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S U M M A R Y
Full waveform inversion (FWI) requires an accurate estimation of source signatures. Due to
the coupling between the source signatures and the subsurface model, small errors in the
former can translate into large errors in the latter. When direct methods are used to solve the
forward problem, classical frequency-domain FWI efficiently processes multiple sources for
source signature and wavefield estimations once a single lower–upper (LU) decomposition
of the wave-equation operator has been performed. However, this efficient FWI formulation
is based on the exact solution of the wave equation and hence is highly sensitive to the
inaccuracy of the velocity model due to the cycle skipping pathology. Recent extended-
space FWI variants tackle this sensitivity issue through a relaxation of the wave equation
combined with data assimilation, allowing the wavefields to closely match the data from the
first inversion iteration. Then, the subsurface parameters are updated by minimizing the wave-
equation violations. When the wavefields and the source signatures are jointly estimated with
this approach, the extended wave equation operator becomes source dependent, hence making
direct methods and, to a lesser extent, block iterative methods ineffective. In this paper, we
propose a simple method to bypass this issue and estimate source signatures efficiently during
extended FWI. The proposed method replaces each source with a blended source during each
data-assimilated wavefield reconstruction to make the extended wave equation operator source
independent. Besides computational efficiency, the additional degrees of freedom introduced
by spatially distributing the sources allows for a better signature estimation at the physical
location when the velocity model is rough. We implement the source signature estimation with a
variable projection method in the recently proposed iteratively refined wavefield reconstruction
inversion (IR-WRI) method. Numerical tests on the Marmousi II and 2004 BP salt synthetic
models confirm the efficiency and the robustness against velocity model errors of the new
method compared to the case where source signatures are known.

Key words: Waveform inversion; Controlled source seismology; Controlled source
seismology; Inverse theory; Numerical modelling.

1 I N T RO D U C T I O N

Seismic wavefields carry information about subsurface and source, the latter being represented by its location and signature. In controlled
source seismic on which this study is focused, the source locations are generally known accurately, while the source signatures are usually
unknown and need to be estimated to perform reliable full-waveform inversion (FWI, Tarantola 1984; Pratt et al. 1998; Virieux & Operto
2009). Furthermore, it is well acknowledged that the estimation of the source signature is easier in the frequency domain than in the time
domain since the time-harmonic wave equation can be solved for each frequency separately (Song et al. 1995; Pratt 1999). In frequency-
domain seismic modeling, direct methods are the most suitable ones to process a large number of sources efficiently by forward/backward
elimination, once a lower–upper (LU) decomposition of the so-called impedance matrix has been performed once (Marfurt 1984). The reader
is referred to Operto et al. (2015), Amestoy et al. (2016), and Operto & Miniussi (2018) for a real 3D frequency-domain FWI case study
performed with such forward-modelling engines. When the size of the problem prevents using a direct solver, iterative methods speed-up the
processing of multiple right-hand sides with block and recycling methods (Parks et al. 2006).

Source signatures may be estimated before FWI or updated jointly with subsurface parameters during FWI iterations. For a fixed velocity
model, the source signature estimation can be formulated as a least-squares quadratic data fitting problem (Pratt 1999). The closed-form
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expression of the estimated source signature is given by the zero-lag cross-correlation between the calculated and recorded data, scaled by the
autocorrelation of the calculated data. In this framework, the source signature estimation can be implemented in the classical reduced-space
FWI iterations with two different approaches: In the first, the source signatures and the subsurface parameters are updated in an alternating
mode, while the second approach enforces the closed-form expression of the estimated source signature as a function of the subsurface
parameters in the objective function (Aravkin & van Leeuwen 2012; Aravkin et al. 2012; Li et al. 2013) through a variable projection
approach (Golub & Pereyra 2003). Plessix & Cao (2011) review these two formulations in the frame of the adjoint-state method and conclude
that the variable projection method is more versatile to implement the source signature estimation problem with specific data weighting, while
Rickett (2013) showed that the variable projection approach was more resilient to phase errors in the wavelet than the alternated optimization.
This source signature estimation does not introduce significant computational overhead in classical FWI since the gradient of the objective
function with respect to the subsurface parameters is computed in the same way whether the source signature is available or estimated on the
fly during the FWI iterations (Aravkin & van Leeuwen 2012; Rickett 2013).

In its more general form, FWI can be cast as a constrained optimization problem that aims to estimate the wavefields and the subsurface
parameters by fitting the recorded data subject that the wave equation is satisfied (Haber et al. 2000). Regardless of the source signature
estimation issue, it is well acknowledged that FWI is highly nonlinear when the full search space encompassed by the wavefields and the
subsurface parameters is projected onto the parameter space after elimination of the wavefield variables. This variable elimination, which is
performed by forcing the wavefields to satisfy exactly the wave equation at each FWI iteration, makes FWI prone to cycle skipping as soon as
the initial model is not accurate enough to predict recorded traveltimes with an error smaller than half a period (Virieux & Operto 2009). To
mitigate the cycle skipping issue, some approaches implement the wave equation as a soft constraint with a penalty method such that the data
can be closely matched with inaccurate subsurface models from the early FWI iterations (Abubakar et al. 2009; van Leeuwen & Herrmann
2013, 2016). Then, the subsurface model is updated by least-squares minimization of the source residuals generated by the wave equation
relaxation. In these extended approaches, the wavefields are the least-squares solution of the overdetermined linear system gathering the wave
equation weighted by the penalty parameter and the observation equation relating the simulated wavefield to the data through a sampling
operator. In other words, the wavefields are reconstructed with data assimilation. This approach was called wavefield reconstruction inversion
(WRI) by van Leeuwen & Herrmann (2013). A variant of WRI, based upon the method of multipliers or augmented Lagrangian method, was
proposed by Aghamiry et al. (2019b) to increase the convergence rate and decrease the sensitivity of the algorithm to the relaxation (penalty)
parameter choice. The augmented Lagrangian method combines a penalty method and a Lagrangian method, where the penalty term is used
to implement the initial relaxation of the constraint while the Lagrangian term automatically tunes the sensitivity of the optimization to the
constraint in iterations through the gradient ascent update of the Lagrange multipliers with the constraint violations. This method was called
iteratively refined (IR)-WRI, where the prefix IR refers to the iterative defect correction action of the Lagrange multipliers.

Recently, Fang et al. (2018) tackled the source signature estimation problem in WRI. The formulation of Fang et al. (2018) groups
together the wavefield and the source signature into a single optimization variable such that WRI can be cast as a separable nonlinear least-
squares problem, which can be tackled with the variable projection method. The issue with this approach is that the data assimilation makes the
augmented wave-equation (normal) operator source dependent hence making the method expensive since the Cholesky decomposition needs
to be performed for each source when a direct method is used. Also, block-processing of multiple right-hand sides is not possible anymore with
iterative methods. To bypass this issue, Fang et al. (2018) partition the normal-operator matrix into source-dependent and source-independent
blocks and apply the block matrix inversion formula (Press et al. 2007, page 81) to the partitioned matrix. This block reformulation involves
only the inverse of the source-independent normal operator, hence making this approach manageable. The computational overhead generated
by the source signature estimation with this approach is however one additional forward/backward elimination per source and frequency,
which is not negligible for 3D dense acquisitions (e.g. Amestoy et al. 2016), while the number of Cholesky factorization per frequency and
iteration remains one.

