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Abstract
When performing measurements with wall-installed microphone array, the turbulent boundary layer (TBL)

that develops over the measuring system can induce pressure fluctuations that are much greater than those of
acoustic sources. It then becomes necessary to process the data to extract each component of the measured
field. For this purpose, it is proposed in this paper to decompose the measured spectral matrix into the sum of
matrices associated with the acoustic and aerodynamic contributions. This decomposition exploits the statistical
properties of each pressure field. On the one hand, assuming that the acoustic contribution is highly correlated
over the sensors, the rank of the corresponding cross-spectral matrix is limited to a finite number. On the other
hand, the correlation structure of the aerodynamic noise matrix is constrained to resemble a Corcos-like model,
with physical parameters estimated within the separation procedure. This separation problem is solved by a
Bayesian inference approach, which takes into account the uncertainties on each component of the model. The
performance of the method is first evaluated on wind tunnel measurements and then on a particularly noisy
industrial measurement setup: microphones flush mounted on the fuselage of a large aircraft.

1 Introduction
Multichannel measurements are often performed in or-
der to understand the noise emissions. The use of
wall-installed or flush-mounted microphones is often re-
quired for the measurements performed in the presence
of a flow, which can be outdoor, in underwater environ-
ment, in wind-tunnel, on moving vehicles, etc. In this
case, a Turbulent Boundary Layer (TBL) develops on
the measurement wall and the measured pressure field
results from two types of pressure fluctuations: those
induced by the TBL, called the aerodynamic contribu-
tion, and those induced by the acoustic sources, if any,
called the acoustic contribution. The two contributions
need to be investigated separately in order to achieve
these two objectives.

A first objective is to study the acoustic or aeroa-
coustic sources, through quantification and localization
provided by image post-processing. In this case, the
aerodynamic contribution needs to be mitigated so as
not to contaminate the analysis of the acoustic field.

The second objective of wall-pressure measurements
is the study of some features of the flow. This is re-
quired for the prediction of the vibro-acoustic excita-
tions, which is a challenge for many applications such
as the control of the fatigue loading on structures, the
reduction of the vehicle interior noise or the noise gen-
erated by piping systems with internal turbulent flow.

These studies require an acoustic decontamination of
the measurements.
For these two purposes, several strategies have been

developed to perform the separation of the acoustic and
TBL pressure fluctuations in the measurement data.
The existing post-processing approaches make use of
the different correlation properties of the two fields.
Indeed, the acoustic field is highly correlated over a
classical microphone array, whereas the TBL field has
a much smaller correlation, with a structure that has
been described by several experimental models [1]. In
the wavenumber plane, this difference in correlation
lengths translates into two different wavenumber ar-
eas, and the wavenumber filtering method [2] exploits
the fact that the two contributions of interest span dif-
ferent wavenumber domains to perform the separation
through an integration over the wavenumber area of
each contribution. However, this approach requires
a large spatial sampling and thus a high number of
sensors, as well as a clear distinction between the two
wavenumber areas, which is not always the case at low
frequencies or high convection speeds, or in presence of
aliasing effects.
During the last decade, several other methods have

been proposed, based on the assumption that the TBL
field is uncorrelated over the microphone (see Ref. 3
for an overview of these methods). This assumption is
sufficient at high frequencies and for the use of arrays
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with large microphone interspacing, but these methods
show limited performance at low frequencies where this
assumption no longer holds true.

In the present paper, an extension of the Probabilis-
tic Factor Analysis (PFA) approach introduced in a
previous work [3] is proposed, in order to account for
the correlation of the TBL field and significantly im-
prove the separation results at low frequencies. The
proposed separation approach does not make use of any
noise-free reference measurement and of any assump-
tion about the acoustic source localization or propa-
gation. In the following, this separation approach is
called Probabilistic Factor Analysis with Correlated
noise model, written PFA-Corr.

In this paper, the separation is performed through
a fitting of the measured data over a structured co-
variance model, which is first described in Sec. 2. In
Sec. 3, it is explained how this model accounts for the
uncertainty about the acoustic and aerodynamic con-
tributions thanks to the use of a Bayesian inference
framework. Especially, the TBL parameters – the con-
vection speed and coherence lengths – are estimated
within the separation procedure in order to improve
the precision of the separation.

In Sec. 4, the separation approach is validated on
wind-tunnel measurements and some applications on
inflight measurement are finally given in Sec. 5.

2 Probabilistic modeling of the
problem

2.1 Problem statement

The problem addressed in this paper is the separation
of the contributions coming from acoustic sources and
from the TBL pressure fluctuations measured simulta-
neously by an array of M microphones. At one fre-
quency, the Fourier coefficients of the pressure mea-
sured by the sensors can be arranged in a vector y of
M complex values. This pressure vector can thus be
written as the sum of an acoustic contribution a, an
aerodynamic contribution n and noise term ε contain-
ing all the additive sources of noise and errors:

y = a+ n+ ε. (1)

When dealing with pressure fields which are statis-
tically stationary in time, it is common to store the
measurements in the form of a Cross-Spectral Matrix
(CSM), which is defined by the covariance matrix of the
measured Fourier coefficients. This is estimated by av-
eraging over Ns successive overlapping windowed time
signal segments (hereafter called snapshots), following

