
HAL Id: hal-03268782
https://hal.science/hal-03268782v1

Submitted on 23 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the detection of low-rank signal in the presence of
spatially uncorrelated noise: a frequency domain

approach
Alexis Rosuel, Philippe Loubaton, Pascal Vallet, Xavier Mestre

To cite this version:
Alexis Rosuel, Philippe Loubaton, Pascal Vallet, Xavier Mestre. On the detection of low-rank signal
in the presence of spatially uncorrelated noise: a frequency domain approach. IEEE Transactions on
Signal Processing, 2021, 69, p. 4458-4473. �hal-03268782�

https://hal.science/hal-03268782v1
https://hal.archives-ouvertes.fr


1

On the detection of low-rank signal in the presence
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Abstract

This paper analyzes the detection of a M–dimensional useful signal modeled as the output of a M×K MIMO filter driven by a
K–dimensional white Gaussian noise, and corrupted by a M–dimensional Gaussian noise with mutually uncorrelated components.
The study is focused on frequency domain test statistics based on the eigenvalues of an estimate of the spectral coherence matrix
(SCM), obtained as a renormalization of the frequency-smoothed periodogram of the observed signal. If N denotes the sample
size and B the smoothing span, it is proved that in the high-dimensional regime where M,B,N converge to infinity while K
remains fixed, the SCM behaves as a certain correlated Wishart matrix. Exploiting well-known results on the behaviour of the
eigenvalues of such matrices, it is deduced that the standard tests based on linear spectral statistics of the SCM fail to detect the
presence of the useful signal in the high-dimensional regime. A new test based on the SCM, which is proved to be consistent, is
also proposed, and its statistical performance is evaluated through numerical simulations.

Index Terms

detection, spectral coherence matrix, periodogram, high-dimensional statistics, Random Matrix Theory

I. INTRODUCTION

DETECTING the presence of an unknown multivariate signal corrupted by noise is one of the fundamental problems in
signal processing, which is found in many applications including array and radar processing, wireless communications,

radio-astronomy or seismology among others. In a statistical framework, this problem is usually formulated as the following
binary hypothesis test, where the objective is to discriminate between the null hypothesis H0 and the alternative hypothesis
H1 defined as

H0 : (yn)n∈Z = (vn)n∈Z

H1 : (yn)n∈Z = (un)n∈Z + (vn)n∈Z (1)

where (yn)n∈Z is the M -variate observed signal, and where (un)n∈Z and (vn)n∈Z represent a non observable signal of interest
and the noise respectively, both modeled in this paper as mutually independent zero-mean complex Gaussian stationary time
series.

Without further knowledge on the covariance function of (vn)n∈Z and/or (un)n∈Z, or access to “noise only” samples, the
test problem (1) is ill-posed, even for temporally white time series (vn)n∈Z and (un)n∈Z, and one needs to exploit additional
information on the covariance structure of the useful signal and noise. One common assumption, widely used in the context of
array processing and multi-antenna communications, is to consider that the noise (vn)n∈Z is spatially uncorrelated. Moreover,
when the receive antennas are not calibrated, it is reasonable to assume that the spectral densities of the components of the
noise may not coincide, see e.g. [2], [3], [4], [5]. This will be the context of the present paper.

A first class of tests is based on the observation that the noise is spatially uncorrelated if and only if the matrices Rv(`) =
E[vnv∗n−`] are diagonal for all ` ∈ Z, whereas if the useful signal (un)n∈Z is assumed spatially correlated, Ru(`) = E[unu∗n−`]
is non-diagonal for some ` ∈ Z. Under this assumption, the problem in (1) can be formulated as the following correlation test:

H0 : Ry(`) = dg (Ry(`)) for all ` ∈ Z

H1 : Ry(`) 6= dg (Ry(`)) for some ` ∈ Z (2)

where Ry(`) = E[yny∗n−`] and dg (Ry(`)) = Ry(`) � IM , where � is the element-wise (Hadamard) product and IM the
M ×M identity matrix. A number of previous works developed lag domains tests that specifically tackle the above problem,
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see e.g. [6], [7], [8], [9], [10], [11]. Also relevant are the approaches in [2] and [3], where the possible useful signal is supposed
to be the output of a filter driven by a low-dimensional white noise sequence.

Our focus here is on another type of formulation, referred to as frequency domain approach, which consists in rewriting
problem (2) as

H0 : Sy(ν) = dg (Sy(ν)) for all ν ∈ [0, 1]

H1 : Sy(ν) 6= dg (Sy(ν)) for some ν ∈ [0, 1] (3)

where Sy(ν) is the M ×M spectral density matrix of (yn)n∈Z at frequency ν, defined by

Sy(ν) =
∑
k∈Z

Ry(k)e−2iπνk.

This problem is equivalent to testing whether the spectral coherence matrix (see for instance [12, Chapter 7-6], [13, Chapter
5.5])

Cy(ν) = dg (Sy(ν))
− 1

2 Sy(ν) dg (Sy(ν))
− 1

2 (4)

is equal to IM for all frequencies ν ∈ [0, 1]. In this approach, usual test statistics are mostly based on consistent sample estimates
of Sy(ν) or Cy(ν) that are compared to a diagonal matrix or to the identity IM respectively. Previous works that developed this
approach include [14], [15], [16], [17]. In particular, [14] considered the following frequency smoothed-periodogram estimator
Ŝy(ν) defined by

Ŝy(ν) =
1

B + 1

B
2∑

b=−B2

ξy

(
ν +

b

N

)
ξy

(
ν +

b

N

)∗
(5)

with ξy(ν) = 1√
N

∑N−1
n=0 yne

−2iπnν the renormalized finite Fourier transform of (yn)n=0,...,N−1, B the smoothing span,
assumed to be an even number, and where ξy

(
ν + b

N

)∗
is the conjugate transpose of the vector ξy

(
ν + b

N

)
. [14] was devoted

to the study of the limiting distribution of

log

{
P∏
i=1

det(Ŝy(νi))/

M∏
m=1

ŝm,m(νi)

}

for some properly defined subset of frequencies (νi)i=1,...,P , where ŝm,m(ν) =
(
Ŝy(ν)

)
m,m

. When M = 2, [16] considered

a general kernel estimator of Sy(ν):

S̃y(ν) =

N
2∑

b=−N2

wN

(
b

N

)
ξy

(
ν +

b

N

)
ξy

(
ν +

b

N

)∗
where wN is a weight function satisfying some specific properties, and a test statistic of the form

1

N

N∑
n=1

|(S̃y)12(ν)|2

(S̃y)11(ν)(S̃y)22(ν)

which is proven to be, after proper recentring and renormalization, asymptotically normally distributed. Finally, [15] and [17]
considered the more general class of test statistics, defined by:∫ 1/2

−1/2
K
(

(S̃y)12(ν)
)
dν and

∫ 1/2

−1/2

∥∥∥ψ ((S̃y)12(ν), ν
)∥∥∥2 dν

for some well-defined functions K and ψ, and where ‖·‖ is the Euclidian norm. They proved that these quantities asymptotically
follow normal distributions. In the present paper, we focus on the natural estimator (see e.g. [12, Chapter 7-6], [13, Chapter
8-4]) of Cy, defined by

Ĉy(ν) = dg
(
Ŝy(ν)

)− 1
2

Ŝy(ν) dg
(
Ŝy(ν)

)− 1
2

(6)

where Ŝy(ν) is the frequency-smoothed periodogram estimate defined by (5). Note that adding a weight to the matrices
ξy(ν+ b

N )ξy(ν+ b
N )∗ leads to a more general class of estimators of Sy(ν). The study of this more general class of estimators

involves different techniques and random matrix models than the ones used here, and is therefore out of the scope of this
paper.
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A. Low vs High-dimensional regime

The performance of the test statistics developed in the above mentioned previous works is usually studied in the low-
dimensional regime where N → ∞ and M is fixed. It is well known (see for instance [12]) that Ŝy(ν) and Ĉy(ν) are
consistent estimates if B → +∞ and B

N → 0. Under mild assumptions on the memory of the time series (yn)n∈Z, Ĉy(ν)
is a consistent and asymptotically normal estimate of Cy(ν), which can in turn be used to study the asymptotic performance
of the various tests based on Ĉy(ν). In practice, the above asymptotic regime allows to predict the actual performance of the
tests quite accurately, provided the ratio M

N is small enough. If this condition is not met, test statistics based on Ĉy(ν) may
be of delicate use, as the choice of the smoothing span B must meet the constraints B

M much larger than 1 (because B is
supposed to converge towards +∞) as well as B

N small enough (because B
N is supposed to converge towards 0).

Nowadays, in many practical applications involving high-dimensional signals and/or a moderate sample size, the ratio M
N

may not be small enough to be able to choose B so as to meet B
M much larger than 1 and B

N small enough. Therefore, the
results obtained in the low-dimensional regime may fail to provide accurate predictions of the behaviour of the aforementioned
test statistics. In this situation, one may rely on the more relevant high-dimensional regime in which M,B,N converge to
infinity such that M

B converges to a positive constant while B
N converges to zero.

In comparison to the low-dimensional regime, the literature concerning correlation tests for the frequency domain in the high-
dimensional regime is quite scarce. Recent results obtained in [18] show that under hypothesis H0, the empirical eigenvalue
distribution of the spectral coherence estimate Ĉ(ν) behaves in the high-dimensional regime as the well-known Marcenko-
Pastur distribution [19]. The result of [18] allows to predict the performance under H0 of a large class of test statistics based
on

Lϕ(ν) =
1

M

M∑
m=1

ϕ
(
λm(Ĉy(ν))

)
where λ1(Ĉy(ν)), . . . , λM (Ĉy(ν)) are the eigenvalues of Ĉy(ν), and ϕ belongs to a certain functional class. Such family
of statistics Lϕ, called linear spectral statistics (LSS) of Ĉy(ν), include in particular the choice ϕ(x) = log x, i.e. Lϕ(ν) =
1
M log detĈy(ν) and the choice ϕ(x) = (x − 1)2, i.e. Lϕ(ν) = 1

M ‖Ĉy(ν) − IM‖2F , where ‖ · ‖F represents the Frobenius
norm.

In this paper, we consider the study of the eigenvalues of Ĉy(ν) in the high-dimensional regime under the special alternative
H1 for which the useful signal (un)n∈Z is modeled as the output of a stable MIMO filter driven by a K–dimensional white
complex Gaussian noise. In the context where the intrinsic dimension K is fixed while M,N,B → ∞, it is shown that the
empirical eigenvalue distribution of Ĉy(ν) still converges to the Marcenko-Pastur distribution, showing that the test statistic
based on Lϕ(ν) is unable to discriminate between hypotheses H0 and H1 in the high-dimensional regime. Nevertheless, we
also prove that, provided that the signal-to-noise ratio is large enough, the largest eigenvalue of Ĉy(ν) asymptotically splits
from the support of the Marcenko-Pastur distribution. We can therefore exploit this result to design a new frequency domain test
statistic, which is shown to be consistent in the high-dimensional regime. This result is connected to the widely studied spiked
models in Random Matrix Theory, defined as low rank perturbations of large random matrices. These models were extensively
studied in the context of sample covariance matrices of independent identically distributed high-dimensional vectors, see e.g.
[20]. We however notice that papers addressing the behaviour of the corresponding sample correlation matrices are quite scarce,
see [21] when the low rank perturbation affects only the first components of the observations.

