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Contributions to output controllability for Linear

Time Varying systems

Baparou Danhane, Jérôme Lohéac, and Marc Jungers *

June 23, 2021

Abstract

The purpose of this paper is to provide some contributions to one
notion of Output controllability for Linear Time Varying (LTV) systems
which is the Complete State to Output Controllability (CSOC), notion
introduced in the 60s by P. E. Sarachik and G. M. Kranc. More precisely,
we consider LTV systems with direct transmission of the input to the
output and establish criteria to ensure the CSOC in finite time of these
systems. We also give, under the assumption of CSOC in finite time, an
explicit expression of a continuous control built by means of a Gramian
matrix.

Keywords: Automatic control, Open loop systems

1 Introduction

The Complete State to Output Controllability (CSOC) for Linear Time Varying
(LTV) systems was introduced in [7] by P. E. Sarachik and G. M. Kranc in 1963.
They considered LTV systems without direct transmission of the input to the
output and extended the Kalman state controllability Gramian criterion to the
case of output. In [6], E. Kreindler and P. E. Sarachik extended this criterion
to LTV systems with direct transmission from the input to the output. For
this notion, the aim is to study if one can drive in finite time the output of
these systems to a prescribed value from any initially given state data. Another
notion of output controllability for LTV systems without direct transmission of
the input to the output, which is Complete Output Controllability can be found
in [3]. For this second notion, as stated in [3, Definition 4.2], the question is
whether it is possible or not to steer the output from any initial output value to
a prescribed output value in finite time. Note that even if the criteria given in [3]
are the same as those given in [6], these two notions are rigorously distinct as it
was discussed in [4, Section 6] for Linear Time-Invariant systems. So, the criteria
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given in [3] have to be understood in the sense of [6, Definition 3]. The authors,
in [3], also gave, under some regularity assumptions, a sufficient condition of
Kalman rank type to ensure the complete state to output controllability in
finite time of the considered systems. To our knowledge, these are the two
existing results that allow us to verify the CSOC property of LTV systems. The
Gramian condition being usually difficult to check in practice, it is natural to
look for some other testable controllability conditions. This has already been
considered in [3, Section 4.1.3] but assuming some strong regularity conditions
on the system. Moreover, for CSOC system with direct transmission from the
input to the output, it could be of practical importance to have a smooth output
trajectory, that is to say to have a smooth control that enables us to achieve
the desired transfer.
In this paper, we consider the same system as in [6], and introduce the notion of
State to Output Controllability (SOC) in finite time. This notion is actually [6,
Definition 3], with t0 = 0. Note however that the arguments used in the present
paper remain unchanged, when t0 6= 0. In Section 2, we recall some results on
differential equations, and define the SOC notion. We also give in Problems 1
and 2 a precise formulation of the issues tackled in this paper. In Section 3,
the main results are provided. In this section, we proposed Theorem 2 which
gives necessary and sufficient condition for SOC in finite time. These conditions
being difficult to check in practice because requiring the computation of the
resolvent and the invertibility of matrices, we proposed in Theorem 3 a sufficient
condition which does not involve the resolvent matrix and is easily checkable.
This condition turns out to be necessary under analytic assumption. However, if
the resolvent matrix can be easily computed, we also give sufficient and necessary
conditions through Proposition 5 and Theorems 6 and 7. We end Section 3
with Theorem 8 which gives an explicit expression of continuous control. These
results are illustrated on an example in Section 4 and proven in Section 5.
Conclusion is given in Section 6.
The following notations are used. The sets N and R are respectively the set of
nonnegative integers and of real numbers. We also define R+ = [0,∞), N∗ =
N\{0} and for k ∈ N∗, N6k = {0, . . . , k}, N∗6k = N6k\{0} and N<k = N6k−1.

We also set N6∞ = N. Given k, l ∈ N∗, Rlk (with shortcut Rl1 = Rl) is the set
of l × k matrices with coefficients in R, and 0lk is its null element. For F ∈ Rlk,
rkF , ImF and F> denote respectively the rank, image and transpose of F .
Given e1, . . . , ek ∈ Rl, Span{e1, . . . , ek} ⊂ Rl is the vector space generated by
e1, . . . , ek. The Euclidean norm and product on Rl are denoted by |·| and 〈·, ·〉. If
G is also a matrix with l lines (F |G) is the concatenation in row of the matrices F
and G. If (Fi)i∈N is a sequence of matrices having l rows, rk(Fi, i ∈ N) is the
dimension of

∑
i∈N Im(Fi). For I a real interval, Ck(I) stands for the set of k

times differentiable real functions defined on I and for g ∈ Ck(I), g(k) is the k-th
derivative of g. For T > 0, we define the Banach space L∞(0, T ) (respectively
L2(0, T )) of essentially bounded (respectively square integrable) real functions
defined on (0, T ). We also set H1(0, T ) = {f ∈ L2(0, T ) | ḟ ∈ L2(0, T )},
where ḟ is the derivative of f , in the sense of distributions. Finally, L∞loc(R+)
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is the set of real functions defined on R+ that are essentially bounded on any
compact set of R+. For all of these spaces, we use the same convention, as the
one used for R to define matrices of such functions.

