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POLYNOMIAL STABILIZATION FOR THE WAVE EQUATION WITH CONVEX-SHAPED DAMPING

We revisit the damped wave equation on two-dimensional torus where the damped region does not satisfy the geometric control condition. We show that if the damping vanishes as a Hölder function |x| β , and in addition, the boundary of the damped region is strictly convex, the wave is stable at rate t -1+ 2 2β+7 , which is better than the known optimal decay rate t -1+ 1 β+3 for strip-shaped dampings of the same Hölder regularity. This illustrates the fact that the energy decay rate depends not only on the order of vanishing of the damping, but also on the shape of the damped region. The main ingredient of the proof is the averaging method (normal form reduction) developed by Hitrick and Sjöstrand ([Hi1][Sj]).

 and [Zh]) by relative positions of the grazing trapped rays and a > 0.

1. Introduction 1.1. Background. Let (M, g) be a compact Riemannian manifold with the Beltrami-Laplace operator ∆. Consider the damped wave equation

∂ 2 t u -∆u + a(z)∂ t u = 0, in R + × M, (u, ∂ t u)| t=0 = (u 0 , u 1 ), in M, (1.1)
where a(z) ≥ 0 is the damping. The well-posedness of (1.1) is a consequence of the Lumer-Philips theorem and the maximal dissipative property of the generator

A = 0 Id ∆ -a(z) (1.2)
on the Hilbert space H := H 1 (M ) × L 2 (M ). For a solution (u, ∂ t u) ∈ H 1 (M ) × L 2 (M ), the energy defined by

E[u](t) := 1 2 ∇u(t) 2 L 2 (M ) + 1 2 ∂ t u(t) 2 L 2 (M )
is decreasing in time:

d dt E[u](t) = - M a|∂ t u| 2 ≤ 0.
A basic question is the decay rate of the energy as t → +∞.

It was proved by Rauch-Taylor [RaT] (∂M = ∅) and by Bardos-Lebeau-Rauch [BLR] (∂M = ∅) that, for continuous damping a ∈ C(M ), if the set ω = {a > 0} verifies the geometric control condition (GCC), then there exists α 0 > 0 such that the uniform stabilization holds:

E[u](t) ≤ E[u](0)e -α 0 t , ∀t ≥ 0.
(1.3) If (GCC) for ω = {a > 0} is not satisfied, there are very few cases that the uniform stabilization (1.3) holds (see [START_REF] Burq | Stabilization of wave equations on the torus with rough dampings[END_REF] and [Zh]) 1 . Lebeau [START_REF] Lebeau | Equation des ondes amorties Algebraic and geometric methods in mathematical physics[END_REF] constructed examples with arbitrary slowly decaying initial data in the energy space H 1 (M ) × L 2 (M ). Nevertheless, if the initial data is more regular, say in H 2 (M ) × H 1 (M ), the uniform decay rate log(1 + t) holds ( [START_REF] Lebeau | Equation des ondes amorties Algebraic and geometric methods in mathematical physics[END_REF]). Since then, intensive research activities focus on possible improvement of the logarithmic decay rate for regular initial data, in special geometric settings.

Beyond (GCC), the determination of better decay rate for special manifolds M and special dampings depends on at least the following factors from the existing literature:

(a) The dynamical properties for the geodesic flow of the underlying manifold M . (b) The dimension of the trapped rays as well as relative positions between trapped rays and the boundary ∂{a > 0} of the damped region. (c) Regularity and the vanishing properties of the damping a near ∂{a > 0}.

It is known that the energy decay rate is linked to the averaged function along the geodesic flow ϕ t :

ρ → A T (a)(ρ) := 1 T T 0 a • ϕ t (ρ)dt, ρ ∈ T * M.
Indeed, (GCC) is equivalent to the lower bound A T (ρ) ≥ c 0 > 0 for some T > 0 large enough on the sphere bundle S * M . Roughly speaking, when the geodesic flow is "unstable", one may improve the energy decay rate (see [No] for more detailed explanation and references therein). As an illustration of (a), when M is a compact hyperbolic surface, Jin [Ji] shows the exponential energy decay rate for regular data living in H 2 (M ) × H 1 (M ). In this direction, we refer also [BuC], [Ch], [CSVW], [Riv] and references therein.

The polynomial decay rate is the intermediate situation between the logarithmic decay rates and the exponential decay rates, exhibited in less chaotic geometry like the flat torus and bounded domains (see [LiR][BH05][Ph07][AL14] and references therein), where the generalized geodesic flows are unstable. We refer [LLe], [BZu] for other situations of polynomial stabilization, where the undamped region is a submanifold.

We point out that the factor (a) is almost decisive for the observability (and exact controllability) of wave and Schrödinger equations. Comparing with the observability for the wave equation where (GCC) is the only criteria (see [BLR] [START_REF] Burq | Condition Nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF]), the stabilization problem is more complicated. Indeed, it was shown in [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF] (Theorem 2.3) that the observability for the Schrödinger semigroup in some time T > 0 implies automatically that the damped wave is stable at rate t -1 2 . However, this decay rate is not optimal in general. On the two-dimensional torus, if the damping function is regular enough and vanishing nicely, the decay rate can be very close to t -1 ( [BH05] [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF]). Even when the damping is the indicator of a vertical (or horizontal) strip, the optimal decay rate is known to be t -2 3 ( [St]). These results provide evidences of factors (b) and (c) mentioned previously. As explained in [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF], the significant difference to the controllability problem is that, there is no general monotonicity property of the type: a 1 ≤ a 2 implies the decay rate associated to a 2 is better (or worse) than the decay rate associated to a 1 .

In this article, we revisit the polynomial stabilization for wave equations on flat torus. Our main result reveals that, with the same vanishing order, the curvature of the boundary of the damped region also affects the energy decay rate of damped wave equations.

1.2. The main result. We concern the polynomial decay rate for (1.1) on the two-dimensional flat torus 2 M = T 2 := R 2 /(2πZ) 2 :

∂ 2 t u -∆u + a(z)∂ t u = 0, in R + × T 2 , (u, ∂ t u)| t=0 = (u 0 , u 1 ), in T 2 .
(1.4)

To present the main result, we introduce some definitions.

Definition 1.1. We say that (1.4) is stable at rate t -α , if there exists C > 0, such that all the solution u with initial data (u 0 , u 1 ) ∈ H 2 := H 2 (T 2 ) × H 1 (T 2 ) satisfies

(E[u](t)) 1 2 ≤ Ct -α (u 0 , u 1 ) H 2 .
We say that the rate t -α is optimal, if moreover

lim sup t→+∞ t α sup 0 =(u 0 ,u 1 )∈H 2 (E[u](t)) 1 2 (u 0 , u 1 ) H 2 > 0.
Next we introduce the class of damping that we will consider:

Definition 1.2. The function class D m,k,σ (T d ) (with kσ < 1) is defined by:

D m,k,σ := {f ∈ C m (T d ) : |∂ α f | α,σ |f | 1-|α|σ , ∀|α| ≤ k}.
Note that D m,k,σ 1 ⊂ D m,k,σ 2 , if σ 1 < σ 2 and kσ 2 < 1. This class contains non-negative functions which vanish like Hölder functions. One typical example is

a 1 (z) = b(z)(max{0, |z| -0.1}) 1 σ ∈ D m,m,σ (T d ),
where σ > 1 m , b ∈ C m (T d ) and inf T d b > 0. The associated damped region is {z ∈ T d : a 1 (z) > 0} = {z ∈ T d : |z| < 0.1} is a disc. Another example is the strip-shaped damping a 2 (z) = a 2 (x) such that {z ∈ T 2 : a 2 (z) > 0} := (-0.1, 0.1) x × T y and for some m ≥ 4, d m dx m a 2 (x) ≤ 0 near x = 0.1 and d m dx m a 2 (x) ≥ 0 near x = -0.1.

It was shown in Lemma 3.1 of [START_REF] Burq | Hitrik Energy decay for damped wave equations on partially rectangular domains[END_REF] that a 2 ∈ D m,m, 1 m (T 2 ). For a ∈ D m,k,σ , we denote by Σ a := ∂{a(z) > 0}. Let T 2 A,B := R 2 /(2πA × 2πB) be a general flat torus defined via the covering map π A,B : R 2 → T 2 A,B . An open set ω ⊂ T 2 A,B is said to be locally strictly convex, if each component of π -1 A,B (ω) ⊂ R 2 is strictly convex, i.e. the boundary of each component of π -1 A,B (ω) is C 2 , with strictly positive curvature, as a curve in R 2 . Sometimes, we also say that the boundary is locally strictly convex.

