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Abstract

Traditionally, in reliability acceptance sampling plans, the decision to accept or
reject a lot is made by performing the life tests of items. However, when the item’s
deterioration is described by a degradation process, it can be made based on the
observed deterioration levels of the items obtained from degradation tests. In this
paper, two acceptance sampling plans are developed, based on the observation of
the deterioration of the items, accumulated on a given period of time. To model
the degradation of the items over time, the Wiener process with positive drift is
employed. Algorithms to find the parameters of the proposed sampling plans are
suggested. Conditionally on the acceptance in the test, the developed sampling
plans are shown to improve the reliability performance of the items in the sense
that the lifetimes of the items after the reliability sampling test are stochastically
larger than those before the test. Also, we compare the two sampling plans both
from a technical and economical points of view.

Keywords: Quality management; variables sampling plan; degradation test; Wiener
process; stochastic ordering
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NOTATIONS

Θ the frailty r.v. which represents the reliability characteristic of the population
Tθ the lifetime of the item with reliability characteristic θ
fTθ(t) the pdf (probability density function) of Tθ
{Wθ(t), t ≥ 0} the conditional degradation process given Θ = θ
{W (t), t ≥ 0} the unconditional degradation process
t0 the specified testing duration
{W1, · · · .Wn} the observed degradation levels of the n tested items observed at time t0
κ the threshold level of degradation after which the failure of the item occurs
α the producer’s risk
β the consumer’s risk
(n, c, ξ) the parameters of Sampling Plan I

L
(c)
n,ξ(θ) the lot acceptance probability of Sampling Plan I at θ

(n, ξ) the parameters of Sampling Plan II
Ln,ξ(θ) the lot acceptance probability of Sampling Plan II at θ

1 Introduction

In an acceptance sampling plan, the decision on whether to accept or reject a lot of
items is based on the observation of a random sample drawn from the lot. One can re-
fer to Stephens (2001) and Montgomery (2012) for general introductions to acceptance
sampling plans. In the specific case where the ‘lifetime’ of a product is the main charac-
teristic of interest, sampling plans designed for testing the acceptability of a product are
called life test reliability sampling plans. Based on the observation of the lifetimes of the
items on tests or on the number of failures observed during a pre-specified testing time, a
decision to reject or accept the corresponding lot is reached, taking into account both the
producer’s and consumer’s risks. See, for example, Epstein (1954), Epstein and Sobel
(1953, 1955), Blugren and Hewette (1973), Fairbanks (1988), Fertig and Mann (1980)
and Schneider (1989) for different acceptance reliability sampling plans for exponential
or Weibull distributions. Later on, more sophisticated reliability sampling plans have
been developed. See, for instance, Balakrishnan et al. (1993, 2007), Aslam and Jun
(2009) and Aslam et al. (2011a, 2011b, 2013a, 2013b, 2013c), Chen et al. (2004), Tsai
and Wanbo (2009), Fernández et al. (2011), Wu et al. (2018). Recently, Cha (2016)
has addressed the effect of acceptance sampling tests on the reliability performance of
the items accepted in the test. Cha (2015) and Lee and Cha (2017) have also studied
reliability sampling plans for repairable items.

However, frequently in practice, items are subject to degradation phenomena. See
Cha and Bad́ıa (2020a, 2020b) for detailed examples of the light intensity of an optical
item and the electric voltage or current of some electrical items. Pan et al. (2016,
2017) have studied reliability estimation approach based on a Wiener degradation pro-
cess and an inverse Gaussian degradation process with random effect, respectively. See
also Van Noortwijk (2009) for a review of the various applications of gamma degrada-
tion process to various reliability maintenance modeling. In such a case when items
are subject to degradation phenomena, instead of observing items’ lifetimes (which gen-
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erally takes very long time), the degradation levels of the items can be observed on
degradation tests (which are performed during a relatively short time). Then, based
on this information, the decision on whether to accept or reject the corresponding lot
can be made. Recently, Cha and Bad́ıa (2020a,2020b) studied sampling plans for items
whose degradation process follows the gamma process and the inverse Gaussian process,
respectively. In practice, the Wiener process is also frequently applied to model degra-
dation phenomena (see Section 2) and there have been a few works on sampling plan
based on the Wiener process. In Tsai et al. (2015), assuming the Wiener process of
degradation, an acceptance test is proposed which minimizes the asymptotic variance of
the estimate of the optimal acceptance testing time under a cost constrain. As a related
work, one can also refer to Jin and Matthews (2014), where, assuming the Wiener pro-
cess of degradation, a degradation-based testing procedure is developed to test whether
the reliability of the product satisfies the required index or not.

In this paper, differently from Tsai et al. (2015) and Jin and Matthews (2014), we
develop acceptance sampling plans which balance the producer’s and consumer’s risks
based on the information about the degradation levels of the items, assuming the Wiener
process of degradation. Furthermore, in addition to the sampling plan suggested in Cha
and Bad́ıa (2020a,2020b), another new type of sampling plan which is based on the
number of items whose degradation levels exceed a pre-determined level is proposed.
Then, these two sampling plans are compared both from a technical and economical
points of view. Note that classical reliability sampling plans based on life testing require
the observation of failures during the test. Then, due to high reliability performance and
long lifetimes of modern items, such plans can be of no use in practice as they can lead
to impractically long testing durations. An important merit of the deterioration-based
sampling plans proposed in this paper is that they do not require to observe failures of
items, so that they can be implemented in much shorter time periods than the classical
ones based on life testing.