Welch’s periodogram method:

Ŝyy = 1
Ns

Ns∑
j=1

yjy
H
j , j = 1, . . . , Ns, (2)

where ·̂ is used to indicate an estimated quantity and
where the superscript H indicates the complex conju-
gate transpose (or Hermitian) operator. Then, replac-
ing y in Eq. (2) by the sum of Eq. (1), the theoretical
CSM – i.e. assuming an infinite number of snapshots,
such that the cross-terms tend to zero – of the mea-
surements reads

Syy = Saa + Snn + Sεε. (3)

The objective of the separation problem is to esti-
mate each matrix in the above equation (3) from the
measurements. In order to make the inverse problem
identifiable, the proposed approach makes use of some
model for the correlation structure of each quantity. To
benefit from an intuitive regularization, the problem is
solved within a Bayesian framework. It allows to take
advantage from the prior information about this prob-
lem, which can be statistical, physical, coming from
experimental or numerical knowledge.
One solution of this fitting problem is given by the

set of unknowns that has the highest joint probability
knowing the measurement data, which is the posterior
probability. This reads

[S?aa,S?nn,S?εε] = argmax
[
Saa,Snn,Sεε | Ŝyy

]
, (4)

where [x | y] stands for the conditional Probability
Density Function (PDF) of x given y. From the Bayes’
rule, the unknown posterior distribution in Eq. (4) can
be written from two known quantities, the likelihood
and the prior function, which are detailed hereafter for
each contribution of the measured pressure field.

2.2 Acoustic field
Assuming that the acoustic contribution a results from
the propagation of a limited number K of uncorrelated
sources with coefficients sj through a transfer matrix
H, one has:

aj = Hsj . (5)

Since in the context of acoustic imaging, the sources
are generally unknown and the propagation might be
uncertain, the acoustic contribution on the sensors can
be more generally written as a linear combination of κ
latent variables,

aj = Lcj , (6)

where cj is a vector of κ Fourier coefficients, with K ≤
κ ≤M , and L is an M × κ complex matrix that mixes
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these coefficients. The quantities L and c are both
unknown, and are not related to any physical quantity.
In contrast to a principal component decomposition,
the columns of L are not necessarily orthogonal. In this
decomposition, L and c are not unique and in general,
L 6= H and c 6= s.

Unlike the equation (5), this decomposition does not
require the knowledge of the transfer function H and
it allows the decomposition of the acoustic contribu-
tion on the microphones into independent components.
This decomposition is referred in the literature as a
Factor Analysis and is used in many fields to capture
the underlying correlation structure in a dataset [4].

According to the Central Limit theorem applied to
the Fourier transform, the latent variables are assigned
a Gaussian distribution, and they are also supposed to
be a priori independent and heteroscedastic, i.e. with
their own variance, which reads

[c] = NC(0, dσ2
cc). (7)

The notation NC(µ,Ω) refers to the multivariate com-
plex normal distribution with mean µ and covariance
matrix Ω, and the notation dvc refers to a diagonal
matrix with the vector v as diagonal elements. Since
the variances of the latent factors are also unknown,
they are assigned a prior PDF, under the form of an
inverse-gamma law:

[σ2
c ] = IG(ac, bc). (8)

The inverse-gamma law is chosen for its positive
support and for algebraic convenience – it gives a
closed-form expression for the posterior distribution
–, see Ref. 5 (p. 42-43) for more details. This choice
should not have much impact on the inference problem
since, for the further applications (see Secs. 4 and 5),
this prior is set “vague” (i.e. with very large variance
; see Sec. A for the values of the prior parameters).
Conversely, the choice for heteroscedasticity of the
factors is significant and it is motivated by the fact
that it is prompt to provide a sparse solution, as
shown in Ref. 6. It is equivalent to a mixture of
Gaussians with different variances following inverse
Gamma laws, which is known to generate a Student-t
marginal distribution for the factors c (see Ref. 7,
p.102-103).

As no physical interpretation can be made about the
mixing matrix L, it is assigned, for simplicity, a cen-
tered complex multivariate Gaussian, with a normal-
ized variance:

[L] = NC

(
0,
IκM
κ

)
, (9)

with IN the notation for an identity matrix of dimen-
sion N ×N .

2.3 Uncorrelated random noise
In Eq. (1), the vector ε models the sources of micro-
phone self-noise, which can be induced by the mea-
surement setup, the environment, etc. This noise is
modeled as totally uncorrelated over the microphones
and heteroscedastic. It is statistically described by a
diagonal CSM:

Sεε = dσ2
ε c. (10)

This noise is further supposed to be Gaussian, still
according to the Central Limit Theorem applied to
Fourier coefficients,

[ε] = NC(0, dσ2
ε c), (11)

and an inverse-gamma distribution is chosen for the
variance prior:

[σ2
ε ] = IG(aε, bε). (12)

The variance of the self-noise is allowed to vary in am-
plitude from one microphone to another.