Our main result is the following:

2 We take the periodic to be 2π only for simplicity of statement of the main results. The main result remains valid for any general torus

R 2 /(2πAZ × 2πBZ), A, B > 0. Theorem 1.1. Let β > 4, m ≥ 10. Assume that a ≥ 0, a ∈ D m,2, 1
β and the open set ω := {z ∈ T 2 : a(z) > 0} is locally strictly convex. Assume that a(z) is locally Hölder of order β near ∂ω, in the sense that there exists

R 0 > 1, such that 1 R 0 dist(z, ∂ω) β ≤ a(z) ≤ R 0 dist(z, ∂ω) β , for z ∈ ω near ∂ω.
Then the damped wave equation (1.4) is stable at rate t -1+ 2 2β+7 .

Remark 1.3. As a comparison, if a(z) = a(x) depends only on one direction (supported on the vertical strip ω) and is locally Hölder of order β near ∂ω, the optimal stable rate is t -1+ 1 β+3 (see [Kl] [DKl]) which is worse than t -1+ 2 2β+7 . Our result provides examples that, with the same local Hölder regularity, smaller damped regions better stabilize the wave equation. To the best knowledge of the author, Theorem 1.1 also provides the first example where not only the vanishing order of the damping can affect the stable rate, but also the shape of the boundary of the damped region.

ω 2 ω 1 a 1 (z) = (0.1 -|z|) β + , a 2 (z) = (0.5 -|x|) β + T 2 = R 2 /(2πZ) 2
The damping a 1 generates better decay rate than a 2 Remark 1.4. It would be interesting to investigate whether the stable rate t -1+ 2 2β+7 in Theorem 1.1 is optimal.

Remark 1.5. It was shown in [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF] that, when the damping satisfies |∇a| ≤ Ca 1-1 β for large enough β, then (1.4) is stable at rate t -1+ 4 β+4 (Theorem 2.6 of [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF]). With an additional assumption on |∇ 2 a| ≤ Ca 1-2 β , our proof of Theorem 1.1 essentially provides an alternative proof of this rougher stable rate. Indeed, we need one more condition for |∇ 2 a| in order to perform the normal form reduction in the Section 5. Once reduced to the one-dimensional setting, we are able to apply the same argument of .

Remark 1.6. For the reason of exhibition, we have used a contradiction argument and the notion of semiclassical defect measures in the proof of Theorem 1.1. Comparing to the argument of [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF], we do not make use of second semiclassical measures.

Finally we give some microlocal interpretation of Theorem 1.1. It is known that the decay rate of the damped wave equation is related to the time average along geodesics (see [No]). As the damping has conormal singularities at its boundary ∂ω of the damped region, the decay rate depends more precisely on the reflected and transmitted energy of waves concentrated on trapped rays. If along the conormal direction, the damping is more regular, its interaction with transversal free waves is weaker (analog to the high-low frequency interaction), hence the transmission effect is stronger than the reflection, and consequently, the decay rate is better. When the boundary ∂ω of the damed region is convex, the average of the damping along any direction gains 1 2 local Hölder regularity, near the vanishing points along the transversal direction (see Proposition 2.4 for details). This heuristic indicates that, with the same local Hölder regularity near the boundary (of the damped region), the convex-shaped damping has better stable rate for (1.4), than strip-shaped dampings (that are invariant along one direction).

1.3. Resolvent estimate. The proof of Theorem 1.1 relies on Borichev-Tomilov's criteria of the polynomial semi-group decay rate and the corresponding resolvent estimate for A given in (1.2): [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]). We have Spec(A)∩iR = ∅. Then, the following statements are equivalent:

Proposition 1.7 ([
(a) (iλ -A) -1 L(H) ≤ C|λ| 1 α for all λ ∈ R, |λ| ≥ 1; (b) The damped wave equation (1.1) is stable at rate t -α .
By Proposition 1.7 (see also Proposition 2.4 of [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF]), the proof of Theorem (1.1) is reduced to the following semiclassical resolvent estimate:

Theorem 1.2. Let β > 4, m ≥ 10. Assume that a ≥ 0, a ∈ D m,2, 1
β and the open set ω := {z ∈ T 2 : a(z) > 0} is locally strictly convex. Assume that a(z) is locally Hölder of order β near ∂ω, in the sense that there exists

R 0 > 1, such that 1 R 0 dist(z, ∂ω) β ≤ a(z) ≤ R 0 dist(z, ∂ω) β , for z ∈ ω near ∂ω.
Then there exist h 0 ∈ (0, 1) and C 0 > 0, such that for all 0 < h ≤ h 0 ,

(-h 2 ∆ -1 + iha(z)) -1 L(L 2 (T 2 )) ≤ C 0 h -2-2 2β+5 .
As a comparison, let us recall the main resolvent estimate in [DKl][Kl], corresponding to the optimal energy decay rate t -1+ 1 β+3 when the damping a(z) depends only on x variable and is locally Hölder of order γ:

Theorem 1.3 ([DKl][Kl]). Let γ ≥ 0. Assume that W = W (x) ≥ 0 and {W > 0} is disjoint unions of vertical strips (α j , β j ) x × T y and {W ≥ 0} = T 2 . Assume moreover that for each j ∈ {1, • • • , l}, C 1 V j (x) ≤ W (x) ≤ C 2 V j (x) on (α j , β j ),
where V j (x) > 0 are continuous functions on (α j , β j ), satisfying

V j (x) =      (x -α j ) γ , α j < x < 3α j + β j 4 , (β j -x) γ , α j + 3β j 4 < x < β j .
(1.5)

Then there exist h 0 ∈ (0, 1) and C > 0 such that for all 0 < h < h 0 ,

(-h 2 ∆ -1 + ihW (x)) -1 L(L 2 ) ≤ Ch -2-1 γ+2 .
Furthermore, the above resolvent estimate is optimal, in the sense that there exists quasi-modes (u h ) 0<h≤h 0 , such that

u h L 2 = 1, (-h 2 ∆ -1 + ihW (x))u h L 2 (T 2 ) = O(h 2+ 1 γ+2 ).
In the rest of the article, we will prove Theorem 1.2. The proof is based on a contradiction argument. This leads to the fact that the semiclassical measure associated to quasi-modes (u h ) h>0 of order o(h

2+ 2 2β+5
) is non-zero along a periodic direction on the phase space. We then derive a contradiction by showing that the restriction of semiclassical measure to this trapped direction is zero. This will be achieved in three major steps:

• In Section 4, using the positive commutator method, we show that the semiclassical measure corresponding to the transversal high frequency part of scale h

-1 2 -1
2β+5 is zero. • In Section 5, we deal with scales for transversal low frequencies. Using the averaging method, we transfer quasi-modes (u h ) h>0 to new quasi-modes (v h ) h>0 , satisfying new equations that commute with the vertical derivative. This allows us to reduce the problem to the onedimensional setting. This is the key step of the proof, for which we need several elementary properties of the averaging operator, presented in Section 2. • In Section 6, we prove a one-dimensional resolvent estimate (Proposition 6.1).

At the end of this article, we add two appendices. In Appendix A, we reproduce the proof of Theorem 1.3 in order to be self-contained and to fix some gaps in the paper of [DKl]. In Appendix B, we present several technical results about the semiclassical pseudo-differential calculus, needed in Section 5.

Acknowledgment. The author is supported by the program: "Initiative d'excellence Paris Seine" of CY Cergy-Paris Université and the ANR grant ODA (ANR-18-CE40-0020-01).

The averaging properties of functions

In this section, we prove several properties of the averaging operator, which will be used in Section 5 for normal form reductions. Given a direction v ∈ S 1 , we define the averaging operator along v:

f → A(f ) v (z) := lim T →∞ 1 T T 0 f (z + tv)dt. Lemma 2.1. Assume that v ∈ S 1 . Then for any f ∈ D m,k,σ (T 2 ) and f ≥ 0, A(f ) v ∈ D m,k,σ (T 2 ).
Proof. First we assume that the orbit t : → z + tv is periodic and denote by T v its period. Then for any f ∈ D m,k,σ ,

A(f ) v (z) = 1 T v Tv 0 f (z + tv)dt.
Since the function s → |s| 1-|α|σ is concave, by Jensen's inequality we have

1 T v Tv 0 |f (z + tv)| 1-|α|σ dt ≤ 1 T v Tv 0 f (z + tv)dt 1-|α|σ . (2.1)

Indeed, if

Tv 0 f (z + tv)dt = 0, then f (z + tv) ≡ 0 for all t ∈ [0, T v ], and the inequality (2.1) is trivial. Assume now that X 0 = 1 Tv Tv 0 f (z + tv)dt > 0, then for any X ≥ 0, we have

X 1-|α|σ ≤ X 1-|α|σ 0 + (1 -|α|σ)X -|α|σ 0 (X -X 0 ).
Replacing the inequality above by X = f (z + tv) and averaging over t ∈ [0, T v ], we obtain (2.1). Since by definition,

|∂ α f | α,σ |f | 1-|α|σ for all |α| ≤ k, we get |∂ α (A(f ) v )(z)| α,σ |A(f ) v (z)| 1-|α|σ .
Finally, if t → z + tv is ergodic, then A(f ) v (z) is independent of z and the proof is trivial. The proof of Lemma 2.1 is now complete.