The structure of this paper is as follows. In Section 2, a new reliability sampling
plan for items subject to degradation phenomena is developed. This sampling plan is
based on the number of items whose degradation levels exceed a pre-determined level.
The parameter values of the sampling plan are determined by taking into account both
producer’s and consumer’s risks. In addition, a convenient and efficient procedure is
suggested for their practical implementation. Furthermore, we analyze the effect of the
sampling plan on the reliability performance of the items in the population which has
passed the testing procedure. In Section 3, we consider another reliability sampling
plan for items subject to degradation phenomena, which is based on the sum of wear
amounts accumulated by all the items put into the test. Similar issues are discussed for
this second type of sampling plan as for the first one. Furthermore, the two sampling
plans proposed in this paper are compared. Finally, concluding remarks are given in
Section 4.
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2 Degradation-Based Sampling Plan I

2.1 Degradation Process and Sampling Plan

We now start our main discussion and first describe how to characterize the reliability
level of an item. Frequently, there is variability in the reliability level of an item and
some possible causes for it are the quality of resources and components supplied for
the production, human errors, uncontrollable factors affecting the quality of the item,
and so on. For instance, poor quality of resources and components may result in a low
reliability level of produced items, and vice versa.

In this paper, the reliability level of an item is described through an Euclidian pa-
rameter θ that we call reliability characteristic. The possible variability in this reliability
characteristic is translated through the use of a r.v. Θ, and we write Θ = θ to indicate
that the reliability characteristic is θ.

The degradation process of an items is denoted by {W (t), t ≥ 0}, where W (t)
is the total amount of accumulated degradation until time t. As mentioned earlier,
this degradation process depends on the reliability characteristic θ and {Wθ(t), t ≥ 0}
denotes the degradation process of an item given that Θ = θ. That is, {Wθ(t), t ≥ 0}
is the corresponding conditional degradation process given Θ = θ and Wθ(t) is the total
amount of accumulated degradation until time t given Θ = θ, i.e., Wθ(t) = (W (t)|Θ = θ).
We assume that the failure of an item occurs if its accumulated degradation exceeds the
predetermined failure threshold κ. In practice, items whose accumulated degradation
exceeds this level, can still operate. However, in this case, the item is not usable any
more and is defined to be in the failed state.

There is a huge literature devoted to the stochastic modeling of accumulated degra-
dation, among which the most common models are gamma process (Van Noortwijk
(2009)), inverse Gaussian process (Wang and Xu (2010)) and Wiener process (Doksum
and Hoyland (1992)). As noted by Hu et al. (2015), the Wiener process model has been
used for many applications in a variety of studies. For instance, it is used by Whitmore
(1995) to analyse the degradation (gain) of a transistor, by Wang (2010) to model the
deterioration of bridge beams due to chloride ion ingression, by Si et al. (2013) for the
analysis of gyroscopic drift in an inertial navigation system, by Lu and Meeker (1993)
to analyse the data from fatigue crack growth subject to loading cycles, to chose only
a few among many other papers. We refer to Zhang et al. (2018) or Hu et al. (2015)
for more examples and references. We also refer to Kahle et al. (2016) for some review
on its use as a deterioration process and statistical inference. Based on the previous
literature, Wiener process is an adequate and popular model for modeling deterioration.
We here assume that the conditional degradation process {Wθ(t), t ≥ 0} (given Θ = θ)
follows a Wiener process with positive drift.

Specifically, in this paper, Wθ(t) follows the following Wiener process:

Wθ(t) = µ(θ)t+ σBt,

where (Bt)t≥0 is a Brownian motion and µ(θ) is strictly increasing in θ. Thus, Wθ (t) ∼
N (µ (θ) t, σ2t) and then, for example, E[Wθ(t)] = µ(θ)t is also monotonically increasing
in θ, for all t > 0. Thus, it implies that the higher θ is, the higher the deterioration level
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is. The effect of θ on the lifetime of an item can be made more precise using stochastic
ordering. For the definitions of the classical stochastic orders used in this paper (usual
stochastic order: ≺st, hazard rate order: ≺hr, reversed hazard rate order: ≺rh, likelihood
ratio order: ≺lr), we refer to Müller and Stoyan (2002) and to Shaked and Shanthikumar
(2007).

Let Tθ stand for the lifetime of an item with reliability characteristic θ, which is
defined as the first-passage time of (Wθ (t))t≥0 over level κ > 0, namely:

Tθ = inf (t ≥ 0 : Wθ (t) ≥ κ) .

It is known that Tθ is inverse Gaussian distributed with pdf

fTθ (t) =
κ√

2πσ2t3
exp

(
−(κ− µ (θ) t)2

2σ2t

)
,∀t ≥ 0

(see, e.g., Folks and Chhikara (1978)).
The following result explains that the lifetime of an item is decreasing in θ in a strong

stochastic sense.

Proposition 1 Tθ decreases with respect to θ in the likelihood ratio ordering, i.e.,
Tθ2 ≺lr Tθ1, for all θ1 < θ2.

