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Introduction

We study the eigenvalue problems of two elliptic differential operators acting on differential p-forms on a connected oriented closed Riemannian manifold (M m , g) of dimension m ≥ 2.

One is the rough Laplacian ∆ = ∇ * ∇, or the connection Laplacian, acting on p-forms on (M, g), where ∇ is the covariant derivative induced from the Levi-Civita connection of the Riemannian metric g. The spectrum of the rough Laplacian consists only of non-negative eigenvalues with finite multiplicity. We denote its eigenvalues counted with multiplicity by

0 ≤ λ (p) 1 (M, g) ≤ λ (p) 2 (M, g) ≤ • • • ≤ λ (p) k (M, g) ≤ • • • .
The other is the Hodge-Laplacian ∆ = dδ + δd acting on p-forms on (M, g), where d is the exterior derivative and δ its formal adjoint with respect to the L 2inner product. The spectrum of the Hodge-Laplacian consists only of non-negative eigenvalues with finite multiplicity. We also denote its positive eigenvalues counted with multiplicity by

0 = • • • = 0 bp(M ) < λ (p) 1 (M, g) ≤ λ (p) 2 (M, g) ≤ • • • ≤ λ (p) k (M, g) ≤ • • • ,
where the multiplicity of the eigenvalue 0 is equal to the p-th Betti number b p (M ) of M , by the Hodge-Kodaira-de Rham theory. In particular, it is independent of a choice of Riemannian metrics.

Furthermore, since the Hodge-Laplacian ∆ commutes with d and δ, we can define the k-th eigenvalues of the Hodge-Laplacian acting on exact and co-exact p-forms, which are denoted by λ ′(p) k (M, g) and λ ′′(p) k (M, g), respectively. These are always positive. From the Hodge duality, it follows that for any degree p λ

′(p) k (M, g) = λ ′′(m-p) k (M, g) (1.1)
for k = 1, 2, . . . . In particular, we see that

λ (p) 1 (M, g) = min{λ ′(p) 1 (M, g), λ ′′(p) 1 (M, g)} = min{λ ′(p) 1 (M, g), λ ′(m-p) 1 (M, g)}.
(1.2)

We are interested in the supremum and the infimum of the k-th eigenvalues under all Riemannian metrics with fixed volume on M . Colbois and Dodziuk [START_REF] Colbois | Riemannian metrics with large λ 1[END_REF] proved that there exists no universal upper bound of the first positive eigenvalue of the Laplacian acting on functions under fixed volume. Similar results to the rough-Laplacian acting on p-forms with 1 ≤ p ≤ m -1 were proved by Colbois and Maerten [CM10, Theorem 1.1], and to the Hodge-Laplacian acting on p-forms for 2 ≤ p ≤ m -2 by Gentile and Pagliara [START_REF] Gentile | Riemannian metrics with large first eigenvalue on forms of degree p[END_REF]. But, the case of p = 1, m -1 is still unknown (cf. [START_REF] Tanno | Geometric expressions of eigen 1-forms of the Laplacian on spheres[END_REF], [START_REF] Gentile | A class of 3-dimensional manifolds with bounded first eigenvalue on 1-forms[END_REF]).

There exists no positive universal lower bound of the first positive eigenvalue of the Laplacian acting on functions, if we deform a Riemannian manifold to a dumbbell under fixed volume, which is called the Cheeger dumbbell [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF]. Similar results to the rough Laplacian acting on p-forms with p = 0, 1, m -1, m were also proved by Colbois and Maerten [CM10, Theorem 1.2]. On any connected oriented closed manifold M of dimension m ≥ 3, there exists a one-parameter family of Riemannian metrics g L with volume one such that for p = 0, 1, m -1, m and for any k ≥ 1,

λ (p) k (M, g L ) -→ 0 as L -→ ∞.
In the present paper, we prove similar results in the case of all degree p with 1 ≤ p ≤ m-1. We also prove them in the case of the Hodge-Laplacian for all degree p with 1 ≤ p ≤ m -1. In the same way as Colbois and Dodziuk [START_REF] Colbois | Riemannian metrics with large λ 1[END_REF] who deduced their result from that on the spheres, for the odd dimensional spheres by Tanno [START_REF] Tanno | The first eigenvalue of the Laplacian on spheres[END_REF], Bleecker [B83], for the even dimensional spheres by Muto [START_REF] Muto | The first eigenvalue of the Laplacian on even dimensional spheres[END_REF], using a spectral analysis of connected sums, we first construct such a family of Riemannian metrics with non-negative sectional curvature on the m-dimensional standard sphere S m . More precisely, Theorem 1.1. For m ≥ 2 and a given degree p with 1 ≤ p ≤ m -1, there exists a one-parameter family of Riemannian metrics g p,L on the m-dimensional standard sphere S m with volume one and non-negative sectional curvature such that for any

integer k ≥ 1, (1) λ (p) k (S m , g p,L ) -→ 0; (2) λ ′′(p) k (S m , g p,L ) -→ 0, as L -→ ∞.
Furthermore, we give lower bounds of the eigenvalues of the Hodge-Laplacian acting on p-forms on S m in Theorem 4.1 and Corollary 4.2.

Next, by gluing this sphere with any closed manifold, we obtain the same result as Theorem 1.1 for any closed manifold, without keeping non-negative sectional curvature.

Theorem 1.2. Let M m be a connected oriented closed manifold of dimension m ≥ 2. For any fixed degree p with 1 ≤ p ≤ m -1, any integer k ≥ 1 and for any ε > 0, there exists a Riemannian metric g p,ε on M with volume one such that

0 < λ (p) k (M, g p,ε ) < ε and λ ′′(p) k (M, g p,ε ) < ε.
We note that Riemannian metrics g p,L and g p,ε in Theorems 1.1 and 1.2 depend on the degree p. But, by taking connected sums of M and (m-1) spheres at distinct (m -1) points, we obtain a Riemannian metrics g ε on M with small eigenvalues for all p = 1, 2, . . . , m -1.

Theorem 1.3. Let M m be a connected oriented closed manifold of dimension m ≥ 2. For any ε > 0 and any integer k ≥ 1, there exists a Riemannian metric g ε on M with volume one such that for any degree p with

1 ≤ p ≤ m -1, 0 < λ (p) k (M, g ε ) < ε and λ ′′(p) k (M, g ε ) < ε.
Remark 1.4. (i) In the case of m = 2, Theorem 1.2 is covered with the result by Colbois and Maerten [START_REF] Colbois | Eigenvalue estimate for the rough Laplacian on differential forms[END_REF].

(ii) The same results for the Hodge-Laplacian were obtained from the results by Guerini [START_REF] Guerini | Prescription du spectre du laplacien de Hodge-de Rham[END_REF] and Jammes [START_REF] Jammes | Prescription du spectre du laplacien de Hodge-de Rham dans une classe conforme[END_REF], [START_REF] Jammes | Prescription de la multiplicité des valeurs propres du laplacien de Hodge-de Rham[END_REF]. Although the sectional curvature for their Riemannian metrics on S m diverges to -∞, our Riemannian metric constructed in Theorem 1.1 has non-negative sectional curvature. This is our advantage.

(iii) As a consequence of our result on spheres, Theorem 1.1, their exists no lower bound of the positive eigenvalue of degree p with 1 ≤ p ≤ m -1 depending only on the dimension, the volume and a lower bound of the sectional curvature. See Remark 3.3 below.

(iv) Jammes [START_REF] Jammes | Prescription du spectre du laplacien de Hodge-de Rham dans une classe conforme[END_REF] constructed similar Riemannian metrics within a fixed conformal class for m ≥ 5, except for p = m 2 if m is even. The present paper is organized as follows: In Section 2, we recall the Weizenböck formula and the properties of parallel forms. In Section 3, we consider the case of the sphere, and give the proof of Theorem 1.1. In Section 4, we give lower bounds for the eigenvalues of the Hodge-Laplacian on the sphere. In Section 5, we consider the case of a general manifold, and give the proof of Theorems 1.2 and 1.3. In Section 6, as an appendix, we prove the convergence theorem of the eigenvalues of the rough Laplacian acting on p-forms, when one side of a connected sum of two closed Riemannian manifolds collapses to a point.