2 Preliminaries and problem formulation

Consider, for t > 0, the LTV system

ẋ(t) = A(t)x(t) +B(t)u(t), (1a)

y(t) = C(t)x(t) +D(t)u(t), (1b)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq are respectively the state, the input
(or the control) and the output of the system at time t where n, m and q are
positive integers. These three integers will always refer to the dimensions of
the state, input and output. We also consider A ∈ L∞loc(R+)nn, B ∈ L∞loc(R+)nm,
C ∈ C0(R+)qn and D ∈ C0(R+)qm. Unless otherwise stated, these regularities
will be assumed all along this paper.

2.1 Some reminders on differential equations

Since in this paper, we will investigate the state to output controllability in
finite time of system (1), we consider a generic time tf > 0 and focus on the
restrictions of solutions of (1) on the interval [0, tf ]. It is well-known, see e.g. [5,
Lemma 2], that for u ∈ L∞(0, tf )m, equation (1a) coupled with the initial
condition x(0) = x0 ∈ Rn admits a unique solution on C0([0, tf ])n defined, for
every t ∈ [0, tf ], by

xu(x0, t) = R(t, 0)x0 +

∫ t

0

R(t, s)B(s)u(s) ds. (2)

This solution is expressed in terms of the resolvent matrix R associated to the
system ẋ(t) = A(t)x(t). Definition and properties of this matrix are recalled
below.

Definition 1 The resolvent of the system ẋ(t) = A(t)x(t) is the map R : (t, τ) ∈
R2

+ 7→ R(t, τ) ∈ Rnn such that for every (t, τ) ∈ R2
+, M(t) = R(t, τ) is the unique

solution of the Cauchy problem Ṁ(t) = A(t)M(t) with M(τ) = In.

The following properties of this map can be found for instance in [1, Lecture 18].

Proposition 1 We have R ∈ C0(R2
+)nn, and for every t0, t1, t2 ∈ R+, R(t0, t0) =

In and R(t0, t1)R(t1, t2) = R(t0, t2). In addition, if A ∈ Ck(R+)nn, with k ∈ N,
then R ∈ Ck+1(R2

+)nn and for every t ∈ R+,

∂R(t, t2)

∂t
= A(t)R(t, t2),

∂R(t1, t)

∂t
= −R(t1, t)A(t).
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2.2 Definition and problem statement

In the framework of state controllability, it is well-known, and can be seen
through (2), that even if we consider the set of essentially bounded controls as
a set of admissible inputs, the state trajectories are continuous. But, when one
wants to control the output of the system (1) with D 6= 0qm, one can readily see
that allowing jumps on the input induces discontinuities on the output trajec-
tories. This is often not desirable in practice. For this practical purpose, it is
more natural to consider the set of continuous functions as the set of admissible
controls. Therefore, the following definition will be considered in the sequel.

Definition 2 The system (1) is said to be state to output controllable (SOC)
in time tf , if for every (x0, y1) ∈ Rn×Rq, there exists a control u ∈ C0([0, tf ])m

such that the output solution yu(x0, t) of system (1) with x0 ∈ Rn as initial state
data and u as input satisfies at time tf , yu(x0, tf ) = y1.

This definition gives rise to the following problems.

Problem 1 Determine efficient and practical characterizations of the SOC in
finite time of system (1).

Problem 2 For any (x0, y1) ∈ Rn × Rq, find, when system (1) is SOC in a
time tf > 0, an explicit expression of a continuous control steering x0 to y1 in
time tf in the sense of Definition 2.

From (1b), we observe that in any case, yu(x0, tf ) ∈ Im(C(tf )|D(tf )).
Hence, a necessary condition for system (1) to be SOC in time tf is
rk
(
C(tf )|D(tf )

)
= q. This condition also tells us that if system (1) is SOC

in some time tf > 0, it is not necessarily SOC in another time t̃f 6= tf .

