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An Asymptotic Approach for the Scan Impedance
in Infinite Phased Arrays of Dipoles

Álvaro J. Pascual, Ronan Sauleau, Fellow, IEEE, and David González-Ovejero, Senior Member, IEEE

Abstract—This work presents an analytic model to derive the
scan impedance of planar infinite phased arrays of dipoles at a
dielectric interface when only the (0, 0) Floquet mode propagates.
The proposed model builds on the boundary conditions met by
the fundamental Floquet mode at the interface to provide a novel
derivation of the equivalent circuit for the scan impedance. The
analysis is also extended to include the effect of a sufficiently
thick grounded substrate that does not affect the elements current
distribution and does not interact with the evanescent fields. Next,
formulas for the ratio of intensity radiated towards each half-
space for an interfacial array are provided. In a consecutive
step, an asymptotic approximation is derived for the current
distribution in arrays of arbitrary loaded dipoles, and the
reactance of a dipole in the array environment is related to the
inductance of a grid of wires. This model constitutes a useful
tool to clearly identify the role of the different array variables
(dipole dimensions, relative permittivity of the substrate, period-
icity, end-load, and scan angle in the principal planes) on the
scan impedance by simple expressions and equivalent circuits.
The model predictions are in good agreement with full-wave
simulations and with previously published works.

Index Terms—Equivalent circuit, scan impedance, infinite ar-
ray, phased array, dipole array, planarly layered media, plane
wave expansion.

I. INTRODUCTION

PHASED arrays represent a broad class of antennas to
which extensive research efforts have been dedicated [1]–

[3]. In particular, planar phased arrays of printed elements,
such as dipoles or slots, have received most of the attention.
Wide-band, dual-linear, and wide-scan performance have been
reported for connected or tightly coupled arrays of dipoles [4]–
[6].

As the number of elements in the array increases for a
fixed element spacing, the central elements behave like those
within an infinite array [7], [1, Ch. 7]. Thus, the infinite array
approach is an analysis method suitable for large arrays where
edge elements and edge-related effects do not substantially
affect the overall performance.
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Previous studies on infinite phased arrays of dipoles are
numerous. Indeed, the periodicity of the array enables the
expansion of the fields in a discrete set of plane waves or
Floquet modes (spectral approach). This approach generally
leads to simplified mathematical expressions that can be read-
ily evaluated numerically or even analytically in some cases.
In [8], the current sheet model was presented as the simplest
infinite phased array in the limiting case of closely spaced
Hertzian dipoles. This model led to simple expressions for the
scan resistance, and the concept was later extended in [9] for
printed elements on a semi-infinite dielectric interface. Arrays
of disconnected dipoles in free-space were considered either
assuming a current distribution [10], [11], [12, Ch. 3], or by
an integral equation technique [13]. Later on, the study was
extended to solve disconnected dipoles printed on semi-infinite
substrates or on a grounded dielectric slab using a Method of
Moments (MoM) [14]. Since then, extensive numerical studies,
implementations, and theoretical modeling of connected or
tightly coupled arrays have been carried out, for instance in
[15]–[21]. Of special relevance are the works by Munk and
collaborators [22], [23] based on a periodic MoM approach to
determine expressions for the dipole scan impedance. How-
ever, in the aforementioned studies, the arrays in multilayered
media were always embedded in a homogeneous region, and
never at the interfaces, as it is usually the case in practical
realizations.

Despite the extensive efforts devoted in the past to the
analysis of infinite phased arrays of dipoles, to date, there
is no model to readily interpret the impact of the array
variables on the scan impedance, especially on the reactance.
The numerical methods such as those in [14], [22], [24]
or the description in [19], are rigorous and computationally
powerful but mask the fundamental impedance features of
the array. Therefore, one is forced to carry out exhaustive
computation and parametric sweeps to gain physical insight
into the array operation for different configurations. For in-
stance, the spectral expansion approach by [22] yields a double
infinite sum to calculate the scan reactance. From this, general
conclusions can be hardly inferred. On the other hand, an
approximate analytic method is more appropriate to evaluate
in a simple manner how the different phenomena affect the
scan impedance for diverse array configurations. We provide in
this paper a novel and insightful circuit approach that readily
shows the role of the main variables of a phased array of
dipoles on the scan impedance as defined in [1, Ch. 1]. These
variables include the dipole dimensions and type of end-load,
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ACCEPTED MANUSCRIPT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2021.3070716, IEEE
Transactions on Antennas and Propagation

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. X, NO. X, MONTH YYYY 2

n = 1, ( 0, µ0)

n 1, (n2
0, µ0)

1

2

(a)

Y

X

Z

 

r

(b)

1

X

Y
1

Z

X

Y

Z

2

2

w

l

py

px

s = 0

q = 0

θ

θ

θ

ε

ε

≥

φ φ

φ

Fig. 1. (a) Hertzian dipole printed on the interface between two lossless
dielectrics. Medium 1 (z > 0) is characterized by n = 1 and medium 2
(z < 0) is characterized by n ≥ 1. (b) Cut of the infinite interfacial array
of dipoles in a rectangular lattice, relevant geometrical parameters, and the
respective coordinate system for each half-space.

the array periodicity, the relative permittivity of the substrate
for a printed array, and the scan angle in the principal planes.
Although the Green’s function approach was used in [18] to
derive equivalent circuits for interfacial arrays of connected
dipoles, the circuits and expressions in this work stem instead
from the boundary conditions met by the fundamental Floquet
mode and an asymptotic approximation of the current, which
can handle arbitrary loads.

The paper is organized as follows: In Section II, we exploit
the far-field plane wave expansion of a dipole array on an
interface to obtain boundary conditions at the interface for
the radiated fundamental Floquet mode. In Section III, the
boundary conditions are used to obtain equivalent networks
and expressions for the scan resistance when the array lies at
a dielectric interface. The ratio of intensity radiated towards
each half-space is also derived. In Section IV, the analysis is
extended to cases where a ground plane backs the interfacial
array. We assume a thick substrate so that the ground plane
does not affect the elements current distribution and it does
not interact with the evanescent fields. Such assumptions
are fulfilled by a typical substrate thickness of λ/4. Next,
Section V is devoted to the derivation of the current along
the dipole and an equivalent network for the scan reactance at
broadside. The results obtained with the proposed model are
compared to full-wave simulations in Section VI, followed by
the results for the principal scan planes in Section VII. We
conclude the analysis with remarks on the scan impedance
and general conclusions in Sections VIII and IX, respectively.

II. PLANE WAVE EXPANSION ON THE RADIATED FIELDS

In order to derive the electric field radiated by an infinite
phased array of dipoles lying on a dielectric interface, first we
add the individual contributions of interfacial Hertzian dipoles.
Then, this sum is written in the spectral domain as a discrete
set of plane waves or Floquet modes. We will show that the
tangential electric field is equal at both sides of the interface
for the fundamental Floquet mode. This result will constitute
the basis of the subsequent discussion.

