020a). Priewe et al. (2017) inspected the magnification bias
in the core of two HFF clusters and found a high dispersion between
the different models from the third version. Simulated clusters
representative of the HFFs were used by Meneghetti et al. (2017)
to probe the different methods in order to determine their accuracy,
and more recently Raney et al. (2020b) studied the dispersion of
the results among the different techniques on the mass profiles and
the magnification on all six clusters. Notably, they show that mass
profiles are consistent among the different techniques with only a 1σ

scatter and a difference often below 5 per cent.
With the level of complexity reached by the HFF cluster models,

parametric methods seem to be now dominated by systematics
(Mahler et al. 2018) and further developments are required on

3https://research.edm.uhasselt.be/jori/page/Physics/Grale.html.
4https://julianmerten.net/codes.html.
5https://www.stsci.edu/∼dcoe/LensPerfect/.

these techniques. The current number of constraints available call
for the rise of hybrid methods that will enhance the parametric
modelling with a free-form component. The recent example of
HYBRID-LENSTOOL use a large-scale free-form component to model
clusters in their outskirts fitting weak-lensing measurements (Jullo
et al. 2014; Niemiec et al. 2020). However, this method has only a
parametric modelling in the cluster core where the strong lensing
constraints are available. An other example is WSLAP+ (Sendra et al.
2014), which introduces a parametric component in a method that
was originally only free-form, to model the galaxy-scale components.

In this paper, we introduce a free-form perturbative approach to the
LENSTOOL parametric method to improve the strong lensing mod-
elling. Thus, this method is complementary to the aforementioned
improvements. In order to validate our approach, we tested it on a
realistic galaxy cluster simulation representative of the HFF clusters
(Meneghetti et al. 2017). Section 2 recalls the parametric approach
implemented in LENSTOOL and details the new free-form approach.
Section 3 introduces the simulated cluster and the methodology
followed for its modelling. In Section 4, we detail the obtained results
and compare the parametric-only approach to the new hybrid one.
Section 5 quantifies the improvements on the reconstruction with
a metric based on the data of the simulated cluster, and proposes a
method to select the appropriate free-form modelling with a Bayesian
criterion. Our conclusions are summarized in Section 6.

We adopt a flat �CDM cosmology with �m = 0.3, �� = 0.7, and
H0 = 70 kms−1Mpc−1 throughout this paper.

2 M E T H O D

2.1 Strong lensing regime

We consider a cluster to be a single plane lens under the thin lens
approximation. The fundamental equation is then the lens equation
mapping the source plane to the image plane (see Schneider, Ehlers
& Falco 1992 for a more detailed description):

β = θ − ∇ψ(θ), (1)

where β and θ are the angular position of the source and of the image,
respectively. They are related through the gradient of the lensing
potential ψ computed at the position of the image. ∇ψ is also referred
to as the reduced deflection angle. In the case of multiply imaged
systems, this equation is degenerate and have multiple solutions θ

for a unique source position. This is happening in the strong lensing
regime in the cluster core. The identification of such phenomenon
allows an accurate mapping of ψ in the cluster core, which is where
we focus our reconstruction on.

The lensing potential ψ is linked to the projected mass on the
plane of the lens through the normalized surface mass density κ (or
convergence) defined as

κ = �

�crit
= 1

2
∇2ψ, (2)

where � is the surface mass density of the lens and �crit is the lensing
critical surface density of the Universe. �crit is defined as

�crit = DsDl

Dls

c2

4πG
. (3)

where Dl, Ds, and Dls represent the distances between the observer
and the lens, between the observer and the source, and between the
lens and the source, respectively. The magnification μ induced on
background objects is equal to the determinant of the Jacobian matrix
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M between β and θ :

Mi,j = ∂θi

∂βj

. (4)

Then we have

μ = det(M). (5)

2.2 Parametric modelling

The parametric method implemented in LENSTOOL is described
in detail in Jullo et al. (2007). Briefly, the lensing potential is
decomposed into cluster-scale and galaxy-scale components. Each
cluster member is associated with a galaxy-scale component in the
form of an analytical profile such as a dPIE (Elı́asdóttir et al. 2007).
Geometrical parameters such as the centre of cluster members on
sky (x, y), projected ellipticity e and position angle θ are measured
from their light distribution. Thus, for a dPIE profile, the remaining
parameters are the core radius rcore, the cut-off radius rcut, and the
central velocity dispersion σ 0.

Since the number of strong lensing constraints is small compared
to the number of cluster members, each galaxy-scale component
cannot be constrained individually. A global mass-to-light relation is
used to link the mass with the luminosity of cluster members based
on the Faber & Jackson (1976) relation. We use this relation and a
reference galaxy with a luminosity L∗ to obtain the following scaling
relations:⎧⎪⎨
⎪⎩

rcut = r∗
cut

(
L
L∗
)1/2

rcore = r∗
core

(
L
L∗
)1/2

,

σ0 = σ ∗
0

(
L
L∗
)1/4

(6)

where L is the luminosity of the cluster member, and σ ∗
0 , r∗

core, and r∗
cut

are the dPIE parameters of the reference galaxy. L∗ is a characteristic
luminosity where the galaxy luminosity function cuts off, and is
chosen following the elliptical galaxy luminosity function at the
cluster redshift (Schechter 1976).

Following observational modelling, the precise value of r∗
core has

only a little effect on strong lensing predictions. We keep it fixed
at 0.15 kpc (Limousin et al. 2007). This only leaves to optimize
σ ∗

0 and r∗
cut to define all cluster member haloes. In the case of the

brightest galaxy cluster (BCG) or other particular galaxies, these
relations could be relaxed. rcut and σ 0 associated with these galaxies
are optimized independently of σ ∗

0 and r∗
cut.

The cluster-scale components are also modelled with dPIE pro-
files, as they are mainly representing the DM we do not take any
assumption other than rcut = 1 Mpc as it is unconstrained by multiple
images. The number of large-scale dPIE potentials used depends on
the cluster geometry, but only a few are necessary, typically less than
five.

2.3 Perturbative modelling

2.3.1 Interest of B-spline surfaces

B-splines are extensively discussed in the computer-aided design
literature (de Boor 1978; Bartels, Beatty & Barsky 1995; Piegl &
Tiller 1996; Salomon 2007). They have the simplicity of polynomials
functions and are only non-zero on finite supports. This avoids the
Runge phenomenon (Runge 1901) of hyperoscillation at high order
and the non-locality of polynomial families.

A B-spline surface is defined by a set of basis functions separately
or as a unique object defined below by its knots and basis function

coefficients. Knots refer to points on the surface where the piecewise
polynomial are connected. With this last formalism, it is possible to
compute them efficiently with the de Boor (1978) algorithm detailed
in Appendix A.

One reason B-splines have a superior computational efficiency
over most of multiscale grids of potentials (e.g. Jullo & Kneib 2009)
is that they have a finite support, so they are not computed for every
evaluation of ψ or its derivative. A second reason is the algorithmic
complexity of the De Boor algorithm for evaluating a point, which
only depends on its polynomial degree and not on the number of
basis functions. These properties are conserved for all derivatives as
they are also B-spline surfaces.

2.3.2 Constructing the B-spline surface

A B-spline surface is defined as a tensor product of one-dimensional
B-spline curves. As these curves are piecewise polynomials there
exists a set of points called knots that indicate the connection between
each polynomial piece. Thus, we have two sets of knots (tx,i)i ∈ [[1, N]]

and (ty,i)i ∈ [[1, N]], where N is the number of knots in each direction,
and x and y refer to orthogonal axes in the lens plane.

The B-spline surface �ψ(x, y) is expressed as a function of one-
dimensional B-spline basis functions Bj,p,t where j is the knot index,
t is the knot vector, and p is the polynomial degree. We have two
knot vectors tx and ty, one for each axis, which leads to the following
formula:

�ψ(x, y) = Dls

Ds

m∑
j,l=1

Cj,lBj,p,tx (x)Bl,p,ty (y), (7)

where Cj,l are the coefficients of each B-spline basis and m is the
number of B-spline functions per axis. We apply the factor Dls/Ds to
keep the scaling specific to the lensing potential. Thus, we have m2

basis functions and m is related to N and p by

N = m + p + 1, (8)

and each B-spline basis Bj,p,tx (x) is only non-zero for tx,j � x <

tx,j+p+1 and can be expressed recursively by the Cox–De Boor
recursion formula (de Boor 1978). The same relation holds for
the basis defined on the second axis. More information on the
current implementation of the B-spline calculation can be found
in Appendix A.