B. Related works

Although the asymptotic framework differs from the high-dimensional regime considered here, we also mention the series
of studies [22], [23] in the econometrics field, which consider a similar model under H1. In these works, it is assumed that
M,N →∞ so the ratio M

N remains bounded, while the K non-zero eigenvalues of the spectral density Su(ν) of (un)n∈Z are
assumed to converge towards +∞ at rate M . This last assumption, which ensures that the Signal-to-Noise Ratio (SNR) E‖un‖2

E‖vn‖2
remains bounded away from 0 as M → ∞, significantly facilitates the design of consistent detection methods. Nevertheless,
while relevant in the domain of econometrics, this assumption may be unrealistic in several applications of array processing,
where the challenge is to manage situations in which the SNR converges towards 0 at rate 1

M . This situation is the one
considered in this paper and, in that case, the results of [22], [23] can not be used. We discuss this point further in Section II
below.

The rest of the paper is organized as follows. In Section II, we formally introduce the model of signals used in the remainder,
as well as the required technical assumptions. In section III, we introduce informally the proposed test statistic, and illustrate its
behaviour in order to provide some intuition before a more rigorous presentation. In section IV, we study some approximation
results for the spectral coherence Ĉy(ν) which are useful to study the linear spectral statistics considered here. This study is
then used in Section V to introduce a new test statistic that is consistent in the high-dimensional regime. Finally Section VI
provides some simulations illustrating its performance and comparisons against other relevant approaches.
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Notations. For a complex matrix A, we denote by A∗ its conjugate transpose, and by ‖A‖2 and ‖A‖F its spectral and
Frobenius norms respectively. If A is a n × n complex matrix, we denote by Tr (A) its trace, and by λ1(A), . . . , λn(A)
its eigenvalues; if moreover A is Hermitian, they are sorted in decreasing order λ1(A) ≥ . . . ≥ λn(A). The n × n identity
matrix is denoted In. The expectation of a complex random variable Z is denoted by E[Z]. The complex circular Gaussian
distribution with variance σ2 is denoted as NC(0, σ2) and a random vector x of Cn follows the NCn(0,R) distribution if
b∗x ∼ NC(0,b∗Rb) for all deterministic (column) vector b and a fixed n×n positive definite matrix R. Finally, C1(I) (resp.
C1c (I)) represents the set of continuously differentiable functions (resp. continuously differentiable functions with compact
support) on an open set I .

II. MODEL AND ASSUMPTIONS

Let us consider a M–dimensional observed time series (yn)n∈Z defined as

yn = un + vn (7)

where (un)n∈Z represents a useful signal and where (vn)n∈Z represents an additive noise. The useful signal is modeled as
the output of an unknown stable MIMO filter (Hk)k∈Z driven by a non-observable K–dimensional complex Gaussian white
noise (εn)n∈Z with E[εnε

∗
n] = IK , i.e.

un =
∑
k∈Z

Hkεn−k

with probability one. We notice that K represents the number of sources in the context of array processing. (vn)n∈Z is modeled
as a M–dimensional stationary complex Gaussian time series such that its component time series (v1,n)n∈Z, . . . , (vM,n)n∈Z

are mutually independent.
For each m = 1, . . . ,M , we denote by (rm(k))k∈Z the covariance function of (vm,n)n∈Z, i.e. rm(k) = E[vm,nvm,n−k],

which verifies the following memory assumption.

Assumption 1. The covariance coefficients decay sufficiently fast in the lag domain, in the sense that

sup
m≥1

∑
k∈Z

(1 + |k|)2|rm(k)| <∞. (8)

In particular, Assumption 1 implies that the spectral density sm of (vm,n)n∈Z, given by

sm(ν) =
∑
k∈Z

rm(k)e−i2πνk

verifies

sup
m≥1

sup
ν∈[0,1]

sm(ν) <∞.

Assumption 1 is in particular verified as soon as the condition

|rm(k)| ≤ C

(1 + |k|)3+δ
(9)

holds for each k ∈ Z and each m ≥ 1, where C and δ are positive constants. As the autocovariance function of ARMA signals
decreases exponentially towards 0, Assumption 1 thus holds if the time series (vm)m≥1 are ARMA signals, provided some
extra purely technical conditions that allow to manage the supremum over m in (8) are met. As the spectral coherence matrix
of (vn)n∈Z, involves a renormalization by the inverse of the spectral densities sm, we also need that sm does not vanish for
each m.

Assumption 2. The spectral densities are uniformly bounded away from zero, that is

inf
m≥1

min
ν∈[0,1]

sm(ν) > 0.

Assumptions 1 and 2 also imply that the total noise power satisfies

0 < inf
M≥1

1

M
E‖vn‖22 ≤ sup

M≥1

1

M
E‖vn‖22 <∞. (10)

The next assumption is related to the signal part (un)n∈Z. For each ν ∈ [0, 1], we denote by H(ν) the Fourier transform of
(Hk)k∈Z, i.e.

H(ν) =
∑
k∈Z

Hke−i2πνk
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and by h1(ν), . . . ,hM (ν) the rows of H(ν).

Assumption 3. The MIMO filter coefficient matrices are such that

sup
M≥1

∑
k∈Z

(1 + |k|) ‖Hk‖2 <∞ (11)

and

lim
M→∞

max
m=1,...,M

max
ν∈[0,1]

‖hm(ν)‖2 = 0. (12)

When K is fixed while M →∞, condition (11) in Assumption 3 implies that the total useful signal power remains bounded,
i.e.

E ‖un‖22 =
∑
k∈Z

‖Hk‖2F = O(1) (13)

so that, using (10), the SNR vanishes at rate 1
M , i.e.

E‖un‖22
E‖vn‖22

= O
(

1

M

)
. (14)

Likewise, condition (12) in Assumption 3 implies that the SNR per time series vanishes, i.e.

E|um,n|2

E|vm,n|2
=

∫ 1

0
‖hm(ν)‖22dν∫ 1

0
sm(ν)dν

= o(1) (15)

as M → ∞. We finally notice that (11) is stronger than (13). While E ‖un‖22 = O(1) is a rather fundamental assumption
that allows to precise the behaviour of the signal to noise ratio, the extra condition supm≥1

∑
k |k| ‖Hk‖2 <∞ is essentially

motivated by technical reasons (it is needed to establish Theorem 2). However, it is clearly not restrictive in practice.

Remark 1. Conditions (11) and (12) in Assumption 3 are especially relevant in the context of array processing, where M
represents the number of sensors, which may be large [24], [25]. In this context, (14) represents the SNR before matched
filtering, while (15) represents the SNR per sensor. The use of spatial filtering techniques, which combine the observations
y1,n, . . . , yM,n across the M sensors, allows to increase the SNR by a factor M when the second order statistics of (yn)n∈Z

are known, which leads to a SNR after matched filtering of the order of magnitude O(1). Thus, despite the apparent low SNR,
reliable information on the useful signal (un)n∈Z can potentially still be extracted from the observed signal (yn)n∈Z.

Let Sy denote the spectral density of (yn)n∈Z, given by

Sy(ν) = H(ν)H(ν)∗ + Sv(ν)

where Sv(ν) = dg (s1(ν), . . . , sM (ν)). To estimate Sy, we consider in this paper a frequency-smoothed periodogram Ŝy, which
we defined in (5). In the classical low-dimensional regime where B,N →∞ while M,K remain fixed, it is well-known [12]
that

E[Ŝy(ν)] = Sy(ν) +O
(
B2

N2

)
and

E
∥∥∥Ŝy(ν)− E[Ŝy(ν)]

∥∥∥2
2

= O
(

1

B

)
.

Thus, in this regime, Ŝy(ν) is a consistent estimator of Sy(ν) as long as B →∞ and B
N → 0. Likewise, the sample Spectral

Coherence Matrix (SCM, not to be confused with the sample covariance matrix, which will not be used in this paper) defined in
(6) is a consistent estimator of the true SCM Cy(ν) defined in (4). When M → +∞ and M

N → 0, it can be shown that, under
some additional mild extra assumptions, the consistency of Ŝy(ν) and Ĉy(ν) in the spectral norm sense still holds provided
that B is chosen in such a way that B

N → 0 and M
B → 0. In practice, for finite values of M and N , the above asymptotic

regime will allow to predict the performance of various inference schemes in situations where it is possible to choose B in
such a way that MB and B

N are both small enough. Nevertheless, when the dimension M is large and the sample size N is not
unlimited, or equivalently if M

N is not small enough, such a choice of B may be impossible. In such a context, it seems more
relevant to consider asymptotic regimes for which M

N → 0 and M
B converging towards a positive constant. In the following,

we will consider the following asymptotic regime.
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Assumption 4. N = N(M) and B = B(M) are both functions of M such that, for some α ∈ (0, 1),

M = O (Nα) and
M

B
−−−−→
M→∞

c ∈ (0, 1)

while K is fixed with respect to M .

As M
B does not converge towards 0, the consistency of Ŝy(ν) and Ĉy(ν) is lost. This can be explained in a simple way

when un = 0 for each n and the signals ((vm,n)n∈Z)m≥1 are mutually independent i.i.d. Nc(0, σ2) distributed sequences. In
this context, for each ν, the renormalized Fourier transform vectors (ξy(ν + b/N))b=−B/2,...,B/2 are mutually independent
NC(0, σ2I) random vectors. The spectral density estimate Ŝy(ν) defined by (5) thus coincides with the sample covariance
matrix of these (B + 1) M–dimensional vectors. If B and M are of the same order to magnitude, it cannot be expected that
‖Ŝy(ν) − E(Ŝy(ν))‖ converges towards 0 because the true covariance matrix E(Ŝy(ν)) to be estimated depends on O(M2)
parameters, and that the number MB of available scalar observations used to estimate E(Ŝy(ν)) is also O(M2). Despite the
loss of the convergence of the estimators Ŝy(ν) and Ĉy(ν), we will see that one can still rely on the high-dimensional structure
of these matrices to design relevant test statistics.