The electric field of a Hertzian dipole in a homogeneous
medium admits a closed-form expression both in the near-
and far-field regions. This is not the case for a dipole placed

parallel, and at the interface between two different dielectrics.
This hurdle, however, can be conveniently overcome using
the far-field of the interfacial Hertzian dipole in [25]. The
Hertzian dipole is of length ∆l, its current I , and the interface
is composed of two lossless dielectrics as shown in Fig. 1(a).
The upper dielectric is characterized by n1 = 1 and the lower
one by n2 = n ≥ 1. That is, the ratio of dielectric index is n.
For a harmonic time dependence ejωt, the expression is written
as

dEθ,φi =
jk0niI∆l

2π
Z0f

θ,φ
i (θ, φ)

e−jnik0r

r
, (1)

where i denotes the medium, and Z0 is the impedance of a
TEM wave in free-space. Expression (1) is valid when k0r →
∞ and 0 ≤ θ ≤ π/2 in medium 1, and when nk0rs→∞ and
π − θc ≤ θ ≤ π in medium 2. The angle θc is obtained from
sin θc = 1/n, and it will be the maximum scan angle allowed
in medium 2. The pattern functions in (1) are defined as

fθ1 =

{
cos2 θ

cos θ + (n2 − sin2 θ)1/2
− sin2 θ cos θ

· cos θ − (n2 − sin2 θ)1/2

n2 cos θ + (n2 − sin2 θ)1/2

}
cosφ (2a)

fφ1 = − cos θ sinφ

cos θ + (n2 − sin2 θ)1/2
(2b)

fθ2 =

{
sin2 θ cos θ

(1− n2 sin2 θ)1/2 + n cos θ

n(1− n2 sin2 θ)1/2 − cos θ

− cos2 θ

(1− n2 sin2 θ)1/2 − n cos θ

}
cosφ (2c)

fφ2 =
cos θ sinφ

(1− n2 sin2 θ)1/2 − n cos θ
, (2d)

where the subscript and superscript in f refer to the corre-
sponding medium and polarization, respectively.

The Hertzian element is now replicated to form a double
infinite array of dipoles in a rectangular lattice. The element
periodicity is given by px and py , as shown in Fig. 1(b).
The dipoles of length l and width w are centered-fed by
ideal δ-gap generators with uniform current amplitude and
linear phase progression, defined for the (q, s) element as
Iqs = I00e−jq∆αe−js∆β . I00 is the current of the (0, 0)
element, located at the origin of coordinates, and the phase
progression is defined (recall n1 = 1):

∆α = pxk1 sin θ cosφ = pxk0sx, (3a)
∆β = pyk1 sin θ sinφ = pyk0sy. (3b)

The electric far-field of the array is obtained by summation
of all individual contributions of the Hertzian elements and
double application of Poisson’s sum formula. Following a
procedure similar to [22, Ch. 4], we have

Ei =
Z0

pxpy

+∞∑
u=−∞

+∞∑
v=−∞

fi(θ, φ)

sz
e±jkizsze−jk0x(sx+u(λ0px ))

e
−jk0y

(
sy+v

(
λ0
py

)) ∫ l/2

−l/2
I(x′)ejk0x

′(sx+u(λ0px ))dx′, (4)
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with

sz =

√
1−

(
sx
ni

+ u

(
λi
px

))2

−
(
sy
ni

+ v

(
λi
py

))2

. (5)

In (4), z ≶ 0, and the sign in the exponential is taken
accordingly for propagation away from the interface. The
polarization superscripts in E and in the pattern functions have
been omitted, and we have assumed that the current flows
along the longitudinal axis of the dipole.

Equation (4) is the electric field resultant from the addition
of the far-fields of Hertzian dipoles. It yields a discrete sum of
plane waves or Floquet modes with wavevector components
at a discrete set of directions in space. For sz real, the (u, v)
mode propagates and decays exponentially otherwise. Note the
total electric field is weighed by the dipole pattern function,
according to the principle of pattern multiplication.

If the scan angle in medium 2 is limited below θc, the (0, 0)
Floquet mode always propagates in both media. In addition, if
the spacing is such that the other modes do not propagate,
the (0, 0) mode in (4) corresponds to the electric field of
the radiated plane wave, and is the only term contributing
to the scan resistance. The remainder of terms represent
the contribution of the Hertzian dipole far-field to the scan
reactance in the array environment.

Let us now focus on the propagating term. One can note that
the excitation, as defined in (3), determines the wavevector
components, sx, sy of the (0, 0) Floquet mode. To obtain
a simpler expression for the radiated field, it is convenient
to use a different reference system for each half-space, as
shown in Fig. 1(b). To that end, we apply the the following
transformations: θ1 = θ, φ1 = φ in medium 1, and θ2 = π−θ,
φ2 = −φ in medium 2. The angles of propagation of the
(0, 0) mode in each medium are related by φ2 = −φ1 and
n sin θ2 = sin θ1. In view of the previous discussion, the
radiated electric field in each half-space is expressed as

Ei =
Z0

pxpy
fi(θi, φi)

e−j~ki ~ri

cos θi

∫ l/2

−l/2
I(x′)ejk0x

′sxdx′, (6)

where ~ri is the observation point in each coordinate system,
~k1 = k0(sx, sy, cos θ1), and ~k2 = k0(sx,−sy, n cos θ2). At
broadside, it is not difficult to see that E1 = E2 at the interface
plane (zi → 0+). Similarly, comparing in (6) for both media,
after some algebra, one finds the following relations

E1θ cos θ1 = E2θ cos θ2, E1φ = −E2φ. (7)

The relations are valid for any scan angle (recall 0 ≤ θ2 <
θc, or equivalently, 0 ≤ θ1 < π/2). Therefore, the tangential
component of the electric field is equal at both sides of the
interface for the fundamental Floquet mode, analogously to
the classical boundary condition. We will also refer to (7) as
boundary condition even if this expression is true in the far-
field. In general, (7) is valid for any two loss-less dielectrics
characterized by n1 and n2 ≥ n1, with θ1 and θ2 related by
the Snell’s law. The minus sign for E2φ in (7) appears given
that φ̂i are reversed as measured from system of reference 2
with respect to system of reference 1.

The boundary conditions in (7) have been derived for the
mode that concerns our present study. However, it is not

R

jX

V

(a) (b)

n2 n1

|E2|
2/2Z2 |E1|

2/2Z1

A1
A2

θ1

Fig. 2. The power dissipated in the scan resistance of the dipole (a),
corresponds to the power carried away by the radiated mode in the apparent
area allocated for the element (b).

difficult to demonstrate that the continuity of the tangential
component of the electric field across the interface is fulfilled
by all modes individually, except for a −j factor if the mode
decays in medium 1 but not in 2. This stems from the fact
that the plane wave decomposition results in the fields being
expressed as a sum of propagating or evanescent plane waves
fulfilling the classical boundary conditions.