Moreover, to define the knots on each axis, we use the ‘averaging’
techniques in an analogous manner to the formalism of interpolating
B-splines (de Boor 1978; Piegl & Tiller 1996). For both axes, we
define the points (Cx

j,l , C
y

j,l)j,l∈[[1,m]]2 placed on a regular mesh.
Considering only the x-axis this leads to the following expression
for the knots that can be generalized to the y-axis:

tx,i+p = 1

p

i+p−1∑
j=i

(
1

m

m∑
l=1

Cx
j,l

)
for i = 1, ..., m − p. (9)

The remaining knots are defined as

tx,i = min

(
1

m

m∑
l=1

Cx
j,l

)
for i = 0, ..., p, (10)

tx,i = max

(
1

m

m∑
l=1

Cx
j,l

)
for i = m + 1, ..., m + p + 1. (11)

These two paddings ensure that the B-spline surface �ψ(x, y) will
be equal to the Cj,l values at the surface limits. The same formula
applies for ty,i with C

y

l,j instead of Cx
j,l . Even if (Cx

j,l , C
y

j,l)j,l∈[[1,m]]2
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Figure 1. Overview of the B-spline surface parametrization used in our
perturbative modelling. The diagram shows a cross-section of B-spline basis
functions with the corresponding knot mesh, illustrated for a polynomial
degree p = 5. Purple, red, and green dots represent knots with a multiplicity
of p + 1 (i.e. p + 1 knots sharing the same position), simple knots (i.e.
multiplicity of 1), and simple knots that are coincident with the centre of
non-null basis functions, respectively.

are regularly spaced, the knot mesh is only regular at the centre of
the surface. Fig. 1 shows the resulting knot mesh for p = 5 and a
cross-section of the B-spline basis functions. If p is an odd integer
and the knots are regularly spaced, the centres of the B-spline basis
are coincident with knots as their supports are squares with a side
size of p + 1 times the distance between two consecutive knots.

2.3.3 Assumptions on the surface

There are several options to add a B-spline surface on models. The
first and easier is to add it to the lensing potential ψ . All physical
quantities related to the lensing can be computed from ψ or its
derivatives, in the case of a B-spline surface, all these functions are
analytical. The only condition is to ensure that the resulting mass
distribution is plausible, but for our perturbative approach, we only
have to ensure that the added modifications are small compared to
the parametric component.

We decided to add the B-spline surface perturbation �ψ on to the
lensing potential ψ from the parametric-only modelling. All derived
quantities (deflection, magnification) are in that case analytical and
fast to compute. This approach differs from perturbing the mass
distribution (Broadhurst et al. 2005) or the deflection field (Coe et al.
2008).

We impose the following conditions to ensure the continuity of
�ψ and its derived quantities, as well as to connect the B-spline
surface to the parametric ψ :

(i) A polynomial degree p ≥ 4.
(ii) �ψ(x, y) = 0 and �ψ (j)(x, y) = 0 for j = 1, .., p and x ∈

{min(Cx
j,l); max(Cx

j,l)} or y ∈ {min(Cy

j,l); max(Cy

j,l)}.
The first condition ensures that inside its area of definition, the
first three derivatives of the potential �ψ (the deflection angle,
the convergence and the shear, and the flexion components) are
continuously differentiable, its fourth derivative being only piecewise
continuous. The second one allows the surface to be extrapolated to
a value of zero outside its limit with a connection that has the same
continuity as the surface on its knots. To fulfil this condition, we
impose the following restriction on the B-spline coefficients Cj,l:

Cj,l = 0 for (j, l) ∈ {1; ..; p + 1; m − p; ..; m}2. (12)

As �ψ and its derivatives are B-spline surfaces, the padding at the
beginning and at the end of the knot sequence ensures that these

surfaces will be equal to their associated coefficients at their edges.
Hence, it is straightforward to see that this condition implies �ψ(x,
y) = 0 at the mentioned points. Basis coefficient of the �ψ (j) are
linear combinations of the Cj,l. The coefficient of the basis functions
of �ψ (j) on the border of the patch are zero due to the condition
imposed on the Cj,l. Thus, �ψ (j) are also null at the patch limit. As
shown in Fig. 1, we define dlatt that represents n + 1 times the regular
space between two (Cx

j,l , C
y

j,l), with n representing the number of
non-zero B-spline basis functions on a line of the knot mesh. In
this example and given the continuity conditions described in this
section, in order to construct a B-spline surface �ψ(x, y) of degree p
= 5 and n = 5, we have m = 17 and N = 23 such that there is a total
of m × m = 289 basis functions of which the amplitude of only n ×
n = 25 basis functions is not set to zero and is optimized. The total
number of knots is N × N = 529, of which (m − p − 1) × (m − p
− 1) = 121 are simple knots. We can also relate m, n, and p thanks
to the continuity conditions by

m = n + 2(p + 1). (13)

Because �ψ(x, y) is extrapolated to zero outside the perturbation
limits, the total mass added by the perturbation is always zero. Hence,
the perturbation is only deforming the mass distribution, but the total
mass is equivalent to the one contained in the dPIEs only. As the
mass profiles are well constrained by strong lensing in the cluster
cores, this is not an issue (Raney et al. 2020b).

2.4 Modelling process

The free parameters are estimated through a Markov Chain Monte
Carlo (MCMC) process by the Bayesian engine BAYESYS (Skilling
2004) implemented in LENSTOOL by maximising a Likelihood func-
tion.

2.4.1 Likelihood definition

The most simple strong lensing likelihood implemented in LENSTOOL

assumes multiple images to be point-like objects. This likelihood is
defined in the lens plane as follows:

LSL =
N∏

i=1

1∏
j σi,j

√
2π

exp
(−χ2

i /2
)
. (14)

With χ2
i defined for the ith system as

χ2
i =

ni∑
j=1

(θobs
j − θ̂ j )2

σ 2
i,j

(15)

where θobs
j is the observed position of the image, θ̂ j is the model

predicted position, and σ i,j is the error on the jth image of the ith
system. σ i,j incorporates the measurement error on the image centroid
but also all uncertainties from perturbations on the line of sight.
Values for σ i,j are frequently chosen from 0.2 to 1 arcsec. Here, we
choose it equal to 0.2 arcsec and constant for all multiple images
(Jullo et al. 2010; D’Aloisio & Natarajan 2011; Host 2012). It is
not an issue to make such choice as all multiple images used in
this paper are calculated with the true mass distribution without
added uncertainties. Model predicted positions θobs

j are obtained by
computing the multiple images from the barycentre of sources of
each observed position. To make this barycentre more reliable each
source position is weighted by the corresponding magnification.
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2.4.2 MCMC sampling

The prior distributions of the free parameters can be either uniform or
normal. In the case of the perturbative potential, the free parameters
are the centre coordinates and the position angle φ of the knot mesh,
the lattice size dlatt, and the coefficient Cj,l describing the amplitude
of the perturbation.

The prior distribution for the position angle φ is uniform between
0◦ and 180◦. Uniform priors on the mesh centre and on the lattice
size are chosen so that the perturbation could affect the predicted
position of all multiple images. The centre position of the mesh is
allowed to vary within 4 arcsec from the centre of a circle enclosing
all constraints. The radius of this circle is then used to define a lower
bound for the lattice size dlatt, while the higher bound is typically
chosen to be 20 per cent larger. Wider priors on dlatt tend to cause
issues with the MCMC engine that struggles to converge to high
likelihood areas.

In order to avoid the perturbation to dominate the parametric
potential and produce a non-physical mass distribution, we chose to
use a zero-mean Gaussian prior on the Cj,l coefficients. The standard
deviation of the Gaussian prior is equal for all the coefficients, and its
value depends on the dlatt range because both values of coefficients
and dlatt are the ones that define the possible mass added or subtracted
by the perturbation. Since the B-spline coefficients ∂2�ψ/∂x2 or
∂2�ψ/∂y2 are linear combinations of the Cj,l, this allows us to
estimate the maximum values for these derivatives assuming Dls/Ds

= 1 by

max

(
∂2�ψ

∂x2
,
∂2�ψ

∂y2

)
� 4max(Cj,l)

(dlatt/n)2
. (16)

We choose to use max(Cj,l) ∼ 2.7σ prior, with σ prior being the standard
deviation of the Gaussian prior probability. This assures us that 99.3
per cent of the parameter values sampled from this prior will be
below this limit. Hence, perturbed models with a different number
of B-spline basis will have a comparable effect on the cluster mass
distribution. Finally, we note that the use of a zero-mean Gaussian
prior effectively acts as a regularization of the amplitude of the
perturbation.