III. INFORMAL PRESENTATION OF THE PROPOSED TEST STATISTIC

Mathematical details will reveal later that for each ν, Ĉ(ν) behaves as a spike model covariance matrix, whose eigenvalues
are precisely described by [20]. More precisely, we will see that, in some sense, the eigenvalues of Ĉ(ν) that are due to the
noise belong to the interval [λ−, λ+] where λ− = (1 −

√
c)2 and λ+ = (1 +

√
c)2, and that in the presence of signal, some

eigenvalues of Ĉ(ν) may be strictly greater than λ+ if an SNR criteria is respected. For the remainder, we define

VN =

{
k

N
: k = 0, . . . , N − 1

}
(16)

the set of Fourier frequencies. A natural way to test for H0 against H1 is to compute the largest eigenvalue of Ĉ(ν) over the
frequencies of VN , and compare it with λ+. This leads to the following test statistic:

Tε = 1[λ++ε,∞)

(
max
ν∈VN

λ1

(
Ĉy(ν)

))
. (17)

We will prove later that, under proper assumption on the SNR, this test statistic is consistent in the present high-dimensional
regime. Before describing the mathematical details leading to consider Tε, we now provide some numerical illustrations of
its behaviour. The general settings are given as follows. The noise is generated as a Gaussian AR(1) process having spectral
density

sm(ν) =
1

|1− θe−i2πν |2
, (18)

for all m = 1, . . . ,M , with θ = 0.5, whereas for the useful signal, we also consider an AR(1) process by choosing K = 1
and

Hk =

√
C

M
βk(1, . . . , 1)T (19)

with β = 10
11 and C being a positive constant used to adjust the SNR.

In order to understand how the test statistics Tε discriminates between H0 and H1, we show in Figure 1 the largest eigenvalue
of Ĉy(ν) for ν ∈ VN in the presence of signal, and compare it to the threshold λ+. We see that for some frequencies ν around
0, the largest eigenvalue of Ĉy(ν) deviates significantly from λ+. As we will see later, it is possible to evaluate the asymptotic
behaviour of the largest eigenvalue of Ĉy(ν), and to establish that it converges towards φ(SNR(ν)) where φ is a certain
function, and where SNR(ν) can be interpreted as a signal-to-noise ratio at frequency ν. φ(SNR(ν)) is also represented in
Figure 1, and it is seen that it is close to the largest eigenvalue of Ĉy(ν). In Figure 2, we compare the empirical distribution
of Tε under H0 and H1 over 10000 repetitions. We see that the distribution of our test statistic Tε is able to discriminate the
scenarios where the data yn are generated under H0 or H1, and that Tε is typically over the threshold λ+ under H1.

IV. APPROXIMATION RESULTS FOR Ĉy(ν) IN THE HIGH-DIMENSIONAL REGIME

In this section we present the mathematical details which lead to the test statistic (17). More specifically, we provide
useful approximation results for Ĉy(ν), which basically show that Ĉy(ν) behaves as a certain Wishart matrix in the high-
dimensional regime. These approximation results are the keystone for the study of the behaviour of the eigenvalues of Ĉy(ν)
and the detection test proposed in Section V.

We first study separately the signal-free case (i.e. yn = vn) as well as the noise-free case (i.e. yn = un).
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0.4 0.2 0.0 0.2 0.4

2.5
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4.0

4.5
1(C( )
(SNR( ))

(1 + c )2

Fig. 1. Largest eigenvalue of Ĉy(ν) for ν ∈ VN vs the threshold λ+ = (1 +
√

M
B+1

)2. M = 60, c = 0.5, N = 6000, θ = 0.5, C = 0.05

2.50 2.75 3.00 3.25 3.50 3.75 4.00
0

1

2

3

4

(1 + c )2

H0
H1

Fig. 2. Histogram of Tε under H0 and H1, over 10000 repetitions. M = 40, c = 0.5, N = 1000, θ = 0.5, C = 0.05

A. Signal-free case

Let

ξv(ν) =
1√
N

N−1∑
n=0

vne−i2πνn
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denote the discrete (time-limited) Fourier transform of (vn)n=0,...,N−1, and define the M × (B + 1) matrix Σv(ν) as

Σv(ν) =
1√
B + 1

[
ξv

(
ν − B

2N

)
, . . . , ξv

(
ν +

B

2N

)]
.

The following result, derived in [18], reveals an interesting behaviour of the frequency-smoothed periodogram of the noise.

Theorem 1. Under Assumptions 1, 2 and 4, for all ν ∈ VN , there exists an M × (B + 1) matrix Z(ν) with i.i.d. NC(0, 1)
entries such that

max
ν∈VN

∥∥∥∥Σv(ν)− 1√
B + 1

Sv(ν)1/2Z(ν)

∥∥∥∥
2

a.s.−−−−→
M→∞

0.

Informally speaking, Theorem 1 shows that the random vectors 1√
B+1

ξv
(
ν − B

N

)
,. . . , 1√

B+1
ξv
(
ν + B

N

)
asymptotically

behave as a family of i.i.d. NCM (0,Sv(ν)) vectors, for all ν ∈ VN . Moreover, if

Ŝv(ν) :=
1

B + 1

B/2∑
b=−B/2

ξv

(
ν +

b

N

)
ξv

(
ν +

b

N

)∗
denotes the frequency-smoothed periodogram of the noise observations (vn)n∈Z, we deduce that Ŝv(ν) asymptotically behaves
as a complex Gaussian Wishart matrix with covariance matrix Sv(ν), thanks to the following corollary.

Corollary 1. Under the assumptions of Theorem 1, it holds that

max
ν∈VN

∥∥∥∥Ŝv(ν)− Sv(ν)1/2
Z(ν)Z(ν)∗

B + 1
Sv(ν)1/2

∥∥∥∥
2

a.s.−−−−→
M→∞

0.

Proof: The proof is deferred to Appendix D-A.
It is worth noticing that Corollary 1 implies in particular

max
ν∈VN

∥∥∥dg
(
Ŝv(ν)

)
− Sv(ν)

∥∥∥ a.s.−−−−→
M→∞

0

and consequently dg(Ŝ(ν)) is a consistent estimator of the noise spectral density Sv(ν) in the operator norm sense, at each
Fourier frequency ν ∈ VN . This convergence may be directly obtained using Lemma 1 in Appendix A and we omit the details
since this result is well-known.

B. Noise-free case

Let

ξu(ν) =
1√
N

N−1∑
n=0

une−i2πνn

and let Σu(ν) be the K × (B + 1) matrix defined as

Σu(ν) =
1√
B + 1

[
ξu

(
ν − B

2N

)
, . . . , ξu

(
ν +

B

2N

)]
.

In the same way, we also denote by ξε the normalized discrete (time-limited) Fourier transform of (εn)n=0,...,N−1, and consider
the K × (B + 1) matrix Σε(ν) defined as Σu(ν). We then have the following important approximation result.

Theorem 2. Under Assumptions 3 and 4, it holds that

max
ν∈VN

‖Σu(ν)−H(ν)Σε(ν)‖2
a.s.−−−−→

M→∞
0.

Proof: The proof is deferred to Appendix B.
As in Theorem 1, Theorem 2 shows that the random vectors ξu

(
ν − B

N

)
, . . . , ξu

(
ν + B

N

)
asymptotically behave as the

i.i.d. vectors H(ν)ξε
(
ν − B

N

)
, . . . ,H(ν)ξε

(
ν + B

N

)
, for all ν ∈ VN .

Remark 2. The type of approximation given in Theorem 2 is well-known in the low-dimensional regime in which M,K,B
are fixed while N →∞. Indeed, in that case, we have [12, Th. 4.5.2]

max
ν∈[0,1]

‖Σu(ν)−H(ν)Σε(ν)‖2 = OP

(√
log(N)

N

)
.

In the high-dimensional regime where M and B also converge to infinity as described in Assumption 4, the result of Theorem
2 cannot be obtained from [12, Th. 4.5.2] and thus requires a new study.
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We also deduce the following approximation result on the frequency-smoothed periodogram of the signal observations
(un)n=0,...,N−1 given by

Ŝu(ν) :=
1

B + 1

B/2∑
b=−B/2

ξu

(
ν +

b

N

)
ξu

(
ν +

b

N

)∗
.

Corollary 2. Under the assumptions of Theorem 2, it holds that

max
ν∈VN

∥∥∥Ŝu(ν)−H(ν)H(ν)∗
∥∥∥
2

a.s.−−−−→
M→∞

0.

Proof: The proof is deferred to Appendix D-B.
As a result of Corollary 2, we deduce that the frequency-smoothed periodogram Ŝu(ν) is a consistent estimator of the

spectral density Su(ν) = H(ν)H(ν)∗ of (un)n∈Z in the high-dimensional regime, for each ν ∈ VN .
Having characterized the pure noise and pure signal cases, we are now in position to study the high-dimensional behaviour

of the spectral coherence matrix Ĉy(ν).

C. The signal-plus-noise case

First, using Corollaries 1 and 2, we deduce the high-dimensional behaviour of the frequency smoothed periodogram Ŝy(ν).
The following results show that, as it could be expected, the frequency smoothed periodogram essentially behaves as a colored
Wishart matrix in the large asymptotic regime.

Proposition 1. For all ν ∈ VN , there exists an M × (B + 1) matrix X(ν) with i.i.d. NC(0, 1) entries such that

max
ν∈VN

∥∥∥∥Ŝy(ν)− Sy(ν)
1
2
X(ν)X(ν)∗

B + 1
Sy(ν)

1
2

∥∥∥∥
2

a.s.−−−−→
M→∞

0. (20)

Proof: The proof is deferred to Appendix D-C.
We finally consider the study of the spectral coherence Ĉy(ν) = dg(Ŝy(ν))−

1
2 Ŝy(ν) dg(Ŝy(ν)−

1
2 . From condition (12) in

Assumption 3 on the SNR, it turns out that (cf. proof of Theorem 3 below where the result is shown) that

max
ν∈VN

∥∥∥dg
(
Ŝy(ν)

)
− Sv(ν)

∥∥∥
2

a.s.−−−−→
M→∞

0. (21)

This approximation result regarding the normalization term dg(Ŝy(ν)) in the SCM naturally leads to the following theorem,
which is the key result of this paper.

Theorem 3. Under Assumptions 1, 2, 3 and 4,

max
ν∈VN

∥∥∥∥Ĉy(ν)−Ξ(ν)
1
2
X(ν)X(ν)∗

B + 1
Ξ(ν)

1
2

∥∥∥∥
2

a.s.−−−−→
M→∞

0

where

Ξ(ν) = Sv(ν)−
1
2 H(ν)H(ν)∗Sv(ν)−

1
2 + IM .

and X(ν) is the matrix defined in Proposition 1.

Proof: The proof is deferred to Appendix C.
Let us make a few important comments regarding the result of Theorem 3.
First, used in conjunction with Weyl’s inequalities [26, Th. 4.3.1], Theorem 3 implies in particular that each eigenvalue of

the SCM Ĉy(ν) behaves as its counterpart of the Wishart matrix

W(ν) = Ξ(ν)
1
2
X(ν)X(ν)∗

B + 1
Ξ(ν)

1
2

for ν ∈ VN , that is

max
m=1,...,M

max
ν∈VN

∣∣∣λm (Ĉy(ν)
)
− λm (W(ν))

∣∣∣ a.s.−−−−→
M→∞

0. (22)

Second, Theorem 3 has an important consequence regarding the behaviour of linear spectral statistics of Ĉy(ν), that is statistics
of the type

Lϕ(ν) =
1

M

M∑
m=1

ϕ
(
λm

(
Ĉy(ν)

))
(23)

where ϕ belongs to a certain class of functions.
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Corollary 3. Let ϕ ∈ C1 ((0,+∞)). Under Assumptions 1, 2, 3 and 4, we have

max
ν∈VN

∣∣∣∣Lϕ(ν)−
∫

R
ϕ(λ)f(λ)dλ

∣∣∣∣ a.s.−−−−→
M→∞

0

where f is the density of the Marcenko-Pastur distribution given by

f(λ) =

√
(λ− λ−)(λ+ − λ)

2πcλ
1[λ−,λ+](λ)

with λ± = (1±
√
c)

2.