Proof. For θ1 < θ2, we have

fTθ1 (t)

fTθ2 (t)

= exp

(
− (κ− µ (θ1) t)2 + (κ− µ (θ2) t)2

2σ2t

)

= exp

(
µ (θ2)− µ (θ1)

2σ2
(t (µ (θ1) + µ (θ2))− 2κ)

)
.

As µ (θ1) < µ (θ2), the previous ratio increases with respect to t. This implies that
Tθ2 ≺lr Tθ1 and the result.

As the likelihood ratio ordering implies the hazard rate and usual stochastic ordering,
Proposition 1 also implies the ordering of Tθ1 and Tθ2 in terms of the corresponding
hazard rate and survival function (see Shaked and Shanthikumar (2007)). Hence, the
highest the reliability characteristic θ is, the lowest the reliability function Rθ(t) =
P(Tθ > t) is (for all t ≥ 0) and the lowest the mean time to failure E[Tθ] is.

As explained in the beginning of this section, the reliability characteristic of an item
depends on several features such as the quality of resources and components used in the
production process, among others. Typically, such features are common to all the units
produced in a same lot. Hence, although the reliability characteristic of produced items
is variable, we here assume that all the items belonging to a same lot are produced
by a sufficiently stable manufacturing process so that they share the same reliability
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characteristic θ, and hence, the same degradation process {Wθ(t), t ≥ 0}. Also, as
usual, the items are assumed to be conditionally identical and independent in a lot,
given that their common reliability characteristic is θ (namely given Θ = θ).

We are now interested in designing a sampling plan in order to ensure that the
mean time to failure of an item is greater than a certain level. Based on the previously
observed monotonicity of E[Tθ] with respect to θ, the point is to propose a plan which
ensures that the reliability characteristic θ is smaller than a certain level. In such a
plan, the probability of rejecting a good lot is called the producer’s risk, whereas the
probability of accepting a bad lot is known as the consumer’s risk. Let us introduce
two bounds θi, i = 1, 2, where θ1 > θ2, so that θ1 and θ2 stand for high and low quality
bounds, respectively. The consumer demands that the lot acceptance probability should
be smaller than the specified consumer’s risk β when testing a lot with a low quality
level θ ≤ θ2, whereas the producer requires that the lot rejection probability should be
smaller than the specified producer’s risk α, in case of a lot with a high quality level
θ ≥ θ1 (where α, β ∈ (0, 1)). Based again on the monotonicity of E[Tθ] with respect to
θ, it is equivalent to design the plan such that the lot acceptance probability is β when
testing a lot with quality level θ2 (consumer’s risk) and that the lot rejection probability
is α, in case of a lot with quality level θ1 (producer’s risk).

From the lot to be tested, n items are randomly selected and tested for a time interval
t0, where t0 is a specified testing duration. Let W1,W2, · · · ,Wn stand for the degrada-
tion levels of these n items observed at time t0. Remembering that a larger value of θ
(lower quality level) results in a larger value of Wθ(t), a possible acceptance test is as
follows.

Rejection Rule of Sampling Plan I: If
∑n

i=1 I(Wi > ξ) > c, then the lot is rejected;
otherwise the lot is accepted, where ξ > 0 and c ∈ {0, 1, 2, · · · , n−1} are pre-determined
parameters and I(·) is the indicator function, that is, I(A) = 1 if condition A is satisfied;
I(A) = 0, otherwise.

Thus, by Plan I, the lot is rejected if there are strictly more than c items whose degra-
dation level is larger that ξ and the proposed sampling plan is characterized by three
parameters (n, c, ξ). For n ≥ 1, c ∈ {0, · · · , n− 1} and ξ > 0, the acceptance probability
of a lot as a function of θ is given by

L
(c)
n,ξ (θ) = P

(
n∑
i=1

I(Wi > ξ) ≤ c

)

=
c∑
i=0

(
n

i

)(
F̄θ (ξ)

)i
(Fθ (ξ))n−i ,

where F̄θ (ξ) = P (Wθ (t0) > ξ) and Fθ (ξ) = 1− F̄θ (ξ).
It is now necessary to determine the parameters (n, c, ξ) so that the consumer’s risk

and the producer’s risk are balanced as follows:

L
(c)
n,ξ (θ2) = β and 1− L(c)

n,ξ (θ1) = α. (1)

The following result allows us to understand the influence of each parameter on the
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acceptance probability L
(c)
n,ξ (θ) and to construct an efficient procedure in determining

parameters (approximately) satisfying the two equations in (1).

Proposition 2 With all parameters fixed except from one, L
(c)
n,ξ (θ) increases with respect

to ξ and c, and decreases with respect to n and θ.

Proof. Increasingness of L
(c)
n,ξ (θ) with respect to c is clear. Also, based on Cha (2016),

a binomial random variable (r.v.) B (n, p) is known to increase in the likelihood ratio

ordering with respect to n, and hence also in the usual stochastic ordering. Then L
(c)
n,ξ (θ)

decreases with respect to n. Based on Klenke and Mattner (2010), B (n, p) increases in
the usual stochastic ordering when p increases. Also, based on the fact that Wθ (t0)
increases with respect to θ in the likelihood ratio sense (see Müller and Stoyan (2002),
page 62), Wθ (t0) also increases in the usual stochastic order sense, so that F̄θ (ξ) increases

with respect to θ and L
(c)
n,ξ (θ) decreases with respect to θ. Increasingness of L

(c)
n,ξ (θ) with

respect to ξ is proved in a similar way.