By the triangle inequality, the following Lemma is immediate: Lemma 2.2. Let v ∈ S 1 . For any function f on T 2 , there holds

|A(f ) v | ≤ A(|f |) v .
Moreover, if f 1 , f 2 are two non-negative functions such that f 1 ≤ f 2 , we have

A(f 1 ) v ≤ A(f 2 ) v . Lemma 2.3. Assume that f ∈ D m,k,σ (T 2 ) and f ≥ 0. Denote by F (x, y) := y -π (f (x, y ) -A(f ) e 2 (x))dy , -π < y < π,
where e 2 = (0, 1). Then for 0 ≤ j ≤ k, we have

|F (x, y)| ≤ 4πA(f ) e 2 (x), |∂ j x F (x, y)| ≤ 4πA(f ) 1-jσ e 2 .
Moreover, for all j 1 ≥ 0, 1 ≤ j 2 ≤ k -j 1 , we have

|∂ j 1 x ∂ j 2 y F (x, y)| ≤ A(f ) 1-(j 1 +j 2 -1)σ e 2 (x) + f (x, y) 1-(j 1 +j 2 -1)σ .
Proof. Since f ≥ 0, the bound for |F (x, y)| is trivial. Taking derivatives, we get

∂ j 1 x ∂ j 2 y F (x, y) = ∂ j 2 y y -π (∂ j 1 x f (x, y ) -∂ j 1 x A(f ) e 2 (x))dy .
When j 2 = 0, the absolute vaule of the above quantity can be bounded by

2πA(f ) 1-j 1 σ e 2 (x) + 2π∂ j 1 x A(f ) e 2 (x) ≤ 4π(A(f ) e 2 ) 1-j 1 σ (x),
thanks to Lemma 2.1 and Lemma 2.2 and Jensen's inequality (2.1). When j 2 ≥ 1, by definition, we have

∂ j 1 x ∂ j 2 y F (x, y) = ∂ j 2 -1 y ∂ j 1 x f (x, y) -∂ j 2 -1 y ∂ j 1 x A(f ) e 2 (x).
Taking the absolute value and the proof of Lemma 2.3 is complete.

Finally, we prove the key geometric proposition, applying us to improve the local Hölder regularity for averaged damping functions, provided that the original damped region is strictly convex: Proposition 2.4. Assume that a ∈ D m,k,σ (T 2 ) such that a(z) ≥ 0 and Σ a is a disjoint union of strictly convex curves. Assume moreover that there exists R > 0 such that for every z ∈ {a > 0} near Σ a ,

R -1 • dist(z, Σ a ) 1 σ ≤ a(z) ≤ R • dist(z, Σ a ) 1 σ .
Then for any periodic direction v ∈ S 1 , we have A(a) v ∈ D m,k, 2σ σ+2 , as a one-dimensional periodic function. Furthermore, there exists R v > 0, such that for every z ∈ {A(a) v (z) > 0}near Σ A(a)v , we have

R -1 v dist(z, Σ A(a)v ) 1 σ + 1 2 ≤ A(a) v (z) ≤ R v dist(z, Σ A(a)v ) 1 σ + 1 2 . (2.2)
Proof. Without loss of generality, we assume that v = e 23 and assume that Ω := {a > 0} has l = l(v)

connected components Ω 1 , • • •
, Ω l such that the boundary Σ a,j of each Ω j is strictly convex. We first consider the situation where l = 1. By translation invariance, we may assume that Ω 1 = {a 1 > 0} is contained in the fundamental domain (-Kπ, Kπ) x × (-M π, M π) y . Then the function A(a) e 2 can be identified as a function on R x ,

Since Ω 1 = {a 1 > 0} is strictly convex, each line P x of R 2 , passing through (x, 0) and parallel to e 2 can intersect at most 2 points of the curve Σ a,1 . Consider the function x → P (x) := mes(P x ∩ Ω 1 ). This function is continuous and is supported on a single interval I = (α, β) ⊂ (-Kπ, Kπ). Since A(a 1 )(x) = 0 if P (x) = 0, the vanishing behavior of A(a 1 ) is determined when x is close to α and β. Below we only analyze A(a 1 )(x) for x ∈ [α, α + ), since the analysis is similar for x near β. First we observe that P α must be tangent at a point z 0 := (α, y 0 ) to the curve Σ a,1 . For sufficiently small > 0, we may parametrize the curve Σ a,1 near z 0 by the function x = α + g(y) with g(y 0 ) = g (y 0 ) = 0 and g (y 0 ) = c 0 > 0, thanks to the convexity. Therefore, there exists a C 1 diffeomorphism Y = Φ(y) from a neighborhood of y 0 to a neighborhood of Y = 0 such that Φ(y 0 ) = 0 and g(y) = Y 2 . For each x ∈ (α, α + ), P x ∩ N a 1 = {(x, l -(x)), (x, l + (x))}. We have

l + (x) = Φ -1 ( √ x -α), l -(x) = Φ -1 (- √ x -α). Ω 1 x z 0 α α + (x, l -(x)) (x, l -(x)) P x
Averaging improves the local Hölder regularity Since near z 0 , we have a(z) ∼ dist(z, Σ a ) = dist(z, Σ a,1 ) ∼ (x -(α + g(y)))

1 σ + . For x ∈ (α, α + ), we have A(a 1 )(x) = 1 2Kπ Kπ -Kπ a 1 (x, y)dy = 1 2Kπ l + (x) l -(x) a 1 (x, y)dy = 1 2Kπ √ x-α - √ x-α |x -α -Y 2 | 1 σ |(Φ -1 ) (Y )|dY ∼ K,σ |x -α| 1 σ + 1 2 .
Finally, since a 1 ∈ D m,k,σ , for j ≤ k, x ∈ (α, α + ),

|∂ j x A(a 1 )(x)| ≤ 1 2Kπ Kπ -Kπ |∂ j 1 x a 1 (x, y)|dy K l + (x) l -(x) a 1-jσ 1 (x, y)dy |x -α| 1-jσ σ + 1 2 ∼ (A(a 1 )(x)) 1-2σj σ+2 .
This implies that A(a 1 ) ∈ D m,k, 2σ σ+2 .

To complete the proof of Proposition 2.4, we need to deal with the situation where l > 1. In this case, the supports of A(a j ) may overlap. By linearity and the inequality

|∂ j x A(a 1 + • • • a l )| ≤ l j=1 |∂ j x A(a j )| ≤ C(a 1 , • • • , a l )A(a 1 + • • • + a l ) 1-2σj σ+2 ,
we deduce that A(a) ∈ D m,k, 2σ σ+2 . It remains to show (2.2). We define

S + := j ∈ {1, • • • , l} : x 0 + x 0 A(a j )(x)dx > 0, ∀ > 0 , S -:= j ∈ {1, • • • , l} : x 0 x 0 - A(a j )(x)dx > 0, ∀ > 0 . Observe that x 0 ∈ Σ A(a) if and only if A(a j )(x 0 ) = 0 for all j ∈ {1, • • • , l} and S + ∪ S -= ∅. Note that for j ∈ S ± , we have dist(x, Σ A(a) ) 1 2 + 1 σ = dist(x, Σ A(a j ) ) 1 2 + 1 σ ∼ A(a j )(x), ∀x ∓ x 0 > 0 near x 0 ,
and A(a j ) = 0, in a neighborhood of x 0 , for all j / ∈ S + ∪ S -. Summing over j ∈ S + ∪ S -, we obtain (2.2). The proof of Proposition 2.4 is now complete.

Contradiction argument and the first microlocalization

3.1. A priori estimate and the contradiction argument. We will adapt basic conventions for notations in the semiclassical analysis [START_REF] Zworski | Semiclassical analysis[END_REF]). Denote by P h = -h 2 ∆ -1 and we fix the parameter σ = 1 β throughout this article. We denote by δ h the small parameter such that δ h → 0 as h → 0. We denote by = h

1 2 δ 1 2
h second semiclassical parameter. For the proof of Theorem 1.2, we fix

δ h = h 2 2β+5 .
Theorem 1.2 is the consequence of the following key proposition:

Proposition 3.1. Let u h be a sequence of quasi-modes of width h 2 δ h with δ h = h 2 2β+5 i.e. (P h + iha)u h = f h = o L 2 (h 2 δ h ). Then if u h = O L 2 (1), we have u h = o L 2 (1).
The proof of Proposition 3.1 will occupy the rest of this article. We argue by contradiction. Up to extracting a subsequence and renormalization, we may assume that

u h L 2 (T 2 ) = 1. (3.1)
The following a priori estimate is simple:

Lemma 3.2. We have the following apriori estimates:

(a) a 1/2 u h L 2 = o(h 1 2 δ 1 2 h ) = o( ). (b) h∇u h 2 L 2 -u h 2 L 2 = o(h 2 δ h ).
Proof. Multiplying the equation (P h + iha)u h = f h by u h , and integrating by part, we get

h∇u h 2 L 2 -u h 2 L 2 + ih(au h , u h ) L 2 = (f h , u h ) L 2 .
Taking the imaginary part and the real part, we obtain (a) and (b), with respectively.