Even with this choice of priors, it was difficult for bayeSys to
explore correctly the full parameter space and to converge towards
high-likelihood regions. To overcome this convergence issue, we
followed a two-step approach. First, we optimize a parametric model
using uniform priors on parameters and do not include a perturbation.
This gives us a fiducial model that serves as a baseline for the
comparisons discussed in Section 4. Then, we use this run to define
new Gaussian priors for these parameters. These priors are centred
on the value of the best models, and the standard deviation is chosen
to be three times the standard deviation of the distribution given by
the MCMC, while keeping relevant parameters in a physical range.
This speeds up the next run as the model starts directly in regions
with a high likelihood. If the chains converge towards a prior tail, it
will be modified to better explore specific parameters. This process
can be iterative to avoid a bias induced by the first run on the
priors.

In summary, this two-step approach illustrates the founding
principle of our modelling method. First, an approximate model
is found using a well-established parametric method. Then,
this model is further refined with the help of a free-form
perturbation.

Table 1. Summary of the strong lensing con-
straints produced for our simulations.

Set Nsys Nim zmin zmax

1 17 55 1.23 6.58
2 18 57 1.20 6.41

Note. For each set, we provide the number of
multiply imaged systems Nsys, the total number
of multiple images Nim, minimum (zmin), and
maximum (zmax) source redshifts.

3 TESTS ON A SI MULATED CLUSTER

3.1 Description of the simulation

The HFF modelling challenge was launched in 2013 with the
goal of comparing different modelling techniques (parametric, free-
form, and hybrid) on HFF-like clusters. For this purpose, two
different galaxy cluster simulations were produced and made publicly
available6 (Meneghetti et al. 2017).

Both clusters were simulated using different techniques. The
resulting bi-modal mass distributions are typical of complex massive
galaxy clusters in a flat �CDM cosmology. We refer the reader to
Meneghetti et al. (2017) for a detailed description of these clusters.
Here, we briefly summarize the properties that are relevant to our
work. The first one, Ares, is a semi-analytical cluster (Giocoli et al.
2012) where parametric methods performed well in its reconstruc-
tion. This is partially due to the use of analytical profiles in the
simulated cluster that are similar to the ones used to reconstruct
the mass distribution. The second one, Hera, is taken from an N-
body simulation of cluster-sized DM haloes with only collisionless
DM particles (Planelles et al. 2014). The accurate modelling of
this simulated cluster was found to be much more difficult for all
the methods tested in the challenge. Especially, dPIE profiles are
not well suited to represent cluster-scale components as large-scale
simulations show an agreement with NFW profiles (de Blok 2010).
In the case of galaxy-scale components, they are in agreement with
mass density obtained through galaxy–galaxy lensing measurements
(Bolton et al. 2008; Shu et al. 2016). Indeed, with a negligible rcore

as in our case, they reproduce a quasi-isotherm profile. However,
there is still a discrepancy with profiles obtained from simulated
data, as they present a less concentrated distribution a their centre
(Meneghetti et al. 2020). Acebron et al. (2017) showed that even with
different combinations of analytical profiles, the parametric method
of LENSTOOL is unable to reduce the error on the reconstruction of
multiple images positions.

We focus our tests of the perturbative approach on the Hera cluster,
as it presents an unfavourable case for the traditional method and
offers great potential for improvements.

Simulated observations and lensing observables were provided for
the HFF challenge, but we decided to create our own sets of lensing
data with the publicly available deflection field. This allows us to have
more flexibility in the number and variety of realizations of multiple
images. It also ensures that the cosmology is consistent through all
the following analysis. Therefore, we created two different sets of
multiple images by solving the lens equation (equation 1) for random
source positions. Each set has multiple images that are distributed
homogeneously in the strong lensing region. Both sets have similar
numbers of systems and multiple images that are described in Table 1.

6http://pico.oabo.inaf.it/∼massimo/Public/FF/hera.html.
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Perturbative mass modelling of cluster lenses 2007

Figure 2. Left-hand panel: true convergence distribution of the Hera simulated cluster core; the red ellipses represent the cluster members modelled according
to the scaling relations, and the cyan ones represent the two BCGs. The white diamond marks the central location selected to compute the mass profiles.
Right-hand panel: colour HST-like image of the simulated data with the first and second sets of multiple images represented by yellow and magenta circles,
respectively. Critical lines are shown for z = 1 (white), 2 (red), and 7 (cyan).

The redshift of the sources follows a uniform probability distribution
in the range 1 < z < 7. The positions of the different constraints
are displayed in Fig. 2 where the background image is an HST-like
observations of the cluster provided for the HFF challenge.

3.2 Description of models

The same methodology was applied to both sets of multiple images.
Cluster members that follow the scaling relations are presented in
Fig. 2; they are chosen following the model produced by the Cluster
As TelescopeS (CATS) team for the HFF challenge (Meneghetti et al.
2017). The two galaxies that dominate the cluster do not follow the
scaling relations; they are labelled as BCG-1 and BCG-2 in Fig. 2.
All of these galaxies have magAB < 24.0 in the F814W HST filter.
As the cluster is bi-modal, we add two dPIE profiles to reproduce
the smooth component with a prior on their position centred on each
BCG.

For the perturbative modelling, we tried to vary the number of
B-spline basis on a uniform grid for all sets of constraints. We began
with a minimum of nine B-splines in a mesh of three per three.
We increased the size of the mesh progressively to a maximum of
12 per 12; this makes a maximum of 144 B-spline basis. For more
convenience, we will label the perturbed models with their number
of non-zero basis functions per mesh line n (e.g. Fig. 1).

The centre of the B-spline mesh is allowed to vary uniformly in a
square centred on �α = 13.395 and �δ = 4.380 arcsec (�α and �δ

are computed relatively to the BCG-1 positions used as reference),
with a side size of 8 arcsec. dlatt is chosen with a uniform prior
between 100 and 120 arcsec according to the description given in
Section 2.4.2. We choose the standard deviation of the Cj,l such that
the maximum amount of the convergence is κ = 1.75 (assuming
Dls/Ds = 1), which keeps the perturbed surface in a reasonable range
compared to the parametric-only part.

4 R ESULTS

We now compare the simulated data of the Hera cluster to the fiducial
and the perturbed models. We present in Section 4.2 results on the

mapping of the deflection angle fields through the reproduction of the
multiply imaged systems. Differences in the 2D mass distributions
and mass density radial profiles are shown in Sections 4.3 and
4.4, respectively. We also investigate the effective Einstein radii
in Section 4.5 and the distribution of the substructure masses in
Section 4.6. Each comparison is made with models optimized on the
same set of constraints.

4.1 Bayesian criteria

Our tests provide us with multiple models reproducing correctly the
same constraints, but with different number of parameters. In order to
distinguish between these models, we make use of different criteria
based on information theory or Bayesian inference (Liddle 2007).

We use the likelihood function of the predicted multiple images
positions and the number of parameters estimated by the model
to compute the following criteria: Bayesian information criterion
(BIC; Schwarz 1978), Akaike information criterion (AIC; Akaike
1998), deviance information criterion (DIC; Spiegelhalter et al.
2002), and the negative log-Evidence − Log(E) (Jullo et al. 2007).
Fig. 3 compares the obtained values with the usual χ2 for best
models, here divided by the number of multiple images ν. We also
investigated values given by the Widely Applicable Information
Criterion (Watanabe 2010) and the Widely Applicable Bayesian
Information Criterion (Watanabe 2012). However, as they show
similar results to the DIC and BIC, respectively, we do not show
them on the graph for more clarity. We note that BIC, AIC, and χ2/ν
are computed for the best model only while the Evidence and the
DIC both take into account the full posterior distribution of models.
Most of these criteria except χ2/ν are meant to be compared between
models. A model must show a strong difference in a given criterion
to be judged better than another. In the case of the AIC, BIC, and
DIC, a difference of 10 rules out a model compared to another and for
the −Log(E) we choose a difference equivalent to 5σ significance,
which is about 12.5 (Trotta 2008). When two models are judged
equivalent based on these conditions, we apply Occam’s razor by
selecting the model with the fewer parameters. To determine the best
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2008 B. Beauchesne et al.

Figure 3. Left-hand panel: summary of values obtained for the −Log(E), BIC, AIC, DIC, and χ2/ν related to each model optimized on the first set of multiple
images. Right-hand panel: same plot but for models fitted on the second set of constraints.

model according to χ2/ν, we select models that reach a value of 1 or
less and apply Occam’s razor.