2.4 TBL pressure field
In the present separation model, the TBL is supposed
to develop along a motion-less and rigid wall, and is
induced by an incompressible flow parallel to this wall.
The TBL is supposed to produce a stationary and ho-
mogeneous pressure field over the microphone array,
modeled as

nj = pνj , (13)
where p is a complex scalar amplitude and ν is a com-
plex random vector that stands for the normalized TBL
pressure field. The amplitude term p is supposed to be
Gaussian

[p] = NC(µp, σ2
p). (14)

The vector ν is modeled as centered Gaussian, with
a covariance that is chosen based on a physical TBL
covariance model, which reads

[ν] = NC(0,Σ2
ν(θ)), (15)

where Σ2
ν follows an empirical TBL model, which de-

pends on several physical parameters stored in the vec-
tor θ. Therefore, the estimated CSM for the TBL con-
tribution is

Ŝnn = p2Ŝνν . (16)
Any TBL model could be chosen for the TBL prior

covariance Σ2
ν . The one chosen for the present work is

that proposed by Corcos [8], which is

Σ2
νkl

(θ) = e−
2πf
Uc

(αx|xk−xl|+αy|yk−yl|−ı(xk−xl)), (17)

for a pair of microphones (k, l) with coordinates (xl,yl)
and (xk,yk), at a given frequency f , and ı being
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the imaginary unit. The flow is along the x di-
rection, and the physical parameters of the flow are
θ = {Uc, αx, αy}, which are respectively the convection
speed of the eddies in the boundary layer, the longitu-
dinal and transverse decay rates of the coherence.

This model has been chosen for several reasons:
• it is written in the space domain, which is nec-

essary since the acoustic contribution is also de-
scribed in space,

• it has a low number of parameters to be inferred
or experimentally estimated,

• as the separation at each frequency line is con-
sidered as a separate problem, it is possible to
vary the parameter with the frequency to provide
a more precise model.

Concerning the last point, the classical Corcos’
model assumes that the parameters Uc, αx and αy are
constant with the frequency, but this does not fully
agree with the measurements [9, 10, 11]. Therefore, in
the following, a different parameter set θ is considered
for each frequency.

Note that in this probabilistic formulation, the Cor-
cos’ model is only a prior information for Snn and does
not fully determine the solution of the separation prob-
lem. The Bayes estimate of the unknown CSM Snn is
given by the maximum of the full posterior distribu-
tion, which is proportional to the prior times the like-
lihood. Therefore, the solution is both driven by the
prior and by the data, which means that the inferred
TBL CSM is expected to have a correlation structure
that derives from a Corcos model, corrected to best fit
the measurement data.

2.5 Implementation of the sampler
In order to estimate the posterior distribution in Eq.
(4), a Gibbs sampler is used, which is a robust Monte
Carlo Markov Chain algorithm. Its implementation is
easy, but it makes use of the expression of the uni-
variate posterior distribution for each parameter of the
model. Its principle is to sample iteratively each ran-
dom variable from its own distribution conditioned on
the current values of the other variables. For each pa-
rameter, a chain is built from a fixed number Nrun of
samples. It can be shown that the stationary distri-
bution converges toward the sought joint distribution
[5]. The maximum a posteriori parameters are then
estimated by the mean value of the posterior distri-
butions, which tend to be stationary, symmetric and
unimodal.

The pseudo-code for the proposed separation ap-
proach PFA-Corr is given as Supplementary Material
1. The prior parameters and initial values used for the

1See supplementary material at http://hal.
archives-ouvertes.fr/hal-03268419 for the pseudo-code

two following applications are given in Sec. A. These
values are chosen to be rather general and not very
informative.

2.6 Posterior distributions for the
Gibbs sampler

The hierarchical relation between all the unknown pa-
rameters of the problem can be summarily represented
using a graph (see Ref. 7, chap. 8). The variables of
the model are embodied by nodes, linked together by
arrows which indicate their hierarchical relationships.
The arrows go from nodes called parents to nodes called
children. The parent nodes are variables involved in
priors while the child nodes are involved in the likeli-
hood. This graphical representation allows writing the
posterior distribution of each parameter η, by complet-
ing the following Bayes formula:

[η | ∞] ∝ [η | Parents of η]︸ ︷︷ ︸
Prior

×
∏
i

[
ith child of η | Parents of ith child

]
︸ ︷︷ ︸

Likelihood

,

(18)

where “ · | ∞” is to be understood as “conditioned to
all the other variables of the model”. The graph repre-
senting the separation model is given in Fig. 1. From
this graph and from Eq. (18), the posterior distribution
of each parameters required for the implementation of
the Gibbs sampler are given in Supplementary Mate-
rial 2. Note that these posteriors are written to account
for CSM input data and a block sampling strategy is
adopted [6, 12] in order to improve to convergence of
the sampler.

3 Estimation of the TBL param-
eters

In order to identify the unknown matrix Snn, the co-
variance given by the Corcos’ model in Eqs. (15) and
(17) has to be known. Two procedures are proposed
to determine the Corcos’ parameters θ = {αx, αy, Uc}.
First, a least squares regression is performed before the
denoising and second, a Bayesian inference approach is
added within the Bayesian separation procedure.

of the separation procedure.
2See supplementary material at http://hal.

archives-ouvertes.fr/hal-03268419 for the posterior ex-
pressions and calculation details.
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Figure 1: Bayesian hierarchical graph for the separa-
tion model of PFA-Corr. The shaded case indicates the
observations, the other circles stand for variables to be
inferred and the constant hyperparameters are denoted
without any border. The dashed box indicates a dupli-
cation of the pattern (here for each snapshot).