Assume that µ is the semi-classical defect measure associated to the sequence (u h ) h>0 , that is, for

any symbol a ∈ C ∞ c (T * T 2 ), lim h→0 (Op h (a)u h , u h ) L 2 = µ, a . (3.2)
Indeed, since the sequence (u h ) h>0 is bounded L 2 (T 2 ), there exist a subsequence, still denoted as (u h ) h>0 , and a Radon measure µ on T * T 2 , such that (3.2) holds. For the proof of this existence of semi-classical measure, one may consult Chapter 5 of [START_REF] Zworski | Semiclassical analysis[END_REF].

Lemma 3.3. we have

supp(µ){(z, ζ) ∈ T * T 2 : |ζ| = 1} and µ| ω×R 2 = 0,
where ω = {z ∈ T 2 : a > 0}.

Proof. This property follows from the standard elliptic regularity which only requires quasi-mode for P h of order O L 2 (h). The damping term ihau h can be roughly treated as an error O L 2 (h). For example, one can consult Theorem 5.4 of [START_REF] Zworski | Semiclassical analysis[END_REF] for a proof.

Let ϕ t be the geodesic flow on T * T 2 . We recall the following invariant property of the semiclassical measure:

Lemma 3.4. The semiclassical measure µ is invariant by the flow ϕ t , i.e.

ϕ * t µ = µ.
Proof. This property holds true for quasi-mode of

P h of order o L 2 (h). From (a) of Lemma 3.2, we have f h -ihau h = o L 2 (h).
The proof then follows from a standard propagation argument (see for example Theorem 5.5 of [START_REF] Zworski | Semiclassical analysis[END_REF]).

3.2. Reducing to periodic trapped directions. We perform the change of coordinate, following [START_REF] Burq | Control for Schrödinger equations on tori[END_REF]. By identifying T 2 = R 2 /(2πZ) 2 , we decompose S 1 as rational directions

Q := {ζ ∈ S 1 : ζ = (p, q) p 2 + q 2 , (p, q) ∈ Z 2 , gcd(p, q) = 1}
and irrational directions R := S 1 \ Q. Since the orbit of an irrational direction is dense, by Lemma 3.3 and Lemma 3.4, we have

µ = µ| T 2 ×Q = ζ 0 ∈Q µ ζ 0 .
It suffices to show that, for each

ζ 0 = (p 0 ,q 0 ) √ p 2 0 +q 2 0 ∈ Q, the restricted measure µ ζ 0 is zero 4 . Denote by Λ 0 ,
the rank 1 submodule of Z 2 generated by Ξ 0 = (p 0 , q 0 ). Denote by

Λ ⊥ 0 := {ζ ∈ R 2 : ζ • Ξ 0 = 0} the dual of the submodule Λ 0 . Denote by T 2 Ξ 0 := (RΛ 0 /(2πΛ 0 )) × (Λ ⊥ 0 /(2πZ) 2 ∩ Λ ⊥ 0 ). Then we have a natural smooth covering map π Ξ 0 : T 2 Ξ 0 → T 2 of degree p 2 0 + q 2 0 . The pullback of a 2π × 2π periodic function f satisfies (π * Ξ 0 f )(X + kτ, Y + lτ ) = (π * Ξ 0 f )(X, Y ), k, l ∈ Z, (X, Y ) ∈ R 2 , where τ = 2π p 2 0 + q 2 0 . T 2 Ξ0 Ξ0 = (3, -2) Λ 0 Λ ⊥ 0
By pulling back to the torus T 2 Ξ 0 , we can identify the sequence (u

h ) ⊂ L 2 (T 2 ) as (π * Ξ 0 u h ) ⊂ L 2 (T 2 Ξ 0 ) and in this new coordinate system, ζ 0 = Ξ 0 |Ξ 0 | = (0, 1
). The semi-classical defect measure µ on T * T 2 is the pushforward of the semi-classical measure associated to (π * Ξ 0 u h ). Since the period of the torus T 2 Ξ 0 has no influence of the analysis in the sequel 5 , we will still use the notation T 2 to stand for T 2 Ξ 0 , the variables z = (x, y), ζ = (ξ, η) to stand for variables Z = (X, Y ), Ξ on T * T 2 Ξ 0 , and assuming the period to be 2π for simplicity. The only thing that will change is that the pre-image of the damping π -1 Ξ 0 (ω) is now a disjoint union of p 2 0 + q 2 0 copies of ω on T 2 Ξ 0 , and each component is still strictly convex. For this reason, in the hypothesis of Proposition 2.4, we assume that the boundary of {a > 0} is made of disjoint unions of strictly convex curves.

Analysis of the transversal high frequencies

Recall that ζ 0 = (0, 1), and our goal is to show that µ1 ζ=ζ 0 = 0. In this section, we deal with the transversal high frequencies of size O( -1 ) and use the positive commutator method to show these portions are propagated into the flowout of the damped region ω. 4 In fact, we only need to consider finitely many ζ0 ∈ Q, since when p 2 0 + q 2 0 is large enough, the associated periodic direction is close to an irrational direction and the trajectory will eventually enter ω.

5 As we fix one periodic direction ζ0 and consider the semi-classical limit h → 0, one does not need to worry about the fact that the period 2π p 2 0 + q 2 0 may be very large.

For the geodesic flow ϕ t on T * T 2 and ζ ∈ S 1 , we denote by ϕ t (•, ζ) : T 2 → T 2 the projection of the flow map ϕ t . By shifting the coordinate, we may assume

ω 0 := I 0 × T y ⊂ t∈[0,2π] ϕ t (•, ζ 0 )(ω),
where

I 0 = (-σ 0 , σ 0 ) ⊂ π 1 ({z : a(z) ≥ c 0 > 0})
, for some σ 0 < π 100 and π 1 : T 2 → T x the canonical projection. Therefore, there exist 0 > 0, c 0 > 0 sufficiently small and

T 0 > 0, such that for any |ζ| = 1, z 0 ∈ ω 0 , |ζ -ζ 0 | ≤ 0 , T 0 0 (a • ϕ t )(z 0 , ζ)dt ≥ c 0 > 0.
(4.1)

ω 0 supp(a) ζ 0 = (0, 1)
To simplify the notation, for any function b, we denote by

A(b)(x) = A(b) ζ 0 (x) = 1 2π π -π b(x, y)dy.
To microlocalize the solution near ζ 0 , we pick ψ 0 ∈ C ∞ c (R) and consider u 1 h := ψ 0 hDx 0 u h , then

(P h + iha)u 1 h = f 1 h := ψ 0 hD x 0 f h -ih ψ 0 hD x 0 , a u h .
Let µ 1 be the semiclassical measure of u 1 h , then µ 1 = ψ ξ 0 µ. Lemma 4.1. We have a

1 2 u 1 h L 2 = o(h 1 2 δ 1 2 h ), f 1 h L 2 = o(h 2 δ h ). Proof. It suffices to show that f 1 h = o L 2 (h 2 δ h )
, and the first assertion follows from the same proof of (a) of Lemma 3.2. By the symbolic calculus,

i ψ 0 hD x 0 , a = -1 0 hOp h ψ 0 ξ 0 ∂ x a + O L 2 ( -2 0 h 2 ).
From the pointwise inequality for the non-negative function a:

|∇a(x)| 2 ≤ 2 a W 2,∞ a(x), (4.2)
we have, for some C > 0,

Ca --1 0 ψ 0 ξ 0 ∂ x a 2 ≥ 0 on T * T 2 .
Therefore, by the sharp Gårding inequality, we get

-1 0 Op h ψ 0 ξ 0 ∂ x a u h L 2 ≤ C|(au h , u h ) L 2 | 1 2 + Ch 1 2 u h L 2 .
Together with (a) of Lemma 3.2, this implies that

ih ψ 0 hD x 0 , a u h L 2 = o(h 5 2 ) = o(h 2 δ h ).
The proof of Lemma 4.1 is complete.