Most notably, there are two different patterns among all criteria,
AIC and BIC show a clear minimum with n, when the three others
reach a plateau where all models are equivalent. Considering the
rules introduced before, BIC and AIC favour models with n = 5 for
both set of constraints. We note that the AIC indicates that models
with n = 5 and 6 are equivalent on the first set of constraints. The
best models according to −Log(E), DIC, and χ2/ν have n = 6, 12,
9 and 8, 5, 7 for models optimized on the first and second set of
constraints, respectively.

Regarding our rules, the DIC favours n = 12 on the first set of
constraints because it shows a significant difference on the DIC
compared to n = 6 (models with 6 < n < 12 being equivalent to the
latter). However, it is likely that these two models are also equivalent
due to possible estimation error, which would imply that the model
with n = 6 is the best according to this criterion. Similarly, −Log(E)
shows the same pattern on the second set of constraints with n = 5
and 8. In both cases, the smaller n is the one when these criteria reach
their plateau. In conclusion, most criteria agree on the best value of
n, whether they reach a plateau or the best models according to our
rules. The χ2/ν tends to select models with a higher n but it strongly
depends on our choice on the observational error on the multiple
images positions.

We will assess in the next section the accuracy of these criteria
with metrics based on a comparison with the simulated data. The
goal is to define a criterion to select n in the case of a real cluster.

4.2 Reproduction of multiple images positions

The first improvement obtained by the addition of the B-spline
surface is a better reproduction of the multiple images positions.
This is shown in Fig. 4, which presents the residual distances between
the predicted and the observed multiple images. Error bars shown
in these figures are the statistical uncertainties from the MCMC
run. These figures show a clear improvement when we compare the
fiducial models (which are parametric-only) to models with B-spline
perturbations, and this enhancement is consistent among all multiply
imaged systems. We see that the root mean square (rms) error on
the multiple-image position decreases as we increase the number of
B-spline functions (n2) added to the models.

For the first set of constraints, we obtain an rms of 0.20 arcsec for
n = 11 on the best models, which is an improvement by more than
a factor of 4 when compared to the rms of 0.91 arcsec obtained for
the fiducial model. Variants from n = 9 to 12 all reach the assumed
observational errors of 0.2 arcsec and show similar residual distance
distributions without significant enhancement. The rms of models
from n = 3 to 8 are progressively decreasing as shown by the dashed
lines in Fig. 4. For the first set of constraints, we obtained rms values
of 0.57, 0.27, and 0.22 arcsec, for models with n = 3, 5, and 8,
respectively. The corresponding rms values obtained with the second
set of constraints are 0.46, 0.23, and 0.22 arcsec. The second set of
constraints shows a similar trend, with perturbed models reaching the
observational errors of 0.2 arcsec at n ≥ 7 while the fiducial model
had an rms three times higher with 0.62 arcsec.

If we look at multiple images more precisely, the fiducial models
exhibit several multiple images that are poorly reproduced (e.g. 51.3
and 51.2 or 1.1 and 1.2 for the first and second set of images,
respectively) but also images that are very well predicted within
the assumed observational error (e.g. 113.3 and 13.2 for the first
and second set of images, respectively). However, as n is increasing,
the spread of the distribution of these distances is reduced, making
the reconstruction of multiple images more homogeneous. More
quantitatively, the standard deviation among these distributions is
reduced for both sets by a factor of ∼4 between fiducial models
and the perturbed ones with n = 7 (>0.35 arcsec compared to
∼0.10 arcsec for both sets of constraints).

4.3 Mass distribution

4.3.1 Parametric components

The parametric part of the mass distribution does not show specific
trends with n on the cluster-scale and galaxy-scale dPIEs. Most
parameters agree within 3σ among all models on a specific set.
rcut estimates related to BCGs present a statistically significant
dispersion between models, but they are the only estimations with
these properties. The estimations obtained for the scaling relation
parameters, σ ∗

0 and r∗
cut are shown in Fig. 5 for models optimized on

both sets of constraints, the uncertainties represent 68 per cent of the
distribution. As we can see, there are no striking changes between
models if we except σ ∗

0 estimation of the model with n = 3 on the first
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Perturbative mass modelling of cluster lenses 2009

Figure 4. Top panel: residual distances between the observed and the predicted multiple images positions. These distances are provided for the best-fitting
models optimized on the first set of constraints. Errors show the statistical uncertainties from the MCMC runs. Multiple images are plotted in ascending order
according to their projected distance to the cluster centre, converted into physical distance in the lens plane. The dashed lines represent the rms achieved by
a model among a specific sets. Each lines is associated to the model that is represented by the same colour on the scatter plot. Labelled multiple images are
deviant points and are discussed in Section 4.2. Bottom panel: same plot but for the second set of multiple images.

Figure 5. Left-hand panel: parameter space related to cluster member profiles. The cut radius r∗
cut is plotted in function of the central velocity dispersion σ ∗

0
and the errors represent 68 per cent of the distribution of these parameters from the MCMC output. Models considered are optimized on the first set of multiple
images. Right-hand panel: same plot for the second set of constraints.

set of constraints which shows significantly lower values compared to
other models. Thus, it is the only main difference that is seen among
all dPIE parameters. This is due to the large standard deviation of
their prior as these parameters are less constrained compared to the
BCGs or DM clumps parameters. Similarly, no particular trend is
observed for the perturbation centre, the position angle, and dlatt.
Estimations of these parameters converge to different values that are
uniformly spaced within the prior distribution. Only a few of these
estimations are in agreement within 3σ between models.

4.3.2 2D convergence field

The top row of Fig. 6 shows the convergence κ obtained for the
best models with and without perturbation (n = 7), for both set of
constraints. The distribution due to the parametric component is
shown in grey scale while the change in κ caused by the perturbation
is shown in colour depending on whether it is increasing (green) or
decreasing (pink) κ . The convergence κpert due to the perturbative

modelling shows a good agreement between both sets of constraints;
the pink and green regions are similar.

We can see that for the first set of constraints on the left-hand
column of Fig. 6, the perturbation has a more significant contribution
compared to the second set of constraints. Especially, the standard
deviation of pixel values inside a disc centred on the cluster centre
with a radius of 100 arcsec is 20 per cent higher and the peak-to-
valley amplitude is 10 per cent higher than the model fitted on the
second set. This could be because the fiducial model used to define the
dPIE parameter priors has a poorer reproduction of multiple images
resulting in an ∼50 per cent higher rms. However, both perturbed
models achieve a similar rms (0.23 and 0.20 arcsec for the first and
second set, respectively).

For the two sets of multiple images and for both the fiducial model
and the perturbed one, the middle row of Fig. 6 presents maps of
relative errors on κ:

�κrel = (κbest − κtruth)/κtruth, (17)
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2010 B. Beauchesne et al.

Figure 6. Results obtained on the convergence maps. Top row: in reading order: maps of κ for the fiducial model and the perturbed one with n = 7 optimized
on the first set of multiple images, and the same maps for the second set of constraints. For perturbed models, the convergence due to the parametric component
is shown in grey scale, while the free-form component follows a colour scheme where green is positive and pink is negative. The cyan closed-curve delimits the
constrained area; it represents the area that can contain multiple images for sources at z = 7. For perturbed models, the position of knots of the B-spline mesh
are represented by red dots; the ones that are coincident with non-zero basis functions are in green and follow the scheme introduced in Fig. 1. Second and third
row: same as the first row for �κ rel maps and �κ/σκ ) maps, respectively.

where κbest is the convergence from the best-fitting model and κ truth

is the convergence from the simulation. The bottom row of Fig. 6
shows maps of the errors expressed in terms of σ κ , the statistical
uncertainties on κbest obtained from the MCMC run:

�κ/σκ = (κbest − κtruth)/σκ . (18)

Adding the perturbation brings the relative error on the convergence
in the range of ±10 per cent over a larger area. However, this comes
at the cost of a larger relative error near the limits of the perturbation
where there are fewer constraints. This is especially visible near �α

∼ −40 and ∼40 arcsec, where there is a hole in the mass distribution.
A similar pattern can be seen at �α ∼ −60 and ∼−25 arcsec for
models on the first set and at �α ∼ −25 and ∼−50 arcsec for the
second. Nevertheless, according to the last row in Fig. 6, the ratio of
the error and the statistical uncertainties are not increased in these
regions compared to the fiducial, it is the opposite. Even if the best-
fitting model with n = 7 can have a worse reproduction of these area
due to fewer information provided by the constraints, it is accounted
for in the statistical error. The same behaviour is exhibited but with
a peak of mass instead, along the upper left-hand edge of the B-
spline surfaces. In the same way, larger statistical uncertainties are
propagated at these positions.

