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Abstract
This document complement the article A Bayesian approach for the separation of the acoustic and the

correlated aerodynamic wall pressure fluctuations (from the same authors). It contains the expressions of the
posterior distributions required for the implementation of the PFA-Corr approach described in the article, as
well as the pseudo-code of the separation algorithm based on these posteriors.

1 Posterior distributions
In this section are given the expressions of the like-
lihood of the data and the posterior distributions
required for the implementation of the CSM-based
Gibbs sampler, to solve the PFA-Corr separation
problem. The same mathematical notations as in the
related article are used.

1.1 Summary of the PFA-Corr model
The Fa-Corr decomposition in the vector form is

yj = Lcj + pνj + ε, j = 1, . . . , Ns, (1)

with the following priors on each parameters:

[c] = NC(0, dσ2
cc), (2)

[σ2
c ] = IG(ac, bc), (3)

[ν] = NC(0,Σ2
ν(θ)), (4)

[θ] = NR(µθ,Σ2
θ), (5)

[L] = NC
(
0, IκM

κ

)
, (6)

[ε] = NC(0, dσ2
ε c), (7)

[σ2
ε ] = IG(aε, bε), (8)

[p] = NC(µp, σ2
p). (9)

1.2 Likelihood of the measurements
From the statement of the separation problem given
in (1), one can write the likelihood as follows:

[yj | ∞] = NC
(
Lcj + pνj , dσ2

ε c
)
. (10)

1.3 Sampling of c
Using the expression of the likelihood in Eq. (10) and
the Gaussian prior on c (Eq. (2)) leads to:

[cj | ∞] ∝ [cj ][yj | ∞],
∝ NC(µcj ,Ωc), (11)

with µcj = ΩcL
Hdσ−2

ε c︸ ︷︷ ︸
TH
c

(yj − pνj), (12)

and Ωc =
(
LHdσ−2

ε cL+ dσ−2
c c
)−1

. (13)

For the implementation of the quadratic Gibbs sam-
pler, the same approach as in Ref. 1 is followed. As
cj | ∞ is Gaussian, it can be written

cj | ∞ = µcj + xj with [xj ] = NC(0,Ωc). (14)

Then,

Scc | ∞ = 1
Ns

Ns∑
j=1

µcjµ
H
cj+

1
Ns

Ns∑
j=1

xjx
H
j + 2

Ns

Ns∑
j=1

xjµ
H
cj .

(15)
Since xj and µcj are independent random variables,
the last terms tends to zero

Scc | ∞ ≈ E{µcjµHcj}+ 1
Ns
Wc

= T H
c (Syy + pSννp

H − pSνy − SyνpH)Tc

+ 1
Ns
Wc, (16)
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where E{·} is the expected value over the snap-
shots,Wc is a random matrix that follows a complex
Wishart distribution, with Ns degrees of freedom and
variance matrix Ωc. The expression of the CSMs Sνy
and Syν are given later in Eq. (31).

1.4 Sampling of ν
Similarly, from the Gaussian prior assigned to ν in
Eq. (4),

[νj | ∞] ∝ [νj ][yj | ∞],
∝ NC(µνj ,Ων), (17)

with µνj = Ωνp
Hdσεc−2︸ ︷︷ ︸
TH
ν

(yj −Lcj) , (18)

and Ων =
(
pHdσ−2

ε cp+ Σν(θ)−2)−1
. (19)

For the CSM-based Gibbs sampler:

Sνν | ∞ ≈ E{µνjµHνj}+ 1
Ns
Wν (20)

= T H
ν (Syy +LSccLH −LScy − SycLH)Tν

+ 1
Ns
Wν , (21)

where Wν follows a complex Wishart distribution,
with Ns degrees of freedom and variance matrix Ων .
The expression of the CSMs Scy and Syc are given
later in Eq. (29).