Notations and basic facts

We fix the notations used in the present paper. Let (M m , g) be a connected oriented closed Riemannian manifold of dimension m ≥ 2. The metric g defines a volume element dµ g and a scalar product on the fibers of any tensor bundle. The L 2 -inner product of the space of all smooth p-forms Ω p (M ) is defined as, for any p-form φ , ψ on M

( φ , ψ) L 2 (M,g) : = M ⟨ φ , ψ⟩dµ g and ∥ φ ∥ 2 L 2 (M,g) := ( φ , φ ) L 2 (M,g) .
The space of L 2 p-forms L 2 (Λ p M, g) is the completion of Ω p (M ) with respect to this L 2 -norm. For a positive constant a > 0, it is easy to see that

λ (p) k (M, ag) = a -1 λ (p) k (M, g), λ (p) k (M, ag) = a -1 λ (p) k (M, g), vol(M, ag) = a m 2 vol(M, g), (2.1)
where vol(M, g) denotes the volume of (M, g). Thus, if we take a new Riemannian metric

g := vol(M, g) -2 m g, (2.2)
then the volume is one: vol(M, g) = 1. Therefore, instead of considering a volume normalized metric, we may consider the following invariants

λ (p) k (M, g) vol(M, g) 2 m , λ (p) k (M, g) vol(M, g) 2 m .
The relation between the rough and Hodge Laplacians on p-forms is given by the Weitzenböck formula: for any p-form φ on M ,

∆ φ = ∆ φ +F p ( φ ), (2.3)
where F p is the Weitzenböck curvature tensor defined as

F p ( φ ) = - m i,j=1
e i ∧ i e j (R(e i , e j ) φ ), (2.4)

where R denotes the curvature tensor with respect to the covariant derivative induced from the Levi-Civita connection and i X denotes the interior product of a vector X, and {e 1 , . . . , e m } is a local orthonormal frame and {e 1 , . . . , e m } is its dual frame. Now, after taking the scalar product of φ with (2.3), we obtain the Bochner formula: for each point on M ,

1 2 ∆(| φ | 2 ) = -|∇ φ | 2 + ⟨∆ φ , φ ⟩ = ⟨∆ φ , φ ⟩ -|∇ φ | 2 -⟨F p ( φ ), φ ⟩.
(2.5)

By the Hodge-Kodaira-de Rham theory, the kernel of the Hodge-Laplacian acting on p-forms consists of harmonic p-forms, whose dimension is equal to the p-th Betti number of M , that is, a topological invariant of M . In contract, the kernel of the rough Laplacian acting on p-forms consists of parallel p-forms, whose dimension is not a topological invariant. In fact, we can kill all parallel p-forms under local perturbation of a Riemannian metric.

Lemma 2.1. Let (M, g) be a connected oriented closed Riemannian manifold. If F p is positive definite at one point, there exist no non-zero parallel p-forms on (M, g).

Proof. We prove this by contradiction. Let φ be a non-zero parallel p-form on M . Then, φ is harmonic and of constant norm. By the assumption, there exists an open subset U of M such that ⟨F p ( φ ), φ ⟩ > 0 on U . From the Bochner formula on U 3 Small eigenvalues on the sphere S m

(2.5) 1 2 ∆(| φ | 2 ) = ⟨∆ φ , φ ⟩ -|∇ φ | 2 -⟨F p ( φ ), φ ⟩, we have 0 = |∇ φ | 2 = -⟨F p ( φ ), φ ⟩ < 0,
We first consider the case of the m-dimensional standard sphere S m . Notations. For a dimension n, Let g S n be the Riemannian metric on S n of constant sectional curvature one. We denote by D n the n-dimensional closed disk, and let g D n a fixed Riemannian metric on it, which is identified with [0, 2] × S n-1 , of nonnegative sectional curvature K g D n ≥ 0. We can, in addition, assume that g D n is a product metric near the boundary. In fact, if we take a smooth positive function f (r) on the interval [0, 2] satisfying that

f (r) = sin(r) on [0, 1], 1 on [3/2, 2],
(Note that sin(1) ∼ 0.84.) and 0 ≤ f ′ (r) ≤ 1 and f ′′ (r) ≤ 0, then the metric g D n is written as

g D n = dr 2 ⊕ f 2 (r)g S n-1 on [0, 2] × S n-1 . (3.1)
The sectional curvatures of g D n are given, if X and Y are orthonormal vectors tangent to the angle directions, by

K(∂ r , X) = - f ′′ (r) f (r) , K(X, Y ) = 1 -(f ′ (r)) 2 f 2 (r) ,
both of which are non-negative (e.g., Petersen [START_REF] Petersen | Riemannian Geometry[END_REF], 4.2.3, p.121).

Proof of Theorem 1.1. We take any degree p with 1 ≤ p ≤ m -1. We consider the decomposition (see Figure 1)

S m = S p × D m-p L ∪ S p ×S m-p-1 D p+1 × S m-p-1 , (3.2)
and set

H 1 := S p × D m-p L and H 2 := D p+1 ×S m-p-1 . D m-p L S p ×S m-p-1 D p+1 Figure 1: S m ∼ = S p × D m-p L ∪ S p ×S m-p-1 D p+1 × S m-p-1
For any real number L > 0, we construct a one-parameter family of Riemannian metrics g p,L on S m . First we introduce a one-parameter family of Riemannian metrics g D m-p ,L on D m-p containing a long cylinder as follows (see Figure 2):

g D m-p ,L := dr 2 ⊕ f 2 (r)g S m-p-1 on [0, 2] × S m-p-1 , dr 2 ⊕ g S m-p-1 on [2, L + 2] × S m-p-1 . D m-p L 0 2 L + 2 L Figure 2: long disk D m-p L
Then, we define the smooth Riemannian metric g p,L on S m as

g p,L := g S p ⊕ g D m-p ,L on H 1 = S p × D m-p L , g D p+1 ⊕ g S m-p-1 on H 2 = D p+1 ×S m-p-1 . (3.3) Since vol(S p × D m-p L ) = vol(S p ) • vol( D m-p L ) = vol(S p ) • vol( D m-p ) + vol(S m-p-1 ) • L ,
we can write for some constants

A, B > 0 independent of L vol(S m , g p,L ) = vol(S p × D m-p L ) + vol( D p+1 ×S m-p-1 ) = AL + B. (3.4)
Next, we estimate the eigenvalues of the rough and Hodge Laplacians acting on p-forms from above. Lemma 3.1. For any integer k ≥ 1 and any real number L > 0, we have

(1) λ (p) k (S m , g p,L ) ≤ k 2 π 2 L 2 ; (2) λ ′′(p) k (S m , g p,L ) ≤ k 2 π 2 L 2 .
Remark 3.2. We note that, for any metric, the rough and Hodge Laplacians acting on p-forms of S m for 1 ≤ p ≤ m -1 have no 0 eigenvalues. In fact, from b p (S m ) = 0 for 1 ≤ p ≤ m -1, by the Hodge theory, there exist no non-zero harmonic p-forms on S m . In particular, there exist no non-zero parallel p-forms.