Suppose that we search for (n, c) satisfying (1) for a fixed ξ. Considering successive
n = 1, 2, ..., we first look for c such that

L
(c)
n,ξ (θ1) = 1− α.

Denote this value of c by c(n). If this c(n) does not satisfy

L
(c)
n,ξ (θ2) = β,

then we fix the parameter of the number of tested items as n + 1 and look for the
corresponding c(n + 1), and so on. Due to Proposition 2, we already know that c(n) ≤
c(n+ 1), n = 1, 2, · · · . Thus, c(n) is a lower bound for c(n+ 1), which limits the range
for c(n+ 1) to {c(n), · · · , n}.

In some cases, there cannot be exact values of (n, c, ξ) satisfying the two equations
in (1). Thus, we take (n, c, ξ) which achieves the nearest acceptance probabilities:

L
(c)
n,ξ (θ2) ≈ β (2)

and
1− L(c)

n,ξ (θ1) ≈ α

or equivalently
L

(c)
n,ξ (θ1) ≈ 1− α. (3)

To find the parameters satisfying (2) and (3), the following algorithm is used, where
nmax is the maximum allowable sample size and ε > 0 is a precision threshold, which
should be fixed in advance.
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Algorithm 1

1. Fix ξ;

2. Initialization for n = 1:

(a) Set c(1) = 0;

(b) If
∣∣∣L(0)

1,ξ (θ1)− 1 + α
∣∣∣ ≤ ε and

∣∣∣L(0)
1,ξ (θ2)− β

∣∣∣ ≤ ε, store the value (n = 1, c(1) = 0) ;

3. For each 2 ≤ n ≤ nmax :

(a) Compute L
(c)
n,ξ (θ1) for each c ∈ {c(n− 1), · · · , n− 1};

(b) Find c(n) which minimizes
∣∣∣L(c)

n,ξ (θ1)− 1 + α
∣∣∣ as a function of c;

(c) If
∣∣∣L(c(n))

n,ξ (θ1)− 1 + α
∣∣∣ ≤ ε and

∣∣∣L(c(n))
n,ξ (θ2)− β

∣∣∣ ≤ ε, then store the value of

(n, c(n));

4. Among all (n, c(n)) stored in the previous stages, find the smallest n.

For each ξ, the above algorithm allows us to obtain the corresponding (n (ξ) , c(ξ))

such that
∣∣∣L(c(ξ)(n))

n(ξ),ξ (θ1)− 1 + α
∣∣∣ ≤ ε and

∣∣∣L(c(ξ)(n))
n(ξ),ξ (θ2)− β

∣∣∣ ≤ ε, namely such that

L
(c(ξ))
n(ξ),ξ (θ1) ' 1−α and L

(c(ξ))
n(ξ),ξ (θ2) ' β. Next, we consider various ξ in (0, ξ0] (where ξ0 is

a maximal threshold fixed in advance) and for each ξ ∈ (0, ξ0], we search for the optimal
ξ (ξopt, say) which minimizes n (ξ). Then the obtained solution (ξopt, n (ξopt) , c(ξopt))
satisfies (2) and (3). Also the solution minimizes the total number of items used in the
test, and hence minimizes the corresponding cost.

Example 1 Let θ1 = 1; θ2 = 1.5; t0 = 1;µ (θ) = θ;σ = 0.5;α = 0.05; β = 0.1; nmax = 30
and ξ ∈ [0.01, 2]. Using Algorithm 1, the corresponding n (ξ) , c(ξ), R1 (ξ) , R2 (ξ) are
obtained and plotted with respect to ξ in Figure 1, where

R1 (ξ) = L
(c(ξ))
n(ξ),ξ (θ1)− 1 + α,

R2 (ξ) = β − L(c(ξ))
n(ξ),ξ (θ2) .

For ε = 0.01 we obtain: ξopt = 1.23, n (ξopt) = 12, c(ξopt) = 6, R1 (ξopt) = −6.4 × 10−3

and R2 (ξopt) = −9.5 × 10−3. The value of ξopt is highlighted with a red dotted line in
Figure 1. As can be seen in the figure, the procedure chooses ξopt which minimizes n (ξopt)
under the condition that R1 (ξopt) and R2 (ξopt) are near zero.

Example 2 We keep all the previous parameters except for θ2, σ and ε (and nmax), for
which several values are envisioned. The results are provided in Table 1 for σ = 0.5 (and
nmax = 55), in Table 2 for σ = 0.75 (and nmax = 100) and in Table 3 for σ = 0.25 (and
nmax = 20), where, in each case, ε has been mostly adjusted to get the best precision
and nmax is chosen such that ξopt exists, which complies with the conditions given in
Algorithm 1.
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Figure 1: n (ξ) , c(ξ), R1 (ξ) , R2 (ξ) with respect to ξ together with ξopt, Example 1

θ2 ε ξopt n (ξopt) c(ξopt) R1 (ξopt) R2 (ξopt)
1.25 0.01 1.10 50 26 −9.6× 10−3 −1.4× 10−3