Equation (7) will be used in the next section to derive
expressions and equivalent networks for the scan resistance
of dipoles in an infinite phased array, and also to calculate the
intensity radiated towards each half-space.

III. ARRAY ON A DIELECTRIC INTERFACE

In this section, the structure depicted in Fig. 1(b) is studied.
The generators excite the array impressing a fixed voltage,
or current, at the dipole input terminals. Ohmic losses are
neglected, and the dielectric half-spaces are generally charac-
terized by n1 and n2 ≥ n1. The corresponding impedances
for a TEM wave are Z1 and Z2. The periodicity is such that
grating lobes are precluded, and the allocated area for each
element is pxpy .

A. Scan Resistance at Broadside

The scan resistance at broadside can be derived through (7).
For the radiated plane wave, we have E1θ = E2θ = E. Let
V be the voltage drop in the scan resistance of a reference
dipole, Rr, as in the equivalent circuit of Fig. 2(a). The power
dissipated in the resistance equals the total Poynting vector
times the element allocated area (Fig. 2(b) for θ1 = 0).
Omitting the factor 1/2 from time average, we have

|V |2

Rr

1

pxpy
=
|E|2

Z1
+
|E|2

Z2
. (8)

For an emitted plane wave, the electric field is related to
the voltage at the dipole terminals by V = PfE [22, eq.
4.45], where E is the electric field parallel to the dipole (x̂-
directed). Since the tangential component is continuous across
the interface, there is no ambiguity in the choice of E. Pf is
defined as

Pf =
1

I(0)

∫ l/2

−l/2
I(x′)ejk1x

′sxdx′. (9)

Bear in mind that k1 appears in the expression above because
medium 1 is chosen to define the phase progression (in turn
defining sx). The integral is performed over any element of
the array, with I(0) the current at the feed point. Relating E
and V in (8) gives
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jX0

Z1

Zd1:N

Z2

Fig. 3. Equivalent network for the scan impedance of an infinite interfacial
phased array of dipoles.

Rr = (Z1 ‖ Z2)
|Pf |2

pxpy
. (10)

B. Scan Resistance for Principal Scan Planes

Let us now examine how the scan resistance varies at the
principal scan planes. As explained above, the power delivered
to Rr equals the total Poynting vector times the apparent or
projected area allocated for the element. Thus we have

Rr =
|Pf |2

pxpy

Z0
n1

cos θ1
+

n2

cos θ2

= N2(Z1 cos θ1 ‖ Z2 cos θ2),

(11a)

Rr =
|Pf |2

pxpy

Z0

n1 cos θ1 + n2 cos θ2
= N2

(
Z1

cos θ1
‖ Z2

cos θ2

)
,

(11b)

where (11a) and (11b) stand for E- and H-plane scan respec-
tively. Arbitrary scan angles shall be treated similarly, and
noting that E1θ/E1φ = f1θ/f1φ, which is known analytically.
The shunt impedance in (10) indicates that the scan resistance
can be expressed in terms of an equivalent network composed
of two shunt infinite transmission lines (TLs), while the factor
|Pf |2/pxpy = N2 is accounted for by a transformer. At
broadside, the scan impedance, Zd, corresponds to the equiv-
alent network of Fig. 3, and by transforming Zi → Zi cos θi,
Zi → Zi/ cos θi, analog networks follow for E- and H-plane
scan respectively. X0 in the equivalent network accounts for
the scan reactance, and depends in general on n1 and n2, the
array geometry, the scan angle, and the frequency. Note that
the current distribution is also required to calculate Pf and in
turn the scan resistance. These two aspects will be studied in
Section V. For a homogeneous medium, we obtain a result
equivalent to those obtained in [12], [22].

C. The Intensity Radiated Toward Each Half-Space

Let us now examine the ratio of intensity (S) radiated
toward each half space. For H-plane scan, using (7) one can
easily obtain S1 = n1|E1φ|2/Z0, and S2 = n2|E1φ|2/Z0.
Hence:

S2

S1
=
n2

n1
. (12)

In this plane, the ratio is constant with the scan angle.
For an air-dielectric interface, it equals ε

1/2
r , with εr the

relative permittivity of the dielectric. For E-plane scan, S1 =
n1|E1θ|2/Z0, and S2 = n2|E2θ|2/Z0. Then, using (7):

S2

S1
=
n2 cos2 θ1

n1 cos2 θ2
. (13)
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Fig. 4. Ratio of Poynting vector modulus in the principal planes for the mode
radiated by an infinite phased array of dipoles. We consider two different air-
dielectric interfaces: Duroid (εr = 2.55) and GaAs (εr = 12.8). Full-wave
simulations with ANSYS HFSS [26] (solid lines), present model (squares),
and numerical calculation from [14] (circles). The dimensions are px = py =
0.2184λ0, l = 0.182λ0, w = 0.01λ0.

The ratio of intensity is in general different from that of
a single dipole, which equals ε3/2r at broadside for an air-
dielectric interface, as can be inferred from (1)-(2), and also
noted in [14]. Fig. 4 shows the intensity ratio calculated by
(12)-(13) for two different air-dielectric interfaces. Results
practically overlap with full-wave simulations and are in good
agreement with those calculated in [14, Fig. 9]. The power
ratio would be obtained by multiplying S times the projected
area allocated for each element in the direction of the scan
angle. In particular, at broadside both projected areas coincide
and the power ratio also equals ε

1/2
r for an air-dielectric

interface. Since at broadside E1 = E2, the ratio must be
the same for any planar antenna regardless of its current
distribution, even if the antenna is not linear.

IV. ARRAY ON A DIELECTRIC INTERFACE BACKED BY A
GROUND PLANE

Since the initial radiated fields are known by the boundary
conditions, it is possible to account for the effect of a ground
plane reflector by computing the multiple reflections. Calcu-
lation of the real and complex power leads to expressions for
the scan impedance for broadside and for the principal scan
planes. It is assumed that the reflector is placed at a distance d
from the interface in any medium, say medium 2, such that the
evanescent modes do not interact with it and that its presence
does not alter the current distribution of the elements. For
the sake of simplicity, the broadside case is treated first and
the expressions for E- and H-plane scan are derived next by
analogy. Under the previous assumptions, the scan impedance
is written as the sum of three terms: X0, the initial reactive
part, RGP

r , a term related to the amplitude of the plane wave
emerging from the structure and, XGP, related to the reactive
energy stored due to the presence of the ground plane:

Zd = RGP
r + jXGP + jX0. (14)
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Fig. 5. Longitudinal cut of the infinite dipole array backed by a groundplane
at a distance d. (a) Broadside emission (top-bottom): evanescent fields in
z-direction do not interact with the groundplane, initially radiated fields,
resultant electric field from the partially standing wave, and sum formula
for multiple reflections. (b) E- or H-scan (top-bottom): emerging field at the
interface plane after multiple reflections, initially radiated fields, and directions
of propagation.