Proof. We construct k test p-forms φ i for the min-max principle. Their behaviour will be like f i v p , for suitable functions f i , if v p is the volume p-form on (S p , g S p ), so we can take advantage of the properties of the standard volume form. The functions

f i are constructed as follows: we divide the interval [2, L + 2] of length L into k intervals I i := [r i-1 , r i ] (i = 1, . . . , k), where 2 = r 0 < r 1 < • • • < r k = L + 2 with r i := L k i + 2 (i = 0, 1, . . . , k).
Let f i (r) be the first Dirichlet eigenfunction of the Laplacian acting on functions on the interval I i , that is,

f i (r) = sin (r -r i-1 ) kπ L for r ∈ [r i-1 , r i ]. r O r 0 r 1 r 2 r k-1 r k 1 Figure 3: test functions f i (r)
Then, we define k test p-forms φ i on S m as follows (recall that v p is the volume p-form on (S p , g S p )): on

H 1 = S p × D m-p L , φ i :=    f i (r)v p on S p × [r i-1 , r i ] × S m-p-1 , 0 otherwise, (3.5) 
and

φ i ≡ 0 on H 2 = D p+1 ×S m-p-1 .
We remark that the family φ i (i = 1, . . . , k) is orthogonal. (1) We first prove the case of the rough Laplacian acting on p-forms. Since the orthogonal family φ i (i = 1, . . . , k) have disjoint support, they are also orthogonal for the quadratic form defining the rough Laplacian, namely, ∥∇ φ ∥ 2 L 2 (S m ,g p,L ) . The min-max principle and Remark 3.2 give then

0 < λ (p) k (S m , g p,L ) ≤ max i=1,2,...,k ∥∇ φ i ∥ 2 L 2 (S m ,g p,L ) ∥ φ i ∥ 2 L 2 (S m ,g p,L )
.

(3.6)

Since v p is parallel, the numerator of the right-hand side of (3.6) is

∥∇ φ i ∥ 2 L 2 (S m ,g p,L ) = ∥∇(f i v p )∥ 2 L 2 (S p ×D m-p L ) = ∥df i ⊗ v p ∥ 2 L 2 (S p ×(I i ×S m-p-1 )) .
Since the Riemannian metric on

C i = I i × S m-p-1 is product, we have ∥df i ⊗ v p ∥ 2 L 2 (S p ×C i ) = S p I i ×S m-p-1 |df i ⊗ v p | 2 dµ S p dµ C i = vol(S p ) I i ×S m-p-1 |df i | 2 drdµ S m-p-1 = vol(S p ) vol(S m-p-1 ) r i r i-1 |df i | 2 dr.
Since f i (r) is the Dirichlet eigenfunction on the interval

I i = [r i-1 , r i ], which is isometric to [0, L k ], we have r i r i-1 |df i | 2 dr = k 2 π 2 L 2 r i r i-1 |f i | 2 dr.
Therefore, the numerator of the right-hand side of (3.6) is

∥∇ φ i ∥ 2 L 2 (S m ,g p,L ) = k 2 π 2 L 2 vol(S p ) vol(S m-p-1 ) r i r i-1 |f i | 2 dr. (3.7)
On the other hand, the denominator of the right-hand side of (3.6) is

∥ φ i ∥ 2 L 2 (S m ,g p,L ) = ∥f i v p ∥ 2 L 2 (S p ×D m-p L ) = ∥f i v p ∥ 2 L 2 (S p ×C i ) = vol(S p ) I i ×S m-p-1 |f i | 2 drdµ S m-p-1 = vol(S p ) vol(S m-p-1 ) r i r i-1 |f i | 2 dr.
(3.8) Thus, by substituting (3.7) and (3.8) into (3.6), we obtain

0 < λ (p) k (S m , g p,L ) ≤ k 2 π 2 L 2 .
(2) Next, we prove the case of the Hodge Laplacian acting on co-exact p-forms.

We use the same test p-forms φ i constructed in (3.5). For the same reason as before, this family is orthogonal for the quadratic form defining the Hodge Laplacian

∥(d + δ) φ ∥ 2 L 2 (S m ,g p,L
) . Moreover, we note that the test p-forms φ i are co-closed. Indeed, since the Riemannian metric is product on the support of φ i ,

δ g p,L φ i = f (δ g p,L v p ) -i (grad g p,L f ) (v p ) ≡ 0.
Since S m has no non-zero harmonic p-forms, all co-closed forms must be co-exact. Therefore, from the min-max principle of the Hodge-Laplacian acting on co-exact p-forms, it follows that 0 < λ

′′(p) k (S m , g p,L ) ≤ max i=1,2,...,k ∥d φ i ∥ 2 L 2 (S m ,g p,L ) ∥ φ i ∥ 2 L 2 (S m ,g p,L )
.

By the same calculations as in (1), we obtain the same upper bound

λ ′′(p) k (S m , g p,L ) ≤ k 2 π 2 L 2 .
Finally, we normalize the volume to be one. Namely, if we set a new Riemannian metric

g p,L := vol(S m , g p,L ) -2 m g p,L ,
then vol(S m , g p,L ) ≡ 1 and still K g p,L ≥ 0. From Lemma 3.1 and (3.4), we have

λ (p) k (S m , g p,L ) = λ (p) k (S m , g p,L ) • vol(S m , g p,L ) 2 m ≤ k 2 π 2 L 2 • (AL + B) 2 m = k 2 π 2 • AL + B L m 2 m -→ 0, (3.9) 
and similarly λ

′′(p) k (S m , g p,L ) -→ 0 as L -→ ∞.
Thus, we have finished the proof of Theorem 1.1.

Remark 3.3. Theorem 1.1 implies that the first positive eigenvalue of the Hodge-Laplacian acting on p-forms cannot be estimated below in terms of dimension, volume and a lower bound of the sectional curvature. For this family g

p,L , the diameter diam(S m , g p,L ) -→ ∞ as L → ∞.
Lott [START_REF] Lott | Remark about the spectrum of the p-form Laplacian under a collapse with curvature bounded below[END_REF]p.918] conjectured that for given m ∈ N , κ ∈ R and v, D > 0, there exists a positive constant C(m, κ, v, D) > 0 such that any connected oriented closed Riemannian manifold (M m , g) of dimension m with the sectional curvature K g ≥ κ, the volume vol(M, g) ≥ v and the diameter diam(M, g) ≤ D satisfies

λ (p) 1 (M, g) ≥ C(m, κ, v, D) > 0.
This conjecture is still open. We note that this is a non-collapsing case. In a collapsing case, we do not know anything, but recently Boulanger and Courtois [START_REF] Boulanger | A Cheeger-like inequality for coexact 1-forms[END_REF] proposed a Cheeger constant for coexact 1-forms, whose square gives a lower bound of the first positive eigenvalue of the Hodge-Laplacian acting on 1-forms for Riemannian manifolds with bounded diameter and bounded sectional curvature.

Lower bounds for the eigenvalues of the Hodge-Laplacian on S m

We consider lower bounds of the eigenvalues of the Hodge-Laplacian acting on exact q-forms for 1 ≤ q ≤ m for the one-parameter family of volume un-normalized Riemannian metrics g p,L on S m constructed in Theorem 1.1.