1.50 0.01 1.23 12 6 −6.4× 10−3 −9.5× 10−3

1.75 0.01 1.42 5 2 −8.3× 10−3 −8.5× 10−3

2 0.01 1.56 3 1 2.8× 10−3 5.9× 10−3

2.25 0.01 1.41 2 1 7.5× 10−3 9.2× 10−3

2.50 0.01 1.83 1 0 1.5× 10−3 9.9× 10−3

2.75 0.1 1.83 1 0 1.5× 10−3 6.7× 10−2

3 0.1 1.83 1 0 1.5× 10−3 9.0× 10−2

4 0.1 1.83 1 0 1.5× 10−3 1.0× 10−1

Table 1: ξopt, n (ξopt), c(ξopt), R1 (ξopt), R2 (ξopt) with respect to θ2, Example 2, case
σ = 0.5 (and nmax = 55)

From Tables 1, 2 and 3, we find that n (ξopt) decreases as θ2 increases (except for the
last line of Table 2), namely, when there is a larger difference between θ1 and θ2. Indeed,
it seems natural that less units are required to make a distinction between the two levels
when they are well separate. Furthermore, we observe that c (ξopt) decreases when θ2

increases (except for the last line of Table 2). Also, from θ2 ' 2.50, the values of ξopt,
n (ξopt), c(ξopt) and R1 (ξopt) become stable. However, R2 (ξopt) increases and, for large
values of θ2, it becomes more difficult to comply with the constraint R2 (ξopt) ' 0. For
a better understanding of the behavior of the procedure for large θ2, we refer to Figure
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θ2 ε ξopt n (ξopt) c(ξopt) R1 (ξopt) R2 (ξopt)
1.25 0.05 1.09 99 52 −9.6× 10−3 −3.7× 10−2

1.50 0.05 1.13 27 15 −1.8× 10−2 −5.0× 10−4

1.75 0.05 1.40 11 5 −2.5× 10−2 −3.6× 10−3

2 0.05 1.36 6 3 −3.4× 10−2 5.1× 10−3

2.25 0.05 1.67 3 1 −4.1× 10−2 −2.4× 10−2

2.50 0.1 1.77 3 1 −1.3× 10−2 2.7× 10−2

2.75 0.1 1.78 1 0 −9.9× 10−2 2.1× 10−3

3 0.1 1.89 1 0 −6.8× 10−2 3.1× 10−2

4 0.1 1.67 2 1 1.6× 10−2 9.8× 10−2

Table 2: ξopt, n (ξopt), c(ξopt), R1 (ξopt), R2 (ξopt) with respect to θ2, Example 2, case
σ = 0.75 (and nmax = 100)

θ2 ε ξopt n (ξopt) c(ξopt) R1 (ξopt) R2 (ξopt)
1.25 0.05 1.11 12 6 −1.3× 10−2 6.0× 10−4

1.35 0.05 1.19 2 1 −2.8× 10−2 −1.6× 10−2

1.45 0.05 1.23 1 0 −3.5× 10−2 5.9× 10−3

1.75 0.05 1.38 1 0 −1.4× 10−2 3.1× 10−2

2.00 0.1 1.59 1 0 4.1× 10−2 4.9× 10−2

2.25 0.1 1.42 1 0 3.5× 10−2 9.9× 10−2

2.5 0.1 1.42 1 0 3.5× 10−2 1.0× 10−1

3 0.1 1.42 1 0 3.5× 10−2 1.0× 10−1

Table 3: ξopt, n (ξopt), c(ξopt), R1 (ξopt), R2 (ξopt) with respect to θ2, Example 2, case
σ = 0.25 (and nmax = 20)

2, which corresponds to θ2 = 4. We can see in that figure that, indeed, when θ2 is large
in front of θ1, it becomes difficult to comply with the two constraints. However, in that
case, we have L

(c(ξ))
n(ξ),ξ (θ1) ≈ 1− α and L

(c(ξ))
n(ξ),ξ (θ2) < β and the aim of the sampling plan

is still fulfilled, with an even lower consumer’s risk than required.

2.2 Analysis of Reliability Characteristic of an Accepted Lot

In this section, we investigate the effect of the sampling plan developed in the previous
subsection on the reliability characteristic of an item belonging to a lot which has been
accepted by the testing procedure. Before discussing the lifetime of the item, we first
study its amount of degradation in an arbitrary time interval W (t2) −W (t1), t1 < t2.
As stated before, the reliability characteristic of the population is variable due to many
different reasons and the variability is represented by the r.v. Θ. We set fΘ to be its
pdf. Before the testing procedure, the distribution of the increment W (t2) −W (t1) is
a mixed distribution with survival function

F̄t1,t2 (x) =

∫
R+

F̄t1,t2,θ (x) fΘ (θ) dθ, ∀x ≥ 0

10
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Figure 2: n (ξ) , c(ξ), R1 (ξ) , R2 (ξ) with respect to ξ together with ξopt, case θ2 = 4,
Example 2

and pdf:

ft1,t2 (x) =

∫
R+

ft1,t2,θ (x) fΘ (θ) dθ, ∀x ≥ 0,

where F̄t1,t2,θ and and ft1,t2,θ are the survival function and the pdf of Wθ (t2)−Wθ (t1),
respectively, which is Gaussian distributed N (µ (θ) (t2 − t1) , σ2 (t2 − t1)).