A. Scan Impedance at Broadside

The situation where the array radiates at broadside is
depicted in Fig. 5(a).

1) Real Power and Resistance: The resultant electric field
emerging from the structure at the interface plane, after
consideration of the multiple reflections, is given by

Etotal = E

(
1− e−2jk2d

1 + Γe−2jk2d

)
, (15)

where Γ is the Fresnel’s reflection coefficient from medium 2
to 1 for normal incidence:

Γ =
n2 − n1

n2 + n1
. (16)

The power radiated per allocated element area is

|I(0)|2

pxpy
RGP
r =

|E|2

Z1

∣∣∣∣∣ 1− e−2jk2d

1 + Γe−2jk2d

∣∣∣∣∣
2

. (17)

On the other hand, the power delivered to each element per
allocated area when there is no ground plane is given by

|I(0)|2

pxpy
Rr =

|E|2

Z1 ‖ Z2
, (18)

combining (17) and (18), one obtains

RGP
r = Rr

n2/n1 + 1

1 +

(
n2

n1 tan(k2d)

)2 . (19)

For a homogeneous medium, (19) reduces to RGP
r =

2Rr sin2(k2d). Examination of (19) indicates that for k2d =
mπ, with m = 0, 1, 2..., the ground plane short-circuits
the array and the scan resistance equals 0. The positions of
maximum scan resistance occur at k2d = (2m + 1)π/2 and
yield RGP

r = Rr(1 +n2/n1). Finally, for tan2(k2d) = n2/n1,
the ground plane leaves the scan resistance of the array
untouched, RGP

r = Rr. The first position occurs at d = λ/8 for

jX0

Z1

Zd1:N

Z2

d

Fig. 6. Equivalent network for the scan impedance of an infinite interfacial
phased array of dipoles backed by a ground plane.

a homogeneous medium (radiated field to the left and reflected
add in quadrature), but the position deviates when the array is
at an interface.

2) Complex Power and Reactance: To calculate the reactive
part associated with the presence of the ground plane, first, the
resulting fields inside the structure are computed:

Etotal =
E

1 + Γe−2jk2d

(
e−jk2z − e−jk2dejk2(z−d)

)
, (20a)

Htotal =
E

Z2(1 + Γe−2jk2d)

(
e−jk2z + e−jk2dejk2(z−d)

)
,

(20b)

where 0 ≤ z ≤ d. The calculation of the reactive power, PX ,
per allocated area yields

PX
pxpy

=
∂
(∫ d

0
(We −Wm)dx

)
∂t

(21)

= j
|E|2

Z2|1 + Γe−2jk2d|2
sin(2k2d).

We and Wm are, respectively, the electric and magnetic
energy densities. Comparing the reactive power delivered to
the reactance XGP by the ideal current generator and the power
delivered to the scan resistance when there is no reflector (18),
yields

XGP = Rr
n1 + n2

2

(
n2 cos2(k2d) +

n2
1

n2
sin2(k2d)

) sin(2k2d).

(22)
When the initially radiated field adds in phase with the

reflections, the scan resistance is maximum and XGP equals
0. XGP takes this value again when the ground plane short-
circuits the antenna; then the zeros of XGP occur for k2d =
mπ/2. XGP takes extreme values larger than ±Rr when
Z2 < Z1 and lower otherwise. For a homogeneous medium,
(22) reduces to XGP = Rr sin(2k2d), and XGP takes values
between ±Rr. In particular, when RGP

r equals Rr, so does
|XGP|.

Finally, it can be seen that (14), where RGP
r is given by (19),

and XGP is given by (22), corresponds to the input impedance
of the equivalent network of Fig. 6.

B. Scan Impedance for Principal Scan Planes

Let the array now scan in a principal plane that corresponds
to an angle θ1 in medium 1.
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1) Real Power and Resistance: The resultant electric field
emerging from the structure at the interface plane, after
addition of the multiple reflections (see Fig. 5(b)) is

Etotal = E1

(
1− e−2jk2d cos θ2

1 + Γ‖,⊥e−2jk2d cos θ2

)
, (23)

where the relation Γ⊥−T⊥ = Γ‖−T‖ cos θ1/ cos θ2 = −1 has
been used to compute the sum, with T being the electric field
transmission coefficient from medium 2 to 1. The subscripts
⊥, ‖ denote TE and TM polarization for the H- and E-plane
respectively. In turn, the Fresnel reflection coefficients are
given by

Γ⊥ =
n2 cos θ2 − n1 cos θ1

n2 cos θ2 + n1 cos θ1
, (24a)

Γ‖ =
n2/ cos θ2 − n1/ cos θ1

n2/ cos θ2 + n1/ cos θ1
. (24b)

By substituting d → d cos θ2, Zi → Zi cos θi (E-plane),
Zi → Zi/ cos θi (H-plane) in (15) and (16), one retrieves (23)
and (24). Then, applying these transformations in (19) suffices
to obtain RGP

r in the principal scan planes.
2) Complex Power and Reactance: The electric field within

the structure can be written as

Etotal =
E2

1 + Γ‖,⊥e−2jk2d cos θ2(
e−jk2z cos θ2 û+ − e−jk2(z−d) cos θ2ejk2(z−d) cos θ2 û−

)
, (25)

where û± = ŷ cos θ2∓ẑ sin θ2, and û± = x̂ for E- and H-plane
scan respectively. In turn, the reactive power per allocated
element area is given by

PX
pxpy

= j
|E2|2 cos θ2

Z2|1 + Γ‖,⊥e−2jk2d cos θ2 |2
sin(2k2d cos θ2). (26)

After comparing (26) with (21) and the Fresnel’s reflection
coefficients, it is found that XGP in the principal scan planes
can be also obtained applying in (22) the transformations: d→
d cos θ2, Zi → Zi cos θi (E-plane), Zi → Zi/ cos θi (H-plane).
Since both the real and imaginary parts transform the same
for either E- or H-plane scan, the equivalent networks and
conclusions are analog to those drawn for the broadside case
in Section IV-A.

Although we have treated here the case of an array backed
by a ground plane reflector, a similar treatment can be de-
veloped for other structures (i.e. grids [27] or an arbitrary
impedance sheet) where the reflection coefficients are known
for TE and TM polarization. In particular, one can observe
that the radiated plane wave propagates along the layers of
the structure much like a TEM wave does on a TL with
different segments and loads. Then, it is possible to extend the
equivalent networks presented here to multilayered structures
as long as their equivalent network is known in terms of plane
wave propagation with the corresponding polarization.