Another variant of WRI with unknown source signatures was proposed by Huang et al. (2018) where WRI is reparametrized in terms
of extended sources and subsurface parameters. In this approach, the penalization (or annihilator) term is defined as the distance function
from the real source position (Huang et al. 2018, Their eq. 9), which means that the source signature estimation is implicitly embedded in the
extended source reconstruction. One issue with this approach is related to the presence of the Green functions in the Hessian of the extended
source reconstruction subproblem, which makes the normal system very challenging to solve with a good accuracy (Huang et al. 2018, their
eq. 11). Moreover, they update the subsurface parameters with a variable projection method, which precisely requires an accurate solution of
the normal system for the extended sources.

The focus of this paper is to propose an alternative formulation of the source signature estimation problem to that proposed by Fang et al.
(2018) with the aim to reduce the computational overhead while making the source signature reconstruction potentially more robust when
crude background models are used. Our approach relies on a variable projection method, where the closed-form expression of the source
signature is projected in the wavefield reconstruction subproblem. To achieve the computational efficiency of the multisource signature and
wavefield reconstructions, we reconstruct each individual wavefield with blended sources. This blending makes the normal operator of the
wavefield reconstruction subproblems source independent and hence amenable to efficient multisource processing. Although we use source
blending, we stress that we estimate one wavefield per physical source thanks to the assimilation of the source-dependent recorded data in
the right-hand side (rhs) of the normal system. The source blending implies that, for each reconstructed wavefield, the source signature is a
vector of dimension equal to the number of individual sources in the blended source. When the velocity model is accurate, each entry of the
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signature vector is zero except the one located at the position of the physical source. Conversely, when the velocity model is inaccurate, the
other entries also contribute to decrease the data misfit, although their contribution is much less than the component located at the physical
source position. Surprisingly, these additional degrees of freedom provided by the spatially distributed sources help to estimate more accurate
source signatures when the velocity model is inaccurate, compared to the case where source blending is not used. Because the extension
created by the source blending is artificial, we should correct its effects during the iterations. This is simply performed by keeping only the
entry of the signature vectors at the position of the physical sources before proceeding with the parameter updating. Optionally, the wavefields
can be also recomputed with these restricted source signatures before parameter updating to remove more efficiently the footprint of the
blending at the price of some computational overheads. These different strategies are discussed with several numerical examples.

This paper is organized as follows. In the method section, we first show how the source signature estimation can be combined with the
extended wavefield reconstruction subproblem of IR-WRI by variable projection when each source is processed separately. We show that the
extended wave equation operator becomes source dependent. The second part of the method section reviews the source blending approach
that is used to make the extended wave equation operator source independent and hence amenable to efficient multisource processing with
direct methods. Two slightly different algorithms are proposed to implement the method such that the best trade-off between computational
efficiency and accuracy is reached. The paper continues with a numerical example section. We first assess the sensitivity of the source
signature estimation to several parameters, such as the accuracy of the velocity model, noise and the distance between sources and receivers.
Then, we present applications of IR-WRI with the proposed efficient source signature estimation on the Marmousi II model and the 2004 BP
salt model and compare the results when the source signatures are known and when they are estimated without the efficient blending strategy.

2 M E T H O D

2.1 Notation and problem statement

Frequency-domain FWI for multisource acquisition with unknown source signatures can be formulated as the following constrained opti-
mization problem (Aghamiry et al. 2019b)

minimize
ui ,si ,m∈M

R(m) subject to

{
A(m)ui = φi si , i = 1, 2, ..., ns,

Pui = di , i = 1, 2, ..., ns,
(1)

where m ∈ R
N×1 is the model parameter vector (squared slowness), N is the number of discretized points of the medium, ns is the number

of sources, A(m) = � + ω2Diag(m) ∈ C
N×N is the Helmholtz operator, ω is the angular frequency, � is the Laplacian operator, Diag(•)

denotes a diagonal matrix with the entries of the vector • on its diagonal, ui ∈ C
N×1 and di ∈ C

M×1 denote the wavefield and the recorded
data for the ith source, respectively, P ∈ R

M×N is the observation operator and M is the number of receivers. Also, φi ∈ R
N×1 is a sparse

vector defining the ith source location, and si ∈ C is the source signature for the ith source at frequency ω. Finally, R(m) is an appropriate
regularization function on the model domain and M is a convex set defined according to our prior knowledge of m. For example, if we know
the lower and upper bounds on m then

M = {m|mmin ≤ m ≤ mmax }. (2)

Here, we limit ourselves to the acoustic approximation of wave-propagation in isotropic media, but the proposed method can be extended for
general physics.

IR-WRI solves the constrained problem (1) with the augmented Lagrangian method (or the method of multipliers). The augmented
Lagrangian method combines a penalty term to relax the constraints during the early iterations and a Lagrangian term to control how accurately
the constraint is satisfied at the convergence point (Nocedal & Wright 2006). In this method, the primal variables and the Lagrange multipliers
or dual variables are updated in alternating mode using a primal descent/dual ascent approach. Moreover, to make the computational cost
tractable, we update the primal variables u and m in an alternating mode in the framework of the alternating-direction method of multipliers
(ADMM) (Boyd et al. 2010). The reader is referred to Aghamiry et al. (2019a, b, 2020a) for more details about the ADMM-based IR-WRI
algorithm. In the last two references, R(m) implements a total-variation (TV) regularization and a hybrid TV+Tikhonov regularization,
respectively. Compared to the above references, we extend IR-WRI to update the source signatures jointly with the wavefields during the
wavefield reconstruction subproblem through a variable projection.

Beginning with an initial model m0 and assume d̂0
i = b̂0

i = 0, ADMM solves iteratively the multivariate optimization problem, eq. (1),
with alternating directions as (see Boyd et al. 2010; Aghamiry et al. 2019b, for more details)

(uk+1
i , sk+1

i ) = arg min
ui ,si

�(ui , si , mk, b̂k
i , d̂k

i ), i = 1, 2, ..., ns (3a)

mk+1 = arg min
m∈M

ns∑
i=1

�(uk+1
i , sk+1

i , m, b̂k
i , d̂k

i ), (3b)

b̂k+1
i = b̂k

i + φi s
k+1
i − A(mk+1)uk+1

i , i = 1, 2, ..., ns (3c)

d̂k+1
i = d̂k

i + di − Puk+1
i , i = 1, 2, ..., ns (3d)
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260 H.S. Aghamiry et al.

where

�(ui , si , m, d̂k
i , b̂k

i ) = R(m) + ‖Pui − di − d̂k
i ‖2

2 + λ‖A(m)ui − φi si − b̂k
i ‖2

2 (4)

is the scaled form of the augmented Lagrangian (Boyd et al. 2010, section 3.1.1), •k is the value of • at iteration k, the scalar λ > 0 is
the penalty parameter assigned to the wave equation constraint, and b̂k

i ∈ C
N×1, d̂k

i ∈ C
M×1 are the scaled Lagrange multipliers, which are

updated through a dual ascent scheme by the running sum of the constraint violations (source and data residuals) as shown by eqs (3c)–(3d).
Please note that we set the penalty parameter related to the second term (‖Pui − di − d̂k

i ‖2
2) in eq. (4) equal to one. The penalty parameter

λ can be tuned in eq. (4) such that the estimated wavefields approximately fit the observed data from the first iteration at the expense of the
accuracy with which the wave equation is satisfied, while the iterative update of the Lagrange multipliers progressively corrects the errors
introduced by these penalizations such that both of the observation equation and the wave equation are satisfied at the convergence point with
acceptable accuracies.