1.5 Sampling of L
The sampling of L is made using a verctorized form
of L, written λ = vec(L). From the prior on L given
in Eq. (6), the posterior is calculated as follows:

[λ | ∞] ∝ [λ]
Ns∏
j=1

[yj | ∞],

∝ NC(µλ,Ωλ). (22)

Using some properties of the Kronecker product ⊗
(see Ref.2) gives

Ωλ =
(∑

j

(cTj ⊗ IM )Hdσ−2
ε c(cTj ⊗ IM ) + κIMκ

)−1

=
(
(S∗

cc)⊗ dσ−2
ε c+ κIMκ

)−1
, (23)

and µλ = Ωλ

∑
j

(
cTj ⊗ IM

)H dσ−2
ε c (yj − pνj)

= Ωλ vec
(
dσ−2

ε c (Syc − pSνc)
)
, (24)

where ·∗ is the conjugate operator. Note that Ω−1
λ

is sparse, which can be taken into account to reduce
the numerical cost of its inversion. The expression of
the CSMs Syc and Sνc is given later in Eqs. (29) and
(33) respectively.

1.6 Sampling of p

The complex scalar parameter p is assigned a Gaus-
sian prior (Eq. (9)), which gives the following poste-
rior:

[p | ∞] ∝ [p]
∏
j

[yj | ∞],

∝ NC(µp,Ωp), (25)

with Ωp =
(
tr
(
σ−2
ε Sνν

)
+ σ−2

p

)−1
, (26)

and µp = Ωp
(
tr
(
σ−2
ε (Syν −LScν)

)
+ σ−2

p ap
)
.

(27)

The expression of the CSMs Syν and Scν is given
later in Eqs. (31) and (33) respectively.

1.7 Expression of the cross-
correlation matrices

The previous calculations require the expression of
some cross-correlations, which are detailed in the
present section. Using the decomposition of cj of
Eq. (14),

Syc = 1
Ns

Ns∑
j=1

yjµ
H
cj + 1

Ns

Ns∑
j=1

yjx
H
j ,

≈
Ns∑
j=1

yjc
H
j , (28)

and replacing cj by its posterior mean value (given
in Eq. (12)) leads to

Syc = (Syy − Syν)Tc = SH
cy. (29)

Similarly,

Syν =
Ns∑
j=1

yjν
H
j , (30)

and replacing ν by its posterior mean value (given in
Eq. (18)) leads to

Syν = (Syy − SycLH)Tν = SH
νy. (31)

Again the calculations for Scν starts from,

Scν =
Ns∑
j=1

cjν
H
j , (32)

and at this step, either ν or c can be replaced by
its mean posterior. Choosing arbitrarily to replace ν
leads to

Scν = (Scy − SccLH)Tν = SH
νc. (33)
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1.8 Sampling of σ2
ε

The posterior expression of the additive noise is di-
rectly obtained from the conjugacy of the inverse-
gamma with the Gaussian:

[σ2
εm | ∞] ∝ [σ2

ε ]
∏
j

[yj | ∞],

∝ IG(aε +Ns, bε + Tmm), (34)

with

T =
∑
j

(yj −Lcj − pνj) (yj −Lcj − pνj)H (35)

=Syy +LSccLH + pSννp
H − SycLH −LScy

− SyνpH − pSνy +LScνpH + pSνcL
H . (36)

However, due to the iterative process, this
expression can be slightly negative, which can
lead to a negative parametrization of the inverse-
gamma. Therefore, an alternative expression is
proposed, replacing cj by cj | ∞ = µcj + xj ,
with [xj ] = NC(0,Ωc) in Eq. (35):

T ≈
∑
j

(yj − pνj −LT H
c (yj − pνj)) (yj − pνj −LT H

c (yj − pνj))
H +LWcL

H

=(IM −LT H
c )(Syy + pSννp

H − SyνpH − pSνy)(IM − TcLH) +LWcL
H .