Theorem 4.1. Let p be an integer with 1 ≤ p ≤ m -1. For the one parameter family of Riemannian metrics g p,L on S m constructed in the proof of Theorem 1.1, the eigenvalues of the Hodge-Laplacian acting on exact q-forms for 1 ≤ q ≤ m satisfy the following:

(1)

For q ̸ = 1, p, p + 1, m -p -1, m -p, m -1, m, there exists a positive constant C > 0 independent of L such that λ ′(q) 1 (S m , g p,L ) ≥ C > 0.
(2) For q = 1, p, p + 1, m -p -1, m -p, m -1, m, there exist positive constants C 1 , C 2 > 0 independent of L such that for sufficiently large L > 0

λ ′(q) nq+1 (S m , g p,L ) ≥ 1 C 1 L 2 + C 2 .
Here, n q is given by

n q :=                4 if (p, q) = ( m -1 2 , m + 1 2
) and m is odd,

2 if q = 1, p + 1, m -p, m, except for (p, q) = ( m -1 2 , m + 1 2 ) if m is odd, 0 otherwise.
Corollary 4.2. Let p be an integer with 1 ≤ p ≤ m -1. For the one parameter family of the volume normalized Riemannian metrics

g p,L on S m , if q ̸ = 1, p, p + 1, m -p -1, m -p, m -1, m, we have λ (q) 1 (S m , g p,L ) -→ ∞ as L → ∞.
Proof of Corollary 4.2. By combining (1) in Theorem 4.1 with the Hodge-duality λ

′′(q) 1 = λ ′(m-q) 1
, we find that the first positive eigenvalue of the Hodge-Laplacian acting on q-forms for q ̸ = 1, p, p + 1, m -p -1, m -p, m -1 have a uniform lower bound in L. That is, there exists a positive constant C > 0 independent of L such that

λ (q) 1 (S m , g p,L ) = min{λ ′(p) 1 (S m , g p,L , λ ′′(p) 1 (S m , g p,L )} = min{λ ′(p) 1 (S m , g p,L , λ ′(m-p) 1 (S m , g p,L )} ≥ C > 0.
For the volume normalized metric g p,L = vol(S m , g p,L ) -2 m g p,L , in the same way as in (3.9), we have

λ (q) 1 (S m , g p,L ) = λ (q) 1 (S m , g p,L ) • vol(S m , g p,L ) 2 m ≥ C(AL + B) 2 m -→ ∞, as L → ∞.
Remark 4.3. In the case of n q = 2, 4 for q = 1, p, p + 1, m -p -1, m -p, m -1, m, we do not know whether or not λ (q) i (S m , g p,L ) for i = 1, . . . , n q have positive lower bounds independent of L. A similar problem occurs in [EP17, Remark 5.7], p.457.

We prove Theorem 4.1 in the same way as Gentile and Pagliara [START_REF] Gentile | Riemannian metrics with large first eigenvalue on forms of degree p[END_REF]. In this way, the following result by McGowan [MG93, Lemma 2.3] (see also [START_REF] Gentile | Riemannian metrics with large first eigenvalue on forms of degree p[END_REF], Lemma 1) plays an important rôle. A similar argument was used to prove Corollary 1.5 in [START_REF]Vanishing of cohomology groups and large eigenvalues of the Laplacian on p-forms[END_REF].

We now denote by ν

′(p)
1 (U, g) the first positive eigenvalue of the Hodge-Laplacian acting on exact p-forms on (U, g) with the absolute boundary condition.

Lemma 4.4 (McGowan [MG93]

). Let (M m , g) be a connected oriented closed Riemannian manifold of dimension m. We take a finite open covering

{U i } K i=1 of M satisfying U i ∩ U j ∩ U k = ∅ and a partition of unity {ρ i } K i=1 subordinated to {U i } K i=1 . If we set n p := i<j dim H p-1 (U ij ; R ), where U ij := U i ∩ U j , and C g (ρ) := max i=1,...,K max x∈U i |dρ i | 2 g (x) , then we have λ ′(p) np+1 (M, g) ≥ 1 8 K i=1        1 ν ′(p) 1 (U i , g) + j̸ =i U i ∩U j ̸ =∅ C g (ρ) ν ′(p-1) 1 (U ij , g) + 1 1 ν ′(p) 1 (U i , g) + 1 ν ′(p) 1 (U j , g)        .
Proof of Theorem 4.1. We take an open covering {U 1 , U 2 , U 3 } of M as follows:

U 1 := S p × [0, 3] × S m-p-1 , U 2 := S p × [2, L + 2] × S m-p-1 , U 3 := S p × [L + 1, L + 2] × S m-p-1 ∪ D p+1 ×S m-p-1 .
Then,

U 12 = U 1 ∩ U 2 = S p × [2, 3] × S m-p-1 , U 13 = U 1 ∩ U 3 = ∅, U 23 = U 2 ∩ U 3 = S p × [L + 1, L + 2] × S m-p-1
and

U 123 := U 1 ∩ U 2 ∩ U 3 = ∅.
Since both U 12 and U 23 are isometric to S p × [0, 1]×S m-p-1 , their eigenvalues do not depend on L. Therefore, only ν

′(p) 1 (U 2 , g p,L ) depends on L.
We can take a partition of unity {ρ i } i=1,2,3 subordinate to this open covering {U 1 , U 2 , U 3 } such that the supports of dρ i are in U 12 or U 23 . Since the C 0 -norms of dρ i are independent of L, the constant C g (ρ) is also independent of L. Now, we compute n q . Since both U 12 and U 23 are homotopy equivalent to S p × S m-p-1 , by the Künneth formula, we have

n q = dim H q-1 (U 12 ; R ) + dim H q-1 (U 23 ; R ) = 2 dim H q-1 (S p × S m-p-1 ; R ) =                4 if (p, q) = ( m -1 2 , m + 1 2
) and m is odd,

2 if q = 1, p + 1, m -p, m, except for (p, q) = ( m -1 2 , m + 1 2 ) if m is odd, 0 otherwise.
Next, we estimate the eigenvalue ν

′(q)
1 (U 2 , g p,L ) from below. If 0 is the eigenvalue for s-forms on (N, h), we denote it by λ (s) 0 (N, h). From the Künneth formula for the eigenvalues of the Hodge-Laplacian (e.g., [START_REF] Gilkey | Spectral Geometry, Riemannian submersions, and the Gromov-Lawson Conjecture[END_REF], p.38, Example 1.5.7), we have

ν ′(q) 1 (U 2 , g p,L ) ≥ ν (q) 1 (U 2 , g p,L ) = ν (q) 1 ([0, L] × S p × S m-p-1 ) = min a+b=q i+j≥1 ν (a) i ([0, L]) + λ (b) j (S p × S m-p-1 ) = min a+b=q i+j≥1 L -2 ν (a) i ([0, 1]) + λ (b) j (S p × S m-p-1 ) . (4.1)
To proceed with the calculation, we consider whether or not 0 is the eigenvalue on [0, 1] and S p × S m-p-1 . By the Hodge theory, this follows from the cohomology groups

H a ([0, 1]; R ) ̸ = 0 if a = 0, = 0 if a = 1, H b (S p × S m-p-1 ; R ) ̸ = 0 if b = 0, p, m -p -1, m -1, = 0 otherwise. (4.2) If q = p, m -p -1, m -1, by (4.
2), 0 is the eigenvalue for q-forms on S p × S m-p-1 . Hence, we have for sufficiently large L, ν

′(q) 1 (U 2 , g p,L ) ≥ min a+b=q i+j≥1 L -2 ν (a) i ([0, 1]) + λ (b) j (S p × S m-p-1 ) = min j≥0 L -2 ν (0) 0 ([0, 1]) =0 +λ (q) 1 (S p × S m-p-1 ), L -2 ν (0) 1 ([0, 1]) + λ (q) 0 (S p × S m-p-1 ) =0 , L -2 ν (1) 1 ([0, 1]) + λ (q-1) j (S p × S m-p-1 ) ≥ L -2 min ν (0) 1 ([0, 1]), ν (1) 1 ([0, 1]) .
Similarly, if q = 1, p + 1, m -p, m, by (4.2), 0 is the eigenvalue for (q -1)-forms on S p × S m-p-1 . Hence, we have for sufficiently large L, ν

′(q) 1 (U 2 , g p,L ) ≥ min a+b=q i+j≥1 L -2 ν (a) i ([0, 1]) + λ (b) j (S p × S m-p-1 ) = min j≥0 L -2 ν (0) 0 ([0, 1]) =0 +λ (q) 1 (S p × S m-p-1 ), L -2 ν (0) 1 ([0, 1]) + λ (q) j (S p × S m-p-1 ), L -2 ν (1) 1 ([0, 1]) + λ (q-1) 0 (S p × S m-p-1 ) =0 ≥ L -2 min ν (0) 1 ([0, 1]), ν (1) 1 ([0, 1]) . Therefore, if q = 1, p, p + 1, m -p -1, m -p, m -1, m, from Lemma 4.4, there exist positive constants C 1 , C 2 > 0 independent of L such that λ ′(q) nq+1 (S m , g p,L ) ≥ 1 C 1 L 2 + C 2 . If q ̸ = 1, p, p + 1, m -p -1, m -p, m -1, m, by (4.
2), 0 is neither eigenvalue for (q -1)-forms nor for q-forms on S p × S m-p-1 . Hence, for any L > 0, we have

ν ′(q) 1 (U 2 , g p,L ) ≥ min λ (q) 1 (S p × S m-p-1 ), L -2 ν (0) 1 ([0, 1]) + λ (q) 1 (S p × S m-p-1 ), L -2 ν (1) 1 ([0, 1]) + λ (q-1) 1 (S p × S m-p-1 ) ≥ min λ (q) 1 (S p × S m-p-1 ), λ (q-1) 1 (S p × S m-p-1 ) > 0.
In this case, we have n q = 0. Thus, we obtain a lower bound C > 0 independent of L such that λ ′(q) 1 (S m , g p,L ) ≥ C > 0.