Here, we focus on the optimization subproblem (3a). The readers are referred to Aghamiry et al. (2020a, 2021) for the closed-form
expression of the optimization subproblem (3b) with bound constraints and different regularizations and to Aghamiry et al. (2020b) for a more
robust implementation of this subproblem against velocity model errors with phase retrieval. The governing idea is to use splitting methods
to recast the unconstrained subproblem (3b) as a multivariate constrained problem, through the introduction of auxiliary variables. These
auxiliary variables are introduced to decouple the �2 terms from the regularization term such that they can be solved in alternating mode
with ADMM. Moreover, a closed form expression of the auxiliary variables is easily obtained by solving the R-subproblem with proximity
operators/denoising algorithms (Combettes & Pesquet 2011; Parikh & Boyd 2013; Venkatakrishnan et al. 2013). The main property of such
algorithms is that we do not need to solve these subproblems to full convergence. Numerical tests have shown that only a few iterations
of the least-squares and R-subproblem is enough for convergence of the ADMM iteration (Goldstein & Osher 2009). Surprisingly, our
numerical tests have shown that only one iteration of this inner iteration is enough for our specific application (Aghamiry et al. 2019a, 2020a).
Optimization problem (3a) is quadratic in ui and si and can be written as

minimize
ui ,si

‖Pui − di‖2
2 + λ‖Akui − φi si‖2

2, (5)

where Ak ≡ A(mk). Fang et al. (2018) solve eq. (5) jointly for ui and si by gathering them in a single vector and solve an (N + 1) × (N +
1) linear system (Their eq. 24) instead of the N × N system of the original WRI (van Leeuwen & Herrmann 2013). Here, we want to solve
eq. (5) with the variable projection method (Golub & Pereyra 2003). By taking derivative of eq. (5) with respect to si, we get that si satisfies
φT

i (Akui − siφi ) = 0, where •T denotes the conjugate transpose of •, and

si = φ
-g
i Akui , (6)

where φ
-g
i = (φT

i φi )
−1φT

i is the generalized inverse of φi . When the source is on the discretization grid φT
i φi = 1 and hence φ

-g
i = φT

i . In the
rest of this paper, we assume the sources are on the discretization grid just for simplicity of interpretation of the equations.

Substituting the expression of si = φT
i Akui into eq. (5) leads to a mono-variate optimization problem for the wavefield as

minimize
ui

‖Pui − di‖2
2 + λ‖Qi Akui‖2

2, (7)

where Qi = I − φiφ
T
i , and I is the identity matrix. In eq. (7), the matrix φiφ

T
i is a diagonal matrix with one nonzero coefficient equal to 1 at

the location of the source i, and Qi is another diagonal matrix complementary to φiφ
T
i : its diagonal entries equal to 1 except at the source

position where the coefficient is zero. The second term in eq. (7) penalizes the predicted source Akui at all spatial points except at the physical
source location consistently with the elimination (or projection) of si, eq. (6), from the optimization variables. Minimization of eq. (7) with
respect to ui gives (note that QT

i Qi = Q2
i = Qi )

uk+1
i = (

PTP + λAT
k Qi Ak

)−1
PTdi . (8)

The explicit relation between the estimated source signature and the data can be obtained as

sk+1
i = φT

i Akuk+1
i = φT

i Ak

(
PTP + λAT

k Qi Ak

)−1
PTdi = φT

i

(
GT

k Gk + λQi

)−1
GT

k di , (9)

where Gk = PA−1
k is the rank-deficient forward operator sampling the Green function A−1

k at receiver positions. Eq. (9) shows that the
source signature is estimated by first back propagating the data in time from the receiver positions, i.e. GT

k di , and then correct the blurring
effects induced by the limited bandwidth of the data and the limited spread of the receivers by applying the inverse of the Hessian, that is(
GT

k Gk + λQi

)
.

The optimization problem, eq. (7) and its closed-form solution, eq. (8), share some similarities with the extended source reconstruction
method described in Huang et al. (2018, their eqs 10 and 11) as a source-independent variant of WRI, although there are two differences in
their formulation: first, their state variables are the extended sources instead of the extended wavefields, that is be

i = Akui where be
i is the

ith extended source; Secondly, they used another annihilator function for Qi (their eq. 9), which is zero at the source location and linearly
increases away from it. The difficulty with the method of Huang et al. (2018) is related to the presence of the Green’s functions A−1

k in the
Hessian

(
GT

k Gk + λQi

)
which makes the system very difficult, if not impossible, to solve exactly.
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2.2 Efficient multisource processing with source blending

The proposed method for joint estimation of source signature and data-assimilated wavefield, eq. (7), is robust against velocity model error but
it is computationally expensive because the normal operator

(
PTP + λAT

k Qi Ak

)
is source dependent, hence preventing efficient multisource

processing with either direct or iterative solvers. This difficulty also exists in the method of Fang et al. (2018) for joint estimation of wavefield
and source signature (their eq. 24). Fang et al. (2018) propose a block matrix formulation (their eq. 33) to make the computational overhead
reasonable. The block partitioning makes the main normal system to be inverted source independent and requires one LU decomposition and
two forward-backward substitutions per source at each iteration, while IR-WRI with known sources requires one LU decomposition and one
forward-backward substitution per source.

To overcome this computational issue and design a fast and accurate multisource signature and wavefield estimation, we use an alternative
approach to Fang et al. (2018) by assuming that a virtual blended source generates each wavefield. The true signature of this blended source
is the physical source signature at the physical source location and is zero elsewhere. By doing so, each source can be written as �si where
� = [φ1 φ2 . . . φns

] ∈ R
N×ns is a tall matrix including the shifted delta functions (φi ) in its columns and the true si ∈ C

ns×1 is a vector, whose
ith entry is the physical source signature si while the others are zero. We stress at this stage that this reformulation of the source, �si , is
equivalent to the original one φi si given in eq. (1).

Plugging the new source expression in the objective function (5) and taking the derivative with respect to si gives

si = �T Akui . (10)

Projecting this expression into eq. (5) and remembering that �T � = I give

minimize
ui

‖Pui − di‖2
2 + λ‖QAkui‖2

2, (11)

where Q = I − ��T = 1
ns

∑ns
i=1 Qi .