Proof: The proof is deferred to Appendix E.
Therefore, Corollary 3 shows that linear spectral statistics of the SCM converge to the same limit regardless of whether

the observations contain only pure noise or signal-plus-noise contributions. This shows that any test statistic solely relying
on linear spectral statistics of the SCM is unable to distinguish between absence or presence of useful signal, and cannot be
consistent in the high-dimensional regime. Nevertheless, in the next section we will see that we can exploit Theorem 3 to build
a new test statistic based on the largest eigenvalue of Ĉy(ν), which is proved to be consistent in the high-dimensional regime.

Remark 3. Corollary 1, Corollary 2 and Theorems 3 may be interpreted in the context of array processing. Indeed, in the
time model (7), usually referred to as “wideband”, the signal contribution (un)n∈Z modeled as a linear process, is in general
not confined to a low-dimensional subspace (i.e. with dimension less than M ). However, in the frequency domain, Corollary 1
and Corollary 2 show that we can retrieve, in the high-dimensional regime, a “narrowband” model, since the useful signal is
confined to a K–dimensional subspace of CM . Thus, standard narrowband techniques used in array processing for detection
may be used, see e.g. [27].

V. A NEW CONSISTENT TEST STATISTIC

As we have seen in Theorem 3 and the related comments, the SCM Ĉy(ν) behaves in the high-dimensional regime as
a Wishart matrix with scale Ξ(ν) = Sv(ν)−

1
2 H(ν)H(ν)∗Sv(ν)−

1
2 + IM being a fixed rank K perturbation of the identity

matrix. The behaviour of the eigenvalues for each ν of such matrix model is well-known since [20] (and other related works
such as the well-known BBP-phase-transition [28] or [29]), and the rest of this section is devoted to the application of the
results from [20] in our frequency-domain detection context. A crucial point is to choose the particular frequency at which the
above mentioned results will be used in order to obtain information on the behaviour of maxν∈VN λ1

(
Ĉy(ν)

)
. For this, we

have first to define some notations. We consider the fundamental function φ which already appears in [20]:

φ(x) =

{
(x+1)(x+c)

x if x >
√
c

λ+ if x ≤
√
c

where we recall that λ+ = (1 +
√
c)2 (see Corollary 3). We notice that for all x >

√
c, φ(x) > φ(

√
c) = λ+. Define as γ(ν)

the maximum eigenvalue of the finite rank perturbation for each ν, that is

γ(ν) = λ1

(
Sv(ν)−

1
2 H(ν)H(ν)∗Sv(ν)−

1
2

)
(24)

and let ν∗N ∈ VN such that

ν∗N ∈ argmax
ν∈VN

γ(ν).

We remark that γ(ν∗N ) may be interpreted as a certain SNR metric in the frequency domain. In the following, we study the
behaviour of the largest eigenvalue of Ĉy(ν∗N ), which requires the following additional assumption on γ(ν∗N ).

Assumption 5. There exists γ∞ ≥ 0 such that

γ(ν∗N ) −−−−→
M→∞

γ∞.

Theorem 3 implies that the eigenvalues of Ĉy(ν∗N ) have the same asymptotic behaviour as the corresponding eigenvalues
of matrix Ξ(ν∗N )

1
2
X(ν∗N )X(ν∗N )∗

B+1 Ξ(ν∗N )
1
2 . Under Assumption 5, [28], [20] or [29] immediately imply the following result. Note

that since ν∗N is unknown in practice, this proposition is an intermediate theoretical result that will justify the detection test
statistic introduced below.

Proposition 2. Under Assumptions 1, 2, 3, 4 and 5, we have

λ1

(
Ĉy(ν∗N )

)
a.s.−−−−→

M→∞
φ(γ∞) (25)
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while

λK+1

(
Ĉy(ν∗N )

)
a.s.−−−−→

M→∞
λ+ (26)

and

λM

(
Ĉy(ν∗N )

)
a.s.−−−−→

M→∞
λ−. (27)

Moreover, if γ∞ = 0,

lim sup
M→∞

max
ν∈VN

λ1

(
Ĉy(ν)

)
≤ λ+ a.s. (28)

Proof: It just remains to establish (28), see Appendix F.
Since neither the intrinsic dimensionality K of the useful signal (un)n∈Z nor the frequency ν∗N are known in practice, we

use the largest eigenvalue of the SCM maximized over all Fourier frequencies as a test statistic. This leads to the test statistic
Tε defined previously in (17) which we recall here:

Tε = 1[λ++ε,∞)

(
max
ν∈VN

λ1

(
Ĉy(ν)

))
.

It turns out that this test statistics is consistent in the high-dimensional regime, as stated in the following result.

Proposition 3. Under Assumptions 1, 2, 3, 4 and 5, and if under Hypothesis H1,

γ∞ >
√
c

then for all 0 < ε < φ(γ∞)− λ+ and i ∈ {0, 1},

Pi
(

lim
M→∞

Tε = i
)

= 1

where Pi is the underlying probability measure under Hypothesis Hi.

Proof: Under Hypothesis H0, since γ∞ = 0, we directly apply (28) in Proposition 2 to obtain that for all ε > 0, Tε = 0
with probability one, for all large M . Under Hypothesis H1, we get

lim inf
M→∞

max
ν∈VN

λ1

(
Ĉy(ν)

)
≥ lim
M→∞

λ1

(
Ĉy(ν∗N )

)
= φ(γ∞)

with probability one. Since by assumption, φ(γ∞) > λ+ + ε, we deduce that Tε = 1 with probability one for all large M .

VI. SIMULATIONS

In this section, we provide some numerical illustrations of the approximation results of Section IV. We will consider the
case where the rank K of the signal is equal to one and then the case where K is strictly greater than one.

A. Case K = 1

As in the numerical simulation presented in Section III, each component of the noise vn is generated as a Gaussian AR(1)
process with θ = 0.5. The expression of its spectral density sm for all m = 1, . . . ,M is still given in (18). The useful signal
is generated as an AR(1) process with K = 1, Hk defined by (19) and β = 10

11 . C is again a positive constant used to tune
the SNR. Note that, in this context, the SNR γ(ν) at frequency ν defined in (24) takes the form

γ(ν) = C

∣∣∣∣ 1− θe−i2πν1− βe−i2πν

∣∣∣∣2 .
Figures 3 and 4 illustrate the signal-free case C = 0, and where (N,M,B) = (20000, 100, 200). In Figure 3, we plot the
histogram of the eigenvalues of Ĉy(ν) for ν = 0. As predicted by Corollary 3 in the signal-free case, the empirical eigenvalue
distribution of Ĉy(ν) is well approximated by the Marcenko-Pastur distribution with shape parameter c = 0.5 ≈M/(B + 1).
Figure 4 further illustrates this convergence, where the cumulative distribution function (cdf) of the Marcenko-Pastur distribution
is plotted against the two following quantities:

Fmin(t) = min
ν∈VN

1

M

∑
λi(Ĉ(ν))<t

δλi(Ĉ(ν))

Fmax(t) = max
ν∈VN

1

M

∑
λi(Ĉ(ν))<t

δλi(Ĉ(ν)).
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Fig. 3. Eigenvalue distribution of Ĉy(0) vs the density of the Marcenko-Pastur distribution with parameter c = 1/2.

These two functions represent the maximum deviations (from above and below) over the frequencies ν ∈ VN of the empirical
spectral distribution of Ĉ(ν) against the Marcenko-Pastur distribution. As suggested by the uniform convergence in the frequency
domain in Corollary 3, the Marcenko-Pastur approximation in the high-dimensional regime is reliable over the whole set of
Fourier frequencies. Note that the statement of Corollary 3 does not exactly match the setting used in Figure 4, as the test
function used here is not in C1((0,+∞)).

To illustrate the signal-plus-noise case and the results of Corollary 3 and Proposition 2, we plot in Figure 5, the histogram
of the eigenvalues of Ĉy(ν) for ν = 0, with γ(0) = 2.9. We see that the largest eigenvalue deviates from the right edge
(1+
√
c)2 and is located around the value φ (γ(0)) = 4.5, as predicted by Proposition 2, while all the other eigenvalues spread

as the Marcenko-Pastur distribution, as predicted by Corollary 3.
In order to compare the test statistic (17) with other frequency domain methods based on the SCM, we consider:
• the new test statistic (17), denoted as LE (for largest eigenvalue),
• two tests based on LSS of the SCM given by

T ′ε = 1[ε,+∞)

(
max
ν∈VN

∣∣∣∣Lϕ(ν)−
∫

R
ϕ(λ)f(λ)dλ

∣∣∣∣)
where Lϕ and density f are defined in (23) and Corollary 3 respectively, and with ϕ(x) = (x − 1)2 for the Frobenius
norm test (denoted as LSS Frob.) and ϕ(x) = log(x) for the logdet test (denoted as LSS logdet),

• a test statistic based on the largest off-diagonal entry of the SCM:

T
′′

ε = 1[ε,+∞)

max
ν∈VN

max
i,j=1,...,M

i<j

∣∣∣[Ĉy(ν)]i,j

∣∣∣


denoted as MCC (for Maximum of Cross Coherence),
and where ε > 0 is some threshold. In Table I, we provide, via Monte-Carlo simulations (10000 draws), the power of each
of the four tests, calibrated so that the empirical type I error is equal to 0.05. The results are provided for various values
of (N,M,B) chosen so that M ∈ {20, 40, . . . , 180}, N = M2 and B = 2M . We set the SNR in the frequency domain as
maxν∈VN γ(ν) = 2

√
M
B = 1.41.

The LE test presents the best detection performance among the four candidates, whereas the MCC test does not seem to
be adapted to the detection of this alternative. While it is proved in Corollary 3 that the test statistics based on the LSS of
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Fig. 4. Uniform convergence of the eigenvalue distribution of Ĉy(ν) over ν ∈ VN toward the Marcenko-Pastur distribution with parameter c = 1/2.
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Fig. 5. Eigenvalue distribution of Ĉ(ν) vs Marcenko-Pastur distribution with parameter c = 1/2 in the signal case.