General manifold

Gluing theorem

To prove Theorem 1.2, we need a gluing theorem for the eigenvalues on a connected sum. The gluing theorem we use here is obtained from the convergence of the eigenvalues of the Laplacian, when one side of a connected sum of two closed Riemannian manifolds collapses to a point. We call it collapsing of connected sums. This was studied in the case of the Laplacian acting on functions in [START_REF] Takahashi | Collapsing of connected sums and the eigenvalues of the Laplacian[END_REF], and in the case of the Hodge-Laplacian acting on p-forms in [START_REF]On the gap between the first eigenvalues of the Laplacian on functions and p-forms[END_REF], [START_REF] Anné | p-spectrum and collapsing of connected sums[END_REF]. We recall it.

Let (M i , g i ), i = 1, 2, be connected oriented closed Riemannian manifolds of the same dimension m (m ≥ 2). For simplicity, we suppose that each metric g i is flat on the geodesic ball B(x i , r i ) with the radius r i > 0 centered at x i ∈ M i , where r i is smaller than the injectivity radius of (M i , g i ). By changing the scale of g 2 , we may suppose r 2 = 2. Set M i (r) := M i \ B(x i , r). For any ε > 0 with 0 < ε < min{r 1 , 1}, since both boundaries of ∂(M 1 (ε), g 1 ) and ∂(M 2 (1), ε 2 g 2 ) are isometric to the (m -1)-dimensional sphere of radius ε in R m , we glue (M 1 (ε), g 1 ) to (M 2 (1), ε 2 g 2 ) along their boundaries. After deforming g 2 on a neighborhood of ∂M 2 (1), we obtain the new closed smooth Riemannian manifold

(M, g ε ) := (M 1 (ε), g 1 ) ∪ ∂ (M 2 (1), ε 2 g 2 ).
(5.1)

If we choose suitable orientations of M 1 and M 2 , M is also oriented.

From the construction of (M, g ε ), it is easy to see that lim ε→0 vol(M, g ε ) = vol(M 1 , g 1 ).

(5.2)

In our previous works [START_REF] Anné | p-spectrum and collapsing of connected sums[END_REF], [START_REF] Takahashi | Collapsing of connected sums and the eigenvalues of the Laplacian[END_REF], we have the following convergence theorem for the eigenvalues of the Hodge-Laplacian acting on exact and co-exact p-forms. In fact, by considering the convergence of eigenforms, we find that all the eigenvalues for exact and co-exact forms still converge.

Lemma 5.1. For all k = 1, 2, . . . , we have

lim ε→0 λ ′(p) k (M, g ε ) = λ ′(p) k (M 1 , g 1 ), lim ε→0 λ ′′(p) k (M, g ε ) = λ ′′(p) k (M 1 , g 1 ).
We also have the convergence of the eigenvalues of the rough Laplacian acting on p-forms. Theorem 5.2. For all k = 1, 2, . . . , we have

lim ε→0 λ (p) k (M, g ε ) = λ (p) k (M 1 , g 1 ).
In fact, in the same way as the proof of Theorem 4.4 in [START_REF]On the gap between the first eigenvalues of the Laplacian on functions and p-forms[END_REF], p.21, we see the upper bound for the eigenvalues of the rough Laplacian acting on p-forms.

Lemma 5.3. For all k = 1, 2, . . . , we have

lim sup ε→0 λ (p) k (M, g ε ) ≤ λ (p) k (M 1 , g 1 ).
On the other hand, we will give the proof of the lower bound for the eigenvalues of the rough Laplacian acting on p-forms in Section 6, Appendix.

Proof of Lemma 5.3. To prove Lemma 5.3, we use a standard cut-off argument for the min-max principle for eigenvalues of the rough Laplacian. Let {φ 1 , . . . , φ k } be an L 2 (M 1 , g 1 )-orthonormal system of the eigen p-forms of the rough Laplacian on (M 1 , g 1 ) associated with the eigenvalue λ (p) j (M 1 , g 1 ) for j = 1, 2, . . . , k. We take a cut-off function χ ε (r) on M 1 defined as

χ ε (r) :=            0 (0 ≤ r ≤ ε), - 2 log ε log r ε (ε ≤ r ≤ √ ε), 1 ( √ ε ≤ r), (5.3)
where r is the Riemannian distance from x 1 ∈ M 1 with respect to g 1 . We take a linear subspace E ε in H 1 (Λ p M, g 1 ) spanned by {χ ε φ 1 , . . . , χ ε φ k }, and we see dim E ε = k. If we take this subspace E ε as a test k-dimensional subspace for the min-max principle for the eigenvalues of the rough Laplacian acting on p-forms, we obtain

λ (p) k (M, g ε ) ≤ sup φ ε̸ =0∈Eε ∥∇ φ ε ∥ 2 L 2 (M,gε) ∥ φ ε ∥ 2 L 2 (M,gε) ≤ λ (p) k (M 1 , g 1 ) + δ(ε), (5.4)
where δ(ε) → 0 as ε → 0. For details, see the proof of Theorem 4.4 in [START_REF]On the gap between the first eigenvalues of the Laplacian on functions and p-forms[END_REF], p.21.

Proof of Theorem 1.2

We prove Theorem 1.2 for a general manifold M . The main idea is to perform a connected sum of this manifold M and the sphere S m equipped with the Riemannian metric constructed in Theorem 1.1.

Proof of Theorem 1.2. Let M m be a connected oriented closed C ∞ -manifold of dimension m ≥ 2. We fixed a degree p with 1 ≤ p ≤ m. We take any smooth Riemannian metric g 2 on M such that g 2 is flat on the geodesic ball B(x 2 , 2) with the radius 2 centered at x 2 ∈ M . For any η > 0 and any index k ≥ 1, from Theorem 1.1, there exists some L p > 0 such that for all L > L p ,

λ (p) k (S m , g p,L ) < η 2 and λ ′′(p) k (S m , g p,L ) < η 2 , (5.5)
where g p,L is the volume normalized Riemannian metric on S m constructed in Theorem 1.1. By the continuity of the eigenvalues of the rough and Hodge Laplacians acting on co-exact forms in the C 0 -topology of Riemannian metrics (see [START_REF] Dodziuk | Eigenvalues of the Laplacian on forms[END_REF], [CPR01, p.297]), after C 0 -perturbation of g p,L , we may suppose that g p,L is flat on a small geodesic ball B(x 1 , r 1 ) with the radius r 1 > 0 centered at x 1 ∈ S m such that (5.5) still holds. Now, we set (M 1 , g 1 ) := (S m , g p,L ) and (M 2 , g 2 ) := (M, g). By the construction of collapsing of the connected sum (M, g ε ) from (M 1 , g 1 ) and (M 2 , g 2 ) as in Subsection 5.1 (5.1), we obtain a family of Riemannian metrics g ε on the connected sum