3 Main results

The proofs of the results given in this section are postponed in Section 5. All
along this paper, the following notations will be used: for all t ∈ [0, tf ] and
u ∈ C0([0, tf ])m,

Mtf (t) := C(tf )R(tf , t)B(t) ∈ Rqm,
Htf (t) :=

∫ tf
t
Mtf (s) ds+D(tf ) ∈ Rqm,

Etf (u) :=
∫ tf
0
Mtf (t)u(t) dt+D(tf )u(tf ) ∈ Rq,

Ktf :=
∫ tf
0
Mtf (t)Mtf (t)> dt+D(tf )D(tf )> ∈ Rqq,

Gtf :=
∫ tf
0
Htf (t)Htf (t)> dt ∈ Rqq.

The following theorem links the notion of SOC in time tf to the surjectiv-
ity of the Endpoint map Etf , and to the positive definiteness of the Gramian
matrices Ktf and Gtf .

Theorem 2 The following assertions are equivalent.
(i) The system (1) is SOC in time tf .
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(ii) The map Etf defined on C0([0, tf ])m is surjective.
(iii) The symmetric matrix Ktf is positive definite.
(iv) The symmetric matrix Gtf is positive definite.

We will see in Theorem 8 that the Gramian matrix Gtf , involved in con-
dition (iv), will also lead to an expression of a continuous control, while the
Gramian matrix Ktf proposed in [6] will only lead to a piecewise continuous
control.
The above SOC criteria (iii) and (iv) might be difficult to check in practice.
Indeed, to use them, we need to compute the resolvent matrix, and to check
the invertibility of a matrix. This is difficult in general, even in low dimensions.
For that reason, we propose in Theorem 3 a sufficient condition which does
not require the knowledge of the resolvent matrix. Furthermore, this condition
becomes necessary under analytical assumption.

Theorem 3 Let k ∈ N ∪ {∞}, and assume that A ∈ Ck−1(R+)nn (or A ∈
L∞loc(R+)nn for k = 0), B ∈ Ck(R+)nm. If there exists a time tf > 0 such that

rk (D(tf )|C(tf )Bi(tf ), i ∈ N6k) = q, (3)

where B0(t) = −B(t) and Bi+1(t) = −Ḃi(t) + A(t)Bi(t), then system (1) is
SOC in time tf . Moreover, if A and B are analytic matrices, then (3), with
k =∞, is necessary.

Remark 1 Theorem 3 is also valid if the matrices A(t) and B(t) only have the
required regularity at time t = tf .

Remark 2 Since the rank of a matrix is invariant under a certain threshold
of perturbation (see e.g. [8, Chapter 5]), if (3) holds in time tf , then (3) also
holds in a neighborhood of tf . Indeed, one can see that the matrices D and CBi
(for i ∈ N6k) are all continuous at time tf . Furthermore, if A(t), B(t), C(t)
and D(t) are analytic matrices with respect to t, and (3) holds for some time
tf > 0 and some k ∈ N, then (3) holds for almost every tf ∈ R+.

Remark 3 Bearing in mind Cayley-Hamilton theorem, one can readily see that
if matrices A, B, C and D are time independent, condition (3), with k > n,
is exactly the Kalman extended rank criterion given in [4, Theorem 3.1 (soc2)],
that is rk(D|CA0B| · · · |CAn−1B) = q. If A and B are not constant, we can no
longer use Cayley-Hamilton in (3) due to the presence of the time derivatives
of these matrices.

We insist on the fact that condition (3) is sufficient, but not necessary as it is
illustrated on the following example.

Example 1 Consider system (1) with A = 033, D = 021, C = (I2 | 021) and
B(t) = (f(t), g(t), h(t))>, where f, g, h ∈ Ck(R+), for some k ∈ N ∪ {∞},
non identically null functions on [0, tf ] such that the support of f and g are re-
spectively included in [0, tf/2] and [tf/2, tf ]. We deduce that Span{D(tf )u, u ∈
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Rm} + Span{C(tf )Bi(tf )u, i ∈ N6k, u ∈ Rm} ⊂ {0} × R. Therefore, we infer
that condition (3) does not hold in time tf . But one can see through condi-

tion (iii) that Ktf = diag
(∫ tf

0
f(t)2 dt,

∫ tf
0
g(t)2 dt

)
is positive definite, thanks

to the assumptions made on f and g.

Contrary to Theorem 3, the following results use the resolvent matrix R. Thus,
they are only usable in practice if one knows how to calculate it. For the sake of
completeness, we recall in the following lemma the expression of the derivatives
of Htf . The proof of this lemma is not given but can be obtained by induction,
together with Proposition 1.