4.3.3 Errors on the 2D convergence field

To better quantify the impact of the perturbation, Fig. 7 presents the
distribution of |�κ rel| contained inside a circle of growing radius
and centred on the cluster centre (e.g. Fig. 2, left-hand panel). The
shaded areas show 68 per cent of the distribution while the central
lines represent medians, and the small black bars show the radius of
multiple images relative to the cluster centre. For more clarity, only
four models are plotted for each set of constraints to illustrate the
trends.

Perturbed models with n ≥ 5 show an improvements in the median
values compared to the fiducial one for both sets of constraints.
If we look at the models plotted, these perturbed models have a
median lower than at least 0.5 per cent at R ∼ 60 kpc to more
than 4.5 per cent at the edge of the constrained area for the first
set of constraints. The improvement is smaller for the second set of
constraints, there median values are only lower of at least 1.5 per cent
for R ≥ 280 kpc. Most notably, the fiducial model associated with the
second set of constraints outperforms the one on the first set. Only
models with n = 5 show a similar behaviour with a better result on
the second set, when other perturbed models present similar |�κ rel|
between their optimization on the different realization of constraints.
Thus, this sensitivity to the realization of constraints explains why
the difference on the median values between perturbed and fiducial
models is smaller for the second set. This also shows a weaker
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Perturbative mass modelling of cluster lenses 2011

Figure 7. Left-hand panel: the median |�κ rel| measured in an enclosed circle centred on the cluster centre. It shows how accurately the best models reproduce
the correct data for the first set of constraints. The error shows 68 per cent of the distribution. Right-hand panel: same plot for the second set of constraints.

Figure 8. Same as Fig. 7 but for |�κ/σκ | maps.

dependence on a specific set of constraints for perturbed models
compared to fiducial ones.

The best improvements of perturbed models compared to fiducial
ones are on the upper bound at 84 per cent. These enhancements
are present on models with n ≥ 5 in the constrained area (e.g. R ≤
280 kpc). The differences with the fiducial models are the largest in
the range 130 <R < 280 kpc where the upper bound for perturbed
models are almost constant and below 10 per cent. The same limit
is exceeded for fiducial models at R ∼ 150 and 210 kpc for the first
and second set, respectively. Hence, most perturbed models tend to
reduce the width of the error on the convergence field compared to
the fiducial ones in the constrained area as it is shown qualitatively
in Fig. 6 and by the median and upper bound values.

Similarly to Fig. 7, Fig. 8 shows the distribution of |�κ/σ κ | inside
a circle of growing radius. As the results on |�κ rel|, the median values
for fiducial and perturbed models with n = 3 and 4 are the highest
ones for both set of constraints. Most notably, for perturbed models
with n > 4, the median values are constantly within 3σ and 2σ from
the simulated data for R < 340 kpc for models on the first set and on
the second set, respectively. If we look at the upper bound at 84 per
cent, they show an agreement at less or similar to 7σ and 5σ for the
same models and the same radius. For the fiducial models, the median
values are contained between 1σ and 7σ when the upper bound is
between 2σ and 16σ for both set of constraints. Hence, as we have
seen in Fig. 7, median values are better for most perturbed models
compared to the fiducial and the best improvements are especially

seen on the upper bound at 84 per cent. These enhancements show
that the addition of the perturbative surface makes the estimation
of the errors on the convergence through the statistical uncertainties
much more accurate. It constitutes evidence that the perturbation
allows for more flexibility on the mass reconstruction, which could
vary more homogeneously than with the dPIEs only. Particularly,
only a few multiple images can well constrain a dPIE in areas where
no observables are accessible. In the case of a perturbative surface,
when there are no constraints in a region, the associated statistical
uncertainties are increased.

4.4 Radial profiles

We investigate the reproduction of radial mass profiles by computing
the mean surface density enclosed in concentric annuli around the
cluster centre shown in Fig. 2. These profiles are shown in Fig. 9
for the best models. The shaded areas represent three times the
statistical uncertainties, and the black tick indicates the multiple
images distances with respect to the centre.

Following the results on the convergence field discussed in
Section 4.3, the true mass profile is not well-recovered at large radii
by the fiducial model obtained with the first set of constraints. But
even in this case, a perturbation with n ≥ 5 appears to be effective at
improving the profile. All other models agree with each other at the
3σ level for R < 600 kpc, which is roughly the limit of the publicly
available data on Hera. Overall, ignoring the peaks due to the BCGs
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Figure 9. Radial profiles of the mass distribution. First row: profiles computed with the mean surface density enclosed in concentric annuli around the cluster
centre for best-fitting models and the true mass distribution. The black bars represent the distance of the multiple images from the cluster centre. Profiles on
the left- and right-hand panels are associated with models optimized on the first and second set of constraints, respectively. Second row: the relative difference
between profiles from best-fitting models and the true distribution. In both rows, the errors represent three times the statistical uncertainties from the MCMC
runs.

at R ∼ 60 kpc, those models recover the true profile to within 5
per cent inside the constrained area (R ≤ 250 kpc) but consistently
underestimate the mean surface density by ∼ 10–35 per cent outside.

Although the improvement on the radial profile offered by the use
of a perturbation is only marginal, it is able to partially correct the
profile when the parametric modelling initially under-performs. We
note however that an accurate recovery of the profile on large scales
depends partly on the distribution of multiple images, as illustrated
by the small differences between the two sets.

4.5 Effective Einstein radii and critical lines

Following Redlich et al. (2012), we define the effective Einstein
radius from the surface inside critical lines Scl at a given redshift:

θE(arcsec) =
√

Scl

π
. (19)

Fig. 10 shows Einstein radii computed between z = 1 and 9 for
the best models and their relative difference with respect to the
simulated data. The shaded area represents three times the statistical
uncertainties from the MCMC run.

All the models agree to within 3σ for both sets of constraints. They
agree within 3σ with the truth for most of the computed redshifts,
with relative differences being mostly below 5 per cent. For the first
set of images, Einstein radii for z = 1 and z ≥ 5 are slightly more
than 3σ away from the truth while only the Einstein radius for z = 2
is slightly underestimated for the second set. However, we note that
the critical lines are less extended to the right-hand side of the cluster
in the models compared to the simulation. This is due to a galaxy
that is not modelled by a dPIE profile in the model provided for the
HFF challenges (Meneghetti et al. 2017). Ignoring the last fact, the
tangential critical lines from perturbed models are close to the true
ones as we can see in Fig. 11, which shows the critical lines for
1000 models from the sample with n = 6 for both set of constraints.

However, the radial critical lines are not well reproduced and show
significant differences with the one from the simulation. We can also
see that the distribution of these lines is widening as they are further
away from the constrained area. This behaviour is more and more
significant as n is increasing.

dPIE profiles used to model cluster members have a more concen-
trated distribution at their centre in comparison with the simulated
data, which result in more critical lines for the considered redshifts
on the galaxy scale.Thus, this can compensate for the less extended
critical lines on the right-hand side and the galaxy that is not modelled
in computations of the effective Einstein radii. Meneghetti et al.
(2020) showed that a similar behaviour is even present in more
recent state-of-the-art simulations. They found that cluster members
in simulated clusters tend to produce less secondary critical lines
compared to observations. Overall, as all of these models show
similar patterns in reproducing the critical lines, the addition of a
perturbation does not significantly improve the estimation of the
effective Einstein radii.

4.6 Substructure masses

We investigate the reproduction of the galaxy-scale components by
comparing the mass enclosed in a circle around cluster members in
our models and in the simulation. We only consider galaxies that
are modelled by a dPIE profile, because even if our perturbation
increases the model flexibility, its scale is still much larger than
the spatial scale of the cluster members. To be more specific, if
we compare the median distance between rcore and rcut for cluster
members, excluding BCGs, and the distance between two B-spline
bases dlatt/(n + 1), the first ranges between 1 and 10 arcsec when
the second ranges between 8 (n = 12) and 30 arcsec (n = 3). The
effective radius used to compute the mass is defined as reff = 10

√
ab,

where a and b are the semimajor axis and semiminor axis of an ellipse
describing the galaxy light distribution. Histograms in Fig. 12 show
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Perturbative mass modelling of cluster lenses 2013

Figure 10. Left-hand panel: effective Einstein radii. First row: Einstein radii for best-fitting models optimized on the first set of constraints and the simulated
data of Hera cluster. Second row: relative difference between the radii from the best-fitting models and the true data. For both rows, the shaded areas represent
three times the statistical uncertainties. Right-hand panel: same plot for the second set of multiple images.
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Figure 11. Critical lines from 1000 perturbed models with n = 6 from the output of the MCMC chains along with the ones from the simulated data of Hera
cluster. The lines are computed for z = 1 (green), 2 (red), 3.5 (blue), and 7 (orange); solid and dotter lines are associated with the perturbed models and the true
data, respectively. Models on the left- and right-hand panels are fitted on the first and second sets of multiple images, respectively.

the distribution of the ratio between the mass estimated by best-
fitting models and the mass calculated with the true distribution;
errors represent three times the statistical uncertainties.