3.1 Least squares regression
A first approach to estimate the Corcos’ parameters is
inspired from Ref. 11. A Non-Linear Least Squares
(NLLS) fitting is performed on the measurement CSM
before the separation procedure, which solves the fol-
lowing optimization problem at each frequency:

(Uc, αx, αy)? = argmin

∥∥∥∥∥∥ Ŝyy
1
M tr

(
Ŝyy

) −G(Uc, αx, αy)

∥∥∥∥∥∥
2

F

,

(19)
where tr(A) is the trace operator, ‖A‖F is the Frobe-
nius norm and each element of the matrix G of indices
k, l = 1, . . . ,M is given by

Gkl(Uc, αx, αy) = e−
2πf
Uc

(αx|xk−xl|+αy|yk−yl|−ı(xk−xl)).
(20)

This method is fast and simple to implement since
many ready-to-use functions exist to solve NLLS prob-
lems.

However, after this NLLS procedure, the TBL pa-
rameters may be biased, since the acoustic part is not
taken into account. Alternatively, it is possible to ad-
just the TBL parameters with Bayesian inference.

3.2 Bayesian inference
The TBL parameters can be inferred directly within
the Bayesian separation approach, along with all the
other unknown parameters of the model.

In this case, they have to be assigned a prior dis-
tribution. A possible prior that easily integrates prior

information is the multivariate Gaussian:

[θ] = NR(µθ,Σ2
θ). (21)

The prior mean and covariance, µθ and Σ2
θ, can be

known either from physical considerations, or from the
NLLS regression introduced before.
As no closed-form of the posterior can be developed

for the sampling, a Metropolis-Hastings step is imple-
mented within the Gibbs sampler [13],3.

4 Validation on wind tunnel
measurements

The PFA-Corr method is first tested on measurements
performed in a wind tunnel with a closed test section.
The acoustic source powers and locations are known
and the flow is controlled. In this situation, the vali-
dation is done by measuring the acoustic and aerody-
namic contributions separately. As the acoustic sources
are loudspeakers inside the tunnel roof, their effect on
the flow is negligible. Conversely, the flow has a slight
impact on the propagation of the acoustic waves, and
the subsequent perturbation can be quantified. It re-
mains quite small considering the flow speed therefore,
the measurement of the sources with flow is considered
as the sum of the two independent contributions.

4.1 Experimental setup
The measurements are performed in a wind-tunnel at
École Centrale de Lyon (LMFA laboratory), shown in
Fig. 2(a). As shown in the sketch in Fig. 2(b),
two sources are mounted in the ceiling of the test-
section, excited by two uncorrelated white noises. An
array composed of 76 Microelectromechanical Systems
(MEMS) microphones is mounted in the floor of the
section, arranged as shown on Fig. 2(c). The micro-
phone interspacing varies from 0.2 cm to 27.4 cm. The
acquisitions are performed synchronously, during 30 s,
and the CSMs are computed with a frequency resolu-
tion of 16 Hz, Hann window and 66 % overlapping rate
(the apparent number of snapshots is thus 9944).
Three measurements are performed with the MEMS

array:
• configuration A : with the sources switched on

and without flow,
• configuration T30 : without sources and with a

flow at 30 m/s,
3See supplementary material at http://hal.

archives-ouvertes.fr/hal-03268419 for more details about
the Metropolis-Hastings within Gibbs implementation.

4The apparent number of snapshots takes into account the
window type and the overlapping rate to compensate for the
redundancy between the snapshots induced by the overlapping
(see for example Refs. 14 and 15).
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• configuration AT30 : with the sources switched
on and the flow at 30 m/s.

The objective is to separate the acoustic and aerody-
namic contributions from the measurements AT30 and
compare them with the baseline measurements A and
T30. Note that the proposed separation method does
not compensate for the convection effect on the acous-
tic part. Therefore, the identified acoustic part cannot
be exactly similar to the not-convected measurement
A [3].

4.2 Wavenumber-frequency maps of
the measurements

The wavenumber-frequency content of the measure-
ments is shown in the form of a kx–f map at ky = 0
rad/m in Fig. 3 (f being the frequency, kx and ky the
wavenumbers longitudinal and transverse to the flow
respectively). It is computed by means of a plane wave
beamforming process, skipping the autospectra thanks
to the following vectorized computation [16]:

Ai =
vec(wiwH

i )H vec
(
S̄yy

)
‖ vec(wiwH

i ) ‖2
2

, (22)

at each frequency, where ‖ · ‖2 is the `2 norm, vec(A)
stands for the vectorization of the matrix A and the
notation Ā indicates that the diagonal elements of the
matrix A are set to zero. The steering vectors are
defined by

wi = eıkxix+ ıkyiy (23)
where x and y are the coordinates of the microphones
along and transverse to the flow respectively.