The closed-form expression of the wavefield ui at iteration k + 1 is now given by

uk+1
i = (

PTP + λAT
k QAk

)−1
PTdi . (12)

Comparing eqs (12) and (8) shows that the Hessian
(
PTP + λAT

k QAk

)
is source independent, hence preserving the benefit of direct solver

method to process efficiently multiple sources once one LU factorization has been performed. This solves the computational issue. However,
the new parametrization of the source makes the optimization problem blind to the fact that the vector si ∈ C

ns×1 should have only one non
zero entry at index i. It gives equal probability to all source positions to reconstruct the wavefield ui , eq. (11), hence leading to a blended
wavefield. This is highlighted by the fact that Akui is potentially dense in the closed-form expression of the reconstructed signature si , eq.
(10), when the velocity model is inaccurate. Conversely, when the velocity model is the true one, Atrueui = φi si , is sparse. The blended
source assumption gives an extra degree of freedom to the optimization problem to decrease the cost function. Surprisingly, we will show in
the Numerical results section that the estimated source signature obtained with the source blending approach, eq. (10), is more accurate than
the counterpart obtained without blending, eq. (7), when we start IR-WRI from a rough initial velocity model.

The source blending is artificial and its effects (extra non-zero coefficients in si vectors) must be removed during iterations. In the
following, we propose two algorithms to achieve this goal. For the sake of compact notations, we recast from now the optimization problem,
eq. (1), in matrix form.

Multi sources can be processed efficiently in frequency-domain modeling by gathering them in the rhs of the Helmholtz system in a matrix
format. Considering ns sources, the multi-rhs Helmholtz system is written as AU = �S where U = [u1 u2 . . . uns ] ∈ C

N×ns and S ∈ C
ns×ns is

a square diagonal matrix with the source signatures on its main diagonal, Si i = si . Introducing the data matrix D = [d1 d2 . . . dns ] ∈ C
M×ns

gives the following optimization problem for multisource signature and wavefield estimations

minimize
U,S

‖PU − D‖2
F + λ‖AkU − �S‖2

F, (13)

where ‖ • ‖2
F denotes the Frobenius norm. Solving eq. (13) with a variable projection method gives

S = �TAkU, (14)

where the diagonal components of S are dominant, and the off-diagonal coefficients represent the non-physical source components associated
with each of the ns blended sources. Plugging the explicit expression of S into eq. (13) leads to a mono-variate optimization problem for U,
the closed-form expression of which is given by

Uk+1 = (
PTP + λAT

k QAk

)−1
PTD. (15)

Eq. (15) is the same as eq. (12) but for multidata D. At this stage, we did not impose any constraint on the structure of S which is potentially
dense when the velocity model is inaccurate. Plugging the expression of Uk+1 in eq. (14) gives the explicit expression of S

Sk+1 = �T AkUk+1 = �T Ak

(
PTP + λAT

k QAk

)−1
PTD. (16)
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Before proceeding with the subsurface parameter updating, we extract the approximate signature of the physical sources as s = diag(S), where
diag(•) denotes a vector that contains the diagonal elements of matrix •. The different steps of IR-WRI with source signature estimation are
reviewed in Algorithm (1), which begins with an initial model m0 and initial dual variables B̂0 = 0 and D̂0 = 0.

Algorithm 1 IR-WRI with unknown source signatures

Require: starting point m0

1: set B̂0 = 0 and D̂0 = 0
2: repeat
3: Uk+1 = arg min

U
‖PU − D − D̂k‖2

F + λ‖QAkU − B̂k‖2
F

⎫⎪⎬
⎪⎭

Esstimation of wavefields
and source signatures.

4: Sk+1 = Diag(diag(�TAkUk+1))
5: mk+1 = arg min

m
R(m) + λ‖A(m)Uk+1 − Sk+1 − B̂k‖2

F } Velocity model update.

6: B̂k+1 = B̂k + Sk+1 − Ak+1Uk+1

7: D̂k+1 = D̂k + D − PUk+1

}
Iterative refinement.

8: until stopping conditions are satisfied.

The U-subproblem in Algorithm 1 introduce errors in the extended wavefield reconstruction due to the source blending. These errors can
be corrected iteratively by the action of the Lagrange multipliers, which are formed by the source residuals computed without source blending
(Line 6 of algorithm 1), i.e., with the true spatial point distribution of the sources. This is implemented by using the diagonal components
of the source signature matrix, Line 4 of algorithm 1, instead of the whole matrix, eq. (16), to compute the source residuals in Line 6. The
rhs correction term B̂k in the objective function of the U-subproblem in Algorithm 1 gathers the running sum of the source residuals of
previous iterations. This iterative refinement leads to the error forgetting property discussed by Yin & Osher (2013) in the frame of Bregman
iterations, which means that the error correction performed at the current iteration is made independent of the error corrections performed at
previous iterations. Here, this iterative solution refinement by rhs updating is necessary to correct three sources of errors: the first results from
the fact that each primal subproblem is solved keeping the other primal variable fixed, the second from the fact that we solve a constrained
problem with a penalty method keeping the penalty parameter fixed and the third from the non-physical source blending. Another application
of iterative refinement in AVO inversion is presented in Gholami et al. (2018), where the linearized Zoeppritz equations are used to simplify
the primal problem, while the dual problem compensates the linearization-related errors by computing the residuals with the exact Zoeppritz
equations.

However, the Algorithm 1 was not able to fully remove the detrimental effects of the source blending and failed to reach the same
minimizer as IR-WRI with a known source when we seek to reconstruct a complicated velocity model starting from a rough initial model.
This prompts us to propose Algorithm 2 that includes one extra step compared to Algorithm 1 by re-estimating the wavefields (Line 5 of
Algorithm 2) with the diagonal restriction of the source signature matrix (Line 4 of Algorithm 2). By doing so, the pollution effects of the
non-physical sources are removed from the reconstructed wavefields. The improvement provided by this wavefield refinement is illustrated in
the next Numerical results section.

Algorithm 2 IR-WRI with unknown sources with wavefield correction

Require: starting point m0

1: set B̂0 = 0 and D̂0 = 0
2: repeat
3: Uk+ 1

2 = arg min
U

‖PU − D − D̂k‖2
F + λ‖QAkU − B̂k‖2

F

⎫⎪⎬
⎪⎭ Source signature estimation.

4: Sk+1 = Diag(diag(�TAkUk+ 1
2 ))

5: Uk+1 = arg min
U

‖PU − D − D̂k‖2
F + λ‖AkU − Sk+1 − B̂k‖2

F } Wavefield estimation.

6: mk+1 = arg min
m

R(m) + λ‖A(m)Uk+1 − Sk+1 − B̂k‖2
F } Velocity model update.

7: B̂k+1 = B̂k + Sk+1 − Ak+1Uk+1

8: D̂k+1 = D̂k + D − PUk+1

}
Iterative refinement.

9: until stopping conditions are satisfied.