Lemma 4 Let k ∈ N∪{+∞}. If A ∈ Ck−1(R+)nn (or A ∈ L∞loc(R+)nn for k = 0),

B ∈ Ck(R+)nm then Htf ∈ Ck+1(R+)qm and H
(i)
tf

(t) = C(tf )R(tf , t)Bi−1(t) for
all i ∈ N∗6k+1 and t ∈ R+.

The following proposition extends [2, Proposition 1.19] to the case of the con-
trollability of the output of system (1).

Proposition 5 Assume there exists a time tf > 0 such that (3) holds with
k =∞. Then there exists ε > 0 such that for every t ∈ (tf−ε, tf+ε)∩(R+\{tf}),

rk
(
H

(i)
tf

(t), i ∈ N<q
)

= q, (4)

Moreover, if A and B are analytic then (3) and (4) are equivalent.

Remark 4 Without the analyticity hypothesis, (3) and (4) are not equivalent.
One can get convinced by considering system (1) with m = n = q = 1, A = D =

0, C = 1 and B(t) = (2/(t − 1)3)e−1/(t−1)
2

for t 6= 1 and B(1) = 0. With this
example, one can easily see that taking tf = 1, (4) holds but (3) does not.

The following theorem generalizes Theorems 3 and Proposition 5. The proof
of this theorem will be sketched at the same time as the one of Theorems 3 and
Proposition 5.

Theorem 6 Let k ∈ N∪{∞}. Assume that A ∈ Ck−1(R+)nn (or A ∈ L∞loc(R+)nn
for k = 0), B ∈ Ck(R+)nm and let ` ∈ N∗6q. The system (1) is SOC in time tf
if there exist t1, · · · , t` in [0, tf ], not necessarily distinct, such that

rk
(
H

(i)
tf

(tj), i ∈ N6k+1, j ∈ N∗6`
)

= q, (5)

Moreover, if (5) holds with k =∞ and ` = 1, then there exists ε > 0 such that

for every t ∈ (t1 − ε, t1 + ε) ∩ ([0, tf ]\{t1}), we have rk
(
H

(i)
tf

(t), i ∈ N<q
)

= q.

Let us compare Theorem 6 with [3, Theorem 4.9]. In [3, Theorem 4.9], it
is required that the regularity of the matrices A and B are respectively n − 2
and n− 1, and the rank condition shall be satisfied on a nonempty interval. In
Theorem 6 we do not really have regularity constraints, and the rank condition
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is pointwise. Needless to say that if the necessary condition of [3, Theorem 4.9] is
fulfilled, then the necessary condition of Theorem 6 is also fulfilled. In addition,
all the discussions that we had in the analytic case can be applied to Theorem 6.

As title of example, let us apply Theorem 6 to Example 1 with k = 0, i.e.,
the functions f , g and h are just continuous. In that case, Htf ∈ C1(R+)2,

Htf (t) = (
∫ tf
t
f(s)ds,

∫ tf
t
g(s)ds)> and H

(1)
tf

(t) = −(f(t), g(t))> for all t ∈
[0, tf ]. By assumption, there exists (t1, t2) ∈ [0, tf/2] × [tf/2, tf ] such that
f(t1) 6= 0, f(t2) = 0, g(t1) = 0 and g(t2) 6= 0. From these computations, we

have rk
(
H

(1)
tf

(t1), H
(1)
tf

(t2)
)

= q = 2. Hence, Theorem 6 ensures the SOC of the
system in time tf .

In the case we do not have enough regularity to apply Theorems 3 or 6,
the following theorem can be considered. This theorem, while being simple,
is relevant since it gives necessary and sufficient condition for SOC without
requiring supplementary regularities on the matrices A and B other than being
essentially bounded. Recall that in that case, Htf ∈ C0(R+)qm.

Theorem 7 The system (1) is SOC in time tf if and only if there exists
t1, · · · , tq ∈ [0, tf ], not necessarily distinct, such that

rk(Htf (t1), · · · , Htf (tq)) = q. (6)

Moreover, if A and B are analytic, (t1, · · · , tq) can be found in any nonempty
open set contained in [0, tf ]q.