M ∼ = S m ♯M such that (M, g ε ) := (S m (ε), g p,L ) ∪ ∂ (M (1), ε 2 g). (S m (ε), g p,L ) (M (1), ε 2 g) Figure 4: (M, g p,ε )
From Lemmas 5.1 and 5.3, there exists some ε 0 > 0 such that for any ε < ε 0 ,

0 ≤ λ (p) k (M, g ε ) ≤ λ (p) k (S m , g p,L ) + η 2 , 0 < λ ′′(p) k (M, g ε ) ≤ λ ′′(p) k (S m , g p,L ) + η 2 .
(5.6) By substituting (5.5) to (5.6), we obtain

0 ≤ λ (p) k (M, g ε ) < η and 0 < λ ′′(p) k (M, g ε ) < η.
Finally, we normalize a Riemannian metric g ε on M . If we set a new Riemannian metric

g ε := vol(M, g ε ) -2 m g ε ,
then vol(M, g ε ) ≡ 1. From the volume convergence (5.2), there exists smaller ε 1 ≤ ε 0 , if necessary, such that for all ε < ε 1 , vol(M, g ε ) ≤ 2. Therefore, we have

λ (p) k (M, g ε ) = λ (p) k (M, g ε ) • vol(M, g ε ) 2 m < η • 2 2 m ,
and similarly λ

′′(p) k (M, g ε ) < η • 2 2 m .
Since η > 0 is arbitrary, we have finished the proof of Theorem 1.2.

Proof of Theorem 1.3

Proof of Theorem 1.3. We prove it in the same way as in the proof of Theorem 1.2. Let M m be a connected oriented closed C ∞ -manifold of dimension m ≥ 2. We take a smooth Riemannian metric g on M such that g is flat on (m -1) disjoint geodesic balls B(x i , 2) for i = 1, 2, . . . , m -1 with the radius 2, centered at distinct (m -1) points x i ∈ M . By rescaling of g, we can do this.

For any η > 0 and any index k ≥ 1, as in the proof of Theorem 1.2, we can take a positive number L p > 0 safisfying that the inequalities (5.5) hold. For all L > max p=1,2,...,m-1 L p , the inequalities (5.5) hold uniformly for all degrees p = 1, 2, . . . , m-1.

We consider now the (m -1) spheres (S m , g 1,L ), (S m , g 2,L ), . . . , (S m , g m-1,L ) and fix a point x 0 ∈ S m , it defines on each of them a point x 0,p . From the continuity of the eigenvalues of the rough and Hodge Laplacians acting on co-exact forms in the C 0 -topology of Riemannian metrics, we may suppose that each metric g p,L on S m for p = 1, 2, . . . , m -1 is flat on each geodesic ball B(x 0,p , r 1 ) centered at x 0,p with radius r 1 > 0 small enough, such that the inequalities (5.5) still hold.

We now perform the connected sum of M and these (m -1) spheres (S m , g 1,L ), (S m , g 2,L ), . . . , (S m , g m-1,L ), where x p ∈ M is related to x 0,p ∈ S m equipped with the metric g p,L (See Figure 5). We denote the resulting manifold by

(M, g ε ) := (S m (ε), g 1,L ) ⊔ (S m (ε), g 2,L ) ⊔ • • • ⊔ (S m (ε), g m-1,L ) ∪ ∂ (M \ ⊔ m-1 p=1 B(x p , 1), ε 2 g),
where S m (ε) := S m \ B(x 0 , ε). After smoothing the Riemannian metric g on each neighborhood of ∂(M \ B(x p , 1)) for p = 1, 2, . . . , m -1, we obtain a family of closed smooth Riemannian manifolds (M, g ε ) for ε > 0.

(M, ε 2 g)

(S m (ε), g 1,L ) (S m (ε), g 2,L ) (S m (ε), g p,L ) (S m (ε), g p-1,L ) Figure 5: (M, g ε )
For this (M, g ε ), we find that the same statement as in Lemma 5.3 holds for the Hodge-Laplacian and rough Laplacian. In fact, we take the same cut-off function as in (5.3) for each component, and estimate the Rayleigh-Ritz quotients from above. Since a contribution from each cut-off function is within its own component, we obtain the same estimate as in (5.4).

Therefore, there exists some ε 0 > 0 such that for any ε < ε 0 and p = 1, 2, . . . , m-

1 0 ≤ λ (p) k (M, g ε ) ≤ λ (p) k (S m , g p,L ) + η 2 , 0 < λ ′′(p) k (M, g ε ) ≤ λ ′′(p) k (S m , g p,L ) + η 2 .
(5.7)

By substituting the same inequalities as in (5.5) to (5.7), for small ε > 0, we obtain

0 ≤ λ (p) k (M, g ε ) < η and 0 < λ ′′(p) k (M, g ε ) < η
for all p = 1, 2, . . . , m -1. Since vol(S m , g p,L ) is alomost 1 (because of small perturbation around one point), we find

vol(M, g ε ) ≤ m-1 p=1 vol(S m , g p,L ) + vol(M, ε 2 g) ≤ m.
After normalization of Riemannian metric g ε on M , we can find a Riemannian metric g ε on M such that vol(M, g ε ) ≡ 1 and

λ (p) k (M, g ε ) < η • m 2 m and λ ′′(p) k (M, g ε ) < η • m 2 m
for all p = 1, 2, . . . , m -1. Thus, we have finished the proof of Theorem 1.3.

Appendix: Convergence of the eigenvalues of the rough Laplacian

We study here the convergence of the eigenvalues of the rough Laplacian acting on p-forms, when one side of a connected sum of two closed Riemannian manifolds collapses to a point. Our setting is the same as in the beginning of Subsection 5.1.

Theorem 6.1. For all p with 0 ≤ p ≤ m and for all k = 1, 2, . . . , we have

lim ε→0 λ (p) k (M, g ε ) = λ (p) k (M 1 , g 1 ).
To prove this Theorem 6.1, we follow the schema of [START_REF] Anné | p-spectrum and collapsing of connected sums[END_REF] which dealt with the Hodge Laplacian, but with less difficulties: when working with the rough Laplacian the related quadratic form is exactly the one involved in the H 1 -norm and we are rather in the situation of [START_REF] Takahashi | Collapsing of connected sums and the eigenvalues of the Laplacian[END_REF] which dealt with functions. Nevertheless notice that we use here cut-off functions, while [START_REF] Takahashi | Collapsing of connected sums and the eigenvalues of the Laplacian[END_REF] used a technique by means of the harmonic extension.

Let φ ε be a normalized eigen p-form of the rough Laplacian associated with the eigenvalue λ

(p) k (ε) = λ (p) k (M, g ε ): ∆ φ ε = λ (p) k (ε) φ ε and ∥ φ ε ∥ L 2 (M,gε) ≡ 1.
By Lemma 5.3, we already know that the family {λ 

φ j,ε = φ 1 ε , ε p-m 2 φ 2 ε with φ 1 ε ∈ H 1 (Λ p M 1 (ε), g 1 ), φ 2 ε ∈ H 1 (Λ p M 2 (1), g 2 ).
Then, these satisfy

∥ φ 1 ε ∥ 2 L 2 (M 1 (ε),g 1 ) + ∥ φ 2 ε ∥ 2 L 2 (M 2 (1),g 2 ) ≡ 1, φ 2 ε = ε m 2 -p φ 1 ε on the boundary. (6.1)
Furthermore, since φ ε is a normalized eigenform, we have

λ (p) k (M, g ε ) = M 1 (ε) |∇ φ 1 ε | 2 dµ g 1 + 1 ε 2 M 2 (1) |∇ φ 2 ε | 2 dµ g 2 = ∥∇ φ 1 ε ∥ 2 L 2 (M 1 (ε),g 1 ) + 1 ε 2 ∥∇ φ 2 ε ∥ 2 L 2 (M 2 (1),g 2 ) .
(6.2) From (6.1) and (6.2), it follows that

∥ φ 2 ε ∥ 2 H 1 (M 2 (1),g 2 ) = ∥ φ 2 ε ∥ 2 L 2 (M 2 (1),g 2 ) + ∥∇ φ 2 ε ∥ 2 L 2 (M 2 (1),g 2 ) ≤ 1 + ε 2 λ (p)
k (M, g ε ). By Lemma 5.3, we see that the family { φ 2 ε } ε>0 is bounded in H 1 (Λ p M 2 (1), g 2 ). Since M 2 (1) is compact, there exists a subsequence { φ 2 ε i } ∞ i=1 which converges weakly to φ 2 in H 1 (Λ p M 2 (1), g 2 ) and strongly in L 2 (Λ p M 2 (1), g 2 ).