Algorithm 2 requires two LU decompositions at each IR-WRI iteration (one for Uk+ 1
2 and the other one for Uk+1), but still remains much

cheaper than the algorithm performing one LU decomposition per source. Numerical tests have shown that the estimated source signature
at line 4 of this algorithm is not sensitive to the small changes in the velocity model, and hence it is possible to consider lines 3 and 4 of
Algorithm 2 (source signature estimation step) only at the first iteration of each frequency batch and still get minimizers very close to the
original version of Algorithm 2. Hereafter we refer to this modified algorithm as fast version of Algorithm 2.
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Figure 1. Marmousi II model. (a) True model. (b–e) Smoothed versions of the true model, referred to as models 1 (b), 2 (c), 3 (d) and 4 (e) in the text. (f)
Time-domain shot gather for the source located at 8.5 km computed in the true model (a). Each part of this figure is contaminated with different levels of
random Gaussian noises to have an insight on the noisy data used in Fig. 5. The signal-to-noise ratio (SNR) of these segments is written in the bottom where
SNR is defined in eq. (19).

3 N U M E R I C A L R E S U LT S

We first investigate different aspects of the proposed method for efficient source signature estimation in IR-WRI (referred to as joint approach
in the following) with the Marmousi II (Martin et al. 2006) model (Fig. 1a) and compare its performance when each source is processed
separately in IR-WRI (referred to as separate approach in the following), eq. (3), and when the source signatures are estimated with the
method of Pratt (1999) (referred to as conventional approach), as

S = (
�T GT G�

)−1
�T GT D. (17)

Then, we compare the performances of the proposed Algorithms 1 and 2 with those of separate approaches when the source signatures are
known (classical IR-WRI) and unknown, eq. (3). We use the Marmousi II model and a scaled version of the left target of the challenging
2004 BP salt model (Billette & Brandsberg-Dahl 2004) for this comparison.

For all the numerical tests, we use a 9-point finite-difference staggered-grid stencil with PML boundary condition (along the model’s
edges except for the top where the free-surface boundary condition is used) and antilumped mass to solve the Helmholtz equation (Chen et al.
2013). Also, for all the numerical tests, λ has been chosen to be a small fraction of the largest eigenvalue of A−T

0 PT PA−1
0 (van Leeuwen &

Herrmann 2016).

3.1 Marmousi II test

First we illustrate the performance of the separate, joint and conventional methods for source signature estimation and investigate the
robustness of these methods against the accuracy of the initial velocity model, noise in the recorded data, the vertical distance between the
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264 H.S. Aghamiry et al.

Figure 2. Amplitude spectrum of source signatures used in Marmousi II test.

Figure 3. Source signatures (magnitude and unwrapped phase) estimated with different methods for a couple of sources (source numbers 18 and 33 in Fig. 2)
when model 4 (Fig. 1e) is used as initial velocity model. (a) Conventional method of Pratt (1999). (b) Separate method. (c) Joint method. The blue and red
points show the estimated source signatures for sources 18 and 33, respectively, and the black dashed lines show the true ones. (d–f) Same as (a–c) but for
unwrapped phase.

source and the receiver profiles, and the number of sources. We use four initial models for these tests (Figs 1b–e), which are referred to as
models 1 to 4. The fixed-spread acquisition contains 114 point sources, the source signatures of which are Ricker wavelets of different central
frequency and initial phase (Fig. 2), and a line of receivers spaced 50 m apart at the surface. The central frequency for each source signature
is selected randomly between [7–15] Hz, and the peak of each wavelet is centred randomly between [0–0.4] s.

3.1.1 Sensitivity to the background velocity model

First, we put the line of sources at 75 m depth, generate the data with the true velocity model (Fig. 1a) and use the 1-D gradient velocity model
(model 4, Fig. 1e) to estimate the source signatures with the conventional method (eq. 17), the separate method (eq. 9), and the joint method
(eq. 16). We show the magnitude and phase of the estimated source signatures in Fig. 3 for a couple of sources (source numbers 18 and 33
in Fig. 2). First, the results clearly show the improvement achieved by the relaxed wave-equation methods (the separate and joint methods)
(Figs 3b, c, e and f) compared to the conventional method (Figs 3a and d). Secondly, both separate and joint methods estimate accurate source
signatures but with a different computational burden (one LU decomposition for the joint method against 114 LU decompositions for the
separate method).

To gain more quantitative insights into the accuracy of methods, we plot the relative error (RE) of the source signatures estimated with
each method as a function of the source number in Fig. 4. The RE for the estimated source signature is defined as

RE =
√∑ fn

j= f1
[x∗

j − x̂ j ]2√∑ fn
j= f1

x∗
j
2

, (18)
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Figure 4. Relative error (RE) of the source signatures estimated with the separate and joint methods when a rough initial model 4 (Fig. 1e) and the kinematically
accurate initial model 2 (Fig. 1c) are used.

Figure 5. Mean relative error (RE) avaraged over all the sources of the source signatures estimated with the (a) conventional, (b) separate and (c) joint methods
as a function of SNR of recorded data and initial velocity model.

where x∗
j and x̂ j are the true and estimated source signatures at frequency j, respectively, and f1 and fn are the minimum and maximum

frequencies, respectively. In this figure, we show the RE of the source signatures estimated with the separate and joint methods when the
rough velocity model 4 (Fig. 1e) and the kinematically accurate model 2 (Fig. 1c) are used as background velocity model. We do not show
the RE of the conventional method in this figure because it is much higher than those obtained with the separate and joint approaches. It is
shown that when the initial velocity model is rough, the joint method outperforms the separate method (the blue and red curves in Fig. 4).
This is probably due to the extra degrees of freedom available in the joint method compared to the separate counterpart. More precisely, the
errors in the estimated source signature induced by the inaccuracy of the initial velocity model are entirely mapped at the physical location of
the source in the separate method. In contrast, these errors are distributed across the different components of the blended source in the joint
method, hence, providing a better estimation of the source signature at the location of the physical source. On the other hand, as the velocity
model becomes more accurate, the separate and joint methods reach the same accuracy for the source signature estimation (the green and
orange curves in Fig. 4).

3.1.2 Sensitivity to noise

We continue by assessing the robustness of the methods against the noise in the recorded data and the error in the initial velocity model.
For this test, the true data are computed on a finer grid than used for the inversion (half of the grid size of inversion) to avoid the inverse
crime. We repeat the same test as before with different initial velocity models and different levels of random Gaussian noises in the data.
The time-domain shot gather for the source located at 8.5 km is shown in Fig. 1f when different parts of the gather are contaminated with a
different level of noise to gain insight into the magnitude of the noise levels used. The average RE over all the sources for the conventional,
separate, and joint methods are shown in Figs 5 a–c, respectively, as functions of the signal-to-noise ratio (SNR) of the data and the initial
velocity model. In this paper, the SNR of data is defined as

SNR = 20 log

(
Noise-free RMS amplitude

Noisy RMS amplitude

)
. (19)

First of all, the conventional method is robust against the noise in the data, but it is sensitive to the errors in the initial velocity model, as
illustrated in the previous section. In contrast, the separate and joint methods are robust against inaccuracy of the initial velocity model due
to the extended search space allowing for data fitting with an inaccurate model but are sensitive to the noise in recorded data due to the risk
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Figure 6. Mean relative error (RE) avaraged over all the sources of the estimated source signatures as a function of the vertical distance between the source
and receiver lines when (a) the rough velocity model 4 (Fig. 1e) and (b) the kinematically accurate velocity model 2 (Fig. 1c) are used.

of noise overfitting. Although the RE of the separate and joint methods increases with the amount of noise, it remains however far less than
the conventional method. It can be seen that even in the worst scenario (with the lowest SNR data and a rough initial model), such methods
based on wave-equation relaxation still can estimate an acceptable source signature.