Ĉ(ν) can not asymptotically distinguish between H0 and H1, they remain sensible to a large variation of a single eigenvalue
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TABLE I
POWER COMPARISON, K=1, γ(ν∗N ) = 2

√
1
2

, TYPE I ERROR = 5%

LSS Frob. LSS logdet MCC LE
N M B

400 20 40 0.09 0.07 0.06 0.15
1600 40 80 0.15 0.08 0.06 0.37
3600 60 120 0.19 0.08 0.06 0.68
6400 80 160 0.25 0.08 0.06 0.87
10000 100 200 0.26 0.07 0.06 0.96
14400 120 240 0.25 0.06 0.06 0.99
19600 140 280 0.28 0.06 0.06 1.00
25600 160 320 0.30 0.06 0.06 1.00
32400 180 360 0.31 0.06 0.06 1.00

for finite values of M . Consider for instance the Frobenius LSS test, where the test statistic is based on :

max
ν∈VN

∣∣∣∣∣ 1

M

M∑
m=1

(λm(Ĉ(ν))− 1)2 −
∫

(λ− 1)2f(λ)dλ

∣∣∣∣∣
where an explicit computation shows that

∫
(λ − 1)2f(λ)dλ = c. An O(1) variation of λ1(Ĉ(ν)), the largest eigenvalue of

Ĉ(ν), will lead to a variation of order O( 1
M ) of the above term. Therefore, the power of a LSS based test asymptotically

converge towards zero, while having non-zero power for finite values of M as it is visible on the results of Table I.

B. Case K > 1

We eventually consider a model which have the flexibility to consider a signal with an arbitrary value of K ≥ 1. We assume
that matrices (Hl)l≥0 verify Hl = 0 if l > L for a certain integer L, and that the sequence of M ×K matrices (Hl)0≤l≤L is
defined by:

Hl = (C1wl,1, . . . , CKwl,K)

where the vectors ((wl,k)l=0,...,L)k=1,...,K are generated as independent realisations of M–dimensional vectors uniformly
distributed on the unit sphere of CM and where the C1 ≥ C2 ≥ . . . ≥ CK are positive constants used to tune the SNR of
each of the K sources at the desired level. Moreover, as the K columns of each matrix Hl coincide with the realisations of
mutually independent random vectors, the columns of H(ν) are easily seen to be nearly orthogonal and to nearly share the
same norm for each ν if M is large enough. More precisely, for each ν, it holds that H(ν)∗H(ν)→ (L+1) Diag(C1, . . . , CK)
when M → +∞. As the spectral densities of the components of the noise all coincide with s(ν) = 1

|1−θe−2iπν |2 , the non-zero
eigenvalues of Sv(ν)−

1
2 H(ν)H(ν)∗Sv(ν)−

1
2 converge towards the ((L+ 1)Ck/s(ν))k=1,...,K when M increases. Therefore,

the signal obtained by this model satisfies Assumption 3. Rather than just providing the performance of the test Tε based on
the maximum of the largest eigenvalue of Ĉy(ν) proposed in this paper, we compare in the following Tε with TK,ε defined
by

TK,ε = 1[Kλ++ε,∞)

(
max
ν∈VN

K∑
k=1

λk

(
Ĉy(ν)

))
which depends on the K largest eigenvalues of Ĉy(ν) rather than on the largest one. It is easy to generalize Proposition 2 and
Proposition 3 in order to study the asymptotic properties of TK,ε. More precisely, for each k = 1, . . . ,K, we define γk(ν) by

γk(ν) = λk

(
Sv(ν)−

1
2 H(ν)H(ν)∗Sv(ν)−

1
2

)
(29)

and denote ν∗K,N one of the frequency such that maxν∈VN
∑K
k=1 γk(ν) =

∑K
k=1 γk(ν∗K,N ). γk(ν) can of course be seen

as a generalization of γ(ν) defined by (24). Then, under the extra assumption that for k = 1, . . . ,K, γk(ν∗K,N ) converges
towards a finite limit γk,∞ (a condition which holds in the context of the present experiment because it is easily seen that
γk(ν∗K,N ) → (L + 1) (1 + θ)2Ck), λk

(
Ĉy(ν∗K,N )

)
converges towards λ+ if γk,∞ ≤

√
c and towards φ(γk,∞) > λ+ if

γk,∞ >
√
c. It is easy to check that if γ∞ = γ1,∞ >

√
c, then the statistics TK,ε also leads to a consistent test provided

0 < ε < φ(γ∞) − λ+. While in practice the number of sources K is unknown, it is interesting to evaluate the performance
provided by TK,ε which can be considered as an ideal reference. Intuitively, TK,ε could lead to a better performance than Tε
when γk,∞ >

√
c for k = 1, . . . ,K, because, in this context, if ν̂∗K,N is a frequency that maximises

∑K
k=1 λk

(
Ĉy(ν)

)
,

then lim infM→+∞ λk

(
Ĉy(ν∗K,N )

)
> λ+. Therefore, the K largest eigenvalues of Ĉy(ν̂∗K,N ) bring useful information to the
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TABLE II
POWER COMPARISON, C1

C2
= 4, (γ1 + γ2)(ν∗2,N ) = 3

√
1
2

, TYPE I ERROR = 5%

LSS Fr. LSS ld MCC LE(1) LE(2)
N M B

100 10 20 0.31 0.18 0.16 0.42 0.37
400 20 40 0.79 0.39 0.45 0.94 0.89
900 30 60 0.94 0.49 0.53 1.00 0.99
1600 40 80 0.98 0.50 0.55 1.00 1.00
2500 50 100 0.99 0.52 0.55 1.00 1.00
3600 60 120 1.00 0.51 0.43 1.00 1.00
4900 70 140 1.00 0.55 0.37 1.00 1.00
6400 80 160 1.00 0.54 0.28 1.00 1.00

TABLE III
POWER COMPARISON, C1

C2
= 1, (γ1 + γ2)(ν∗2,N ) = 3

√
1
2

, TYPE I ERROR = 5%

LSS Fr. LSS ld MCC LE(1) LE(2)
N M B

100 10 20 0.38 0.22 0.16 0.48 0.46
400 20 40 0.58 0.30 0.30 0.75 0.73
900 30 60 0.67 0.30 0.28 0.91 0.89
1600 40 80 0.74 0.29 0.18 0.96 0.97
2500 50 100 0.79 0.30 0.16 0.99 0.99
3600 60 120 0.79 0.24 0.13 1.00 1.00
4900 70 140 0.85 0.28 0.12 1.00 1.00

detection of the useful signal.

In order to evaluate numerically the compared performance of Tε and TK,ε when K is known, we first consider the case
K = 2, L = 3, and where (γ1 + γ2)(ν∗2,N ) = 3

√
c. Concerning the value of (C1, C2), we consider the two following cases:

C1

C2
= 1 and C1

C2
= 4. This corresponds respectively to the case where both sources contributes exactly the same on each

sensor, and where the first source contributes much more than the second one. Tables II, III report the power of the proposed
test (LE(1) represents Tε and LE(2) represents T2,ε) against the LSS tests and the MCC test, with a type I error fixed at 5%.
When C1

C2
= 4, it can be expected that the most powerful source is dominant, and that γ2(ν∗2,N ) <

√
c. Therefore, λ2

(
Ĉy(ν)

)
is likely to stay close to λ+ for each ν, so that the use of T2,ε should not bring any extra performance. This intuition is
confirmed by Table II. When C1

C2
= 1, γ1(ν∗2,N ) and γ2(ν∗2,N ) should be both close to 3

2

√
c, thus suggesting that the two largest

eigenvalues of Ĉy at the maximizing frequency ν̂∗2,N should also nearly coincide, and should escape from [λ−, λ+]. While
the second eigenvalue brings here some information, Table III tends to indicate that Tε has better performance than T2,ε. In
the next experiment, (γ1 + γ2)(ν∗2,N ) = 2

√
c. For C1

C2
= 4, the largest eigenvalue of Ĉy(ν) is likely to be still dominant for

each ν, and Table IV confirms the better performance of Tε. When C1

C2
= 1, γ1(ν∗2,N ) and γ2(ν∗2,N ) should be both close to

the detectability threshold
√
c, and Table V this time shows that the use of T2,ε leads to some improvement. For comparison,

we also report the results of Tε for C2 = 0 in Table VI.
This discussion tends to indicate that, even when K > 1 is assumed known, the use of the maximum over VN of the largest

eigenvalue of Ĉy(ν) does not introduce any significant loss of performance.

TABLE IV
POWER COMPARISON, C1

C2
= 4, (γ1 + γ2)(ν∗2,N ) = 2

√
1
2

, TYPE I ERROR = 5%

LSS Fr. LSS ld MCC LE(1) LE(2)
N M B

100 10 20 0.15 0.10 0.10 0.21 0.20
400 20 40 0.33 0.15 0.12 0.55 0.50
900 30 60 0.39 0.15 0.17 0.75 0.71
1600 40 80 0.52 0.16 0.14 0.94 0.90
2500 50 100 0.54 0.15 0.14 0.98 0.97
3600 60 120 0.56 0.13 0.13 1.00 0.99
4900 70 140 0.55 0.13 0.10 1.00 1.00
6400 80 160 0.62 0.11 0.10 1.00 1.00
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TABLE V
POWER COMPARISON, C1

C2
= 1, (γ1 + γ2)(ν∗2,N ) = 2

√
1
2

, TYPE I ERROR = 5%

LSS Fr. LSS ld MCC LE(1) LE(2)
N M B

400 20 40 0.17 0.11 0.08 0.27 0.27
1600 40 80 0.18 0.10 0.08 0.45 0.48
3600 60 120 0.15 0.07 0.07 0.58 0.62
6400 80 160 0.16 0.07 0.08 0.69 0.75
10000 100 200 0.13 0.05 0.07 0.76 0.83
14400 120 240 0.10 0.03 0.07 0.82 0.86
19600 140 280 0.09 0.04 0.07 0.86 0.89
25600 160 320 0.10 0.03 0.06 0.89 0.93
32400 180 360 0.09 0.03 0.06 0.87 0.93

TABLE VI
POWER COMPARISON, C2 = 0, γ(ν∗N ) = 2

√
1
2

, TYPE I ERROR = 5%

LSS Fr. LSS ld MCC LE(1) LE(2)
N M B

100 10 20 0.19 0.12 0.12 0.26 0.22
400 20 40 0.43 0.19 0.14 0.66 0.59
900 30 60 0.51 0.19 0.19 0.88 0.83
1600 40 80 0.62 0.20 0.15 0.97 0.95
2500 50 100 0.65 0.18 0.17 0.99 0.99
3600 60 120 0.68 0.16 0.12 1.00 1.00
4900 70 140 0.71 0.16 0.13 1.00 1.00
6400 80 160 0.75 0.17 0.12 1.00 1.00

VII. CONCLUSION

In this paper, we have studied the statistical behaviour of certain frequency-domain detection test statistics, based on the
eigenvalues of a sample estimate of the SCM, in the high-dimensional regime in which both the dimension M of the underlying
signals and the number of samples N converge to infinity at certain rates. In particular, we have proved various approximation
results showing that the sample SCM asymptotically behaves as a Wishart matrix. These results have been exploited to prove that
test statistics based on LSS of the sample SCM are not consistent in the high-dimensional regime. A new test statistic relying on
the largest eigenvalue of the sample SCM has also been proposed and proved to be consistent in the high-dimensional regime.
Finally, numerical results have demonstrated that this new test statistic provides reasonable performance and outperforms other
standard test statistics in situations where the dimension M and the number of samples N are large.
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APPENDIX A
USEFUL RESULTS

In this section, we recall some useful results which will be constantly used in the proofs developed in the following sections.
The first result is based on a Chernoff bound for the χ2 distribution, and is also a special case of the well-known Hanson-

Wright inequality describing the concentration of sub-Gaussian quadratic forms around their means (see [30]).