Finally, note that a grounded dielectric slab may introduce
additional solutions of propagation in the form of surface
waves, potentially causing scan blindness [28]. A condition for
this to occur is that the k-vector component of a radiated mode

along the interface, kt, matches the propagation constant of the
surface wave, βSW. Nevertheless, the scan angle in the medium
1 (recall n1 ≤ n2) is limited below 90◦, so kt < k1 for the
fundamental Floquet mode, with k1 ≤ βSW. Hence, it cannot
excite a surface wave and it is necessary that at least a grating
lobe exists. The assumption that only the (0, 0) Floquet mode
propagates precludes the appearance of this phenomenon.

V. ASYMPTOTIC CURRENT APPROXIMATION

The plane wave expansion in (6) has enabled the derivation
of expressions and equivalent networks for the scan resistance
and the reactance term due to a ground plane, if present. To
compute them, however, the dipole current distribution must
be known, so that it can be inserted in (9). In addition, only
the far-field from the Hertzian dipole has been accounted for
in the plane wave expansion. Hence, the decaying terms in the
sum of (4) do not represent the total evanescent fields, and the
Poynting theorem [10] cannot be used to calculate X0. This
section is devoted to the analysis of the scan reactance and
current distribution.

Let us start by examining the current distribution along one
row of the array presented in Fig. 1(b). In the most general
case, the dipoles can be connected through lumped loads of
impedance ZL. The load can be an open circuit (disconnected
arms with moderate gap), a short-circuit (connected arms) or
an interdigitated capacitor [29]. For convenience, we assume
the q element centered at the origin of coordinates as shown
in Fig. 7(a).

In the source-free regions of a linear antenna, it was
demonstrated in [30, Ch. 8] that the current satisfies ordinary
TL equations when the dipole width w → 0, and the effect of
radiation resistance on the current is neglected. Under these
assumptions, hereinafter referred to as asymptotic approxima-
tion, one can write

d2Iq(x)

dx2
+ β2Iq(x) = 0. (27)

Iq(x) denotes the current along the row due to the q generator,
with all others disconnected, and β is the propagation constant
in the medium in which the array is located [30, Ch. 8]. The
interface can be simply treated as an homogeneous medium of
effective dielectric constant [14] εeff = (ε1 + ε2)/2. We define
the source-free domain as Ω := x ∈ R−{ml}, m ∈ Z. That is,
the length of the row except the points where the sources are
located. The corresponding boundary consists of the positions
of the generators (x = ml).

To solve for the total current along the row, I(x), it
suffices to solve (27) and later apply superposition with the
proper phased excitation, as shown schematically in Fig. 7(b).
Equation (27) is a homogeneous Helmholtz equation which
general solution is well known. To solve it we apply Dirichlet
boundary conditions such that ∀x ∈ ∂Ω−{0}, Iq(x) = 0 and
Iq(0) = I(0)e−jq∆α. We also enforce the continuity of the
current. It is not difficult to see that Iq(x) = 0 for |x| ≥ l.
In addition, by symmetry, Iq(x) = Iq(−x), so actually we
only need to solve for 0 ≤ x ≤ l, as in Fig. 7(c). This region
corresponds to the right arm of dipole q and left arm of dipole
q + 1.
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Fig. 7. Derivation of the current distribution: (a) whole row, (b) solution by superposition. (c) and (d) derivation of the current along the dipole by superposition
of the generator q and the load equivalent generator.

To determine Iq(x) in 0 ≤ x ≤ l, we also substitute the
load by an equivalent generator whose value is the current in
the load when only the q generator is connected, IqL. Then,
Iq(x) in this region is given by the superposition of currents
from the generator q, denoted as IAq , and the load equivalent
generator, denoted as IBq , both fulfilling (27). Thus, Iq(x) =
IAq (x) + IBq (x) as schematically shown in Fig. 7(d). They are
expressed as

IAq (x) =


I(0)e−jq∆α

1− e−jβl

(
e−jβx − ejβ(x−l)) , 0 ≤ x < l/2

0, l/2 ≤ x ≤ l.
(28)

IBq (x) =


IqL

e−jβx − ejβx

e−jβl/2 − ejβl/2
, 0 ≤ x < l/2

IqL
ejβ(x−l) − e−jβ(x−l)

e−jβl/2 − ejβl/2
, l/2 ≤ x ≤ l.

(29)

To determine IqL we use the telegrapher’s equation for the
current derivative:dIq

dx

∣∣∣∣∣
l/2−

− dIq
dx

∣∣∣∣∣
l/2+

 = jωCIqLZL, (30)

where IqLZL = (Vl/2− − Vl/2+). Combining (28)-(30):

IqL =
I(0)e−jq∆α

(zL + 1)ejβl/2 − (zL − 1)e−jβl/2
, (31)

we have defined zL = ZL/(2Zc), and ωC = β/Zc has been
used. Zc is the characteristic impedance of the wire. The
current along the row due to generator q is then given by
(28), (29) and (31), and it vanishes for |x| ≥ l.

Let us solve now for the total current I , along the q element:
the contributions to the right arm are given by IAq , IBq , and
IBq+1. Similarly, for the left arm IAq , IBq , and IBq−1 contribute.
Note also the current due to the q±1 generator takes the same
form, only centered around x′ = x∓l. Hence, the current along
the dipole q reads

I(x) = I(0)e−jq∆α

[
e−jβ|x| − ejβ(|x|−l)

1− e−jβl

+
1 + ΓI

2(ejβl/2 + ΓIe−jβl/2)

e−jβ|x| − ejβ|x|

e−jβl/2 − ejβl/2
(1 + e±j∆α)

]
.

(32)

The minus sign in the exponential of (32) corresponds to the
right arm and the plus sign to the left arm. Analogously to a
transmission line, we have defined the current-wave reflection
coefficient in the load as ΓI = (1− zL)/(1 + zL). Note that,
by superposition, I(x) is also solution of (27). The current is
quasi-periodic, forced by the excitation, and it is symmetric if
∆α = 0, as expected.

For an array composed of infinite rows, we will assume
that the current along the row maintains the same shape.
Coupling among the rows will be taken into account through
Zc, determined after. Under this assumption, it is clear that
for H-plane scan the current along the row is the same as for
broadside.

A. Special Cases

There are several important cases where I(x) adopts a
simple form. The first is broadside emission, where the current
is symmetric. We can write (q = 0 element)

I(x) = I(0)
ejβ(l/2−|x|) + ΓIe

−jβ(l/2−|x|)

ejβl/2 + ΓIe−jβl/2
. (33)

Then, at broadside (or H-plane scan), the asymptotic current
distribution along the dipoles is that of a TL. In particu-
lar, for a disconnected array, assuming ΓI = −1, it takes
the familiar form I(x) = I(0) sinβ(l/2 − |x|)/ sin(βl/2).
For a connected array ΓI = 1, and it takes the form
I(x) = I(0) cosβ(l/2 − |x|)/ cos(βl/2). In addition, for a
disconnected array the current distribution is also independent
of E-plane scan as it can be seen from (33). This is not the
case for connected arrays, where the current takes the form:

I(x) =
I(0)

e−jβl − ejβl

[
ejβ|x|(e−jβl − e±j∆α) (34)

+e−jβ|x|(e±j∆α − ejβl)

]
.