Since the rank of a matrix is invariant under a certain threshold of perturbation,
if there exists (t1, · · · , tq) ∈ [0, tf ]q such that (6) holds, then there exists a
neighborhood N of (t1, · · · , tq) in [0, tf ]q such that for every (t̃1, · · · , t̃q) ∈ N ,
rk(Htf (t̃1), . . . ,Htf (t̃q)) = q. From the continuity of Htf with respect to tf
if (6) holds, there exists ε > 0 such that for every t̃f ∈ (tf − ε, tf + ε) ∩R+ the
system is SOC in time t̃f .
To illustrate Theorem 7, let us consider again Example 1, with f and g uniformly
bounded. Due to the support assumptions made on f and g, there exist (t1, t2) ∈
[0, tf/2]×[tf/2, tf ] such that

∫ tf
t1
f(s)ds 6= 0,

∫ tf
t2
f(s)ds = 0 and

∫ tf
t2
g(s)ds 6= 0.

That is to say that rk(Htf (t1), Htf (t2)) = q = 2, and hence, according to
Theorem 7, this system is controllable.

We end this section by giving Theorem 8 which solves Problem 2.

Theorem 8 Assume that the system (1) is SOC in time tf . For every (x0, y1) ∈
Rn × Rq and every u0 ∈ Rm, the control, given, for every t ∈ [0, tf ], by

u(t) = u0 +

∫ t

0

Htf (τ)>(Gtf )−1 (y1 − yu0
(x0, tf )) dτ, (7)

steers x0 to y1 in time tf , where we have set yu0
(x0, tf ) = C(tf )R(tf , 0)x0 +

Htf (0)u0.
Furthermore, this control is the unique minimizer of

min 1
2

∫ tf
0
|ẇ(t)|2 dt

w ∈ H1(0, tf )m, w(0) = u0, y1 = yw(x0, tf ). (8)
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Remark 5 The expression of the control given in (7) is based on the inverse
of the Gramian matrix Gtf . As already mentioned, computing this matrix and
checking its invertibility might be hard in practice. From a numerical point of
view, it is more interesting to consider the minimization problem (8) than trying
to compute directly the expression (7).

When system (1) is SOC in time tf > 0, even if the matrix Ktf does not lead
to a continuous control as mentioned earlier, we observe from [6] that it leads
to a piecewise continuous one. More precisely, the control given by{

u(t) = Mtf (t)>(Ktf )−1δy, for t ∈ [0, tf ),

u(tf ) = D(tf )>(Ktf )−1δy,
(9)

with δy = y1 − C(tf )R(tf , 0)x0, steers x0 to y1 in time tf . Furthermore, this
control is the unique minimizer of

min 1
2

∫ tf
0
|u(t)|2dt+ 1

2 |ξ|
2

u ∈ L2(0, tf )m, ξ ∈ Rm,
y1 − C(tf )R(tf , 0)x0 =

∫ tf
0
Mtf (t)u(t) dt+D(tf )ξ,

where ξ stands for the final control value u(tf ). One can see from the above
expression of u that, this control is discontinuous unless C(tf )B(tf ) = D(tf ).

4 Illustration

To illustrate our results, we consider the system (1) with n = 3, m = 1, q = 2,
and matrices A, B, C and D given for t > 0 by

A(t) =

0 −1 0
1 0 0
0 0 t

 , B(t) =

cos(t)
sin(t)

0

 ,

C(t) =

(
0 1 t2

t 0 cos(t)

)
, D(t) =

(
0

sin(t)

)
.

(10)

For any time tf > 0, one can check that the state controllability Gramian in time
tf , given in [2, Theorem 1.11] applied to system (1) with (10) is not invertible.
It follows that this system is not state controllable in time tf .
• Criteria (iii) and (iv). Let us check if this system is SOC in some time
tf > 0. For any time tf > 0, we get after some computations det(Ktf ) =
tf sin(tf )4 and det(Gtf ) = t4f sin(tf )4/12, where Ktf and Gtf are the matrices
defined respectively in (iii) and (iv). It follows from Theorem 2 that system (1)
with matrices given in (10) is SOC in time tf > 0 if and only if tf 6∈ πN.
• Theorem 3. Since the matrices defined in (10) are analytic, condition (3)
turns to be necessary and sufficient. From (iv), we have Htf (t) =

(
sin(tf )(tf −

t), sin(tf ) + tf cos(tf )(tf − t)
)>

. We then have H
(0)
tf

(t) = Htf (t), H
(1)
tf

(t) =
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−(sin(tf ), tf cos(tf ))> and H
(i)
tf

(t) = 0 for all i > 2. It follows from the previous
computations that system (1) with (10) is SOC in time tf if and only if tf 6∈ πN.