Lemma 1. Let z ∼ NCn(0, In) and Ξ a deterministic n× n complex matrix. Then there exists a constant κ > 0 independent
of n and Ξ such that for all t ≥ 0,

P (|z∗Ξz− E[z∗Ξz]| > t) ≤ 2 exp

(
−κmin

{
t2

‖Ξ‖2F
,

t

‖Ξ‖2

})
.

The second following result describes the behaviour of the largest and smallest eigenvalues of a standard Wishart matrix.

Lemma 2 ( [31, Proof of Lemma 7.3]). Let Z be a M × (B + 1) matrix with i.i.d. NC (0, 1) entries. Then under Assumption
4, there exists a constant C > 0 independent of M,B such that for all t > 0,

P

λ1( ZZ∗

B + 1

)
>

(
1 +

√
M

B + 1

)2

+ t

 ≤ (B + 1)exp
(
−C(B + 1)t2

)
and

P

λM ( ZZ∗

B + 1

)
<

(
1−

√
M

B + 1

)2

− t

 ≤ (B + 1)exp
(
−C(B + 1)t2

)
.

We will mainly use Lemma 2 as follows; let (Z(ν))ν∈VN be a family of M × (B + 1) random matrices such that Z(ν) has
i.i.d. NC(0, 1) (recall the definition of the index set VN in (16)), then from the union bound

P

max
ν∈VN

λ1

(
Z(ν)Z(ν)∗

B + 1

)
>

(
1 +

√
M

B + 1

)2

+ t


≤
∑
ν∈VN

P

λ1(Z(ν)Z(ν)∗

B + 1

)
>

(
1 +

√
M

B + 1

)2

+ t


≤ exp

(
−C(B + 1)t2 + log(N(B + 1))

)
.

https://doi.org/10.1214/ECP.v5-1026
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Using Assumption 4 and Borel-Cantelli lemma, we deduce that

lim sup
M→∞

max
ν∈VN

λ1

(
Z(ν)Z(ν)∗

B + 1

)
≤ (1 +

√
c)2

with probability one.

APPENDIX B
PROOF OF THEOREM 2

A. Reduction to K = 1

First, note that we may assume K = 1 without loss of generality. Indeed, consider the decomposition

un =

K∑
`=1

u(`)
n

where u
(`)
n =

∑+∞
k=0 h`,kε

(`)
n−k and where h`,k and ε

(`)
n are the `-th column of Hk and the `-th entry of εn respectively.

Moreover, Assumption 3 implies that

sup
M≥1

∑
k∈Z

(1 + |k|)‖h`,k‖2 <∞

From the fact that K is fixed with respect to N (Assumption 4) and

max
ν∈VN

‖Σu (ν)−H (ν) Σε (ν)‖2 ≤
K∑
`=1

max
ν∈VN

‖Σu(`) (ν)− h` (ν) Σε(`) (ν)‖2

where Σu(`) (ν), h` (ν), Σε(`) (ν) are defined as Σu (ν), H (ν), Σε (ν) respectively, Theorem 2 is proved if we can show that

max
ν∈VN

‖Σu(`) (ν)− h` (ν) Σε(`) (ν)‖2
a.s.−−−−→

M→∞
0

for all ` = 1, . . . ,K. Therefore, we assume for the remainder of the proof that

un =
∑
k∈Z

hkεn−k,

where
• (hk)k∈Z is a filter, with hk ∈ CM and such that

sup
M≥1

∑
k∈Z

(1 + |k|) ‖hk‖2 <∞. (30)

• (εn)n∈Z is a scalar standard complex Gaussian white noise.

B. Reduction to B = 1

Let h(ν) =
∑
k∈Z hke−i2πνk and

ξε(ν) =
1√
N

N−1∑
n=0

εne−i2πνn.

From (30) and Assumption 4, a first-order Taylor expansion of b 7→ h
(
ν + b

N

)
at 0 leads to

sup
ν∈[0,1]

max
b∈{−B2 ,...,

B
2 }

∥∥∥∥h(ν)− h

(
ν +

b

N

)∥∥∥∥
2

= O
(
B

N

)
= O

(
1

N1−α

)
.

Moreover, from Lemma 1 applied to the random vector

z =

(
ξε

(
ν − B

2N

)
, . . . , ξε

(
ν +

B

2N

))T
∼ NCB+1 (0, IB+1)

and matrix Ξ = IB+1

B+1 , there exists some constant κ independent of M such that for all t ≥ 2,

P

max
ν∈VN

1

B + 1

B/2∑
b=−B/2

∣∣∣∣ξε(ν +
b

N

)∣∣∣∣2 > t

 ≤ NP

 1

B + 1

B/2∑
b=−B/2

∣∣∣∣ξε( b

N

)∣∣∣∣2 > t

 ≤ Nexp (−κB)
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and Borel-Cantelli lemma together with Assumption 4 imply

max
ν∈VN

1

B + 1

B/2∑
b=−B/2

∣∣∣∣ξε(ν +
b

N

)∣∣∣∣2 = O (1)

with probability one. Defining

Σε(ν) =
1√
B + 1

(
ξε

(
ν − B

2N

)
, . . . , ξε

(
ν +

B

2N

))
as well as

Φ(ν) =
1√
B + 1

[
φ

(
ν − B

2N

)
, . . . ,φ

(
ν +

B

2N

)]
with φ(ν) = h(ν)ξε(ν), we therefore have the control

max
ν∈VN

‖h(ν)Σε(ν)−Φ(ν)‖2 ≤ sup
ν∈[0,1]

max
b∈{−B2 ,...,

B
2 }

∥∥∥∥h(ν)− h

(
ν +

b

N

)∥∥∥∥
2

√√√√√max
ν∈VN

1

B + 1

B/2∑
b=−B/2

∣∣∣∣ξε(ν +
b

N

)∣∣∣∣2

= O
(

1

N1−α

)
a.s.

a.s.−−−−→
M→∞

0.

Finally, since the spectral norm of a matrix is bounded by its Frobenius norm,

max
ν∈VN

‖Σu(ν)−Φ(ν)‖2 ≤

√√√√√ 1

B + 1

B/2∑
b=−B/2

∥∥∥∥ξu(ν +
b

N

)
− φ

(
ν +

b

N

)∥∥∥∥2
2

≤ max
ν∈VN

‖ξu (ν)− φ (ν)‖2 .

Theorem 1 is proven if we show that

max
ν∈VN

‖ξu (ν)− h (ν) ξε (ν)‖2
a.s.−−−−→
N→∞

0.

C. Periodization
For all integer n, let [n] denotes the integer contained in {0, . . . , N − 1} such that [n] ≡ n (mod N) and define

ũn =
∑
k∈Z

hkε[n−k]

where (ũn)n∈Z represents the circular convolution between (hk)k∈Z and (εn)n∈Z. If ξũ(ν) = 1√
N

∑N−1
n=0 ũne−i2πnν , then the

equality

ξũ(ν) = h(ν)ξε(ν)

holds for all ν ∈ VN . It is straightforward to check that

ξũ(ν)− ξu(ν) = δ(ν) + δ̌(ν)

where

δ(ν) =
1√
N

N−1∑
k=1

hk

k∑
p=1

(
ε[−p] − ε−p

)
e−i2πν(k−p)

+
1√
N

+∞∑
k=N

hk

N−1∑
p=0

(
ε[p−k] − εp−k

)
e−i2πνp

and

δ̌(ν) =
1√
N

N−1∑
k=1

h−k

k∑
p=1

(
ε[N+p−1] − εN+p−1

)
e−i2πν(N−1+p−k)

+
1√
N

+∞∑
k=N

h−k

N−1∑
p=0

(
ε[p+k] − εp+k

)
e−i2πνp
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Theorem 2 is proved if we can show that

max
ν∈VN

‖δ(ν)‖2
a.s.−−−−→

M→∞
0 (31)

and

max
ν∈VN

∥∥δ̌(ν)
∥∥
2

a.s.−−−−→
M→∞

0. (32)

In the remainder, we only prove (31) and omit the details for (32) whose treatment is similar. To that end, we define

δ1(ν) =
1√
N

N−1∑
k=1

hk

k∑
p=1

(
ε[−p] − ε−p

)
e−i2πν(k−p)

δ2(ν) =
1√
N

+∞∑
k=N

hk

N−1∑
p=0

(
ε[p−k] − εp−k

)
e−i2πνp.

D. Control of δ1(ν)

For p ∈ {1, . . . , N − 1}, let

zp(ν) =
(
ε[−p] − ε−p

)
ei2πνp = (εN−p − ε−p) ei2πνp.

Then z1(ν), . . . , zN−1(ν) are i.i.d. NC(0, 2) and by rearranging the sums in δ1(ν), we have

δ1(ν) =

N−1∑
p=1

zp(ν)gp(ν)

with

gp(ν) =
1√
N

N−1∑
k=p

hke−i2πkν .

Therefore, δ1(ν) ∼ NCM (0,G(ν)) with

G(ν) = 2

N−1∑
p=1

gp(ν)gp(ν)∗.

Moreover,

E ‖δ1(ν)‖22 = Tr G(ν) ≤ 2

N

N−1∑
p=1

N−1∑
k=p

‖hk‖22 + 2
∑

p≤k<k′≤N−1

‖hk‖2 ‖hk′‖2


and a straightforward rearrangement together with (30) leads to

max
ν∈[0,1]

E ‖δ1(ν)‖22 ≤
2

N

N−1∑
k=1

k ‖hk‖22 +
4

N

∑
1≤k<k′≤N−1

√
k
√
k′ ‖hk‖2 ‖hk′‖2

=
2

N

(
N−1∑
k=1

√
k ‖hk‖2

)2

= O
(

1

N

)
.

where we used that k ≤
√
k
√
k′ for k′ ≥ k. Additionally,

max
ν∈[0,1]

‖G(ν)‖2 ≤ max
ν∈[0,1]

Tr G(ν) = O
(

1

N

)
and

max
ν∈[0,1]

‖G(ν)‖F ≤
√
M max

ν∈[0,1]
‖G(ν)‖2 = O

(√
M

N

)
.
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Using Lemma 1, there exists a constant κ > 0 independent of M, (hk)k∈Z such that for all t > 0,

P

(
max
ν∈VN

∣∣∣‖δ1(ν)‖22 − E ‖δ1(ν)‖22
∣∣∣ > t

)
≤ 2N max

ν∈VN
exp

(
−κmin

(
t2

‖G(ν)‖2F
,

t

‖G(ν)‖2

))
.

Applying Assumption 4 and Borel-Cantelli lemma, it follows that

max
ν∈VN

∣∣∣‖δ1(ν)‖22 − E ‖δ1(ν)‖22
∣∣∣ a.s.−−−−→
N→∞

0.