Recall that = h

1 2 δ 1 2 h . Let ψ ∈ C ∞ c (R), and consider v h = ψ( D x )u 1 h , w h = (1 -ψ( D x ))u 1 h . (4.3)
In this decomposition, w h corresponds to the transversal high frequency part, while v h corresponds to the transversal low frequency part for which will be treated in next sections. Note that

(P h + iha)v h = ψ( D x )f 1 h -ih[ψ( D x ), a]u 1 h =: r 1,h (4.4)
and

(P h + iha)w h = (1 -ψ( D x ))f 1 h + ih[ψ( D x ), a]u 1 h =: r 2,h . (4.5)
We need to show that the commutator term h[ψ( D x ), a]u 1 h can be viewed as the remainder:

Lemma 4.2. We have r 1,h L 2 + r 2,h L 2 = o(h 2 δ h ) = o(h 2 ).
Consequently, from Lemma 3.2,

a 1 2 v h L 2 + a 1 2 w h L 2 = o(h 1 2 δ 1 2 h ) = o( ).
Proof. According to the symbolic calculus,

i[ψ( D x ), a] = Op (ψ (ξ)∂ x a) + C 2 Op (∂ 2 ξ ψ • ∂ 2 x a) + O L(L 2 ) ( 3 ).
Using the fact that a ∈ D m,2,σ and σ < 1 4 , we have a

1 2 ∈ C 2 c (T 2 ). Applying the special symbolic calculus Lemma B.4 (b) with κ = ∂ x (a 1 2 ), b 2 = a 1 2 and ϕ = ψ , we have 1 2 Op (ψ (ξ)∂ x a) =Op (ψ (ξ)∂ x (a 1 2 ))a 1 2 - 1 i Op (ψ (ξ)∂ x (a 1 2 ) • ∂ x (a 1 2 )) + O L(L 2 ) ( 2 ). Applying Lemma B.4 (a) with κ = b 1 = ∂ x (a 1 2 ), ϕ = ψ , we have - i Op (ψ (ξ)∂ x (a 1 2 ) • ∂ x (a 1 2 )) = - i Op (ψ (ξ)∂ x (a 1 2 ))∂ x (a 1 2 ) + O L(L 2 ) ( 2 ).
Since ψ is only a function of ξ and a

1 2 ∂ x a ∈ L ∞ , applying Lemma B.3, we have Op ψ (ξ) ∂ x a a 1 2 a 1 2 u 1 h L 2 (T 2 ) ≤ C a 1 2 u 1 h L 2 = o( ).
For the term Op (∂ 2 ξ ψ∂ 2 x a), since |∂ 2 x a| a 1-2σ a 1 2 , by the sharp Gårding inequality,

Op (Ca -|ψ (ξ)∂ 2 x a| 2 )u 1 h , u 1 h L 2 ≥ -C u 1 h 2 L 2 . Thus 2 Op (ψ (ξ)∂ 2 x a)u 1 h L 2 = O( 5 2 ). Therefore, by Caldrón-Vaillancourt (Theorem B.1), we can write ih[ψ( D x ), a] = h A a 1 2 + h 2 B ∂ x (a 1 2 ) + O L(L 2 ) (h 3 ), with A , B bounded operators on L 2 , uniformly in . Since |∂ x (a 1 2 )| a 1 2 -σ
, by (a) of Lemma 3.2 and the interpolation, we get

ih[ψ( D x ), a]u 1 h L 2 = o(h 2 ) + O(h 3
). This completes the proof of Lemma 4.2.

Remark 4.3. Compared to [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF] where the damping only satisfies a ∈ W k 0 ,∞ (T 2 ) and |∇a| a 1-σ , our assumption a ∈ D m,2,σ is slightly stronger, in order to ensure the commutator of the damping term is still a remainder. Indeed, here we chose = h [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF], the authors chose = h α , α < 1 3 (see the sentence after Proposition 7.2 of [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF]). The use of the sharp Gårding as in [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF] would not get o(h 2 ) for the remainders r 1,h , r 2,h . We also remark that a direct application of the Caldrón-Vaillancourt theorem in the symbolic calculus requires a 1 2 ∈ W 3,∞ . Since we assume only a ∈ D m,2,σ , (thus a 1 2 ∈ W 2,∞ ), we need to exploit the special structure of the commutator [ψ( D x ), a] and apply the special symbolic calculus Lemma B.4.

1 2 δ 1 2 h h 1 2 while in
Recall that ω 0 = I 0 × T y .

Lemma 4.4. We have

w h 1 ω 0 L 2 + h∇w h 1 ω 0 L 2 = O(h 1 2 ), as h → 0.
Proof. The proof follows from the classical propagation argument, using the geometric control condition. Take small intervals I 0 ⊂ T x , I 1 = (σ 1 , σ 2 ) ⊂ T y , such that I 0 ⊂ I 0 and ω 1 = I 0 × I 1 ⊂ {a ≥ δ 0 } for some δ 0 > 0. For any z 0 = (x 0 , y 0 ) ∈ ω 0 , by the geometric control condition, there exist T 1 > 0, δ 1 > 0, δ 2 > 0, and the small neighborhood U = (x 0 -δ 1 , x 0 + δ 1 ) × (y 0 -δ 1 , y 0 + δ 1 ) of z 0 , such that for all |ζ -ζ 0 | ≤ 0 , z ∈ U , we have

z + sζ ∈ ω 1 , s ∈ [T 1 -δ 2 , T 1 + δ 2 ].
In particular, a(z + sζ) ≥ δ 0 . Without loss of generality, we assume that π > σ

2 > σ 1 > y 0 + δ 1 > y 0 -δ 1 > -π. Pick two cutoffs χ 1 (x), χ 2 ≥ 0, supported in (x 0 -δ 1 , x 0 + δ 1 ), (y 0 -δ 1 , y 0 + δ 1 ) and equal to 1 on (x 0 -δ 1 /2, x 0 + δ 1 /2), (y 0 -δ 1 /2, y 0 + δ 1 /2), with respectively. Let χ 0 ∈ C ∞ c (R) be a cutoff near |ζ -ζ 0 | ≤ 0 . For any s ≥ 0, define the symbol b s (z, ζ) := χ 0 (ζ) • (χ 1 ⊗ χ 2 ) • ϕ -s (z, ζ) = χ 0 (ζ)χ 1 (x -sξ)χ 2 (y -sη). ω 0 ω 1 U ϕ T0 (•, ζ)(U ) ⊂ ω 1 Direct computation yields d ds (Op h (b s )w h , w h ) L 2 =(Op h (∂ s b s )w h , w h ) L 2 = -(Op h (ζ • ∇ z b s )w h , w h ) L 2 .
Integrating this equality from s = 0 to s = T 0 ,

(Op h (b T 1 )w h , w h ) L 2 -(Op h (b 0 )w h , w h ) L 2 = - T 1 0 (Op h (ζ • ∇ z b s )w h , w h ) L 2 ds. (4.6) Note that for fixed s ∈ [0, T 1 ], i h [P h , Op h (b s )] = 2Op h (ζ • ∇ z b s ) + O L(L 2 ) (h),
we have

(Op h (b 0 )w h , w h ) L 2 =(Op h (b T 1 )w h , w h ) L 2 + i 2h T 1 0 ([P h , Op h (b s )]w h , w h ) L 2 + O(h). (4.7)
Using the equation

P h w h = r 2,h -ihaw h , we have 1 h ([P h , Op h (b s )]w h , w h ) L 2 = 2i h Im(Op h (b s )w h , r 2,h -ihaw h ) L 2 =o(h 1+δ ) + O(1) a 1 2 w h L 2 a 1 2 Op h (b s )w h L 2 =O(h), (4.8) 
where to the last step, we write

a 1 2 Op h (b s ) = Op h (b s )a 1 2 + [a 1 2 , Op h (b s )]
and use the last assertion of Lemma 4.2, as well as the symbolic calculus.