For 0 ≤ t1 < t2, let F̄t1,t2|S be the conditional survival function of W (t2)−W (t1) for
a randomly chosen item given that the test with the parameters (ξ, n, c) was successful
(i.e., given that the lot is accepted), where S = {

∑n
i=1 I(Wi > ξ) > c}. Then we obtain

the following result.

Proposition 3 For all 0 ≤ t1 < t2, we have:

F̄t1,t2|S (x) =

∫
R+
F̄t1,t2,θ (x)L

(c)
n,ξ (θ) fΘ (θ) dθ∫

R+
L

(c)
n,ξ (θ) fΘ (θ) dθ

,∀x ≥ 0,

ft1,t2|S (x) =

∫
R+
ft1,t2,θ (x)L

(c)
n,ξ (θ) fΘ (θ) dθ∫

R+
L

(c)
n,ξ (θ) fΘ (θ) dθ

, ∀x ≥ 0.

11



Proof. Let fΘ|S (θ) be the conditional pdf of Θ|S. We have:

F̄t1,t2|S (x) =

∫
R+

F̄t1,t2,θ (x) fΘ|S (θ) dθ,

ft1,t2|S (x) =

∫
R+

ft1,t2,θ (x) fΘ|S (θ) dθ,

where

fΘ|S (θ) = fΘ|
∑n
i=1 I(Wi>ξ)>c (θ)

=
P (
∑n

i=1 I(Wi > ξ) > c|Θ = θ) fΘ (θ)

P (
∑n

i=1 I(Wi > ξ) > c)

=
L

(c)
n,ξ (θ) fΘ (θ)∫

R+ L
(c)
n,ξ (θ) fΘ (θ) dθ

which provides the two results.

The following result stochastically compares the r.v. Θ and W (t2) −W (t1) before
and after the testing procedure.

Proposition 4 It holds that

1. [Θ|S] ≺lr Θ;

2. [W (t2)−W (t1) |S] ≺lr W (t2)−W (t1), for all 0 ≤ t1 < t2.

Proof. We have
fΘ|S (θ)

fΘ (θ)
= C L

(c)
n,ξ (θ) ,

(where C is a constant which does not depend on θ) and the ratio is decreasing with
respect to θ (see Proposition 2). This provides the first point.

As for the second point, we have

ft1,t2 (x) =

∫
R+

ft1,t2,θ (x) fΘ (θ) dθ,

ft1,t2|S (x) =

∫
R+

ft1,t2,θ (x) fΘ|S (θ) dθ.

Also, we know from Müller and Stoyan (2002), page 62, that Wθ (t2) −Wθ (t1) in-
creases with respect to θ in the likelihood ratio order sense. As [Θ|S] ≺lr Θ from the
first point, the second point now follows from Shaked and Shanthikumar (2007) (page
49, Theorem 1.C.17).

Obviously, before the testing procedure, the distribution of the first-passage time T
of W (t) over level κ > 0 of a randomly chosen item is a mixed distribution with pdf:

fT (x) =

∫
R+

fTθ (x) fΘ (θ) dθ, ∀x ≥ 0.

12



Now, given that the test was successful (i.e., the lot is accepted), the conditional pdf
of T given S = {

∑n
i=1 I(Wi > ξ) > c} becomes

fT |S (x) =

∫
R+

fTθ (x) fΘ|S (θ) dθ, ∀x ≥ 0.

In the following result, we compare the lifetimes before and after the testing proce-
dure.

Proposition 5 It holds that T ≺lr [T |S].

Proof. Based on Proposition 1 and Shaked and Shanthikumar (2007) (page 46, Theorem
1.C.8), −Tθ increases with respect to θ in the likelihood ratio ordering. Using the first
point of Proposition 4 and Shaked and Shanthikumar (2007) (page 49, Theorem 1.C.17),
we derive that [−T |S] ≺lr −T , which provides the result.

The above result entails for instance that T ≺hr [T |S], which means that the residual
life of an item at any time t is stochastically larger if we know that the lot has been
accepted:

[T − t|T > t] ≺sto [T − t|S, T > t] , ∀t ≥ 0.

The above result also entails for instance that the mean residual life of an item at any
time t is larger if we know that the lot has been accepted:

MRLT (t) ≡ E (T − t|T > t)

≤ E (T − t|S, T > t)

≡MRLT |S (t)

for all t ≥ 0.

3 Degradation-Based Sampling Plan II

3.1 Sampling Plan

The second type of sampling plan based on the degradation tests is as follows. As in the
previous section, n items are randomly chosen from the lot to be tested and tested for
a time interval t0. From the test, the values of the degradation levels of these n items
W1,W2, · · · ,Wn are observed.

Rejection Rule of Sampling Plan II: If
∑n

i=1Wi > ξ, then the lot is rejected;
otherwise the lot is accepted, where ξ > 0 is a pre-determined parameter.

Then the proposed sampling plan is characterized by two parameters (n, ξ). Note that

13



∑n
i=1 Wi ∼ N (nµ (θ) t0, nσ

2t0). Then, for n ≥ 1 and ξ > 0, the acceptance probability
of the lot as a function of θ is given by

Ln,ξ (θ) = P

(
n∑
i=1

Wi ≤ ξ

)
= Fn,θ (ξ)

where Fn,θ is the Cdf (cumulative distribution function) N (nµ (θ) t0, nσ
2t0).