3.1.3 Sensitivity to the distance between the source and the receivers

In IR-WRI, the accuracy of the estimated source signature is directly controlled by the distance between the source and the closest receiver.
This results because the extended wavefield, from which the source signature is estimated, eq. (14), matches well the recorded data only near
the receivers when the background velocity model is inaccurate. This implies that when the source is close to a receiver, it will be estimated
from an accurate estimation of the wavefield at this receiver. Moreover, the impedance matrix in eq. (14), which is built from a potentially
inaccurate velocity model, will not generate significant errors when applied to the wavefield to generate the source when the latter and the
receiver are close to each other. In this section, we show the robustness of the different methods against this distance. We do the same test
as before, but we change the depth of the source line while keeping the receiver line at the surface. The average RE of the estimated source
signatures, summed over all the sources, are plotted in Fig. 6 as a function of the depth of the source profile for the conventional, separate,
and joint methods and for the rough model 4 (Fig. 6a) and the kinematically accurate model 2 (Fig. 6b). First, it can be seen that for the
vertical distances up to 1500 m, the joint method has a better performance for both initial velocity models, but it becomes unstable beyond this
vertical distance where the subsurface becomes more complex (green curves in Fig. 6). This suggests that the additional degrees of freedom
in the joint method drives the least-squares problem, eq. (13), toward an inaccurate local minimizer when the extended wavefield becomes too
inaccurate at the source location. For surface acquisitions, this should however not be an issue in practice. For towed-streamer acquisitions,
the sources are close to the nearest receiver, and both of them are in the water. In seabed acquisition, the reciprocal sources are on the seabed
and potentially far away from the receivers. However, the medium between the receiver and the source layouts (i.e. the water) is known. On
land, areal acquisitions are classically designed with sources and receivers at the surface with short nearest offset.

3.1.4 Sensitivity to the number of sources

The other aspect that we need to investigate is the number of sources and receivers. We repeat the same test as before several times with the
rough initial velocity model 4 and a line of 320 receivers with 50 m spacing at the surface. For each of them, we use a line of sources at 75 m
depth with a different number of sources ranging from 1 to 360 with a step of 20. The average RE over all the sources for the estimated source
signatures as a function of the number of sources for the conventional, separate, and joint methods is shown in Fig. 7. Both the conventional
method and the separate method have a stable behavior (blue and red curves), while the joint method becomes unstable as soon as the number
of sources exceeds the number of receivers. In this case, the source signature estimation problem becomes underdetermined in the case of the
joint method, and eq. (13) converges to the least-norm solution. In practice, this issue can be bypassed by subdividing the sources into patches
of suitable dimension, gathering possible closely spaced sources. However, one LU factorization will needed to be performed for each patch
of sources.

3.1.5 Assessment of IR-WRI with source signature estimation

We continue by assessing Algorithms 1 and 2 as well as the separate method for FWI on the Marmousi II model when the inversion is started
using the rough initial model 4 (Fig. 1e) and the 3 Hz frequency. The fixed-spread surface acquisition consists of 114 sources spaced 150 m
apart with the source signatures depicted in Fig. 2 at the surface, and 340 hydrophone receivers spaced 50 m apart at 75 m depth.

We first show the footprint of the source blending in the matrix S, eq. (16), for the rough initial model 4 (Fig. 8a). The 34th column of
the S matrix is plotted in black to give more precise insights into the relative magnitude of the diagonal and off-diagonal elements. Also, the
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Figure 7. Mean RE averaged over all the sources of the estimated source signatures as a function of the number of the sources when the rough initial velocity
model 4 (Fig. 1e) and a line of 320 receivers at the surface are used.

Figure 8. Real components of the source signature matrix, that is �TAkUkcomputed with (a and b) the rough initial model 4 (Fig. 1e) and the 3 Hz frequency,
and (c and d) the kinematically accurate velocity model 2 (Fig. 1c) and the 12 Hz frequency. In panels (a, c), the 34th column of �TAkUk is plotted in black
to gain insight into the relative magnitude of the diagonal and off-diagonal elements. Panels (b, d) show the non-diagonal components of panels (a, c), i.e., [
�TAkUk − Diag(diag(�TAkUk ))].

off-diagonal elements of this matrix are plotted separately in Fig. 8(b). It is shown that the diagonal elements of this matrix are dominant, the
maximum amplitude of the off-diagonal components being <1 percent of the maximum diagonal element. We remind that such off-diagonal
elements partially absorb the errors in the estimated physical source signatures when the initial velocity model is rough, but we need to
remove these effects during the inversion, which is the goal of Algorithms 1 and 2.

The effects of the source blending are also seen in the reconstructed wavefields. The reconstructed monochromatic wavefield associated
with the source located in Fig. 8(a) is shown in Fig. 9(a). To assess the effects of the source blending, we show the difference between this
wavefield and the extended wavefield reconstructed with the true source signature in Fig. 9(b). It can be seen that the differences are not
significant. This is the worst scenario for the velocity model because of the significant inaccuracy of the velocity model 4. However, the
estimated source signature matrix becomes close to a diagonal matrix as soon as the accuracy of the velocity model improves. This statement
is verified in Figs 8(c)–(d) and 9(c)–(d), which are similar to Figs 8(a)–(b) and 9(a)–(b), except that the source signature and the wavefield
are now estimated from the kinematically accurate velocity model 2 and a frequency of 12 Hz. It can be seen that the source matrix (Fig. 8c),
tends to a diagonal matrix, and the differences between the estimated and the true wavefields tend to zero in Fig. 9(d).

We continue by performing the frequency-domain IR-WRI without regularization in the 3–12 Hz frequency band with a frequency
interval of 0.5 Hz. Mono-frequency batches are successively inverted following a classical frequency continuation strategy (Sirgue & Pratt
2004). We perform three paths through the frequency batches to improve the inversion results, using one path’s final model as the initial
model of the next one. The starting and finishing frequencies of the paths are [3, 6], [3, 7], [3, 12] Hz. The stopping criterion of iterations is
10 iterations per batch. Also, the bound constraints using the true values of the minimum and maximum velocities as bounds are applied for
velocity-model update.