The solid line in Fig. 8 shows the current distribution
obtained from (34) for an array of connected dipoles scanning
in the E-plane at 40◦. The total phase change along the dipole
equals ∆α, forced by the excitation, and can be easily noted
in (33). For comparison, full-wave simulation results obtained
for the same configuration by CST Studio Suite [31] are also
plotted. As it can be seen, both curves are in good agreement.
Near the dipole feed, where the current is minimum, the effect
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Fig. 8. Current distribution for an infinite phased array of connected dipoles
in free-space scanning in E-plane at 40◦. px = py = l = λ/5, and w =
λ/1000.

of the radiation resistance causes some discrepancy in the
phase as discussed in Section VIII. Finally, the results shown
are also in agreement with the MoM analysis in [32].

B. The Asymptotic Equivalent Network at Broadside

In (33) we have seen that at broadside the current along
the dipole is analogous to that of a TL. Therefore, X0 can be
retrieved from the network shown in Fig. 9(a). It is composed
of a TL of length l/2 (as the dipole arm) terminated in
ZL. However, the characteristic impedance of the TL remains
unknown.

Assuming TEM wave propagation, Zc can be calculated
from the inductance per unit length of the structure, L, using
Zc = Lc/

√
εeff. The value of L is retrieved as follows: let

a grid of vertical and parallel strips of width w and period
py be illuminated by a plane wave at normal incidence, such
that a uniform current distribution is excited along the strips,
the electric field being parallel to the strips. The impedance
of this structure has been studied in e. g. [27], [33], [34]. In
particular, as discussed in [35], the inductance of the grid per
strip and per unit length is given by

L =
Z0

2πc
ln

 1

sin
(
πw
2py

)
 . (35)

For the interface case, it is assumed that µ ≈ µ0 for both
dielectrics, so L remains unaltered [27]. Finally, to account
for the two arms of the dipole, the characteristic impedance
of the network is given by 2Zc, twice that of the wire. This
definition is also in agreement with the definition of zL for
ΓI above.

Once the characteristic impedance of the TL is determined,
it is worth mentioning that X0 calculated with the equivalent
network of Fig.9(a) takes automatically into account the dipole
end load, including disconnected dipoles (ZL →∞).

R1

C1

C2

L1

ZL2Zc

l/2

jX0

(a) (b)

Fig. 9. (a) Equivalent network representing the scan reactance. (b) Equivalent
lossy lumped element circuit that represents the scan impedance.

Now, it is possible to calculate the impedance for broadside
emission (principal scan planes will be dealt with in Sec-
tion VII). The current distribution for broadside given by (33)
can be inserted in (9) to obtain the transformer relation, N , in
the equivalent networks of Fig.3 (interface) or Fig.6 (interface
and backing ground plane). Besides, X0 can be obtained from
the network of Fig. 9(a), where the inductance per unit length
in (35) is used to calculate 2Zc.

Nevertheless, the asymptotic current approximation is only
valid when w approaches 0 so that the scan impedance is
mainly dominated by a reactance and the effect of the radi-
ation resistance on the current distribution can be neglected.
This approximation gives in general accurate results for thin
dipoles except in the regions where the current at the dipole
feed approaches zero (anti-resonance). In the latter case, (33)
diverges at all times, independently of the dipole width, which
is clearly wrong. To overcome this issue, and for more precise
calculations, we have derived a lumped element circuit that
accounts for variations in the stored energy and finite radiation
losses in the impedance curves, as shown in Fig. 9(b). On
the the other hand, we can rely on the simple networks to
extract qualitative conclusions. For simplicity, we will restrict
the analysis of the scan impedance when there is no ground
plane in the cases of connected and disconnected dipoles.

To derive the lumped element circuit one can reason as
follows: when losses are absent, it follows the curve of
X0 given by the network of Fig. 9(a). Then, L1 and C1

determine the resonance frequency as predicted by the TL
(X0 = 0), besides, L1, C1, and C2 determine anti-resonance
(X0 → ±∞). The third condition is to guarantee that the
circuit yields the input reactance of the network model at low
frequencies. Last, losses are included in the circuit by a lumped
resistor R1 so that the input resistance of the lumped element
circuit is that of the network model when f → 0. The values
relating the different lumped elements with the network model
are summarized in Table I for connected and disconnected
dipoles. This circuit equivalent is valid up to, approximately,
anti-resonance. An alternative circuit was developed in [36]
but it utilizes the dipole auto-inductance. Furthermore, it is
only valid for tightly coupled and connected arrays, and does
not arise from a physical explanation of the scan impedance.

VI. RESULTS FOR BROADSIDE EMISSION

To test the validity of the proposed model, it is compared
with full-wave simulations carried out with ANSYS HFSS
[26]. For a central frequency of f = 1 cycle per unit-
time that determines λc, the nominal parameters are: px =
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TABLE I
LUMPED ELEMENT CIRCUIT PARAMETERS.

Parameter Connected Disconnected

L1 Ll (C1ω2
R)−1

C1 ∞ 3/16ln2
eff/(Lc

2)

C2 (L1ω2
AR)−1 C1/3

R1 Rr,f→0 16/9Rr,f→0

ωAR πc/(neffl) 2πc/(neffl)

ωR 0 πc/(neffl)

py = λc,eff/2, l = 1.0px (connected) or 0.9px (disconnected),
w = λc,eff/1000, and feed port length λc,eff/100. The array
is freestanding or in a vacuum-dielectric interface. In the
following, results are presented for a variation of one nominal
parameter at a time. The calculated values in Figs. 10-11 have
been obtained using the lumped element circuit in Fig. 9(b)
explained in the preceding section.

A. Varying End Load

The resonant behavior of dipole arrays is highly dependent
on the load and can be simply examined by inspection of
the input reactance in the equivalent network of Fig. 9(a). For
connected dipoles X0 = 2Zc tan(βl/2), therefore resonances
occur at l/λ = n with n a natural number, whereas anti-
resonances occur at l/λ = n + 1/2. In the latter, the
open circuit condition is effectively achieved and I(0) = 0,
consequently, Rr will diverge too. Conversely, for discon-
nected arrays of dipoles, X0 = −2Zc/ tan(βl/2) and the
resonant/anti-resonant frequencies will be swapped with re-
spect to connected dipoles of the same length (see for instance
Fig. 11). This fundamental difference between connected and
disconnected dipoles stems from the fact that in the former
the maximum current occurs at the dipole end (ΓI = 1)
whereas, for disconnected dipoles, the current at the edge
is always minimum (ΓI = −1). The π phase difference
in the reflection coefficient is responsible for the λ/2 shift
of the resonances. In the usual case of capacitively loaded
dipoles, the phase of the reflection coefficient for the current-
wave lies between the previous cases, then the resonances
lie between the aforementioned limiting cases. Furthermore,
the fact that connected dipoles show resonant response at
low frequencies makes them amenable to array design with
large scan angles. In this case, the lattice can be kept < λ/2,
whereas for disconnected dipoles px > λ/2 limited by the
resonant length of the dipole. This is even more evident for a
dielectric interface, where the required spacing to avoid grating
lobes is λ/(2n2) but the dipole length scales down only as neff.