As before, it is now necessary to determine the parameters (n, ξ) so that the con-
sumer’s risk and the producer’s risk are balanced as follows:

Ln,ξ (θ2) ≈ β, and Ln,ξ (θ1) ≈ 1− α. (4)

The following is the basic properties of the function Ln,ξ (θ).

Proposition 6 With all parameters fixed except from one, Ln,ξ (θ) increases with respect
to ξ, and decreases with respect to θ.

Proof. The fact that Ln,ξ (θ) increases with respect to ξ is clear.
As
∑n

i=1 Wi increases with respect to θ in the likelihood ratio order sense (see Müller
and Stoyan (2002), page 62), Wθ (t0) also increases in the usual stochastic order sense,
so that Ln,ξ (θ) decreases with respect to θ.

Remark 1 From the literature (see, e.g., Müller and Stoyan (2002), page 62), it is
known that a Gaussian r.v. N (m,σ2) increases when (m,σ) increases in the increasing
convex ordering, but not in the (stronger) usual stochastic ordering. Then, there is no
reason why

∑n
i=1 Wi ∼ N (nµ (θ) t0, nσ

2t0) should be monotone with respect to n in the
usual stochastic ordering and hence, there is no reason why Ln,ξ (θ) should be monotone
with respect to n.

Note that, using the Cdf of the normal distribution, for a fixed n, the parameter ξ
satisfying Ln,ξ (θ1) = 1 − α can be easily obtained as ξ = F−1

n,θ1
(1− α). As before, to

find the parameters (n, ξ), the following algorithm is used, where nmax is the maximum
allowable sample size and ε > 0 is the threshold for the precision, which should be fixed
in advance.

Algorithm 2

1. For each 1 ≤ n ≤ nmax :

(a) Compute ξ (n) = F−1
n,θ1

(1− α);

(b) Compute Ln,ξ(n) (θ2);

2. Chose the smallest n such that
∣∣Ln,ξ(n) (θ2)− β

∣∣ ≤ ε.

The above algorithm allows us to obtain the corresponding optimal parameters
(nopt, ξ(nopt)) such that nopt is the minimum among all n’s satisfying (4). Note that
this algorithm is much simpler than Algorithm 1 for Sampling Plan I.

14



Example 3 Let θ1 = 1; t0 = 1;µ (θ) = θ;α = 0.05; β = 0.1. Considering several
values for θ2, σ and ε (and nmax), the corresponding (nopt, ξ(nopt)), R1 (nopt) , R2 (nopt)
are obtained using Algorithm 2. The results are provided in Table 4 for σ = 0.5 (and
nmax = 50), in Table 5 for σ = 0.75 (and nmax = 100) and in Table 6 for σ = 0.25
(and nmax = 10), where in each case, ε has been mostly adjusted to get the best precision
and nmax is chosen such that ξopt exists, which complies with the conditions given in
Algorithm 2.

From Tables 4, 5 and 6, we can see that, in the same way as for the first acceptance
sampling plan, the larger θ2 is, the lower n (ξopt) is. Here again, a larger difference
between θ1 and θ2 hence requires less units to make the distinction between the two
levels. Also, for each value of σ, the values of ξ(nopt) and nopt become stable from a
certain value θ̄2 for θ2. Note that the larger σ is, the larger this threshold value θ̄2 is,
with θ̄2 ≈ 1.75 for σ = 0.25, θ̄2 ≈ 2.5 for σ = 0.5 and θ̄2 ≈ 3 for σ = 0.75. Such a remark
is mostly valid for the first sampling plan as well, but the results are more stable and
easy to interpret for the second one. Finally, here again, when θ2 is large in front of θ1,
we have L

(c(ξ))
n(ξ),ξ (θ1) ≈ 1− α and L

(c(ξ))
n(ξ),ξ (θ2) < β, so that the aim of the sampling plan is

still fulfilled.

3.2 Analysis of Reliability Characteristic of an Accepted Lot

As before, we first study the amount of degradation in an arbitrary time interval W (t2)−
W (t1), t1 < t2. Let S = {

∑n
i=1Wi ≤ ξ}. We have a similar result as for Proposition 3,

substituting L
(c)(θ)
n,ξ by Ln,ξ (θ). The proof uses the same arguments and it is omitted.

Proposition 7 For all 0 ≤ t1 < t2, we have:

F̄t1,t2|S (x) =

∫
R+
F̄t1,t2,θ (x)Ln,ξ (θ) fΘ (θ) dθ∫
R+
Ln,ξ (θ) fΘ (θ) dθ

,∀x ≥ 0,

ft1,t2|S (x) =

∫
R+
ft1,t2,θ (x)Ln,ξ (θ) fΘ (θ) dθ∫
R+
Ln,ξ (θ) fΘ (θ) dθ

, ∀x ≥ 0.

Regarding the stochastic comparison of Θ and W (t2)−W (t1) before and after the
testing procedure, similar arguments as for Proposition 4 can be used to obtain the
following result.

Proposition 8 It holds that

1. [Θ|S] ≺lr Θ;

2. [W (t2)−W (t1) |S] ≺lr W (t2)−W (t1), for all 0 ≤ t1 < t2.

Regarding the stochastic comparison of lifetimes, here again similar arguments as for
Proposition 5 can be used to obtain the following result.

Proposition 9 It holds that T ≺lr [T |S].