Finally, we deduce that

max
ν∈VN

‖δ1(ν)‖22 ≤ max
ν∈VN

E ‖δ1(ν)‖22 + max
ν∈VN

∣∣∣‖δ1(ν)‖22 − E ‖δ1(ν)‖22
∣∣∣ a.s.−−−−→
N→∞

0.

E. Control of δ2(ν)

We first split δ2(ν) in the following two parts

δ2(ν) = δ2,1(ν) + δ2,2(ν)

where

δ2,1(ν) =
1√
N

+∞∑
k=N

hk

N−1∑
p=0

ε[p−k]e
−i2πpν

δ2,2(ν) =
1√
N

+∞∑
k=N

hk

N−1∑
p=0

εp−ke−i2πpν .

We remark that δ2,1(ν) only involves the N i.i.d. random variables ε0, . . . , εN−1 and that

δ2,1(ν) =

N−1∑
p=0

εpg̃p(ν)

with g̃p(ν) defined as

g̃p(ν) =
1√
N

+∞∑
k=N

hke−i2πν[p+k].

It is clear that

max
p=1,...,N

max
ν∈[0,1]

‖g̃p(ν)‖2 ≤
1√
N

+∞∑
k=N

‖hk‖2 ≤
1

N3/2

+∞∑
k=N

k ‖hk‖2

and from (30),

max
p=1,...,N

max
ν∈[0,1]

‖g̃p(ν)‖2 = o

(
1

N3/2

)
Thus δ2,1(ν) ∼ NCM

(
0, G̃(ν)

)
with G̃(ν) =

∑N−1
p=0 g̃p(ν)g̃p(ν)∗ and

max
ν∈[0,1]

Tr G̃(ν) = o

(
1

N2

)
as M →∞. Using Lemma 1 as for the control of δ1(ν) in the previous section, we end up with

max
ν∈VN

‖δ2,1(ν)‖2
a.s.−−−−→

M→∞
0.

We now consider the term δ2,2(ν), which involves the sequence of random variables (ε−n)n≥1. For all k ≥ N , set

χk =
1√
N

hk

N−1∑
p=0

εp−ke−i2πpν
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and consider the sequence (χp)k≥N . Using Assumption 3,

+∞∑
k=N

‖χk‖2 ≤
+∞∑
k=N

√
k‖hk‖2

∣∣∣∣∣ 1

N

N−1∑
p=0

εp−ke−i2πpν

∣∣∣∣∣
≤

(
sup
k≥N

∣∣∣∣∣ 1

N

N−1∑
p=0

εp−ke−i2πpν

∣∣∣∣∣
)

+∞∑
k=N

√
k‖hk‖2

< +∞ a.s.

since for any k, by the gaussianity of the εp−k, supν∈VN

∣∣∣ 1N ∑N−1
p=0 εp−ke−i2πpν

∣∣∣ converges almost surely towards 0 as
N → +∞ by the law of the large numbers, so it remains almost surely bounded for any finite N . This implies that the family
(χk)k≥N is a.s. absolutely summable. Therefore, we can rearrange the series defining δ2,2(ν) and write

δ2,2(ν) =

+∞∑
p=1

ε−pǧp(ν)

with probability one, where this time gp(ν) is defined for all p ≥ 1 as

ǧp(ν) ={
1√
N

∑p−1
k=0 hk+N e−i2π(N+k−p)ν if p ∈ {1, . . . , N}

1√
N

∑N−1
k=0 hp+k e−i2πkν if p ≥ N + 1.

.

Again,

sup
p≥1

max
ν∈[0,1]

‖ǧp(ν)‖2 = o

(
1

N

)
(33)

δ2,2(ν) ∼ NCM
(
0, Ǧ(ν)

)
, where

Ǧ(ν) =

+∞∑
p=1

ǧp(ν)ǧp(ν)∗

and such that Tr Ǧ(ν) = o
(

1
N

)
. Thus, using Lemma 1 also yields

max
ν∈VN

‖δ2,2(ν)‖2
a.s.−−−−→

M→∞
0.

This concludes the proof of Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

To prove Theorem 3, we need as a preliminary step to study the behaviour of the renormalization by dg(Ŝy(ν))−
1
2 in the

SCM.

Lemma 3. Under Assumptions 1, 3 and 4, we have

max
ν∈VN

∥∥∥dg
(
Ŝy(ν)

)
− Sv(ν)

∥∥∥
2

a.s.−−−−→
M→∞

0 (34)

as well as

max
ν∈VN

∥∥∥∥dg
(
Ŝy(ν)

)− 1
2 − Sv(ν)−

1
2

∥∥∥∥
2

a.s.−−−−→
M→∞

0 (35)

Proof: To prove (34), we establish successively

max
ν∈VN

∥∥∥dg
(
Ŝy(ν)

)
− dg (Sy(ν))

∥∥∥
2

a.s.−−−−→
M→∞

0 (36)

as well as
max
ν∈VN

‖dg (Sy(ν))− Sv(ν)‖2
a.s.−−−−→

M→∞
0 (37)

Using (20), we have the bound

max
ν∈VN

∥∥∥dg
(
Ŝy(ν)

)
− dg (Sy(ν))

∥∥∥
2
≤ ∆1 + ∆2,
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with

∆1 = max
ν∈VN

∥∥∥∥Ŝy(ν)− Sy(ν)
1
2
X(ν)X(ν)∗

B + 1
Sy(ν)

1
2

∥∥∥∥
2

a.s.−−−−→
M→∞

0,

and

∆2 = max
ν∈VN

max
m=1,...,M

∣∣∣∣∣
[
Sy(ν)

1
2

(
X(ν)X(ν)∗

B + 1
− IM

)
Sy(ν)

1
2

]
m,m

∣∣∣∣∣ .
Denoting um(ν) = Sy(ν)

1
2 em, where em is the m-th vector of the canonical basis of CM , as well as x1(ν), . . . ,xB+1(ν) the

i.i.d. NCM (0, IM ) column vectors of X(ν), we have for all t > 0,

P (∆2 > t) ≤
∑
ν∈VN

M∑
m=1

P

(∣∣∣∣∣ 1

B + 1

B+1∑
b=1

|um(ν)∗xb(ν)|2 − ‖um(ν)‖22

∣∣∣∣∣ > t

)
.

From Assumption 1, Assumption 2 and condition (11) from Assumption 3, we have

0 < inf
M≥1

min
m=1,...,M

min
ν∈[0,1]

‖um(ν)‖2 ≤ sup
M≥1

max
m=1,...,M

max
ν∈[0,1]

‖um(ν)‖2 <∞.

Setting in the statement of Lemma 1

z =
(
x1(ν)T , . . . ,xB+1(ν)T

)T ∼ NCM(B+1)(0, IM(B+1))

and Ξ as the M(B + 1)×M(B + 1) block-diagonal matrix

Ξ =
IB+1 ⊗ (um(ν)um(ν)∗)

B + 1

with ⊗ denoting the Kronecker product, we obtain

P (∆2 > t) ≤ 2MN max
ν∈VN

exp

(
−C min

{
Bt2

‖um(ν)‖42
,

Bt

‖um(ν)‖22

})
where C > 0 is a constant independent of M , which in turn implies that

∆2
a.s.−−−−→

M→∞
0

and that (36) holds. In order to check (37), we use Assumption 3 eq. (12) to get that

max
ν∈VN

‖dg (H(ν)H(ν)∗)‖2 = max
ν∈VN

max
m=1,...,M

‖hm(ν)‖22 −−−−→M→∞
0

and from the fact that

dg (Sy(ν)) = dg (H(ν)H(ν)∗) + Sv(ν)

we obtain (37) and, in turn, (34).
To prove (35), we write (using that |

√
a−
√
b| <

√
|a− b| for a, b > 0)

max
ν∈VN

∥∥∥∥dg
(
Ŝy(ν)

)− 1
2 − Sv(ν)−

1
2

∥∥∥∥
2

≤ max
ν∈VN

max
m=1,...,M

√
|[Ŝy(ν)]m,m − sm(ν)|

[Ŝy(ν)]m,m sm(ν)
.

From Assumption 2, there exists ε > 0 such that

inf
M≥1

min
m=1,...,M

min
ν∈VN

sm(ν) ≥ ε > 0.

Using (34) and denoting

∆ = max
ν∈VN

∥∥∥dg
(
Ŝy(ν)

)
− Sv(ν)

∥∥∥
2

we have that

max
ν∈VN

∥∥∥∥dg
(
Ŝy(ν)

)− 1
2 − Sv(ν)−

1
2

∥∥∥∥
2

≤

√
∆

ε (ε−∆)

with probability one for all large M , which proves (35).
We also need the following lemma on the boundedness of matrix Ŝy(ν).
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Lemma 4. Under Assumptions 1, 3 and 4, we have

lim sup
M→∞

max
ν∈VM

∥∥∥Ŝy(ν)
∥∥∥
2
<∞

with probability one.

Proof: From (20), we have

lim sup
M→∞

max
ν∈VN

∥∥∥Ŝy(ν)
∥∥∥
2
≤ lim sup

M→∞
max
ν∈VN

‖Sy(ν)‖2 max
ν∈VN

∥∥∥∥X(ν)X(ν)∗

B + 1

∥∥∥∥
2

.

From Assumptions 1 and 3, it is clear that

sup
M≥1

max
ν∈VN

‖Sy(ν)‖2 <∞.

Finally, from Lemma 2 and the remarks below this lemma, we have

lim sup
M→∞

max
ν∈VN

∥∥∥∥X(ν)X(ν)∗

B + 1

∥∥∥∥
2

<∞

with probability one, and Lemma 4 is proved.
Equipped with Lemmas 3 and 4, we are now in position to prove Theorem 3. Define

∆̃ = max
ν∈VN

∥∥∥∥dg
(
Ŝy(ν)

)− 1
2 − Sv(ν)−

1
2

∥∥∥∥
2

and recall the definition of the random matrix X(ν) in (20). Let us write

Ĉy(ν)−Ξ(ν)
1
2
X(ν)X(ν)∗

B + 1
Ξ(ν)

1
2 = Ψ1(ν) + Ψ2(ν)

where the two error terms are defined by:

Ψ1(ν) = Ĉy(ν)− Sv(ν)−
1
2 Ŝy(ν)Sv(ν)−

1
2

Ψ2(ν) = Sv(ν)−
1
2 Ŝy(ν)Sv(ν)−

1
2 −Ξ(ν)

1
2
X(ν)X∗(ν)

B + 1
Ξ(ν)

1
2

which satisfies:

max
ν∈VN

‖Ψ1(ν)‖2 ≤ ∆̃ max
ν∈VN

∥∥∥Ŝy(ν)
∥∥∥
2

(
∆̃ +

2√
minν∈VN λM (Sv(ν))

)
and

max
ν∈VN

‖Ψ2(ν)‖2 ≤
maxν∈VN

∥∥∥Ŝy(ν)− Sy(ν)
1
2
X(ν)X(ν)∗

B+1 Sy(ν)
1
2

∥∥∥
2

minν∈VN λM (Sv(ν))
.

From Assumption 2, we have

inf
M≥1

min
ν∈VN

λM (Sv(ν)) > 0.