• Proposition 5. For every t > 0, we have det
(
H

(i)
tf

(t), i ∈ N<2

)
= sin(tf )2. It

follows that system (1) with (10) is SOC in time tf if and only if criterion (3) is
fulfilled. Here again, we have used the analyticity of the matrices defined in (10)
to get the necessary condition.
• Theorem 7. For every t1, t2 ∈ [0, tf ], we have det

(
Htf (t1), Htf (t2)

)
= (t2 −

t1) sin(tf ). We deduce that (t1, t2) 7→ det
(
Htf (t1), Htf (t2)

)
is not identically

null if and only if tf 6∈ πN.
• Control computation. To illustrate Theorem 8, we take tf = π/2. From the
above, the system considered is SOC in this time. Now we would like to build a
continuous control u, steering x0 = (1 0 1)> to y1 = (1 2)> in time tf . For this
purpose, we decide to construct u such that u(0) = 1. Applying formula (7), we
get for every t ∈ [0, π/2]

u(t) = 12
π2

(
3 + πeπ

2/8
)
t2 − 2

π

(
8 + 3πeπ

2/8
)
t+ 1.

One can also see that the piecewise control built in (9) is given by u(t) =

−π2 e
π2/8 for t ∈ [0, π/2) and u(π2 ) = 2. Solving (1) with these two controls, and

x0 as initial data, we get the time trajectories depicted on Figure 1.

5 Proofs of the results

5.1 Proof of Theorem 2

We do not give the proof of condition (iii) since it can be found in [6, Theorem 2].
We only prove the equivalence between (i), (ii) and (iv).
• Equivalence between (i) and (ii). First note that if system (1) is SOC in time
tf then the origin can be steered to any point of Rq in time tf . This implies
that (ii) holds. Reciprocally, if Etf is surjective, for every (x0, y1) ∈ Rn × Rq,
there exists a control u∗ ∈ C0([0, tf ])m such that Etf (u∗) = y1−C(tf )R(tf , 0)x0,
i.e., x0 can be steered to y1 in time tf .
• Equivalence between (ii) and (iv). Let us first assume that there exists a
non-zero vector η ∈ Rq such that

η>Gtf η = 0. (11)

Since Htf ∈ C0(R+)qm, we deduce that η>Htf (t) = 01m for all t ∈ [0, tf ], i.e.

η>
∫ tf

t

Mtf (s) ds+ η>D(tf ) = 01m, ∀t ∈ [0, tf ]. (12)

Taking t = tf in (12) and differentiating the same equation with respect to t,
one deduce that η>D(tf ) = 01m and η>Mtf (t) = 01m for almost every t ∈ [0, tf ].

9
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Figure 1: On the left, we have the continuous control (Theorem 8), state and
output trajectories built by means of the matrix Gtf taking the output of sys-

tem (10) to y1 = (1 2)> in time tf = π/2 with x0 = (1 0 1)> as initial state data.
On the right-hand side, we have the time trajectories obtained using the control
built with Ktf . One can see that the output trajectories with our proposed
Gramian Gtf are continuous and those built by means of Ktf are not.

It follows that the linear map Etf is not surjective.

Conversely, assume there exists η ∈ Rq\{0q} such that η>Etf (u) = 0 for every

u ∈ C0([0, tf ])m. It follows that η>
∫ tf
0
Mtf (t)u(t) dt + η>D(tf )u(tf ) = 0, for

10



every u ∈ C1([0, tf ])m, and therefore, for every v ∈ C0([0, tf ])m,

η>
∫ tf

0

Mtf (t)

[∫ t

0

v(s) ds

]
dt + η>D(tf )

∫ tf

0

v(t) dt = 0, (13)

Noticing that by an integration by parts we have∫ tf

0

Mtf (t)

[∫ t

0

v(s) ds

]
dt =

∫ tf

0

∫ tf

t

Mtf (s)v(t) dsdt, (14)

we deduce from (13) that

η>
∫ tf

0

Htf (t)v(t) dt = 0, ∀v ∈ C0([0, tf ])m. (15)

Setting v(t) = Htf (t)>η for all t ∈ [0, tf ], v ∈ C0([0, tf ])m and it follows
from (15) that (11) holds for some non-zero vector η, that is to say that Gtf is
not positive definite.

Remark 6 It can be deduced from the above proof that denoting by Rtf the
set of all output points that can be reached from 0n in time tf , we have Rtf ={
Etf (u), u ∈ C0([0, tf ])m

}
=
{ ∫ tf

0
Htf (t)u(t) dt, u ∈ Ck([0, tf ])m

}
for every

k ∈ N. This observation shows that [4, Lemma 4.1] remains true in the case of
LTV systems.