Finally, from the support property of b 0 (z) = χ 0 (ζ)χ 1 (x)χ 2 (y), we have

a(z)χ 0 (ζ) ≥ δ 0 b T 1 (z, ζ).
Thus by the sharp Gårding inequality,

(Op h (b T 1 )w h , w h ) L 2 ≤ δ -1 0 (Op h (a(z)χ 0 (ζ))w h , w h ) L 2 + O(h) ≤ Cδ -1 0 a 1 2 w h 2 L 2 + O(h).
Combining this with (4.7),(4.8) and the last assertion of Lemma 4.2, we deduce that

w h 1 U L 2 = O(h 1 2 ), h∇w h 1 U L 2 = O(h 1 2 )
. By the partition of unity of ω 0 , we complete the proof of Lemma 4.4. Now we are ready to prove the main result in this section, that is the transversal high frequency part is of order o L 2 (1): Proposition 4.5. We have

w h L 2 = O(δ h ) = O( h -1 2 ), as h → 0.
Proof. We use the positive commutator method to detect the transversal propagation, similarly as in [START_REF] Burq | Sun Time optimal observability for the Grushin-Schrödinger equation[END_REF]. Recall that ω 0 = I 0 × T and

I 0 = (-σ 0 , σ 0 ), σ 0 < π 100 . Take φ = φ(x) ∈ C ∞ (T x ; [0, 1]) such that: supp(1 -φ) ⊂ I 0 , φ ≡ 0 near[- σ 0 2 , σ 0 2 ], supp(φ ) ⊂ I 0 .
Denote by

X(x) := (x + π)1 -π≤x<-σ 0 2 + (x -π)1 σ 0 2 ≤x<π ,
then φ(x)X∂ x is well-defined smooth vector field on T 2 . We now compute the inner product

([P h , φ(x)X∂ x ]w h , w h ) L 2
in two ways. On the one hand, from the commutator relation

[P h , φ(x)X∂ x ] = -2(φX) h 2 ∂ 2 x -h 2 (φX) ∂ x ,
we have

([P h , φ(x)X∂ x ]w h , w h ) L 2 ≥2(φ(x)h∂ x w h , h∂ x w h ) L 2 -C (φ (x)) 1/2 h∂ x w h 2 L 2 -Ch h∂ x w h L 2 w h L 2 . (4.9)
On the other hand, using the equation (4.5), we have

([P h , φ(x)X∂ x ]w h , w h ) L 2 =(φ(x)X∂ x w h , r 2,h -ihaw h ) L 2 -(φ(x)X∂ x (r 2,h -ihaw h ), w h ) L 2 ≤ C h ( h∂ x w h L 2 + h w h L 2 ) r 2,h L 2 + C a 1/2 h∂ x w h L 2 a 1 2 w h L 2 + C a 1 2 w h 2 L 2 . (4.10)
Combining (4.9) and (4.10) and Lemma 4.4, we get

h∂ x w h 2 L 2 ≤C h∂ x w h 1 ω 0 2 L 2 + C a 1/2 h∂ x w h 2 L 2 + C a 1 2 w h 2 L 2 + C h 2 r 2,h 2 L 2 + Ch 2 w h 2 L 2 ≤O(h) + o(hδ h ).
In particular, by the definition fo w h , we have

C(h -1 ) w h L 2 ≤ h∂ x w h L 2 ≤ O(h 1 2 ),
and this completes the proof of Proposition 4.5.

Reducing the dimension by averaging

Now we treat the transversal low frequency part v h = ψ( D x )u 1 h , defined in (4.3). The idea is to use the averaging argument of Sjöstrand ([Sj]) and Hitrick ( [START_REF] Hitrik | Eigenfrequencies for damped wave equations on Zoll manifolds[END_REF]) to average the operator P h + iha along the direction e 2 = (0, 1). Recall that A(a) is the averaging of a along the vertical direction. Recall that v h satisfies the equation

(P h + iha)v h = r 1,h = o L 2 (h 2 δ h ) = o L 2 (h 2 ).
We will apply successively two averaging reduction. The first reduction replaces iha by ihA(a), with a O(h 2 ) anti-selfadjoint remainder which cannot be absorbed directly as a remainder of size O(h 2 δ h ). We need to perform a second normal form reduction to average the anti-selfadjoint remainder. We will also fix a cutoff

ψ 1 ∈ C ∞ c (R), supported on |η ± 1| ≤ 1 2 and ψ 1 (η) = 1 if |η ± 1| ≤ 1 4 .
We need the following basic lemma for exponentials of bounded linear operators: Lemma 5.1. Let (G h ) 0<h<1 be a family of h-dependent, uniformly bounded operators on a Hilbert space H. Defining the exponential via

e sG h := ∞ k=0 (sG h ) k k! , s ∈ R.
Then the operator e sG h is invertible with inverse e -sG h . Moreover,

e sG h L(H) ≤ e |s| G h L(H) < ∞.
For 

[e sG h , B] L(H) ≤ |s|e 3|s| G h L(H) ad G h (B) L(H) .
(5.2)

Finally, we have the Taylor expansion

e sG h Be -sG h = N -1 k=0 s k k! ad k G h (B) + 1 (N -1)! 1 0 (1 -s) N -1 e sG h ad G h (B)e -sG h ds, ∀N ∈ N, (5.3) 
where

ad k A (B) = ad A (ad k-1 A (B)), ad 0 A (B) = B. Proof. Assume that G h L(H) ≤ M for all h ∈ (0, 1). The series ∞ k=0 (sG h ) k L(H) k! ≤ ∞ k=0 |s| k M k k! = e |s|M
converges absolutely. Therefore, e sG h L(H) ≤ e |s| G h L(H) .

To show that e sG h is invertible, again, by the absolute convergence of the series k≥0

(sG h ) k L(H) k!
, we deduce that

e -sG h e sG h = ∞ k=0 s k G k h k! k 1 +k 2 =k (-1) k 1 • k! k 1 !k 2 ! = Id.
Therefore, e sG h is invertible with inverse e -sG h . One easily verifies that G h commutes with e sG h and d ds e sG h = G h e sG h = e sG h G h . This implies (5.1). To prove (5.2), we remark that

[e sG h , B] = s 0 e s G h ad G h (B)e -s G h ds e sG h .
(5.4)

Taking the operator norm we obtain (5.2). The last identity (5.3) follows directly from the Taylor expansion with integral remainders. The proof of Lemma 5.1 is complete.

We now state and prove the main result in this subsection:

Proposition 5.2. Given g(x, y, η) = -ψ 1 (η) 2η A(x, y) and G h = Op w h (g). Let v

(1)

h := e G h v h . Then P h v (1) h + ihA(a)v (1) h -[h 2 D 2 x , G h ]v (1) h = r h = o L 2 (h 2 ). Moreover, v (1) h satisfies (a) a 1 2 v (1) h L 2 + A(a) 1 2 v (1) h L 2 = o( ). (b) WF m h (v (1) h ) ⊂ WF h (v h ) ⊂ {(z, ζ) : ζ = ζ 0 = (0, 1)}. (c) For any ψ ∈ C ∞ c (R; [0, 1]) such that ψ(ξ) = 1 on the support of ψ which defines v h in (4.3), we have (1 -ψ( D x ))v
(1)

h = O L 2 (h N 2 ), for any N ≤ m.
From Proposition 5.2, one may deduce from Lemma 2.3 that the anti-selfadjoint remainder satisfies

[G h , h 2 D 2 x ]v
(1)

h = o L 2 (h 2
). Though we can not absorb it directly as an error of order o(h 2 ), its principal part is non selfadjoint and can be viewed as an lower order perturbation of the averaged damping ihA(a). In the next subsection, we will perform a second normal form to average the operator [G h , h 2 D 2

x ] so that it becomes independent of the variable y.

Proof. To simplify the notation, we will use R h to denote operators of size at most O L(L 2 ) (h 2 ) and r h to denote errors of size o L 2 (h 2 ). Both of them may change from line to line.

Our goal is to find an exponential (elliptic) e G h for some G h = Op w h (g) with g ∈ S 0 (T y × R η ), depending smoothly in x such that e G h (P h + iha)e -G h = P h + ihA(a) + lower orders.

To find the operator G h , we consider the conjugate operator F h (s) := e sG h (P h + iha)e -sG h Using the Taylor expansion (5.3) up to order N = 2 in Lemma 5.1 and the symbolic calculus, we get

F h (1) = P h + iha -ih • i h [G h , P h + iha] + 1 2 [G h , [G h , P h + iha]] + R h .
To average the leading order of the anti-selfadjoint part iha, we expect the principle symbol of ai h [G h , h 2 D 2 y ] to be A(a). To this end, we need to solve the cohomological equation

a + H |η| 2 (g) = A(a). Set g(x, y, η) = - ψ 1 (η) 2η y -π (a(x, y ) -A(a)(x))dy .
where ψ 1 is defined at the beginning of Subsection 5.1. We can indeed define explicitly the quantization of g as

G h = Op w h (g) = - ψ 1 (hD y ) 4hD y A(x, y) -A(x, y) ψ 1 (hD y ) 4hD y .
Then G h is self-adjoint and is O(1) h-semiclassical of order 0 and O(h -1 ) classical of order -1, smoothly depending on x ∈ T. In particular, G h is uniformly bounded on L(L 2 (T 2 )). Therefore, by Lemma 5.1, the operators

e sG h := ∞ n=0 s n G n h n! , e -sG h = ∞ n=0 (-1) n s n G n h n! .
are well-defined and invertible on L 2 (T 2 ), and e sG h e -sG h = e -sG h e sG h = Id, for all s ∈ R.