Using Lemmas 3 and 4, we directly deduce that

max
ν∈VN

‖Ψ1(ν)‖2
a.s.−−−−→

M→∞
0.

Likewise, using (20), we deduce that

max
ν∈VN

‖Ψ2(ν)‖2
a.s.−−−−→

M→∞
0,

which concludes the proof of Theorem 3.



25

APPENDIX D
PROOF OF COROLLARY 1, COROLLARY 2 AND PROPOSITION 1

A. Proof of Corollary 1

Write Ŝv(ν) = Σv(ν)Σv(ν)∗, and denote

∆v(ν) =

∥∥∥∥Σv(ν)− 1√
B + 1

Sv(ν)1/2Z(ν)

∥∥∥∥
2

.

Using the fact that for any two matrices A,B of appropriate dimensions, we have

AA∗ −BB∗ = (A−B)(A−B)∗ + (A−B)B∗ + B(A−B)∗

and
‖AB‖2 ≤ ‖A‖2‖B‖2

we see that ∥∥∥∥Ŝv(ν)− 1

B + 1
Sv(ν)1/2Z(ν)Z(ν)∗Sv(ν)1/2

∥∥∥∥
2

≤ ∆v(ν)

(
∆v(ν) + 2

√
‖Sv(ν)‖2
B + 1

‖Z(ν)‖2

)
.

Assumption 1 implies that

sup
M≥1

max
ν∈[0,1]

‖Sv(ν)‖2 <∞

while from Lemma 2 from Appendix A, since Z(ν) has i.i.d. complex Gaussian entries,

lim sup
M→∞

max
ν∈VN

‖Z(ν)‖2√
B + 1

<∞ (38)

with probability one. This concludes the proof of Corollary 1.

B. Proof of Corollary 2

The proof of Corollary 2 is similar to the one of Corollary 1. Denoting ∆u(ν) = ‖Σu(ν)−H(ν)Σε(ν)‖2, and noticing
that supM≥1 maxν∈[0,1] ‖H(ν)‖2 <∞ from Assumption 3 eq. (11), we obtain that

max
ν∈VN

∥∥∥Ŝu(ν)−H(ν)Σε(ν)Σε(ν)∗H(ν)∗
∥∥∥
2
≤ max
ν∈VN

∆u(ν) (∆u(ν) + 2 ‖H(ν)‖2 ‖Σε(ν)‖2) ,
a.s.−−−−→

M→∞
0.

Since K is fixed with respect to M from Assumption 4, we also have

max
ν∈VN

‖Σε(ν)Σε(ν)∗ − IM‖2
a.s.−−−−→

M→∞
0 (39)

using Lemma 1, which proves Corollary 2.

C. Proof of Proposition 1

To prove Proposition 1, let us write

Y(ν) = H(ν)Σε(ν) +
Sv(ν)1/2Z(ν)√

B + 1
.

Then, from (38) and (39), we have

lim sup
M→∞

max
ν∈VN

‖Y(ν)‖2 <∞

with probability one, which implies the following convergence

max
ν∈VN

∥∥∥Ŝy(ν)−Y(ν)Y(ν)∗
∥∥∥
2
≤ max
ν∈VN

(∆u(ν) + ∆v(ν)) (∆u(ν) + ∆v(ν) + 2 ‖Y(ν)‖2)
a.s.−−−−→

M→∞
0.

Finally, since the columns of
√
B + 1Y(ν) are i.i.d. NCM (0,Sy(ν)) with Sy(ν) = H(ν)H(ν)∗ + Sv(ν), it follows that

Y(ν) = Sy(ν)1/2
X(ν)√
B + 1

for some M × (B + 1) matrix X(ν) having i.i.d. NC(0, 1) entries and the proof of Proposition 1 is complete.
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APPENDIX E
PROOF OF COROLLARY 3

We first prove that all the eigenvalues of the SCM asymptotically concentrate in a compact set with probability one for all
large M . Indeed, considering matrix

W(ν) = Ξ(ν)
1
2
X(ν)X(ν)∗

B + 1
Ξ(ν)

1
2

defined through Theorem 3 and using Lemma 2 in conjunction with Borel-Cantelli lemma, we deduce that there exists constants
C1, C2 such that

lim inf
M→∞

min
ν∈VN

λM (W(ν)) ≥ C1(1−
√
c)2

and

lim sup
M→∞

max
ν∈VN

λ1 (W(ν)) ≤ C2(1 +
√
c)2 (40)

with probability one, where C1, C2 verify, thanks to Assumption 3,

0 < C1 < 1 = inf
M≥1

min
ν∈VN

λM (Ξ(ν))

and

sup
M≥1

max
ν∈VN

λM (Ξ(ν)) < C2 <∞.

Using (22), we obtain similarly
lim inf
M→∞

min
ν∈VN

λM

(
Ĉy(ν)

)
≥ C1(1−

√
c)2

and
lim sup
M→∞

max
ν∈VN

λ1

(
Ĉy(ν)

)
≤ C2(1 +

√
c)2

with probability one. Let 0 < ε < C1

2 (1−
√
c)2 and h ∈ C1c (R) such that

h(λ) =

{
1 if λ ∈

[
C1(1−

√
c)2 − ε, C2(1 +

√
c)2 + ε

]
0 if λ 6∈

[
C1(1−

√
c)2 − 2ε, C2(1 +

√
c)2 + 2ε

] .
Then it follows that

max
ν∈VN

|Lϕ(ν)− Lϕh(ν)| a.s.−−−−→
M→∞

0.

Thus, without loss of generality, we may assume for the remainder of the proof that ϕ ∈ C1c ((0,+∞)). Using (22), we deduce
that

max
ν∈VN

1

M

M∑
m=1

∣∣∣ϕ(λm (Ĉy(ν)
))
− ϕ (λm (W(ν)))

∣∣∣ a.s.−−−−→
M→∞

0.

Next, consider the two functions

m̂(z, ν) =
1

M

M∑
m=1

1

λm (W(ν))− z
=

∫
R

dµ̂(λ, ν)

λ− z

and

m̃(z, ν) =
1

M

M∑
m=1

1

λm

(
X(ν)X(ν)∗

B+1

)
− z

=

∫
R

dµ̃(λ, ν)

λ− z

defined for all z ∈ C+ := {ζ ∈ C : Im(ζ) > 0}, and where for all Borel set A ⊂ R,

µ̂(A, ν) =
1

M

M∑
m=1

δλm(W(ν))(A)

and

µ̃(A, ν) =
1

M

M∑
m=1

δ
λm

(
X(ν)X(ν)∗

B+1

)(A)
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denote the empirical eigenvalue distributions of matrices W(ν) and X(ν)X(ν)∗

B+1 respectively, and δx is the Dirac measure at
point x. Functions z 7→ m̂(z, ν) and z 7→ m̃(z, ν) coincide with the Stieltjes transforms of measures µ̂(., ν) and µ̃(., ν)
respectively (see [32] for a review of the main properties of the Stieltjes transform). Since

m̂(z, ν)− m̃(z, ν) =
1

M
Tr

(
(W(ν)− zI)

−1 −
(

X(ν)X(ν)∗

B + 1
− zI

)−1)
and using the fact that A−1 −B−1 = A−1(B−A)B−1 for non-singular matrices A,B, we have

|m̂(z, ν)− m̃(z, ν)| ≤ 1

|Im(z)|2
K

M
‖H(ν)‖22

∥∥Sv(ν)−1
∥∥
2

∥∥∥∥X(ν)X(ν)∗

B + 1

∥∥∥∥
2

it follows from Assumptions 2, 3, 4 and Lemma 2 that

max
ν∈VN

|m̂(z, ν)− m̃(z, ν)| a.s.−−−−→
M→∞

0 (41)

for all z ∈ C+. In the following, we fix a realization in an event of probability one for which (41) holds for all z ∈ C+ and
consider

ν∗ ∈ argmax
ν∈VN

∣∣∣∣∫
R
ϕ(λ)dµ̂(λ, ν)−

∫
R
ϕ(λ)dµ̃(λ, ν)

∣∣∣∣ .
Then |m̂(z, ν∗)− m̃(z, ν∗)| → 0 as M → ∞, for all z ∈ C+. From the fact that the pointwise convergence on C+ of a
sequence of Stieltjes transforms is equivalent to the weak convergence of the related sequence of probability measures (see
e.g. [32, Ex.2.4.10]), we deduce that

max
ν∈VN

∣∣∣∣∣ 1

M

M∑
m=1

(
ϕ (λm (W(ν)))− ϕ

(
λm

(
X(ν)X(ν)∗

B + 1

)))∣∣∣∣∣ =

∣∣∣∣∫
R
ϕ(λ)dµ̂(λ, ν∗)−

∫
R
ϕ(λ)dµ̃(λ, ν∗)

∣∣∣∣ −−−−→M→∞
0.

To conclude the proof of Corollary 3, it remains to prove that

max
ν∈VN

∣∣∣∣∣ 1

M

M∑
m=1

ϕ

(
λm

(
X(ν)X(ν)∗

B + 1

))
−
∫

R
ϕ(λ)f(λ)dλ

∣∣∣∣∣ a.s.−−−−→
M→∞

0.

Consider the decomposition

max
ν∈VN

∣∣∣∣∣ 1

M

M∑
m=1

ϕ

(
λm

(
X(ν)X(ν)∗

B + 1

))
−
∫

R
ϕ(λ)f(λ)dλ

∣∣∣∣∣ ≤ ∆1 + ∆2,

where

∆1 = max
ν∈VN

∣∣∣∣∣ 1

M

M∑
m=1

(
ϕ

(
λm

(
X(ν)X(ν)∗

B + 1

))
− E

[
ϕ

(
λm

(
X(ν)X(ν)∗

B + 1

))])∣∣∣∣∣
and

∆2 =

∣∣∣∣∣ 1

M

M∑
m=1

E

[
ϕ

(
λm

(
X(0)X(0)∗

B + 1

))]
−
∫

R
ϕ(λ)f(λ)dλ

∣∣∣∣∣ .
Using the concentration inequality of [33, Cor. 1.8(b)], it is straightforward to show that

∆1
a.s.−−−−→

M→∞
0.

Moreover, using again the properties of the Stieltjes transform, it can be deduced from e.g. [34] that

∆2 −−−−→
M→∞

0.

This concludes the proof of Corollary 3.
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APPENDIX F
PROOF OF PROPOSITION 2

Convergences (25), (26) and (27) are straightforward consequences of (22) and the results of [20, Th. 1.1] on the behaviour
of the largest eigenvalues for the so-called multiplicative spike model random matrices. To prove (28), we use the bound

λ1 (W(ν)) ≤ λ1
(

X(ν)X(ν)∗

B + 1

)
λ1 (Ξ(ν))

Then, from the fact that γ∞ = 0 and Lemma 2, we finally obtain

lim sup
M→∞

max
ν∈VN

λ1 (W(ν)) ≤ lim sup
M→∞

max
ν∈VN

λ1

(
X(ν)X(ν)∗

B + 1

)
≤
(
1 +
√
c
)2
.

The proof is concluded by invoking again convergence (22).
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