On these kx–f maps is also plotted the acoustic el-
lipse – that appears as a cone in the kx–f representa-
tion – bounded by [17, 18]:

kx = 2πf cos θ
c0 + Uc cos θ and ky = 2πf sin θ

c0 + Uc cos θ (24)

with 0 ≤ θ ≤ 2π and c0 the speed of sound in the
ambient air at rest.

These maps show that the two domains overlap be-
low 500 Hz. At low frequencies, the convective ridge is
duplicated along the kx axis because of of the grating
lobes. This aliasing is also visible above 3 kHz, on the
map of the configuration A, leading to some duplica-
tions of the acoustic spot. It is also clear that the order
of magnitude of each contribution is very different de-
pending on the frequency.

Moreover, it appears that the AT30 measurement
does not exactly correspond to the sum of the con-
tributions measured in the A and T30 configurations,
especially below 1500 Hz, where the acoustic field is
very low, probably due to an effect of the flow on the
loudspeakers.

4.3 Estimation of the TBL parameters
The TBL parameters estimated using the NLLS re-
gression on the raw AT30 measurements are shown in
Fig. 4, along with the parameters obtained from the
Bayesian separation process – using the NLLS values
as priors. In this Figure, for a better comparison with
the literature, the convection speed is normalized with
the flow speed U∞ and the parameters of coherence
decay rates are shown in terms of coherence lengths,
computed using

Lcx,y = Uc
2πfαx,y

. (25)

The TBL parameters from the Bayesian inference
slightly differ from those obtained with NLLS, espe-
cially at low frequencies.
As explained in Sec. 2.4, the estimated TBL CSM is

not expected to have exactly a Corcos correlation struc-
ture. Indeed, the Corcos’ model is only used as a prior
information and the inferred TBL contribution also de-
pends on the likelihood of the measurements. There-
fore, the TBL parameters inferred with PFA-Corr may
be difficult to interpret as Corcos’ parameters, which
can explain the difference obtained at low frequencies
where the acoustic contribution is very small. However,
this correction is small enough to conclude that in the
case where the array allows an efficient regression, it is
not necessary to do a Bayesian inference of the TBL
parameters, and the NLLS values can be used as is to
perform the separation. Especially since it has been
verified that the effect of these small differences on the
TBL parameters is small in terms of reconstruction er-
ror of each contribution [19].
The estimated convection speed follows a classical

decrease, as described in the literature [11, 10]. Sim-
ilarly, the evolution of the coherence lengths with fre-
quency is well known [9]. Above 5 kHz, the interspac-
ing of the microphones is too high to provide accurate
estimates.

4.4 Reconstruction of the acoustic au-
tospectra

The diagonal elements of the measurement CSM are
the most impacted by the TBL, and thus the recon-
struction of the acoustic autospectra is challenging.
The reconstructed acoustic autospectra are plotted, as
well as their associated error obtained from the base-
line measurement of the source only (configuration A),
in Figs. 5(a) and 5(b) respectively. The reconstruction
error is calculated as follows:

δ =

∥∥∥diag(SA
aa)− diag

(
S̃aa

)∥∥∥
2

‖diag(SA
aa)‖2

, (26)
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(a) Picture of the facility
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(b) Sketch of the test section (side view)
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Figure 2: Description of the experimental setup for the wind-tunnel measurements.

(a) AT30 configuration (b) A configuration (c) T30 configuration

Figure 3: Wavenumber-frequency maps obtained at ky = 0 rad/m for the measurements configurations AT30 (a),
A (b) and T30 (c). The three maps are scaled with the same color bar (in dB). The two black dashed lines indicate
the acoustic domain.
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Figure 4: TBL parameters estimated from the NLLS regression on the AT30 measurements ( ) and inferred
within the PFA-Corr approach ( ).
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with S̃aa the reconstructed acoustic CSM and SA
aa the

baseline source CSM from configuration A.
On these Figures the results from two separation ap-

proaches are compared:
• the PFA-Corr approach as given in Sec. 2, based

on a correlated TBL prior
• the approach as given in Sec. 2, but based on fully

uncorrelated TBL model, i.e. setting p = 0 in Eq.
(13). This model then becomes equivalent to the
PFA method [3].

For a comparison of PFA with some methods from the
literature, the reader can refer to Ref 3, where PFA is
shown to outperform the other methods on most of the
frequency band, on a similar experimental data set.
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(a) Acoustic autospectra averaged over the microphones
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Figure 5: Mean acoustic autospectra (a) and associated
error (b) of the raw data ( ), of the PFA separation
(uncorrelated TBL model) ( ) and of the PFA-Corr
separation (correlated TBL model) ( ). On (a) is
also plotted the baseline mean autospectrum ( ) and
on (b) the error due to the convection effect ( ) (see
Ref. 3 for details on how this effect is evaluated).

The main differences between the two approaches
appears below 2.5 kHz, which corresponds to the fre-
quency range for which the acoustic-to-TBL ratio is
very low (as visible in Fig. 3) and where the TBL is
highly correlated over the microphones. Therefore, in
this low frequency range, the PFA-Corr approach offers
a better reduction of the TBL noise on the acoustic au-
tospectra, and also a much lower reconstruction error.
Above 2.5 kHz, the coherence length in the TBL be-
comes much lower than the microphone interspacing,
and the two approaches thus become equivalent and
give very similar results in terms of spectrum level and
error.