Lemma 6.2. The sequence { φ 2 ε i } converges strongly to φ 2 in H 1 (Λ p M 2 (1), g 2 ), and the limit φ 2 is parallel on (M 2 (1), g 2 ).

Proof. From the lower semi-continuity of the weak limit and Lemma 5.3, it follows that

∥∇ φ 2 ∥ 2 L 2 (M 2 (1),g 2 ) ≤ lim inf ε→0 ∥∇ φ 2 ε ∥ 2 L 2 (M 2 (1),g 2 ) ≤ lim inf ε→0 ε 2 λ (p) k (M, g ε ) = 0,
that is, φ 2 is parallel on (M 2 (1), g 2 ). Therefore, we have

∥ φ 2 ε i -φ 2 ∥ 2 H 1 (M 2 (1),g 2 ) = ∥ φ 2 ε i -φ 2 ∥ 2 L 2 (M 2 (1),g 2 ) + ∥∇ φ 2 ε i ∥ 2 L 2 (M 2 (1),g 2 ) -→ 0 (i → ∞).
The following boundary value estimate is crucial in our argument.

Lemma 6.3. There exists a constant C > 0 such that for any r with ε

≤ r ≤ r 1 , φ ∈ H 1 (M 1 (r), g 1 ) satisfies ∥ φ ↾ ∂M 1 (r) ∥ 2 L 2 (∂M 1 (r),g 1,∂ ) ≤      Cr m -2 ∥ φ ∥ 2 H 1 (M 1 (r),g 1 ) if m ≥ 3, Cr log r ∥ φ ∥ 2 H 1 (M 1 (r),g 1 ) if m = 2.
Note that since φ ∈ H 1 (M 1 (r), g 1 ), the boundary value φ ↾ ∂M 1 (r) on ∂M 1 (r) is considered in the sense of the trace operator

H 1 (Λ p M 1 (r), g 1 ) -→ L 2 (Λ p M 1 (r), g 1 ) ↾ ∂M 1 (r) .
Proof. We may assume that φ is smooth. By using the polar coordinates (r, θ) on the geodesic ball B(x 1 , r 1 ), we denote a p-form φ = α +dr ∧ β and the metric g 1 = dr 2 + r 2 h, where h is the standard metric of S m-1 . Then, the point-wise norm of φ at (r, θ) is expressed as

| φ (r, θ)| 2 g 1 = r -2p | α(r, θ)| 2 h + r -2p+2 | β(r, θ)| 2 h .
We take a cut-off function χ on the ball B(x 1 , r 1 ) satisfying χ(s) = 1 for s ≤ r and χ(r 1 ) = 0 (We may take r 1 < 1, if necessary). From the Kato inequality |∇| φ || ≤ |∇ φ | and the Schwarz inequality, it follows that

| φ (r, θ)| g 1 = r 1 r ∂ s |χ φ (s, θ)| g 1 ds ≤ r 1 r |∇(χ φ )(s, θ)| g 1 ds ≤ r 1 r s 1-m ds • r 1 r |∇(χ φ )(s, θ)| 2 g 1 s m-1 ds.
Therefore, we have

∥ φ ↾ ∂M 1 (r) ∥ 2 L 2 (∂M 1 (r),g 1,∂ ) = ∂M 1 (r) | φ (r, θ)| 2 g 1 dµ r 2 h = r m-1 S m-1 | φ (r, θ)| 2 g 1 dµ h ≤ r m-1 r 1 r s 1-m ds • r 1 r S m-1 |∇(χ φ )(s, θ)| 2 g 1 s m-1 ds dµ h = r m-1 r 1 r s 1-m ds • r 1 r S m-1 |∇χ ⊗ φ +χ∇ φ | 2 g 1 s m-1 ds dµ h ≤ C r m-1 r 1 r s 1-m ds • φ 2 H 1 (M 1 (r),g 1 ) ,
where C is a positive constant depending only on χ and ∇χ. By combining this with

r 1 r s 1-m ds ≤      r 2-m m -2 if m ≥ 3, log r if m = 2,
we obtain the boundary value estimate.

Lemma 6.4. The limit φ 2 = 0 a.e. (M 2 (1), g 2 ).

Proof. Since φ 2 is parallel, it is sufficient to prove that the boundary value of φ 2 to ∂M 2 (1) in the sense of the trace is zero. Since the trace operator is continuous and φ 2 ε i -→ φ 2 strongly in H 1 (M 2 (1), g 2 ), we have

∥ φ 2 ε i ↾ ∂M 2 (1) -φ 2 ↾ ∂M 2 (1) ∥ 2 L 2 (∂M 2 (1),g 2,∂ ) ≤ C∥ φ 2 ε i -φ 2 ∥ 2 H 1 (M 2 (1),g 2 ) → 0 (i → ∞).
Thus, we see the norm convergence:

∥ φ 2 ↾ ∂M 2 (1) ∥ L 2 (∂M 2 (1),g 2,∂ ) = lim i→∞ ∥ φ 2 ε i ↾ ∂M 2 (1) ∥ L 2 (∂M 2 (1),g 2,∂ ) .
From the gluing condition (6.1) at the boundary, we have

∥ φ 2 ε i ↾ ∂M 2 (1) ∥ 2 L 2 (∂M 2 (1),g 2,∂ ) = ∂M 2 (1) | φ 2 ε i ↾ ∂M 2 (1) | 2 g 2 dµ h = ∂M 1 (1) |ε i m 2 -p φ 1 ε i ↾ ∂M 1 (ε i ) | 2 g 2 dµ h (by (6.1)) = ε i ∂M 1 (ε i ) ε i -2p | φ 1 ε i ↾ ∂M 1 (ε i ) | 2 g 2 dµ ε i 2 h = ε i ∂M 1 (ε i ) | φ 1 ε i ↾ ∂M 1 (ε i ) | 2 g 1 dµ ε i 2 h = ε i ∥ φ 1 ε i ↾ ∂M 1 (ε i ) ∥ 2 L 2 (∂M 1 (ε i ),g 1,∂ ) .
By Lemma 6.3, we find that the boundary value of φ 2 is zero. Therefore, the limit φ 2 must be zero.