B. Varying εr
Practical array designs require printing the antennas on an

interface, for mechanical support or to diminish the effect of
a ground plane. In the latter case, it is more convenient to
position the ground plane in the medium with lower dielectric
index for a broadband design, since it renders the impedance
less dependent on frequency. Also, it is to be observed that
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Fig. 10. Real and imaginary parts of the broadside impedance for discon-
nected dipoles: simulated (solid lines), and calculated (squares) for three
different relative permittivities of the substrate.

the short-circuit will occur at DC and certain frequencies
regardless of the interface, hence, imposing a fundamental
limit in the absolute impedance bandwidth of the array.

As shown in the previous subsection, X0 is proportional
to Zc and in turn to 1/

√
εeff for connected or disconnected

dipoles. Thus, a high permittivity dielectric substrate flattens
the dipole reactance. Fig. 10 shows the variation of the
simulated and calculated broadside impedance with εr for dis-
connected dipoles. εr corresponds to the relative permittivity
of the substrate when the array is printed in an air-dielectric
interface as shown in Fig. 1(b). It is important to note that px,
and py are scaled by λc,eff and so the dipole electrical length
remains fixed as seen in Fig. 10.

C. Varying Dipole Width

Fig. 11 shows the simulated and calculated broadside
impedance for different dipole widths for connected (a), and
disconnected (b) dipoles. If we calculated the scan resistance
from the asymptotic current approximation in (33), where ΓI
does not depend on w, it would yield a result also independent
on w. In practice, this is true only for regions far away from
anti-resonance. As w increases, the resonance quality factor
decreases, and the impedance curves are affected. The lossy
lumped element circuit predicts this behavior reasonably well
for connected dipoles, as shown in Fig. 11(a). However, for
disconnected dipoles the model loses validity. In particular,
variations of effective dipole length with dipole width are
not taken into account. We will discuss it in more detail
in Section VIII. Finally, note a wider dipole yields a flatter
reactance, as can be inferred from (35).

D. Varying Lattice (px, py)

The dipole length has been defined as 100% or 90% of px,
therefore, variations in px would scale the curves accordingly.
Conversely, variations in py influence the coupling among
neighboring rows, and can be used to modify the impedance.
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Fig. 11. Real and imaginary parts of the broadside impedance: simulated
(solid lines), and calculated (squares) for three different dipole widths. (a)
connected dipoles, (b) disconnected dipoles.

From the network model we can observe that the factor N2

is inversely proportional to py . Since within this approximation
the current distribution does not change with py for connected
or disconnected dipoles, Rr scales inversely proportional to
py . On the other hand, from (35), L decreases with py ,
so narrower spacing decreases X0 and flattens the dipole
reactance. Coupling, as is clear from the network model, can
be used to obtain broadband arrays.

VII. EXTENSION FOR PRINCIPAL SCAN PLANES

In section V, we have seen that at broadside emission the
current distribution along the dipole in asymptotic approxima-
tion is that of a transmission line. Therefore, it was possible
to identify X0 with the equivalent network of Fig. 9(a), and
ultimately compute the scan impedance at broadside using a
lossy lumped element circuit. For scan in the principal planes,
we need to examine the variations of the inductance per unit
length on the equivalent TL and of the current distribution, if
any.

The inductance of a grid of strips for a plane wave in
oblique incidence with the tangent electric field parallel to
the wires was calculated in [34, Ch. 4]. We can express the
grid inductance per unit length as

L =
Z0

2πc
ln

 1

sin
(
πw
2py

)
(1− cos2 φ sin2 θ

)
. (36)

For H-plane scan, φ = 90◦, and L does not change.
Also, according to our model, the current is the same as
for broadside. Therefore, it is still possible to compute the
impedance with the lossy lumped element circuit and extract
conclusions from the network model. Results calculated using
the lossy lumped element circuit for an array of connected
dipoles are shown in Fig. 12(a) for different scan angles and
nominal array parameters. As radiation losses increase while
L is maintained, anti-resonance becomes wider and flatter,
and this behavior is well captured. Conversely, the equivalent
network would predict that X0 is maintained and Rr is scaled
by 1/ cos θ because it does not capture the consequences of a
lower quality factor in the resonance. This is specially clear
at large scan angles. Finally, for scan at 80◦ near f = 1 a.u.
the curve deviates from simulation as the onset of a grating
lobe is approached.

For E-plane scan, we need to distinguish between connected
and disconnected dipoles. In the latter case, the current in
(32) is the same as for broadside emission, so X0 remains
the same and Rr scales with cos θ. Note that, even if in (36)
L varies, this is for a plane wave in oblique incidence that
generates a linear phase progression along the wires of the
grid. For the array of disconnected dipoles, there is no linear
phase progression, and the expression for L at broadside has
to be used.

On the other hand, for connected dipoles, the scan
impedance can be obtained as follows: the current at the
dipole feed is I(0), whereas the voltage is the superposition
of the voltages impressed by all generators in x = 0. As we
have seen before, for the q element, only q − 1, q, q + 1
contribute to the current. When only the q generator is active,
we use the fact that the current along the dipole is that of
an open-ended transmission line of length l. The dipole self-
reactance is then Zq,q = V q(0)/I(0) = −j2Zc/ tan(βl).
When only one of the q ± 1 generators is on, the voltage
at the dipole feed corresponds to that of the open-ended
transmission line of length l at the position of the load, so
Zq±1,q = V q±1(x = 0)/I(0) = jZce

±∆α/ sin(βl). Thus, the
scan reactance is given by the sum of the three terms:

X0 = 2Zc

(
cos ∆α

sin(βl)
− 1

tan(βl)

)
. (37)

It is interesting to note that (37) reduces to 2Zc tan(βl/2)
when ∆α = 0 and is an alternative way to calculate the scan
reactance based on mutual impedances. Fig. 12(b) shows the
results for an array of connected dipoles and nominal array
configuration. Calculations are performed inserting the current
distribution given by (34) in (9) to calculate Rr from the
network of Fig.3. X0 is calculated using (37). In this case, the
current distribution no longer follows that of a TL, and it is not
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Fig. 12. Real and imaginary parts of the scan impedance: simulated (solid
lines), and calculated (squares) for a connected array of dipoles at different
scan angles in (a) H-plane, and (b) E-plane.

possible to map the impedance curves with the lossy lumped
element circuit used before, causing the model to deviate close
to anti-resonance.