4.5 Wavenumber-frequency analysis of
the separation results

In order to complement the previous analyses, the
wavenumber-frequency maps of the contributions re-
constructed by PFA-Corr are given in Fig. 6. As the
autospectra are not taken into account for the calcula-
tion of these maps, the dynamic is improved and only
the reconstruction of the cross-spectra are represented.
Since PFA relies on a diagonal TBL CSM assumption,
the wavenumber-frequency maps of its reconstructed
contributions are not shown.
For PFA-Corr separation, the kx–f map of the resid-

uals is also given. The residuals are calculated as fol-
lows:

R = Ŝyy −
(
S̃aa + S̃nn + S̃εε

)
. (27)

On the kx–f maps of the acoustic part identified by
PFA-Corr (Fig. 6(a)), the convective ridge is well re-
duced as compared to the measurement map, and even
seems totally removed, except below 220 Hz, where the
TBL noise is highly correlated over the microphones
and where the acoustic sources emit at very low ampli-
tudes. Up to 1500 Hz, the acoustic contribution seems
to be not well reconstructed compared to the baseline
measurement (Fig. 3(b)), which may be due to the ef-
fect of the flow on the loudspeaker, and which could be
confirmed by advanced acoustic imaging (in space).
However, the acoustic contribution appears to be re-

moved from the PFA-Corr TBL maps in Fig. 6(b). On
the residual map for the PFA-Corr method (Fig. 6(c)),
a small part of the convective ridge persists, as well
as a small part of the acoustic contribution. However,
the residuals from PFA-Corr are rather small, which
proves a good agreement between the model and the
measurements.
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(a) Acoustic part (b) TBL part (c) Residuals

Figure 6: Wavenumber-frequency maps obtained at ky = 0 rad/m from the PFA-Corr separation approach. Iden-
tification of the acoustic part (a), the TBL contribution (b) and the residual map (c). Maps on (a) and (b) are
scaled with the same color bar (in dB) and the residual map is scaled on a smaller dynamic range. The two black
dashed lines indicate the acoustic domain.

5 Application to inflight mea-
surements

Another set of data is now employed to test the sep-
aration approach. These data are obtained from mi-
crophones mounted on the rear fuselage of an inflight
aircraft. For this application, the acoustic sources are
unknown, even if a strong contribution of the engine
jet is expected, and the precise nature of the TBL is
also unknown, given that the fuselage is not the flat
infinite plate of the Corcos’ model.

5.1 Experimental setup
The measurements are performed synchronously by 25
microphones, flush mounted on the left side of the fuse-
lage of a large Airbus aircraft. As shown in Fig 7, the
array behind the wing, specially designed to character-
ize the engine jet noise, consists of 5 lines of micro-
phones oriented at 60 degrees from the mean aircraft
length axis. The distance between two consecutive lines
is about 0.6 m. Each record lasts 60 s, and the CSMs
are computed with a resolution of 4 Hz, with 66% over-
lapping rate (the apparent number is thus 497). More
details on this experimental setup are given in Ref. 20

The measurements are performed for two configu-
rations. The first one is at idle engine speed, and is
considered to measure mainly the TBL contribution.
The second one is a cruise configuration, at high en-
gine power. For these two configurations, the aircraft
is traveling at Mach number 0.85, at a classical cruise
flight altitude.

The recording conditions are very different from the
wind-tunnel experiment: the number of sensors is much
lower, the flow Mach number is much higher and the

physical conditions are known to vary along the fuse-
lage [21], which may lead to inhomogeneous TBL pres-
sure fields over the antenna. Moreover, the microphone
arrangement is very regular, which is prompt to pro-
duce grating lobes on the beamforming maps.
Note that in the following, for simplicity, the curva-

ture of the fuselage is neglected, and the flow is consid-
ered to be orientated along the horizontal axis (x axis),
which is a bit different from what has been observed in
the literature [18, 22].

5.2 Wavenumber maps of the measure-
ments

The wavenumber-frequency maps of the cruise and idle
configurations are given in Fig. 8(a) and 8(b). On
these maps is also plotted the convected acoustic circle
(dashed line), which is strongly shifted toward the neg-
ative wavenumbers, due to the high convection speed.
The cruise configuration shows a wavenumber con-

tent inside the acoustic circle, compared to the idle con-
figuration. A solid black line also indicates an approxi-
mated location of the convective ridge. The position of
the ridge increases linearly with the frequency, which
supposes that the convection speed is constant with the
frequency. The convective ridge and the acoustic con-
tent are duplicated many times along the kx due to the
grating lobes. At some frequencies, some duplicates of
the convective ridge are greater than the main lobe,
which is due to the fact that the convective area is not
maximum at ky = 0 rad/m. Therefore, some duplicates
correspond to regions with higher amplitude.
The TBL contribution dominates the cross-spectra

mainly up to normalized frequency 1.7, therefore, in
the following, the separation results are shown only in
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(a) Sketch of the microphone configuration on the fuselage

(b) Picture of the microphone antenna, from Ref. 20

Figure 7: Experimental setup for the inflight measure-
ments

this low frequency range.