As a conclusion, just as for Sampling Plan I, Sampling Plan II also allows us to know
that the lifetime of an item belonging to an accepted lot is larger than if the lot had not
been tested.
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θ2 ε ξ(nopt) nopt R1 (nopt) R2 (nopt)
1.25 0.005 38.80 34 −4.16× 10−17 −2× 10−3

1.50 0.025 10.33 8 −4.16× 10−17 −1.8× 10−2

1.75 0.025 5.64 4 −4.16× 10−17 1.2× 10−2

2 0.025 3.16 2 −4.16× 10−17 −1.8× 10−2

2.25 0.075 3.16 2 −4.16× 10−17 7.1× 10−2

2.50 0.075 1.82 1 −4.16× 10−17 1.2× 10−2

2.75 0.075 1.82 1 −4.16× 10−17 6.8× 10−2

3 0.1 1.82 1 −4.16× 10−17 9.1× 10−2

4 0.1 1.82 1 −4.16× 10−17 1.0× 10−1

Table 4: ξ(nopt), nopt, R1 (nopt), R2 (nopt) with respect to θ2 (and ε), Example 3, case
σ = 0.5 (and nmax = 50)

θ2 ε ξ(nopt) nopt R1 (nopt) R2 (nopt)
1.25 0.005 86.75 76 −6.94× 10−17 −4× 10−3

1.50 0.005 24.38 19 −4.16× 10−17 −4× 10−3

1.75 0.025 11.49 8 −4.16× 10−17 −1.8× 10−2

2 0.025 7.76 5 −4.16× 10−17 9.3× 10−3

2.25 0.025 5.14 3 −4.16× 10−17 −7.1× 10−3

2.50 0.025 3.75 2 −4.16× 10−17 −1.8× 10−2

2.75 0.075 3.74 2 −4.16× 10−17 5.1× 10−2

3 0.075 2.23 1 −4.16× 10−17 −5.3× 10−2

4 0.1 2.23 1 −4.16× 10−17 9.1× 10−2

Table 5: ξ(nopt), nopt, R1 (nopt), R2 (nopt) with respect to θ2 (and ε), Example 3, case
σ = 0.75 (and nmax = 100)

θ2 ε ξ(nopt) nopt R1 (nopt) R2 (nopt)
1.25 0.025 9.16 8 −4.16× 10−17 −1.8× 10−2

1.35 0.025 4.82 4 6.94× 10−17 −2.4× 10−2

1.45 0.050 3.71 3 −4.16× 10−17 3.0× 10−2

1.75 0.050 1.41 1 −4.16× 10−17 1.2× 10−2

2 0.1 1.41 1 −4.16× 10−17 9.1× 10−2

2.25 0.1 1.41 1 −4.16× 10−17 1.0× 10−1

2.50 0.1 1.41 1 −4.16× 10−17 1.0× 10−1

3 0.1 1.41 1 −4.16× 10−17 1.0× 10−1

Table 6: ξ(nopt), nopt, R1 (nopt), R2 (nopt) with respect to θ2 (and ε), Example 3, case
σ = 0.25 (and nmax = 10)
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3.3 Comparison of Sampling Plans I and II

In Sections 2 and 3, we have proposed two types of sampling plans. Sampling Plan I is
based on the statistic

∑n
i=1 I(Wi > ξ), whereas Sampling Plan II is based on

∑n
i=1Wi.

The optimal parameters for each sampling plan are given in Tables 1-3 and Tables 4-6,
respectively. As there are negligible differences in R1 and R2, we compare the total
number of items used in the testing procedure. Especially when there is very small
difference between θ1 and θ2, the total number of items used in the testing procedure
n of Sampling Plan II is much smaller than that of Sampling Plan I. Thus, from the
experimental comparison, we can conclude that Sampling Plan II spends less items in
the degradation test. Furthermore, Sampling Plan II has smaller number of parameters
and Algorithm 2 is much simpler than Algorithm 1. In addition, in Sampling Plan II, the
parameter ξ can be conveniently obtained by using the Cdf of the normal distribution.

On the other hand, in some cases, whether the amount of degradation of an item
reaches a predetermined level ξ (i.e., Wi > ξ) or not can be easily checked and directly
reported by a censor built in the item. In this case, in applying Sampling Plan I, there
is no need to observe the degradation levels of the items on the test and the observation
cost can be substantially saved. In this case, Sampling Plan I would be preferable from
an “economical point of view”.

4 Concluding Remarks

In this paper, based on the observation of the deterioration of the items, two types of
variables acceptance sampling plans have been developed. The first type of sampling
plan (Plan I) is based on the statistic

∑n
i=1 I(Wi > ξ) and the second type (Plan II) is

based on
∑n

i=1 Wi. Considering both the producer’s risk and consumer’s risk, efficient
algorithms to determine the parameters of the sampling plans have been suggested.
Furthermore, the effect of the proposed sampling plans on the accepted lots has been
analyzed. It has been shown that the reliability characteristic of the accepted items after
the test improves compared with that of the items before the test in a stochastic sense.
Finally, we have compared the two types of sampling plans from both the economical
and technical perspectives.

In this paper, we have considered the Wiener process with positive drift as the degra-
dation process of the items. If more appropriate, other types of degradation processes
could be employed and similar sampling plans could be developed based on them.
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