5.2 Proof of Theorem 3

Let us prove Theorem 3 by contraposition. To this end, we assume that sys-
tem (1) is not SOC in time tf . Then, according to Theorem 2, there exists a
non-zero vector η ∈ Rq such that η>Gtf η = 0. Using the continuity of Htf , we
infer that

η>Htf (t) = 01m, ∀t ∈ [0, tf ]. (16)

Taking t = tf in (16), we get η>D(tf ) = 01m. Using Lemma 4, we deduce by
differentiating (16) with respect to t and evaluating the resulting equations at
time tf that for every i ∈ N6k, η>C(tf )Bi(tf ) = 01m. From the above, we
deduce that (3) does not hold. Note that in (16), we decided to evaluate this
equality and its derivatives at time tf in order to eliminate the resolvent. But
one can also evaluate this relation and its derivatives at any other time taken
in [0, tf ]. This leads to the sufficient condition given in Theorem 6.
Observe that if in addition, matrices A and B are analytic, then the map t 7→
η>Htf (t) is analytic in time. It follows that if its derivatives of all order vanish
at some time, then that map vanishes identically on R+. This implies that
Gtf η = 0q and therefore that Gtf is not positive definite.

11



5.3 Proof of Proposition 5

The proof of this proposition is divided into two steps. The first step deals with
the case m = 1. In the second step, we show how the case m > 1 can be reduced
to the case m = 1. This proof is inspired by the proof of [2, Proposition 1.19].
Note that when A and B are analytic, the reverse implication is deduced from
Theorem 3.
• Case m = 1. Note that since A ∈ C∞(R+)nn and B ∈ C∞(R+)n, then
Htf ∈ C∞(R+)q. Since (3) holds for tf thanks to the assumption in Propo-

sition 5, we have from (3) and Lemma 4, rk
(
H

(i)
tf

(tf ), i ∈ N
)

= q. Applying [2,
Lemma 1.22], and the discussion following this lemma, to the function Htf , we
deduce that there exist q integers d1 < · · · < dq, q functions ai ∈ C∞(R+) and
q vectors vi ∈ Rq such that

rk(v1, · · · , vq) = q, ai(tf ) 6= 0, ∀i ∈ N∗6q, (17a)

Htf (t) =

q∑
i=1

ai(t)(t− tf )divi, ∀t > 0. (17b)

Hence, when t goes to tf , we have

det
(
H

(i)
tf

(t), i ∈ N<q
)

= K(t− tf )δ +O
(
(t− tf )1+δ

)
, (18)

with δ = −q(q − 1)/2 +
∑q
i=1 di and

K =

( ∏
16i<j6q

(dj − di)

)(
q∏
i=1

ai(tf )

)
det(v1, · · · , vq).

From (17a) and the fact that di 6= dj for i 6= j, we deduce that K 6= 0. It
follows from (18) that there exists ε > 0 such that for every t ∈ (tf − ε, tf + ε)∩
(R+\{tf}), det

(
H

(i)
tf

(t), i ∈ N<q
)
6= 0. This ends the case m = 1.

• Case m > 1. Set Htf (t) = (h1(t), · · · , hm(t)). From the hypothesis of Propo-

sition 5 and from Lemma 4, we have Rq = Span
{
h
(i)
j (tf ), j ∈ N∗6m, i ∈ N

}
.

Hence, there exist p ∈ N∗ such that Rq = Span
{
h
(i)
j (tf ), j ∈ N∗6m, i ∈

N<p
}

. We then set, for t > 0, H̃(t) :=
∑m
j=1(t − tf )(j−1)phj(t) and obtain

rk
(
H̃(i)(tf ), i ∈ N

)
= q. Since hj ∈ C∞(R+)q, we have H̃ ∈ C∞(R+)q. We

therefore use the result of the case m = 1 to get the existence of ε > 0 such
that for every t ∈ (tf − ε, tf + ε) ∩ (R+\{tf}), rk

(
H̃(i)(t), i ∈ N<q

)
= q. Since

Span
{
H̃(i)(t), i ∈ N<q

}
⊂ Span

{
h
(i)
j (t), j ∈ N∗6m, i ∈ N<q

}
, we infer that for

every t ∈ (tf − ε, tf + ε) ∩ (R+\{tf}), rk
(
H

(i)
tf

(t), i ∈ N<q
)

= q.