1.9 Sampling of σ2
c

Still using the Bayes’ rule, the posterior for the kth

element in the vector σ2
c can be written as follows:

[σ2
ck
| ∞] ∝ [σ2

ck
]
Ns∏
j=1

[cj | σ2
ck

],

∝ IG(ac, bc)
Ns∏
j=1
NC
(
0, dσ2

cc
)
. (37)

The use of the conjugacy of the inverse-gamma with
the Gaussian directly gives the expression of the pos-
terior:

[σ2
ck
| ∞] ∝ IG (ack +Ns, bck + Scckk) . (38)

1.10 Sampling of θ
The posterior distribution for θ can be computed:

[θ | ∞] ∝ [θ]
Ns∏
j=1

[νj | ∞], (39)

∝ e−
∑

j
νHj Σ−2

ν (θ)νj∏
j |Σ2

ν(θ)|
e− 1

2 (θ−µθ)HΣ−2
θ

(θ−µθ)

|Σ2
θ|

.

(40)

No closed-form of this expression can be developed
for the sampling, therefore, a Metropolis-Hastings
(MH) step is implemented within the Gibbs sampler.

Metropolis-Hastings within Gibbs implemen-
tation The principle of the MH algorithm is to it-
eratively pick a parameter set in a candidate distri-
bution based on the current set, and then accept or
reject it as the new set with some probability. In the
case of a symmetric proposal distribution, the proba-
bility of acceptance is given by the ratio of the poste-
rior distribution computed with the current parame-
ter set and with the proposed ones. The acceptation-
rejection procedure is thus performed in three steps.
First, a parameter set is sampled in a Gaussian pro-
posal distribution

θi = NR(θ(i−1),Σ2
prop), (41)

where θ(i−1) is the Corcos’ parameter set at the cur-
rent state and Σ2

prop is the covariance of the proposal.
Then, the acceptance rate r is computed by

r = min
(

1,
[θ(i−1) | ∞]

[θi | ∞]

)
, (42)

where ·i indicates the ith iteration. And finally the
update is rejected if r is smaller than a sample u
drawn in a uniform distribution U(0, 1), and accepted
otherwise.
In order to explore properly the target distribu-

tion, the proposal should have the same shape as the
target. This implies that the covariance of the pro-
posal has to be adjusted so that the proposed steps
are large enough to ensure good convergence, but
not too large to avoid having a too high rejection
rate. This covariance can be tuned automatically
with adaptive MH algorithm, or manually by check-
ing the convergence rate. It has been shown that the
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optimal trade-off between the step size and the num-
ber of rejections is reached when the acceptance rate
is 23.4% for a univariate Gaussian proposal and 44%
for a Gaussian whose dimension tends to infinity [3].

2 Pseudo-code of the Gibbs
sampler

The pseudo-code for the Gibbs sampler used to per-
form the separation proposed in the article is given in
Alg. 1. In this code, δr is the set of relative coordi-
nates of the microphones, required for the Corcos-like
model.

Algorithm 1 CSM-based Gibbs sampler for PFA-
Corr.
Initialization: L0, σ

2
ε0
, σ2

c0
, Sνν0 , θ0, p0

Require: Ŝyy, κ, ac, bc, aε, bε, µp, σ2
p, µθ, Σ2

θ,
Nrun, δr, f , Σ2

prop
for i = 1, . . . , Nrun do

Sample Scci following Eq. (16)
Sample Li in Eq. (22)
Sample σ2

ci in Eq. (38)
Update Syc following Eq. (29)
Sample Sννi following Eq. (21)
Update Syν following Eq. (31)
Sample p in Eq. (25)
. Metropolis-Hastings step
Sample θi in Eq. (41)
Calculate the acceptance rate as Eq. (42)
if r < (u ∼ U(0, 1)) then
θi = θi−1 . Rejection of the sample
Σ2
νi = Σ2

νi−1
else

Σ2
νi = G(θi) . G given by the Corcos-like

model
end if
Sample σ2

εi in Eq. (34)
end for

return Posterior PDFs of Scc, Sνν , p, L, σ2
ε , σ

2
c , θ
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