VIII. LIMITATIONS OF THE MODEL

As already mentioned, the asymptotic current approxima-
tion neglects the effect on the current due to the radiation
resistance. It constitutes a term in quadrature with the current
impressed by the generator and the distribution is that of a
reflecting antenna, as noted by [30]. Since Rr 6= 0, this
term is present event when w → 0 and it dominates the
current at the dipole input terminals at anti-resonance when
the asymptotic current distribution approaches zero and the
impedance takes a maximum value. Thus, in this region, the
TL model loses validity. This limitation can be overcome
for the interfacial array by using a lossy lumped element
except for E-plane scan with connected dipoles. In general,

multilayered media or a ground plane will affect Rr and so,
the associated term in the current distribution. On the other
hand, following the discussion of [30], the asymptotic current
distribution stems from a TEM wave that propagates along
a linear antenna. When discontinuities exist, such as at the
ends of disconnected dipoles, a TEM wave cannot match the
boundary conditions and higher-order waves must exist. They
will have an impact on the current distribution. In particular, it
results in the model being more accurate for connected dipoles
than for disconnected ones. Similarly, it is known that as a
grating lobe is close to its onset, it affects the scan impedance
[1, Ch. 7], then, in this case, some deviation from the model
should be expected. Last, the expression for L becomes invalid
if the spacing is comparable to the wavelength [27]. In this
case, it is invalid when grating lobes appear and the inductance
of the grid can no longer be expressed by a single lumped
element.

Finally, as for the inclusion of a ground plane, a com-
parative of the network model (Figs. 3 and 6) with full-
wave simulations shows Zd = 55.7 − j109.4 Ω versus
Zd = 59.7 − j91.0 Ω respectively, when there is no ground
plane, and Zd = 111.4−j109.4 Ω versus Zd = 118.6−j98.6 Ω
respectively, for a ground plane at d = λ/4. The numbers
correspond to an array of nominal parameters (as detailed in
Section VI) for f = 1 and disconnected dipoles, and indicate
that the model is still valid.

IX. CONCLUSION

A model has been presented to determine the scan
impedance of infinite phased arrays of dipoles at a dielectric
interface. First, equivalent circuits and expressions for the
scan resistance in the principal scan planes are derived using
the boundary conditions for the fundamental Floquet mode.
This derivation provides a straightforward interpretation of
the role played on the scan impedance by the pattern of the
Hertzian dipole, apparent allocated area, or partially stationary
waves formed by the presence of a ground plane or interface.
Using such boundary conditions, closed-form expressions have
also been derived for the ratio of intensity radiated towards
each half-space of the interfacial array. Second, an asymptotic
approximation is introduced to determine the current along the
array. Besides, the scan reactance is related to the inductance
per unit length of an inductive grid of strips. To perform the
calculations of the scan impedance, a lossy lumped element
circuit is generally preferred because it conveniently removes
the divergence of the impedance at anti-resonance of the
asymptotic approximation, and it also accounts for variations
in the impedance curves associated with the quality factor of
the resonance. The model shows how fundamental differences
in the current distribution between connected and disconnected
dipoles relate to different impedance curves at broadside and
in the principal scan planes. Indeed, the derivation of a model
based on physical grounds has permitted us to illustrate with
equivalent circuits and simple expressions how the principal
array variables affect the scan impedance.
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Álvaro J. Pascual received the B.Sc. degree in
Physics from the University of Zaragoza in 2015,
and the M.Sc. degree in Photonics (cum laude) from
the Polytechnic University of Catalonia (UPC) in
2016. During 2015-2016 he was a research assistant
at the Group of Optical Communications at UPC.
He was an R&D intern with Aragon Photonics Labs
(Zaragoza) in the summer of 2015, and with Melexis
Technologies NV (Tessenderlo, Belgium) in the last
third of 2016. Since November 2017 he works
towards the PhD degree in Electronic Engineering

at the Institute of Electronics and numeRical Technologies (IETR) in Rennes,
France. In 2019 was a visiting student at the Group of Photonic Technologies
and the Radiofrequency and Antennas Group at University Carlos III, Madrid,
Spain. His research interests include photonic-enabled mm-wave antenna
arrays and phased array antenna theory. Among other journals, Mr. Pascual
has served as a reviewer of IEEE Transactions on Antennas and Propagation.

Ronan Sauleau (M’04–SM’06–F’18) graduated in
electrical engineering and radio communications
from the Institut National des Sciences Appliquées,
Rennes, France, in 1995. He received the Agrégation
degree from the Ecole Normale Supérieure de
Cachan, France, in 1996, and the Doctoral degree
in signal processing and telecommunications and the
“Habilitation à Diriger des Recherches” degree, both
from the University of Rennes 1, France, in 1999 and
2005, respectively.

He was an Assistant Professor and Associate Pro-
fessor at the University of Rennes 1, between September 2000 and November
2005, and between December 2005 and October 2009, respectively. He has
been appointed as a full Professor in the same University since November
2009. His current research fields are numerical modeling (mainly FDTD),
millimeter-wave printed and reconfigurable (MEMS) antennas, substrate
integrated waveguide antennas, lens-based focusing devices, periodic and
non-periodic structures (electromagnetic bandgap materials, metamaterials,
reflectarrays, and transmitarrays) and biological effects of millimeter waves.
He has been involved in more than 60 research projects at the national and
European levels and has co-supervised 23 post-doctoral fellows, 44 PhD
students and 50 master students.

He has received 17 patents and is the author or coauthor of more than
260 journal papers and 510 publications in international conferences and
workshops. He has shared the responsibility of the research activities on
antennas at IETR in 2010 and 2011. He was co-director of the research
Department ‘Antenna and Microwave Devices’ at IETR and deputy director
of IETR between 2012 and 2016. He is now director of IETR. Prof.
Sauleau received the 2004 ISAP Conference Young Researcher Scientist
Fellowship (Japan) and the first Young Researcher Prize in Brittany, France,
in 2001 for his research work on gain-enhanced Fabry-Perot antennas.
In September 2007, he was elevated to Junior member of the “Institut
Universitaire de France”. He was awarded the Bronze medal by CNRS in
2008, and the silver medal in 2020. He was the co-recipient of several
international conference awards with some of his students (Int. Sch. of BioEM
2005, BEMS’2006, MRRS’2008, E-MRS’2011, BEMS’2011, IMS’2012, An-
tem’2012, BioEM’2015, EuCAP’2019). He served as a guest editor for the
IEEE Antennas Propogat. Special Issue on “Antennas and Propagation at mm
and sub mm waves”. He served as a national delegate for several EU COST
actions. He has served as a national delegate for EurAAP and as a member
of the board of Director of EurAAP from 2013 to 2018.



ACCEPTED MANUSCRIPT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2021.3070716, IEEE
Transactions on Antennas and Propagation

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. X, NO. X, MONTH YYYY 13
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