5.3 Estimation of the TBL parameters
The Corcos’ parameters are first estimated using the
NLLS procedure. The resulting convection speed and
coherence lengths are given in Fig. 9. In this figure
is also plotted the parameters estimated by PFA-Corr,
with the NLLS values used as priors. As there is a limit
to the minimum microphone interspacing, the TBL pa-
rameters can be estimated only at low frequencies up
to 3.7. This limit corresponds to a convected wave-
length that becomes smaller than the distance between
the slanted lines of microphones. Moreover, below the
normalized frequency 0.5, the length of the antenna
along the x axis becomes lower than the expected co-
herence length. For this reason, the longitudinal coher-
ence length estimated with NLLS is overestimated.

For both the NLLS and the PFA-Corr approaches,
the coherence lengths are also difficult to infer because
of the array geometry which does not contain a lot of
microphone lines aligned with the flow direction and
transverse to it. Also, as the microphones are flush
mounted, they may perturb the TBL. All these vari-
ables can explain the difference between these coher-
ence lengths and the values found in the literature, such
as in Ref. [23] for similar cases.

As expected from the beamforming maps, the esti-
mated convection speeds are nearly constant with the
frequency.

5.4 Reference-based denoising
Since no baseline acoustic source measurement is
available, the separation result from a reference-based
method is further shown in order to be compared with
the proposed FA-Corr separation.

The noise affecting fuselage microphones is mainly
attributed to the contribution of the TBL. In cases
where some noise-free reference signals are available,
recorded simultaneously with the microphone array sig-
nals, it is possible to deduct the TBL contribution to
the microphone measurements. Let x and y stand for
a set of reference and array microphone signals, respec-
tively. The CSM of the outputs conditioned by refer-
ences is given by

Sxyy = Syx S
−1
xx Sxy. (28)

This formulation is in accordance with Bendat and
Piersol’s Conditioned Spectral Analysis [24]: autospec-
tra on the diagonal of Sxyy are corresponding to multiple
coherent output spectra, the multiple coherence being
directly given by the ratio between diagonal terms of
Sxyy and Syy.
Note that this denoising approach assumes that the

noise affecting the output signals is not correlated with
the references. Even if the assumptions and required
data are different for the reference-based denoising and
the Bayesian separation approaches, a good agreement
between their results will be considered in the following
as a cross-validation of both approaches.
For the considered experimental application, refer-

ence signals are 6 accelerometers and 9 microphones
positioned on the inner side of the fuselage and inside
the aircraft cabin, respectively. Those sensors are used
as references because they are supposed to be much less
affected by the TBL than external microphones since
the fuselage acts as a low-pass filter in the wavenumber
domain. Moreover, the remaining TBL contribution on
the references results from the TBL excitation on the
whole fuselage, that is expected to be almost incoher-
ent with the TBL contribution to the 25 microphones
covering a very small part of the whole fuselage. Note
that interior microphones are affected by interior noise
sources, mainly the air conditioning system, but this
noise being independent from the TBL, this should not
be an issue.
The wavenumber-frequency map of the acoustic

contribution reconstructed using the reference-based
method is shown in Fig. 8(c). On this map, the convec-
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(a) Cruise configuration (b) Idle configuration (c) Reference-based denoising

Figure 8: Wavenumber-frequency maps obtained at ky = 0 rad/m from the measurements at cruise (a) and idle
(b) configurations, and from the reference-based separation (c). The three maps are scaled with the same color
bar (in dB), with 40 dB of dynamic range. The two black dashed lines indicate the acoustic domain, and the solid
line is an approximation of the center of the convective ridge.
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Figure 9: Convection speed (a), longitudinal (b) and transverse coherence lengths (c) estimated using NLLS on
the measurement in idle configuration ( ) and from PFA-Corr ( ).

tive ridge is still visible, but much lowered as compared
to the cruise configuration map.

5.5 Estimation of the acoustic au-
tospectra

In order to have an idea of the reduction of the TBL
contribution over the diagonal elements of the acous-
tic CSMs, the mean autospectra of the acoustic part
identified with several approaches are given in Fig. 10.
The compared approaches are the reference-based de-
noising as described in the previous section, PFA and
PFA-Corr separations.

The mean autospectra is about 3 dB higher for the
cruise configuration than for the idle configuration.
But seeing the level of the various acoustic autospectra,
such an augmentation cannot be due to the acoustic
contribution. Therefore, this must be due to a mod-

ification of the TBL between the two configurations,
which is probably not due to the jet since it is rather
far from the fuselage (about 6 primary jet nozzle di-
ameters away from the fuselage). Therefore, for the
present application, the idle measurement cannot be
used to perform a background subtraction such as in
Ref. 25)

As for the wind-tunnel application, PFA-Corr offers
a greater reduction of the autospectra than PFA, es-
pecially in the very low frequency range (0-1.6). On
the frequency range 1-4, the measured spectra is domi-
nated by the Broadband Shock-Associated Noise (BB-
SAN), generated by the dual-stream underexpanded
supersonic jet [26]. This noise is produced by the
interactions of shock cells in the secondary stream
with the convected turbulences in the inner and outer
shear layers. Harper-Bourne and Fisher[27] propose to
model this BBSAN by regularly spaced partially co-
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Figure 10: Acoustic autospectra averaged over the mi-
crophones, from the raw measurements ( ), back-
ground noise measurements ( ), after reference-
based denoising ( ), PFA denoising ( ) and PFA-
Corr separation ( ). Vertical lines ( ) indicate
the blade passing frequencies of the engine fan.