Fig. 12 shows that the mass distributions of galaxy-scale compo-
nents are similar for all models with the exception of the model with n
= 3 for the first set of constraints. This is consistent with Fig. 5 where
estimates of r∗

cut and σ ∗
0 are found to be mostly in agreement except

for the particular model at n = 3, which has a significantly lower
estimation of σ ∗

0 . Thus, this shows that perturbed models produce
equivalent mass distribution for cluster members if the estimations
of r∗

cut and σ ∗
0 are comparable between models.

Both perturbed models and fiducial ones exhibit a bias in over-
estimating the mass contained in cluster members. For the first
realization of constraints, most cluster members are between 0 and

20 per cent more massive than the true values from the simulation.
This bias is stronger with the second set of constraints, even if the rms
is lower for the fiducial and perturbed models compared to the first
set at a fixed n. Also, a non-negligible part of the cluster members
has been overestimated by more than 30 per cent, both for perturbed
and fiducial models. We can also note that a part of this bias is due
to the excess of mass at the centre of dPIE profiles, which is absent
from the Hera true mass distribution. However, as mentioned above,
it is in agreement with the observations of small-scale gravitational
lensing events. Thus, if we ignore the specific models with n = 3 on
the first set of multiple images and considering that the differences
between models are dominated by the r∗

cut and σ ∗
0 estimation, there

is no significant improvement in the reconstruction of galaxy-scale
components.
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Figure 12. Histograms of the distribution of the ratio between the mass of cluster members computed on the best-fitting models and on the simulated data.
These masses are computed as the mass enclosed in a circle of radius reff centred on the centroid of the associated galaxy luminosity distribution. The shaded
areas represent the statistical uncertainties from the output of the MCMC. Histograms on the left- and the right-hand panels are associated with models optimized
on the first and second set of multiple images, respectively.

5 D ISCUSSION

5.1 Model metrics definition

To compare more quantitatively which model provides the best
reproduction of the true mass distribution, we use six metrics focused
on the following measurements:

(i) 2D mass maps in the constrained area.
(ii) Radial mass profiles.
(iii) Substructures masses.
(iv) Positions of barycentres used to predict multiple images on

its set.
(v) Errors on multiple images positions estimated with the mag-

nification tensor. These images are different from the ones used in
the optimization.

(vi) Effective Einstein radii.

As we aimed at modelling the mass distribution of clusters, three
of the metrics (out of six) are focused on this property. Because
the 2D mass maps metric is a global measure of the distance
between two distributions, it can not be used alone to probe more
specific contributions to these distributions such as the mass of
the substructures, the cluster-scale or the non-radial components.
Radial profiles account for the cluster-scale distribution by probing
the global slope of the mass distribution. Substructure masses are
directly measured, and the combination of the three metrics probes
the performance on the non-radial part.

We also put a specific focus on the deflection angle field with
two metrics as it is directly constrained by the lens equation (i.e.
equation 1). We assess the source plane bias with the residual error on
the positions of each multiply imaged source. Then, we look into the
robustness of the fit with the error on the reproduction of constraints
that are not used in the optimization. Due to the non-linearity of the
lens equation, there may be no solutions for few multiple images
(i.e. ∼10 images among ∼200 others), even if the different sources
of each element of the observed multiply imaged systems are close.
In that case, we cannot have meaningful statistics, so we used the
magnification tensor to obtain a first-order approximation of the
multiple images reproduction; similarly to what has been done by
Oguri (2010) using the GLAFIC software. This metric is also different
from the metric based on the source positions because here we do
not use information about the true sources.

Finally, we provide some insights on how well the magnification
field is reproduced with a metric on the effective Einstein radii. It
allows us to probe the cluster magnification on the cluster-scale.
Along with the radial profile and substructure masses, these radii
are physical quantities that would be extracted from real data to be
compared with large-scale simulations to constrain DM properties;
for that reason, we need to favour models that reproduce them the
most accurately (Richard et al. 2010; Natarajan et al. 2017).

For a given physical quantity V, where N measured values Vi are
obtained and Vtrue is the same quantity derived from the simulation,
we can express the metric as the inverse of the average absolute
relative error on V:

metric = 1
N∑

i=1

1
N

∣∣∣ Vi−Vtrue,i
Vtrue,i

∣∣∣ . (20)

To give an example on how this metric works, we will consider the
case of the effective Einstein radii. First we compute N radii for a
given model in the output of the MCMC chains. Then the same radii
are computed from the simulated data of Hera cluster, and finally
we take the mean of the relative difference of each radius between
the truth and the considered model as showed by equation 20. This
expression is used for all the metrics mentioned above except for the
barycentre positions and the errors on multiple images. For the last
two, as we compare the position of two points in a plane we use the
absolute error instead of the relative error, which gives

metric = 1
N∑

i=1

1
N

√
(Vx,i − Vtrue,x,i)2 + (Vy,i − Vtrue,y,i)2

. (21)

From the posterior distribution, we obtain a distribution of metrics
computed for each individual sample of parameters. Then, we extract
the median, the lower and upper bound at 68 per cent of the
distribution and the value for the best models. We normalize each
median metric and the associated error by the maximum between
the upper bound at 68 per cent obtained of all types of modelling on
the two sets of constraints. Hence, metrics from both set of multiple
images can be compared together, and the different points are on an
equivalent scale.
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Perturbative mass modelling of cluster lenses 2015

Figure 13. Left-hand panel: on the first row, a radar chart created with the metric values obtained on models optimized on the first set of constraints. The metric
values for the best-fitting models are represented by stars, the median values of all MCMC samples are joined with a solid line, and the shaded areas represent
68 per cent of the distribution. We only present the fiducial model and the ones that are the best according to a Bayesian criterion or the metrics. On the second
row, a graph of the median of the averaged metrics distributions of each modelling. Errors represent 68 per cent of the distribution. Right-hand panel: same radar
chart and graph but for the second set of multiple images.

5.2 Model metrics

Radar charts shown in Fig. 13 present the different metric values,
the plain lines show the median, the shaded areas 68 per cent of
the distribution and the stars represent the metric values for best-
fitting models. For more clarity, we only show models that are the
best according to either a Bayesian criterion or the median of the
posterior distribution of the average of the six metrics obtained for a
given modelling for all realization of constraints. The model that is
the best according to a metric is not necessarily showed.

The metrics improved by adding a perturbation include the 2D
convergence in the constrained area, the multiple images mapping
and the radial mass profiles. Indeed, the reconstruction of multiple
images positions is the metric where perturbed models show the
most significant enhancement. The fiducial model, on the first set,
has a metric value around 2.5 times lower than the best perturbed
model (n = 7 with a metric value of 1). On the second set, it is only
around two-thirds of the best perturbed model metric value (n = 5).
Interestingly, perturbed models on the first realization of constraints
have higher rms on multiple images used during optimization and
suffer from a starting point (i.e. the fiducial model) that have an rms
50 per cent higher than the one on the other set, but they performed
better on this extra set of multiple images.

Enhancement on the 2D mass distribution in the constrained
area can be expected from results seen in Fig. 7. Most notably, all
perturbed models from each realization of constraints have a metric
value between 0.6 and 0.9. Metric values for fiducial models are
around 0.7 or lower, with the one on the second set of multiple images

performing better, at the level of the worst perturbed modellings (i.e.
models with n > 8). The same behaviour happens for mass profiles
when fiducial models have metric values equivalent to the ones of the
worst perturbed models. Thus, the major improvements due to the
perturbation are on the reconstruction of multiple images positions,
and smaller ones are seen on the 2D mass distribution and the radial
mass profiles.