We compare the results of IR-WRI when performed with known sources (Fig. 10a) and unkown sources (Figs 10(b-e)). In the latter
case, the source signatures are estimated with the separate method (Fig. 10b) and the joint method using Algorithm 1 (Fig. 10c), Algorithm
2 (Fig. 10d) and the fast version of Algorithm 2 (Fig. 10e). Also, the model errors (the difference between the estimated and true velocity
model) for the different estimated models (Figs 10a–e) are shown in Figs 11(a)–(e). All of these methods perform well but with a different
computational cost. Also, IR-WRI with known sources (Fig. 10a) and IR-WRI using normal and fast version of Algorithm 2 (Figs 10d and
e) provide similar results with improved accuracy at the reservoir level (compare Figs 11a, d and e).
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Figure 9. (a) Reconstructed wavefield using eq. (15) using the rough initial model 4 (Fig. 1e) for the 3 Hz frequency. (b) Difference between (a) and the
reconstructed wavefield with the true source signature. (c–d) Same as (a–b), but using the kinematically accurate velocity model 2 (Fig. 1c) for the 12 Hz
frequency.

Figure 10. Marmousi II inversion results when the inversion starts from the crude initial velocity model 4 (Fig. 1e). Final IR-WRI velocity models obtained
with (a) known sources, (b–d) unknown sources. In (b-d), source estimation is performed with (b) separate method, (c) joint method with Algorithm 1 and (d)
joint method with Algorithm 2 and (e) joint method with the fast version of Algorithm 2.

Finally, the wave-equation residuals, data residuals, and RE for IR-WRI with known and unknown sources are shown in Fig. 12. The data
residuals (Fig. 12b), for Algorithm 2 (normal and fast versions) are close to the separate method and are less than Algorithm 1 because the
wavefield is corrected in Algorithm 2 for the errors of the source blending assumption. The relative error (RE) of the model are close together
for all the methods (Fig. 12c); however, the models obtained with the separate and Algorithm 2 (normal and fast versions) are slightly more
accurate than the others.

In summary, we see that the separate method and all of the joint-approach algorithms work well and can reconstruct velocity models
close to what we get from IR-WRI with known source signatures but with a different computational burden. The test in the next section shows
that this conclusion is not valid for a more complicated velocity model.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/227/1/257/6280979 by C

N
R

S user on 30 April 2023



IR-WRI with unknown sources 269

(a) (b)

(c)

(e)

(d)

Figure 11. Marmousi II inversion results. (a–e) Model errors (i.e., difference between true and estimated models) for the estimated models shown in Figs 10
(a)–(e).

Figure 12. Marmousi II test. Comparison between the convergence history of IR-WRI performed with known sources (green) and unknown sources estimated
with separate method (blue), joint method with Algorithm 1 (red), joint method with Algorithm 2 (cyan) and joint method with the fast version of Algorithm 2
(orange) as a function of iteration number. (a) PDE misfit, (b) Data misfit and (c) Model RE. In each panel, a zoomed image from the selected area is shown.

3.2 2004 BP salt model

We continue by assessing the performance of the methods on a rescaled version of left-target of challenging 2004 BP salt model (Billette &
Brandsberg-Dahl 2004) (Fig. 16a) when a 1-D gradient initial model (Fig. 16b) and the 3 Hz frequency are used to start the inversion. We use
65 point sources with 250 m spacing and a line of receivers with 50 m spacing at 75 m depth. Like the previous test, the source signatures are
random Ricker wavelets with different central frequencies between [8–12] Hz and the initial phases between [0–0.4] s. We apply the inversion
in the 3–13 Hz frequency band with a frequency interval of 0.5 Hz. We perform three paths through the frequency batches, using the final
model of one path as the initial model of the next one, and each batch contains two frequencies with one frequency overlap. The starting and
finishing frequencies of the three paths are [3, 6], [4, 8.5] and [6, 13] Hz, respectively. The stopping criterion of iterations is 45 iterations for
the first batch and 10 iterations per batch for the rest of them. Bound-constrained Tikhonov + Total variation (BTT)-regularization (Aghamiry
et al. 2020a) is applied on IR-WRI for all the cases to decrease the ill-posedness of the problem. We first plot the RE for the b-d), source
estimation is performed with the separate and joint methods as a function of the source number in Fig. 13 for the first (3 Hz, using initial
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Figure 13. BP Salt test. Relative error (RE) of the source signatures estimated with the separate and joint methods when a rough initial model (Fig. 16b) and
the accurate velocity model (Fig. 16g) are used.

Figure 14. BP Salt test. Real components of source signature matrix, that is �TAkUk , estimated at the (a–b) first and (c–d) final iterations of IR-WRI. Panels
(a, c) The 34th column of �TAkUk is plotted in black to give insight into the relative magnitude of the diagonal and off-diagonal elements. Panels (b, d) show
the non-diagonal components of panels (a, c), i.e., [�TAkUk − Diag(diag(�TAkUk ))].

velocity model Fig. 16b) and the final iteration of the inversion (13 Hz, using updated velocity model Fig. 16g). We see the same effects as
those revealed by Marmousi II in Fig. 4 in the sense that the joint approach provides more accurate source signature estimation.

Also, the estimated source signature matrices, eq. (16), at the first and final iterations of IR-WRI, are shown in Fig. 14 and the related
reconstructed monochromatic wavefields are shown in Fig. 15. Again, we see similar effects as those revealed by the Marmousi II test, except
that the off-diagonal elements are larger relative to the diagonal counterparts, hence revealing the more complex structure of the BP salt
model.

We compare the final results of BTT-regularized IR-WRI when performed with the known sources (Fig. 16c) and the unknown sources
(Fig. 16(d)-(g)). In the latter case, source estimation is performed with the separate method (Fig. 16d) and the joint method using Algorithm
1 (Fig. 16e), Algorithm 2 (Fig. 16f) and the fast version of Algorithm 2 (Fig. 16g). Also, the model errors for different estimated models
are shown in Fig. 17. In contrast to the Marmousi II test, the different methods do not converge to the same minimizer. Let us consider the
BTT-regularized IR-WRI with known sources as the benchmark model (Fig. 16c). Only IR-WRI with unknown sources using Algorithm 2
reaches approximately the same results (Fig. 16f). Also, the results of the fast version of this algorithm (Fig. 16g) is close to this benchmark
model. The failure of the separate method (Figs 16d and 17b) probably results from the limited quality of the estimated wavelets at the early
iterations when the initial velocity model is inaccurate (Fig. 13). Also, the failure of Algorithm 1 (Figs 16e and 17c) may result from the
significant amplitudes of the off-diagonal elements of the estimated source signature matrix (Fig. 14), and it seems that the iterative refinement
implemented in Algorithm 1 is not enough to correct all of these effects. For such complicated velocity models, we need to recompute the
wavefields from the diagonalized source signature with Algorithm 2 (lines 4–5).

4 D I S C U S S I O N

We have proposed an efficient and robust source signature estimation method for frequency-domain FWI with search space expansion. The
search space expansion is generated by computing data-assimilated wavefields that jointly satisfy in a least-squares sense the wave equation
and the observation equation. In this framework, the reconstructed wavefields satisfy a normal equation, which is ideally solved with direct
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Figure 15. BP Salt test. (a) The reconstructed wavefield using eq. (15) at the first iteration of IR-WRI using joint method with the rough initial model (Fig. 16b)
for 3 Hz. (b) The difference between (a) and the reconstructed wavefield with true source. (c–d) Same as (a–b), but for 13 Hz at the final iteration of IR-WRI
with updated velocity model Fig. 16(g).