herent monopoles, which correspond to a low number
of acoustic sources, in accordance with the PFA and
PFA-Corr assumption. At least one eigenvalue clearly
dominates the measurements in the BBSAN frequency
range. Whereas at higher frequencies (above normal-
ized frequency 4), no eigenvalue dominates the mea-
surements and both PFA and PFA-Corr fail to recon-
struct any coherent spectra. In this frequency range,
the reference-based denoising and PFA-Corr are in very
good agreement whereas the solution of PFA is higher
since its solution is a bit less sparse than the PFA-
Corr’s one.

Note that frequency 4 corresponds to the limit above
which the half convected acoustic wavelength becomes
smaller than the smallest microphone interspacing, and
the longitudinal coherence length also becomes smaller
than this smallest microphone distance. Therefore, the
acoustic part becomes poorly identifiable and the noise
tends to be uncorrelated.

In this frequency range, the autospectra denoised by
the reference-based denoising also decreases, but it may
reach a lower bound given by the number of reference
channels used and the residual coherence between the
references and the outer microphones.

5.6 Wavenumber-frequency analysis of
the separation results

The wavenumber-frequency maps of the PFA-Corr sep-
aration are given in Fig. 11. The color bar and dynamic
range are similar to the measurement maps (Fig. 8).
Up to normalized frequency 1, the reconstruction of the

TBL noise is very similar to the measured TBL noise at
idle engine speed, which shows that the Corcos prior
is suitable for these measurements. Above frequency
1, the TBL contribution becomes much lower and the
identification is less precise.
On the acoustic map, most of the TBL contribution

is removed, except in the very low frequencies where
a TBL contribution remains at high ky (visible on a
kx-ky map) which is then visible on the kx–f map due
to the aliasing effect. The acoustic content identified
with PFA-Corr has a distribution in the acoustic circle
which is similar to the one provided by the reference-
based denoising, even if the two methods are based on
different requirements and hypotheses. Moreover, the
map of the residuals is low. These two observations
tend to cross-validate the two approaches.
In Fig. 11(b) and Fig. 8(c), in the acoustic region,

two parallel humps increasing linearly on the range
kx = −0.025−−0.01 rad/m and f = 0.25−−0.75 are
visible. These acoustic sources are due to the BBSAN
and the slope of the humps is related to the convection
speed of the turbulences in the primary jet, which is
close to acoustic upper limit.

6 Conclusion
The PFA-Corr separation problem was conducted
within a general framework where no reliable measure-
ment of the TBL contribution is available and where
the sources generating the acoustic field are not known
(in terms of location, number, type of propagation,
etc).
The method described in this paper is a continuation

of the PFA method recently developed, which relied on
an uncorrelated TBL model, as most of the separa-
tion method from the literature. As this assumption
is too restrictive at low frequencies, the proposed ap-
proach allows to take into account the correlation of
the TBL, while requiring very little prior knowledge
about the TBL characteristics. While PFA had shown
better performance than other state-of-the-art meth-
ods, PFA-Corr offers an even better reconstruction of
the acoustic autospectra and a better separation of the
contributions. This conclusion applies even in presence
of aliasing effects, which induce an overlapping of the
acoustic and TBL wavenumber content and for which
the wavenumber filtering would not be possible to ap-
ply.
The versatility of the Bayesian approach makes it

possible to extend the model to different needs. For
example, for application to flight test measurements, a
spatial evolution of the TBL along the fuselage could
be taken into account. Other uncertainties can be inte-
grated to the model, such as the angle of attack of the
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(a) TBL part (b) Acoustic part (c) Residuals

Figure 11: Wavenumber-frequency maps obtained at ky = 0 rad/m from the PFA-Corr separation. Identification
of the TBL (a) and the acoustic (b) contributions, and residuals (c). The three maps are scaled with the same
color bar as Fig. 8 (in dB), with 40 dB of dynamic range. The two black dashed lines indicate the acoustic domain,
and the solid line is an approximation of the center of the convective ridge.

flow on the fuselage. Moreover, other source models
could be implemented, such as cyclostationary sources
for the study of tonal components of the aircraft engine
noise.
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A Initial values and priors
In hierarchical models such as the one for the PFA-Corr
separation, the higher the prior parameter is in the hi-
erarchy, the less influence it will have on the posterior
and thus on the separation results. Moreover, Gibbs
sampler being guaranteed to converge to the sampled
distribution, the separation results are also not sup-
posed to depend on the chosen initial values. However,
in order to help the reader to reproduce the presented
results, the initial and prior values used in this paper
are given in Tab. 1.

In Tab. 1, the eigκ(A) refers to the κ highest eigen-
values of A, normalized in order to have

∑
κ eigκ(A) =

1. The matrix Scc does not require to be initialized
since it is drawn first. Inverse gamma distributions
with scale and shape parameters equal to 10−3 corre-
sponds to very flat priors, with a small impact on the

posterior distribution.
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