Source positions, effective Einstein radii, and mass of substruc-
tures present equivalent values between fiducial and perturbed
models, with the fiducial performing more than some of the perturbed
models on Einstein radii for the second set or the mass substructure
on the first set of constraints. Also, the improvements on the multiple
images but not on the source positions indicate that perturbed models
are as biased as the fiducial model in determining positions in the
source plane. We can expect from the enhancement of the 2D mass
distribution that the bias is mainly a constant shift on all images that
do not affect the second derivative of the lensing potential. However,
our constraints are unable to break this degeneracy between different
source planes and other observables such as time delay between
multiple images may reduce this bias for fiducial and perturbed
models. Similarly, the mass reconstruction improvements that do
not include a better estimation of the substructure mass show that
the enhancement is only on the cluster-scale components. Thanks
to the results on the second set of constraints where refinements on
the mass profiles are negligible, we can assess that the non-radial
components have a better reconstruction in perturbed models with n
< 8 compared to the fiducial one.
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5.3 Bayesian criteria accuracy

To assess which models are the best according to the metrics, for
all the posterior distribution we compute the mean of the different
metrics values for each modelling, which are shown in Fig. 13. They
are favouring models with n = 6 and 7 almost equivalently on the first
realization of multiple images and with n = 5 for models optimized
on the second realization. All perturbed models are better than the
fiducial one for the first set of constraints. However, only the ones
with n = 4, 5, 6, and 7 are better on the second set, the other perturbed
ones being equivalent or worst. Models with n ≥ 8 tend to be rejected
by the metrics and they are also the models that have more parameters
than the number of constraints, suggesting an overfitting. The model
with n = 3 is only better on the first set, this is partially due to
its good performance on the substructure masses (i.e. it is the best
models among all others on both sets for this metric).

Notably, there is a significant difference in modelling perfor-
mances according to the averaged metrics between the results on
both sets of constraints. This difference is the highest for parametric-
only models with an improvement of 36 per cent on the second set
of constraints compared to the first one. In comparison, perturbed
modellings show gains of less than 20 per cent between both sets,
and if we except models with n = 5, these gains are below 12 per
cent. Hence, perturbed modellings cannot keep all enhancements
provided by the parametric-only approach used to define priors on
their parametric components but show less dependence on the set of
constraints.

We can now assess the information given by all the criteria by
comparing Fig. 13 with Fig. 3. BIC and AIC have selected models
with n = 5 for both set of constraints, they chose the right one for
the second set and they were close for the first. We note that the
AIC is little bit better as it favours equivalently models with n =
6 and 5 while the BIC rules out the former. They both have the
advantage of strongly penalising models based on their number of
parameters while the DIC and −Log(E) show them to be equivalent.
These last two criteria have a kind of Occam’s razor, with an effective
number of parameter for the former and the ratio of the parameter
volume between the posterior and the prior distribution for the
latter. Nevertheless, the effective number of parameter based on the
Bayesian complexity (Trotta 2008) is increased with n but is rather
almost equivalent for models with higher n. There is the same pattern
for the evidence, as there are an increasing number of correlated or
unconstrained parameters, thus more data are necessary to accurately
compare model with a higher n. Without considering this fact we
would think that the DIC and −Log(E) support models with n = 12
instead of n = 6 for the first set of constraints and n = 8 instead
of n = 5 for the second one, respectively. Thus, considering these
minimal adjustments into account DIC and −Log(E) both support
model with n = 6 on the first set and n = 5 on the second one in
agreement with the metrics. Looking at n = nplateau, when both of
these criteria reach their plateau (see Section 4.1), it leads to the right
results. Thus, they should be preferred to the BIC and AIC, which
only agree with the metric on the second set of constraints instead of
both sets.

We can also look at the correlation between the averaged metric
distributions and their associated distribution of χ2

ν /ν (e.g. Fig. 3). As
seen on the figure, we can not assess a strict anticorrelation between
distributions on both sets of constraints. In particular, models with n
≥ 8 have lower χ2

ν /ν in comparison to models with smaller n that
are favoured by the metrics. Hence, χ2

ν /ν is not a good indicator of
the model quality and can not be used alone to discriminate between
different modellings. However, most models with lower χ2

ν /ν values

show better or equivalent performance on the averaged metrics. This
trend is followed by a drop of metric values at n = 8 and 6 for the
first and the second set of constraints, respectively. As these drops
are disfavouring models with a higher number of free parameters,
this can indicate an overfit. Nevertheless, the limit on the number of
parameters seems to depend on other properties than the number of
multiples images and associated sources that are equivalent between
both sets. In the light of this result and on criteria based on χ2

ν /ν

distributions (e.g. AIC, BIC and DIC), model quality can still be
fairly assessed by combining χ2

ν /ν values with a discussion on the
number of free parameters as included in these criteria.

We are now able to complete our method on how we can select
the best number of B-splines in a real case. Here, we have chosen the
error on the multiple images positions σ i,j to be equal to 0.2 arcsec
for each image. Models should be run with a σ i,j comparable to the
minimal rms values possible on the multiple images positions to
reproduce the situation obtained here, and the best modelling should
be chosen according to the BIC or AIC best model or according to
nplateau values given by other criteria. A new run should be done with
the selected model with a value of σ i,j comparable to the error reached
in the previous run to obtain a correct estimation of model errors as
it is already done in the fiducial LENSTOOL method (Bergamini et al.
2019; Caminha et al. 2019; Rescigno et al. 2020).

5.4 Evolution of the averaged metrics with the number of
constraints

To probe the correlation with the number of multiple images and the
best n according to the metrics, we reproduce the procedure detailed
in Section 3 to create multiply imaged systems sets with increasing
size. We start with a set of around 20 elements that we increase by
a ten until we reach approximately 110 multiple images. We use the
two sets defined previously to account for a set of 50 elements instead
of creating a new one.

For each of these sets, we repeat almost the same methodology of
modelling and analysis that has been done in the previous section.
Hence, we obtain the best n according to each Bayesian criteria and
the averaged metrics distributions that are presented in Fig. 14 in
function of the number of multiple images. As AIC and BIC show
similar results we only present the former in Fig. 14. Similarly, we
only represent the −Log(E) to account for the two remaining criteria.
The best n according to the median of the averaged metric distribution
is referred to as nbest. As we already experienced overfitting cases for
models with a high n, we do not optimize models up to n = 12 for
sets with a smaller number of multiple images (i.e. sets with less than
50 images). Following the discussion on the DIC and −Log(E) in
Section 5.3, we choose the model with the lower n in similar cases.

According to all Bayesian criteria, the best modellings have n
values correlated with the number of constraints, especially when
this number is below 80. For a larger number of multiples images,
the best n does not follow the same increasing trend and seems to
reach a plateau with values between 5 and 8. Interestingly, modellings
with n ≥ 8 can not capture more information from the constraints
than the ones with lower n, which could indicate the limit of the
flexibility added to the reconstruction by the perturbative approach.
The increasing complexity of the optimization problem could also
play a part in these results. However, these patterns are not fully
supported by the metrics as nbest values tend to favour mostly models
with n between 5 and 8. Most models tested for sets of 30 multiple
images or less agree at 1σ according to the metrics, which limits
the determination of nbest in this range. Hence, if we do not take into
account results on these sets, there is no clear correlation with the nbest
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Perturbative mass modelling of cluster lenses 2017

Figure 14. Left-hand panel: graph of the averaged metrics distribution in function of the number of multiple images used during the optimization. The plain
lines and the shaded areas represent the median and 68 per cent of the distribution, respectively. We only present models with n ≤ 8 and fiducial ones for more
clarity. Right-hand panel: estimation of nbest according to the AIC and −Log(E) in function of the number of multiple images. We do not show the BIC and
DIC as they produce results very similar to the AIC and −Log(E), respectively.

and the number of multiple images nor with the number of constraints
(i.e. the number of multiple images where the number of systems
is subtracted). Other parameters related to the positions of multiply
imaged systems such as the distribution of distances between them or
the systems geometries can lead to a better understanding of the nbest

evolution. We searched for such correlations between these positions
and the mesh of B-splines without success.

The median of the averaged metric distribution give us more
insights about the pattern followed by nbest. Indeed, there is a weak
increasing trend of the median values with the number of multiple
images until this number reaches approximately 50 where the median
is at its peak for n = 5. As there are no refinements for sets
with a larger number of constraints, this confirms the limitation
of the perturbative approach. For most sets, modellings with n ≥
8 are unable to outperform models with a lower n even with more
constraints. Nevertheless, perturbed models are still ahead fiducial
ones on 2D mass maps, multiple images and mass profiles metrics
even on sets with less than 30 multiple images. These enhancements
are less substantial than the ones presented in Section 5.2, which
explains the lower performance on the averaged metrics. Hence,
depending on the physical properties extracted from models, the
addition of a perturbation is not always pertinent for a small set of
constraints.