Now we write down the full conjugate operator:

F h (1) = e G h (P h + iha)e -G h =P h + ihA(a) + ih(a -A(a)) -[h 2 D 2 y , G h ] -[h 2 D 2 x , G h ] + ih[G h , a] + 1 2 [G h , [G h , P h ]] + R h .
(5.5)

Here the lower order operators

ih(a -A(a)) -[h 2 D 2 y , G h ], ih[G h , a], [G h , [G h , P h ]]
are not in priorly negligible, since they are merely of order O L(L 2 ) (h 2 ). Nevertheless, it turns out that they are negligible when acting on the function v

(1) h := e G h v h . We will prove this fact through several lemmas. First we show that the normal form transform e G h v h does not alter WF h (v h ). In particular, we prove (b), (c) of Proposition 5.5:

Lemma 5.3. We have WF m h (v (1) h ) ⊂ WF h (v h ). Moreover, for any ψ ∈ C ∞ c (R; [0, 1]) such that ψ(ξ) = 1 on the support of ψ which defined v h in (4.3), we have (1 -ψ( D x ))v (1) h L 2 = O(h N 2 ), for any N ≤ m.
Proof. Let l(z, ζ) be a symbol supported on a compact set of T * T 2 \ WF h (v h ) and L h = Op h (l), it suffices to show that

L h e G h v h = O L 2 (h N ),
for any N ≤ m. Recall that by definition of WF m h (v h ) (see the end of Appendix B), for any hpseudodifferential operator Q h with the principal symbol supported away from WF h (v h ),

Q h v h = O L 2 (h N ).
Using again (5.3), we write

L h e G h v h =e G h (e -G h L h e G h )v h =e G h N -1 n=0 (-s) n n! ad n G h (L h )v h - 1 (N -1)! e G h 1 0 (1 -s) N -1 e -sG h ad N G h (L h )e sG h v h ds.
By the symbolic calculus, the last term is O L 2 (h N ), and for each n

≤ N -1, ad n G h (L h ) is a h- pseudodifferential operator with symbol supported away from WF h (v h ), thus ad G h (L h )v h = O L 2 (h N ). This shows that WF m h (v (1) h ) ⊂ WF h (v h ).
For the second assertion, we first note that, since v

(1) h = ψ( D x )u 1 h , (1 -ψ( D x ))v h = O L 2 (h N
) for all N ≤ m. We observe also that since G h is of the form

G h = b(hD y )A(x, y) + A(x, y)b(hD y )
and the Fourier multiplier b(hD y ) commutes with ψ( D x ), we have

[G h , ψ( D x )]v (1) h = b(hD y )[A, ψ( D x )]v (1) h + [A, ψ( D x )]b(hD y )v (1) h = O L 2 ( N ) = o L 2 (h N 2 ),
for all N ≤ m, since [A, ψ( D x )] is a -pseudodifferential operator with symbol supported away from the support of ψ(ξ), thanks to the fact that ψ ≡ 1 on supp(ψ). More generally, for any other cutoff χ 1 such that χ 1 = 1 on supp(ψ), we always have

(1 -χ 1 ( D x ))G h v (1) h = O L 2 ( N ), N ≤ m. Since ad n+1 G h ( ψ( D x ))v (1) h = G h ad n G h ( ψ( D x ))v (1) h -ad n G h ( ψ( D x ))G h v (1) h . By writing G h v (1) h = (1 -χ n ( D x ))G h v (1) h + χ n ( D x )G h v (1)
h for some cutoffs χ n , 1 ≤ n ≤ N , such that ψ = 1 on supp(χ n ) and χ n+1 = 1 on supp(χ n ). Therefore, by induction, we deduce that for every

1 ≤ n ≤ N , ad n G h ( ψ( D x ))v
(1)

h = O L 2 ( N ), ∀N ≤ m. By Taylor expansion, this shows that e -G h (1 -ψ( D x ))e G h v h = O L 2 ( N ). The proof of Lemma 5.3 is now complete. Next we show that ih(a -A(a))v (1) h -[h 2 D 2 y , G h ]v (1) h and ih[G h , a]v (1) 
h are indeed remainders. Lemma 5.4. We have

a 1 2 v (1) h L 2 = o( ), ih [G h , a]v (1) h L 2 = O(h 2 ) and ih(a -A(a))v (1) h -[h 2 D 2 y , G h ]v (1) h L 2 = o(h 2 ).
Proof. Since a

1 2 ∈ W 1,∞ , by Lemma B.2, e -G h a 1 2 e G h = a 1 2 + O L(L 2 ) (h) and a 1 2 v h = o L 2 ( ), we have a 1 2 v (1) h = e G h (a 1 2 v h + O L 2 (h)) = o L 2 ( ). Note that [G h , a] = a 1 2 [G h , a 1 2 ] + [G h , a 1 2 ]a 1 2 = 2[G h , a 1 2 ]a 1 2 + [a 1 2 , [G h , a 1 2 ]], Since a 1 2 ∈ W 1,∞ , from Corollary B.2, we have ih [G h , a]v (1) h L 2 ≤ Ch 2 a 1 2 v (1) h L 2 + Ch 3 v (1) h L 2 = o(h 2 ).
For the last assertion, denote by b(η) = -ψ 1 (η) 4η , then G h = b(hD y )A + Ab(hD y ), where A = A(x, y).

Direct computation yields

[h 2 D 2 y , G h ] =i h 2 ψ 1 (hD y )∂ y A + ∂ y Aψ 1 (hD y ) -h 2 ∂ 2 y Ab(hD y ) -b(hD y )∂ 2 y A . Since ∂ y A = (a -A(a)), ∂ 2 y A = ∂ y a.
Using the symbolic calculus, we are able to write

ih(a -A(a))v (1) h -[h 2 D 2 y , G h ]v (1) h =ih(1 -ψ 1 (hD y ))(a -A(a))v (1) h + ih 2 [ψ 1 (hD y ), a]v (1) h +h 2 B h ∂ y av (1) h + O L 2 (h 3 ), where B h = O L 2 (1), uniformly in 0 < h < 1. Note that supp(1 -ψ 1 (η)) ∩ WF m h (v h ) = ∅, hence by the first assertion of Lemma 5.3, supp(1 -ψ 1 (η)) ∩ WF m h (v (1) h ) = ∅, the first term on the right side is O L 2 (h 3 ), say. Next, writing [ψ 1 (hD y ), a] as 2[ψ 1 (hD y ), a 1 2 ]a 1 2 + [a 1 2 , [ψ 1 (hD y ), a 1 
2 ]], using the first inequality of Lemma 5.4 and Corollary B.2, we get

h[ψ 1 (hD y ), a]v (1) h = o L 2 (h 2 ).
Finally, since |∂ y a| a 1 2 , we deduce that h 2 B h ∂ y av

(1)

h = o L 2 (h 2
). The proof of Lemma 5.4 is now complete.

Our next goal is to show that

[G h , [G h , P h ]]v (1)
h is a remainder. The argument is slightly more tricky. To this end, we need to exploit an extra smallness from the operator G h . This in turns requires to show that A(a)

1 2 v (1) h L 2 has the same order of a 1 2 v (1) h L 2 . The key observation is that, modulo O L(L 2 ) (h 3 ), the operator [G h , [G h , P h ]
] is self-adjoint, thus we can perform the same energy estimate for the anti-selfadjoint part only, as in the proof of (a) in Lemma 3.2.

Lemma 5.5. If hδ

-1 3 h = o(1), we have A(a) 1 2 v (1) h L 2 = o( ).
Proof. Recall the notation that r h represents the error terms of size o L 2 (h 2 ), from Lemma 5.4 and (5.5), we have the equation

P h + ihQ h + 1 2 [G h , [G h , P h ]] v (1) h = r h = o L 2 (h 2 ), (5.6) 
where

Q h = A(a) + i h [h 2 D 2 x , G h ].
Multiplying by v 1 h , integrating and taking the imaginary part, we have

h(Q h v (1) h , v (1) 
h ) L 2 = Im(v (1) h , r h ) L 2 - 1 2 Im([G h , [G h , P h ]]v (1) h , v (1) h ) L 2 . Since ([G h , [G h , P h ]]) * -[G h , [G h , P h ]] = O L 2 (h 3 ), we have |(Q h v (1) h , v (1) 
h ) L 2 | ≤ o( 2 ).
(5.7)

To conclude, we need to estimate

|( i h [h 2 D 2 x , G h ]v (1) h , v (1) h ) L 2 |. Note that, i h [h 2 D 2 x , G h ] = 2(∂ x G h )hD x -ih(∂ 2 x G h ). Recall that with b(η) = -χ(η) 4η , we have ∂ j x G h = b(hD y )(∂ j x A) + (∂ j x A)b(hD y ) for j = 1, 2. By Lemma 2.3, |∂ j
x A| ≤ 4πA(a) 1-jσ . Thus for j = 1, 2, we can write6 