5.4 Proof of Theorem 7

It can be seen through (16) that if system (1) is not SOC in time tf , condition (6)
does not hold for every t1, · · · , tq in [0, tf ]. Assume by contraposition that for

12



every t1, · · · , tq ∈ [0, tf ], rk
(
Htf (t1), · · · , Htf (tq)

)
< q. Choose τ1, · · · , τq ∈

[0, tf ] that realize max
t1,··· ,tq∈[0,tf ]

rk
(
Htf (t1), · · · , Htf (tq)

)
. It follows that for every

u? ∈ Rm and every t ∈ [0, tf ],

Htf (t)u? ∈ Span
(
Htf (τi)u, i ∈ N∗6q, u ∈ Rm

)
( Rq.

Hence, we deduce that there exists a vector η ∈ Rq\{0q} such that η>Htf (t) =
01m for every t ∈ [0, tf ]. It follows that η is in the kernel of Gtf , and therefore
that system (1) is not SOC in time tf . Now, assume that matrices A and B
are analytic, and that the system (1) is SOC in time tf . From what precedes,
there exist t1, · · · , tq ∈ [0, tf ] such that rk

(
Htf (t1), · · · , Htf (tq)

)
= q. This

implies the existence of τ1, · · · , τq ∈ {t1, · · · , tq} and u1, · · · , uq ∈ Rm such that
det
(
Htf (τ1)u1, · · · , Htf (τq)uq

)
6= 0. Since A and B are analytic, the application

(s1, · · · , sq) ∈ [0, tf ]q 7→ det
(
Htf (s1)u1, · · · , Htf (sq)uq

)
∈ R is also analytic and

non identically null. Hence, its zeros set is of null measure. This implies that
for every nonempty open set O, in [0, tf ]q, there exist (t̄1, t̄2, · · · , t̄q) ∈ O such
that det

(
Htf (t̄1)u1, · · · , Htf (t̄q)uq

)
6= 0.

5.5 Proof of Theorem 8

Let x0 ∈ Rn, y1 ∈ Rq and u0 ∈ Rm. Since the system (1) is SOC in time tf ,
there exists a control u ∈ C0([0, tf ])m steering x0 to y1 in time tf . There even
exists an infinite number of controls doing the same transfer since, by the rank
Theorem, the kernel of the linear map Etf defined in Theorem 2 is of infinite
dimension. We can even build a continuous control such that u(0) = u0 as it
will be done in the sequel of this proof. To prove Theorem 8, we will look for
the control solution of the minimization problem (8). We prove this theorem by
analysis and synthesis. First suppose that there exists a function w ∈ H1(0, tf )m

such that w(0) = u0 that steers x0 to y1 in time tf . Since w ∈ H1(0, tf )m

and w(0) = u0, there exists v ∈ L2(0, tf )m such that w(t) = u0 +
∫ t
0
v(τ)dτ .

Replacing w by this expression in yw(x0, tf ) and using (14), we deduce that

yw(x0, tf ) = yu0(x0, tf ) + Φ(v), with Φ(v) =
∫ tf
0
Htf (t)v(t) dt.

The minimization problem (8) can then be rewritten as

min 1
2

∫ tf
0
|v(t)|2 dt

v ∈ L2(0, tf )m, y1 − yu0(x0, tf ) = Φ(v).
(19)

Note that problem (19) is the minimization of a strictly convex functional under
non-empty affine constraints. Hence, it admits a unique solution in L2(0, tf )m.
Taking ψ as the Lagrange multiplier associated to the equality constraint, the
Lagrangian of this optimal control problem is given by

L(v, ψ) =
1

2

∫ tf

0

|v(t)|2 dt+ 〈ψ, y1 − yu0
(x0, tf )− Φ(v)〉.

Deriving the first order optimality conditions, we get v(t) = Htf (t)>ψ, where
ψ is solution of Gtfψ = y1 − yu0

(tf , x0). Since Gtf is invertible, thanks to the
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SOC in time tf of system (1), we deduce that ψ = (Gtf )−1 (y1 − yu0(x0, tf )).

Of the foregoing, we have v(t) = Htf (t)>(Gtf )−1 (y1 − yu0
(x0, tf )), and w(t) =

u0 +
∫ t
0
Htf (τ)>(Gtf )−1 (y1 − yu0(x0, tf )) dτ . Finally, setting u = w, we have

u ∈ C0([0, tf ])m with u(0) = u0 and by construction, this control steers x0 to y1

in time tf .

6 Conclusion

In this paper, we provided criteria for state to output controllability of linear
time varying control systems. When the system is state to output controllable,
we gave an explicit expression of a continuous control realizing the desired trans-
fer, this even if there is a direct transmission between the input and the output.
In this paper, we have assumed that the initial state is known. However, combin-
ing the arguments used in this paper and the strategy used in [4, Section 6], one
can also derive similar conditions for the output to output notions introduced
in [4].
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