Figure 16. 2004 BP salt test: (a-b) True (a) and initial (b) velocity models. (c–f) Velocity models estimated by BTT-regularized IR-WRI with (c) known sources
and (d-g) unknown sources. In (d-g), sources are estimated with (d) separate method, (e-g) joint method with (e) Algorithm 1, (f) Algorithm 2 (f) and (g) the
fast version of Algorithm 2.
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Figure 17. 2004 BP salt test: (a–e) Model errors (difference between the true and estimated models) for the estimated models shown in Figs 16(c)–(g).

methods to process efficiently multiple right-hand sides by forward/backward elimination. We process the source signature as an optimization
variable by projecting its closed-form expression in the wavefield reconstruction problem. The issue raised by this variable projection is to
make the normal operator source-signature dependent, hence requiring to recompute the Cholesky factorization for each source. To bypass
this issue and make the normal operator source independent, we reconstruct each individual wavefield with blended sources so that these
wavefields can be efficiently computed in parallel by forward/backward elimination once one Cholesky factorization has been performed. The
source blending makes the source signature of each source to be a vector of dimension equal to the number of individual sources involved
in the blending. When the velocity model is accurate, each entry of the signature vector is zero except the one located at the position of the
physical source. Conversely, when the velocity model is inaccurate, all the entries are non zero, the one located at the physical source position
being however dominant. Numerical results show that the additional degrees of freedom provided by the entries of the signature vector located
away from the position of the physical source help to absorb the detrimental effects of inaccurate velocity model and, accordingly, estimate a
more accurate source signature at the position of the physical source.

This approach however requires to remove the effects of the blending in iterations. To achieve this goal, we keep only the diagonal entries
of the source signature matrix, namely the entries at the position of the physical sources, (Algorithm 1, Line 4) to update the model parameters
and the Lagrange multipliers (Algorithm 1, Lines 5 and 6) once the wavefields have been reconstructed with the blended sources (Algorithm
1, Line 3). Numerical results suggest that this defect correction is not enough to compensate for the detrimental effects of the source blending
and reach the same minimizer as IR-WRI with known sources when the targeted velocity model is complex and the inversion starts from a
rough initial model. Therefore, we include an additional step in Algorithm 2 (Line 5) during which we re-compute the wavefields with the
diagonal source signature matrix to remove the footprint of the blending in the wavefield reconstruction too.

Although we assume in this study that the source locations match the grid points of the computational domain, the method can be
readily used for arbitrary source positions (Hicks 2002). The proposed method can be extended for general physics like visco-acoustic and
visco-elastic. Moreover, Operto et al. (2015), Amestoy et al. (2016), and Operto & Miniussi (2018) show that sparse direct solvers are suitable
to tackle efficiently 3D FWI case studies involving several tens of millions of unknowns and a large number of sources for stationary-recording
acquisitions (ocean bottom cable and node, land acquisitions). Accordingly, the proposed algorithms can be extended to 3D problems.

The computational cost of IR-WRI (with known or unknown sources) is dominated by the wavefield estimation (u-subproblem). The
theoretical complexity of 2D and 3D factorizations (F) and forward-backward substitution (S) for sparse matrices are reviewed in Nihei &
Li (2007). It is reminded that for 3D dense acquisitions, the theoretical time complexity of one LU decomposition is the same as that of the
solution step, and hence the latter is far to be negligible (see Amestoy et al. (2016) for a real 3D case study). The cost of our algorithms are
reviewed in Table 1 and are compared with those of extended FWI with known sources and the approach of Fang et al. (2018). The cost of our
first algorithm is the same as that of the extended FWI with known sources. The cost of the second algorithm is twice that of the algorithm 1
when the wavefield is recomputed at each iteration of the inversion while the cost of the fast version of Algorithm 2 tends to that of Algorithm
1 when the source signature is estimated at the first iteration only and the number of iteration n it is large (� 1). The approach of Fang et al.
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Table 1. Computational burden of different algorithms for IR-WRI with unknown sources.

Method Known sources Separate method Algorithm 1 Algorithm 2
Fast version of
Algorithm 2 Fang et al. (2018)

Computational
burden

nit(F + nsS) nitns(F + S) nit(F + nsS) 2nit(F + nsS) (nit + 1)(F + nsS) nit(F + 2nsS)

(2018) performs the same number of Cholesky factorization as Algorithm 1 but doubles the number of solution steps (this results from the
block partitioning of the normal operator). Therefore, the fast version of our Algorithm 2 is significantly faster than that of Fang et al. (2018).

Regardless computational-efficiency issue, our approach relies on different optimization strategy relative to Fang et al. (2018). Fang
et al. (2018) lump the wavefield and the source signature into a single variable, which means that they estimate these two variables jointly.
Then, they project this lumped variable in the model parameter subproblem. They bypass the issue of the dependency of the normal operator
to the source signature by using a block partitioning of the normal operator and the block matrix inversion formula (Press et al. 2007,
page 81). In our method, we project the closed form expression of the source signature in the wavefield-reconstruction subproblem assuming
blended sources to make the normal operator source independent. We review in this paper that this artificial source blending potentially helps
to estimate more accurate source signatures when the velocity model is inaccurate. Then, we extract the individual source signature to refine
the wavefields and update the model parameters by simply keeping the diagonal entries of the source signature matrix. The relative merits of
the method of Fang et al. (2018) and of our approach in terms of computational efficiency and reliability clearly deserve further verification
against real case studies.

5 C O N C LU S I O N S

We extended the recently proposed iteratively-refined wavefield reconstruction inversion (IR-WRI) to estimate the unknown source signatures.
The source signatures and wavefields are processed with a variable projection method during the extended wavefield reconstruction subproblem.
We first show that the source signature estimation generates computational overhead when each source is processed separately because the
extended wave equation operator becomes source dependent. This computational overhead becomes prohibitive when the augmented wave
equation system is solved with a direct method since the Cholesky factorization needs to be performed for each source. To bypass this issue
and make the operator source independent, we proposed a method that blends the sources during each wavefield reconstruction. Accordingly,
for each source of the experiment, the proposed method searches for a virtual blended source that best fits each single-source dataset during
the wavefield reconstruction. Regardless of the computational efficiency issue, we also show that when the background velocity model is
inaccurate, this source blending provides a more accurate source signature estimation at the physical source location than the case where
source blending is not used. This probably results from the additional degrees of freedom provided by the extra virtual sources. Once the
spatially distributed source signatures have been estimated, we restrict them at the position of the physical source to mimic the true source
signatures, and we update the velocity model, and correct the detrimental effects of source blending by the action of the Lagrange multipliers
(Algorithm 1). For complicated velocity models, Algorithm 1 is not able to fully correct the effects of source blending. To overcome this
issue, we propose Algorithm 2 where it re-estimates the extended wavefields with the localized source signatures. Numerical tests have shown
that the estimated source signature using the proposed algorithm is not sensitive to the small changes in the velocity model. Hence, we can
perform the source signature estimation only at the first iteration of each frequency batch of IR-WRI to preserve computational efficiency
(fast version of Algorithm 2).
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