Finally, we use results from all these sets of multiple images to
probe the consistency of the estimation of nbest by the Bayesian
criteria. We use the models that have an averaged metric distribution
that agrees at 1σ with the one with nbest and the mean of the favoured
rank modellings for each criterion. Hence, all four criteria have
similar results when estimating nbest. They favoured one of the best
models (i.e. modelling in agreement within 1σ with nbest) from 6 to 8
out of 11 sets; DIC and −Log(E) obtain both the best performance.
Considering the rank estimation, the mean among all set for each
criterion are between 3.36 ± 2.50 for the DIC and 4.45 ± 2.91 for
the BIC; AIC and −Log(E) present result similar to the DIC. Then,
we can conclude that all criteria have the same kind of performance
with a small refinement provided by DIC and −Log(E) compared to
AIC and BIC. However, there are not consistently predicting one of
the best modellings. We can assume that depending on the realization
of multiple images, models that agree at 1σ with nbest could be the
best on another set. Then, these estimations, especially for the DIC

and the −Log(E) can be reasonably trusted even though they are not
perfect.

5.5 Computation time

It is important to note that adding this perturbation is more time
consuming compared to the parametric-only modelling. This slow
down is mostly due to the increasing number of free parameters that
need to be estimated. To give a comparison, fiducial models take
almost 5 h on 15 Intel Xeon E5-2640 v3 cores at 2.6 GHz to be
optimized. If we add a perturbation with n = 8, this takes almost
15 h, but this time is gradually increasing. For example, with a
perturbation with n = 3, the computational time is nearly the same as
without perturbation. This scaling is due to the number of B-spline
coefficient sampled, which is increasing as n2. To be more specific,
a single evaluation of the gradient of a B-spline surface is only two
times longer than for one dPIE. None the less, improvements in the
implementation may speed up the modelling process in the future.
In the case of already existing strong lensing models, it is possible
in a very reasonable amount of time to modify them to incorporate a
perturbative surface.

6 SU M M A RY A N D C O N C L U S I O N

In this paper, we have presented a new hybrid approach for the
reconstruction of the cluster cores with strong lensing constraints.
It combines the parametric modelling implemented in the software
LENSTOOL with free-form components made of B-spline functions.
It combines the advantages of both approaches by providing a
reconstruction of cluster mass distribution that has the robustness
of the first approach with the increased flexibility of the second.
We tested this new method on the realistic simulation of a bi-modal
galaxy cluster called Hera, which is one of the two simulated clusters
chosen to compare the different modelling techniques involved for
the HFF challenge (Meneghetti et al. 2017).

We found that the perturbative models showed a better reconstruc-
tion of the multiple images positions with an rms three to four times
lower than the fiducial parametric-only modelling. The estimation
of the surface mass density was improved as well, with an error
spread reduced in the case of perturbed models. The reproduction
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of the mass density radial profiles, Einstein radii and the mass in
substructures were comparable in quality to the one obtained by the
fiducial modellings with small improvements on the radial profiles in
the constrained area. We note a dependence of these reconstructions
on the realization of constraints used during the optimization, which
is still present on perturbed models but with a smaller impact.

We quantified these improvements using an ensemble of metrics
based on the previous quantities compared to the simulated data of the
cluster. We also used those metrics to assess which Bayesian criteria
can be used to choose the appropriate number of B-spline functions
and found that they were all good candidates when considering the
most favoured models (AIC and BIC) or their nplateau (DIC and
−Log(E)).

After demonstrating the ability of this method to reconstruct more
accurately the mass distribution of a simulated cluster, the next step
will be to apply it on real data such as the HFF Clusters (Lotz
et al. 2017). The results on such clusters could also be compared
to other similar techniques to pursue the effort in analysing their
systematic biases (Meneghetti et al. 2017; Priewe et al. 2017; Raney
et al. 2020b). In addition, the difference with previous models
constructed with the parametric-only method of LENSTOOL can give
us insights on modelling choices. Especially, recent models of Abell
370 have used an external shear as a first-order perturbation, but no
external structures have been identified yet to justify it (Lagattuta
et al. 2017, 2019). Our free-form components could also enhance
the reproduction of the multiple images positions, but unlike the
external shear it would be directly linked with the shape of the
mass distribution in the cluster core. A better reproduction of these
positions will also help the source reconstruction of multiply imaged
systems by reducing the bias due to the error on each image position.
Future work may implement additional elements in the likelihood to
take into account all information contained in the light distribution
of each image and enhance such reconstructions.

We make this method publicly available trough its implementation
in the LENSTOOL software. More information about how B-splines
are computed can be found in Appendix A as well as an online
documentation for end users.7

Ongoing survey program such as Beyond Ultra-deep Frontier
Fields and Legacy Observations (GO-15117, PIs: Steinhardt &
Jauzac; Steinhardt et al. 2020) will complete the current HST data on
the HFF clusters with high-resolution weak-lensing measurements of
their outskirts. It has been shown that the neighbouring substructures
highlighted by weak-lensing analysis can bias the reproduction of
the cluster core (Jauzac et al. 2016; Mahler et al. 2018) through a
shear effect. Thus, a combination of state-of-the-art weak lensing
reconstruction such as HYBRID-LENSTOOL could be combined with
our free-form approach (Jullo et al. 2014; Niemiec et al. 2020).
Such methods can model self-consistently clusters on all scales and
take most of the information contained in the lensing measurements
to produce more accurate mass distribution for cluster lenses. It is
especially crucial as they allow us to probe the DM properties and the
cluster physics, but also enable a detailed study of the high-redshift
Universe, thanks to the magnification they provide.
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APPEN D IX: COMPUTING THE B-SPLINE
SURFAC E

To compute the B-spline surface at equation (7), we used the De Boor
algorithm that is written in pseudo-code in Table A1. This algorithm
computes the following sum:

m∑
j=1

CjBj,p,t (u), (A1)

where p is the polynomial degree, C the coefficient vector, t the knot
vector, m the number of basis functions, and u the point where the
B-spline is evaluated. Before applying the algorithm, the knot index

Table A1. Implementation of the De Boor algorithm used in the LENSTOOL

software.

De Boor Algorithm

Input p: Polynomial degree
ku: knot index
u: evaluation point
(tj)j ∈ [0, N − 1]: knot vector
(Cj)j ∈ [0, m − 1]: coefficient vector

Variable (dj)j ∈ [0, p − 1]

Output dp: Surface evaluation

For j=0, .., p, Do
dj ←− Cj+k−p

End For
For r=1, .., p, Do

For j=p, .., r − 1, Do
δ ←− (u − tj+k−p)/(tj+k+1−r − tj+k−p)
dj ←− (1 − δ)dj−1 + δdj

End For
End For
Return dp

ku associated with u has to be found such that tku
≤ u < tku+1. To

compute the surface, the algorithm has to be applied to compute two
different sums, each associated with one axis. The first one is

m∑
l=1

Cj,lBl,p,tx (x). (A2)

The coefficient Cj,l are substituted by the Cj = ∑m

l=1 Cj,lBl,p,tx (x),
which allows to apply the algorithm a second time to compute an
evaluation of the surface:

m∑
j=1

CjBj,p,ty (y). (A3)

All Cj do not have to be computed as we only need the ones with
j = ky − p, ..., ky to apply the algorithm where ky is the knot index
associated with y and ty. The surface is then multiplied by Dls/Ds to
obtain the perturbation added to the lensing potential.

Most of the lensing quantities can be computed with some linear
combinations of the lensing potential derivatives. Hence, we will
just define how to compute the derivative of the B-spline surface
associated with the potential. As derivatives of a B-spline surface
are also B-spline surfaces with different coefficients, knot vectors,
and polynomial degrees, we will only express that change since the
computing procedure of these surfaces is the same as before. We will
only consider the derivation along the x-axis as it can be generalized
to the y-axis. The coefficient Cx

j,l associated with this derivative are
expressed as

Cx
j,l = p

tx,j+p+1 − tx,j+1
(Cj+1,l − Cj,l). (A4)

Substituting tx by ty and j to l gives the expression for the y-axis.
We note that there are m − 1 basis functions on the considered axis
instead of m, with a polynomial degree of p − 1 and p on the x- and
y-axes, respectively. The knot vector associated with the derivative
is also modified, as its first and last terms are removed. Derivative
of higher order are computed by applying recursively the preceding
procedure.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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