We take again the cut-off function χ ε on M 1 as in (5.3), and set

ψ ε := χ ε φ 1 ε on M 1 . (6.3) Lemma 6.5. The family {ψ ε } ε>0 is bounded in H 1 (Λ p M 1 , g 1 ).
Proof. It is easy to see that the L 2 -norm of ψ ε is bounded by 1. Now, we have

M 1 |∇(χ ε φ 1 ε )| 2 g 1 dµ g 1 = M 1 |∇χ ε ⊗ φ 1 ε +χ ε ∇ φ 1 ε | 2 g 1 dµ g 1 ≤ 2 2 log ε 2 √ ε ε S m-1 | φ 1 ε (r, θ)| 2 g 1 r m-3 dr dµ h + 2 M 1 (ε) |∇ φ 1 ε | 2 g 1 dµ g 1 = 8 | log ε| 2 √ ε ε ∥ φ 1 ε ∥ 2 L 2 (∂M 1 (r),g 1,∂ ) r -2 dr + 2 ∥∇ φ 1 ε ∥ 2 L 2 (M 1 (ε),g 1 ) .
For the first term, by applying Lemma 6.3, we have, if m ≥ 3,

8 | log ε| 2 √ ε ε ∥ φ 1 ε ∥ 2 L 2 (∂M 1 (r),g 1,∂ ) r -2 dr ≤ C m -2 • 8 | log ε| 2 ∥ φ 1 ε ∥ 2 H 1 (M 1 (r),g 1 ) √ ε ε r -1 dr ≤ C m -2 • 4 | log ε| ∥ φ 1 ε ∥ 2 H 1 (M 1 (r),g 1 ) , and if m = 2, 8 | log ε| 2 √ ε ε ∥ φ 1 ε ∥ 2 L 2 (∂M 1 (r),g 1,∂ ) r -2 dr ≤ 8C | log ε| 2 ∥ φ 1 ε ∥ 2 H 1 (M 1 (r),g 1 ) √ ε ε | log r| r -1 dr ≤ 8C | log ε| ∥ φ 1 ε ∥ 2 H 1 (M 1 (r),g 1 ) √ ε ε r -1 dr = 4C ∥ φ 1 ε ∥ 2 H 1 (M 1 (r),g 1 ) .
For the second term, we have

∥∇ φ ε ∥ 2 L 2 (M 1 (ε),g 1 ) ≤ ∥∇ φ ε ∥ 2 L 2 (M,gε) = λ (p) k (M, g ε ),
which is uniformly bounded by Lemma 5.3. Therefore, we find that {ψ ε } ε>0 is bounded in H 1 (Λ p M 1 , g 1 ).

The following lemma is obtained from the same method as in [AT12, Corollary 15], p.1732. Lemma 6.6. We can extract a subsequence {ψ ε i } which converges weakly to ψ in H 1 (Λ p M 1 , g 1 ) and strongly in L 2 (Λ p M 1 , g 1 ) such that

∆ M 1 ψ = λ (p)
k ψ and ∥ψ∥ L 2 (M 1 ,g 1 ) = 1.

Proof. From Lemma 6.5, a family {ψ ε } is uniformly bounded in H 1 (Λ p M 1 , g 1 ). By the weak compactness for a Hilbert space and the Rellich-Kondrachov theorem, there exist a subsequence {ψ ε i } i and the limit ψ ∈ H 1 (Λ p M 1 , g 1 ) such that ψ ε i → ψ weakly in H 1 (Λ p M 1 , g 1 ) and strongly in L 2 (Λ p M 1 , g 1 ) as i → ∞.

For any smooth p-form ω ∈ Ω p 0 (M 1 \ {x 1 }), there exists ε 0 > 0 such that the support of ω is in M 1 \ B(x 1 , 2 √ ε 0 ). So on this support we have ψ ε i = φ 1 ε i = φ ε i as far as ε i < ε 0 . We label with (⋆) when we use this fact. By Lemma 6.4, we have

(ψ, ∆ g 1 ω) L 2 (M 1 ,g 1 ) = lim i→∞ (ψ ε i , ∆ g 1 ω) L 2 (M 1 ,g 1 ) = (⋆) lim i→∞ ( φ ε i , ∆ gε i ω) L 2 (M 1 (ε i ),g 1 ) = lim i→∞ ( φ ε i , ∆ gε i ω) L 2 (M,gε i ) (by Lemma 6.4) = lim i→∞ λ (p) k (M, g ε i )( φ ε i , ω) L 2 (M,gε i ) = λ (p) k lim i→∞ ( φ 1 ε i , ω) L 2 (M 1 (ε i ),g 1 ) = (⋆) λ (p) k lim i→∞ (ψ ε i , ω) L 2 (M 1 ,g 1 ) = λ (p) k (ψ, ω) L 2 (M 1 ,g 1 ) .
Since m ≥ 2, Ω p 0 (M 1 \ {x 1 }) is dense in H 1 (Λ p M 1 , g 1 ), and we conclude that

∆ g 1 ψ = λ (p)
k ψ weakly.

Furthermore, by the regularity theorem of weak solutions to elliptic equations, the limit ψ in fact is a smooth p-form on M 1 .

Next, from the normalization ∥ φ ε i ∥ L 2 (M,gε i ) ≡ 1 and Lemma 6.4, we have ∥ψ∥ L 2 (M 1 ,g 1 ) = 1. Hence, the limit ψ is a non-zero smooth eigenform on (M 1 , g 1 ) with the eigenvalue λ (p) k .

To complete the proof of Theorem 6.1, we have only to prove the following lemma. Lemma 6.7. Let { φ 1,ε i , . . . , φ k,ε i } be L 2 (M, g ε i )-orthonormal eigenforms on (M, g ε ) associated with the eigenvalues λ (p) 1 (M, g ε i ), . . . , λ (p) k (M, g ε i ), and let {ψ 1 , . . . , ψ k } be the limits obtained from { φ 1,ε i , . . . , φ k,ε i }. Then, {ψ 1 , . . . , ψ k } are also L 2 (M 1 , g 1 )orthonormal eigenforms on (M 1 , g 1 ) associated with the eigenvalues λ Proof. We first calculate:

∥(χ ε i -1) φ ε i ∥ 2 L 2 (M 1 (ε),g 1 ) ≤ √ ε i ε i S m-1 | φ ε i | 2 g r m-1 drdµ h ≤ C        1 m -2 √ ε i ε i r dr ∥ φ ε i ∥ 2 H 1 (M 1 (ε i ),g 1 ) if m ≥ 3, | log ε i | √ ε i ε i r dr ∥ φ ε i ∥ 2 H 1 (M 1 (ε i ),g 1 ) if m = 2 ≤ C    ε i m -2 ∥ φ ε i ∥ 2 H 1 (M 1 (ε i ),g 1 ) if m ≥ 3, | log ε i |ε i ∥ φ ε i ∥ 2 H 1 (M 1 (ε i ),g 1 )
if m = 2 -→ 0 (i → ∞). (6.4)

Then, from lim i→∞ φ 2 j,ε i = 0 by Lemma 6.4 and (6.4), it follows that for all j, l = 1, . . . , k,

(ψ j , ψ l ) L 2 (M 1 ,g 1 ) = lim i→∞ (χ ε i φ j,ε i , χ ε i φ l,ε i ) L 2 (M 1 ,g 1 ) = lim i→∞ ( φ 1 j,ε i , φ 1 l,ε i ) L 2 (M (ε i ),g 1 ) + ((χ 2 ε i -1) φ 1 j,ε i , φ 1 l,ε i ) L 2 (M 1 (ε i ),g 1 )
= lim i→∞ ( φ 1 j,ε i , φ 1 l,ε i ) L 2 (M 1 (ε i ),g 1 ) + ( φ 2 j,ε i , φ 2 l,ε i ) L 2 (M 2 (1),g 2 ) + lim i→∞ ((χ 2 ε i -1) φ 1 j,ε i , φ 1 l,ε i ) L 2 (M 1 (ε i ),g 1 ) = lim i→∞ ( φ j,ε i , φ l,ε i ) L 2 (M,gε i ) + lim i→∞ ((χ 2 ε i -1) φ 1 j,ε i , φ 1 l,ε i ) L 2 (M 1 (ε i ),g 1 ) = δ jl .

Here, the last equality follows from (6.4). Therefore, we conclude that λ (p) j = lim i→∞ λ (p) j (M, g ε i ) for j = 1, . . . , k belong to the set of all eigenvalues of the rough Laplacian acting on p-forms on (M 1 , g 1 ). Hence, we have finished the proof of Theorem 6.1.

k

  (ε)} ε>0 is bounded. So, we set λ k (M, g ε ), and decompose the eigen p-form φ ε on the connected sum into

  1 , g 1 ), . . . , λ (p) k (M 1 , g 1 ).
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