∂ j x G h = ∂ j x G h A(a) 1-jσ A(a) 1-jσ . For j = 1, 2, the operator ∂ j x G h A(a) 1-jσ is bounded on L 2 (T 2 ), since σ < 1 4 , we have |h(∂ 2 x G h v (1) h , v (1) h ) L 2 | h A(a) 1-2σ v (1) h L 2 v (1) h L 2 h A(a) 1 2 v (1) h L 2 v (1) h L 2 .
(5.8)

Denote by G h = ∂xG h A(a) 1-σ , which is self-adjoint, uniformly bounded on L 2 and commutes with A(a), we have

|(∂ x G h hD x v (1) h , v (1) h ) L 2 | = |( G h A(a) 1 2 A(a) 1 2 -σ hD x v (1) h , v (1) h ) L 2 | A(a) 1 2 hD x v (1) h L 2 A(a) 1 2 -σ v (1) h L 2 .
(5.9) From Lemma 5.3, modulo an acceptable error O L 2 (h 3 ), say, we may replace hD x v

(1)

h by h -1 b 1 ( D x )v (1)
h , with b 1 (ξ) = ξ ψ(ξ). By the Corollary B.2 and the fact that A(a)

1 2 ∈ W 1,∞ (since A(a) ∈ D m,2,σ ), we have A(a) 1 2 hD x v (1) h L 2 ≤h -1 [A(a) 1 2 , b 1 ( D x )]v (1) h L 2 + h -1 b 1 ( D x )A(a) 1 2 v (1) h L 2 + O(h 3 ) h v (1) h L 2 + h -1 A(a) 1 2 v (1) h L 2 + O(h 3 ).
Combining this with interpolation:

A(a) 1 2 -σ v (1) h L 2 ≤ v (1) h 2σ L 2 A(a) 1 2 v (1) h 1-2σ
L 2 , we get from (5.9) that

|(∂ x G h hD x v (1) h , v (1) h ) L 2 | h v (1) h 1+2σ L 2 A(a) 1 2 v (1) h 1-2σ L 2 + h -1 v (1) h 2σ L 2 A(a) 1 2 v (1) h 2-2σ L 2 + O(h 3 ).
Together with (5.7) and (5.8), we finally get

A(a) 1 2 v (1) h 2 L 2 h A(a) 1 2 v (1) h L 2 v (1) h L 2 + h v (1) h 1+2σ L 2 A(a) 1 2 v (1) h 1-2σ L 2 +h -1 v (1) h 2σ L 2 A(a) 1 2 v (1) h 2-2σ L 2 + o( 2 ).
By Young's inequality

K 1 K 2 ≤ K p 1 + C K p 2 , 1 p + 1 p = 1, > 0,
we deduce that

A(a) 1 2 v (1) h 2 L 2 ≤ 1 2 A(a) 1 2 v (1) h 2 L 2 + C max{h 2 , (h -1 ) 1 σ , h 2 1+2σ } v (1) h 2 L 2 + o( 2 )
Note that σ < 1 4 since β ≥ 4, and h 3 δ -1 h = o(1), the second term on the right hand side is o( 2 ). This completes the proof of Lemma 5.5.

Finally, we note that the principle symbol of -

1 h 2 [G h , [G h , P h ]] is q 0 (x, y, ξ, η) = -∂ η g∂ y (2ξ∂ x g + 2η∂ y g) + ∂ x g∂ ξ (2ξ∂ x g + 2η∂ y g) + ∂ y g∂ η (2ξ∂ x g + 2η∂ y g).
Since g(x, y, η) = 2b(η)A(x, y) = 2b(η) y -π (a(x, y ) -A(a)(x))dy . We deduce from Lemma 2.3 and the fact that a, A(a) ∈ D m,2,σ , σ < 1 4 that |q 0 (x, y, ξ, η)| 2 ≤ Ca(x, y) + CA(a)(x) + q 1 (x, y, ξ, η),

where supp(q 1 ) ∩ WF m h (v (1) 
h ) = ∅. Therefore, by the sharp Gårding inequality,

1 h 2 [G h , [G h , P h ]]v (1) h L 2 ≤ C a 1 2 v (1) h L 2 + C A(a) 1 2 v (1) h L 2 + O(h 1 2 ) = o(δ h ). Hence [G h , [G h , P h ]]v (1) h = o L 2 (h 2 δ h ) = o L 2 (h 2
). The proof of Proposition 5.2 is now complete. 5.2. The second averaging. In this subsection, we prove the following proposition of the second normal form reduction. Unlike the first normal form which is less perturbative (the operator e G h is not close to the identity), we are able to make the normal form transform close to the identity, in the spirit of [START_REF] Burq | Control for Schrödinger equations on tori[END_REF] (see also [START_REF] Burq | Sun Time optimal observability for the Grushin-Schrödinger equation[END_REF], [LeS] for related applications to the Bouendi-Grushin operators):

Proposition 5.6. There exist real-valued symbols g 1 (x, y, η), b 1 (x, η) in S 0 and the associated pseudodifferential operator G 1,h = Op h (g 1 ) on L 2 (T y ), the function κ(x) ∈ W 1,∞ (T x ), the Fourier multiplier b(hD y ), such that v

(2)

h := (Id -G 1,h hD x ) -1 v (1)
h satisfies the equation

(P h + ihA(a))v (2) h + ihκ(x)A(a) 1 2 b(hD y )hD x v (2) h = r 4,h = o L 2 (h 2 ).

Moreover, v

(2)

h -v (1) h L 2 = O(h -1 ), A(a) 1 2 v (2) h L 2 = o( ).
The importance of the above proposition is that it makes possible to take the Fourier transform in y variable and reduce the equation of v

(2) h mode-by-mode to one-dimensional ordinary differential equations.

To prove Proposition 5.6, we want to average the non self-adjoint part [h 2 D 2

x , G h ] in the equation

(P h + iA(a))v (1) h -[h 2 D 2 x , G h ]v (1) h = r h = o L 2 (h 2
). We first identify the principal part of this lower order non-selfadjoint part: Lemma 5.7. We have

[h 2 D 2 x , G h ]v (1) h = -4ih 2 -1 (∂ x A)b(hD y ) D x v (1) h + o L 2 (h 2 ). Moreover, [h 2 D 2 x , G h ]v (1) h = o L 2 (h 2 ). Proof. Recall that G h = b(hD y )A + Ab(hD y ), hence [h 2 D 2 x , G h ] = [[h 2 D 2 x , A], b(hD y )] + 2b(hD y )[h 2 D 2 x , A]. The principal symbol of -1 h 2 [[h 2 D 2 x , A], b(hD y )] is q 2 (x, y, ξ, η) = -2ξb (η)(∂ x a -A (a)(x)). Thus from Lemma 2.3, |∂ x a| + |A (a)| ≤ Ca 1 2 + CA(a) 1 2 , thus |q 2 (x, y, ξ, η)| 2 ≤ Ca(x, y) + CA(a)(x) + q 3 (x, y, ξ, η), where supp(q 3 ) ∩ WF m h (v 1 h ) = ∅. By the sharp Gårding inequality (Theorem B.2), [[h 2 D 2 x , A], b(hD y )]v (1) h L 2 ≤ O(h 5 2 ) = o(h 2 ). It remains to treat b(hD y )[h 2 D 2 x , A]. Note that [h 2 D 2 x , A] = h 2 (D 2 x A) + 2h(D x A)hD x . From Lemma 5.3 we may replace v (1) h by ψ( D x )v (1) h . Therefore, [h 2 D 2 x , A]v (1) h = h 2 (D 2 x A)v (1) h + 2h 2 -1 b(hD y )(D x A) D x ψ( D x )v (1) h + O L 2 (h 3 ). From Lemma 2.3, |D j x A| A(a) 1-jσ ≤ A(a)
1 2 for j = 1, 2, we have

h 2 b(hD y )(D 2 x A)v (1) h = o L 2 (h 2 ).
Next, we write

hb(hD y )(D x A)hD x = h 2 -1 [b(hD y ), D x A] D x + h 2 -1 (D x A)b(hD y ) D x .
By the symbolic calculus, h 2 [b(hD y ),

D x A] D x ψ( D x )v (1) h = O L 2 (h 3 -1
). This completes the proof of Lemma 5.7.

Proof of Proposition 5.7. Thanks to Lemma 5.7, we can write

(P h + ihA(a))v (1) h + ihQ 1,h hD x v (1) h = r 2,h = o L 2 (h 2 ), where Q 1,h = -4(∂ x A)b(hD y ), b(η) = - χ(η) 4η .
Note that the principal symbol of Q 1,h is independent of ξ variable. Now we perform a second normal form transform. Recall that

A(x, y) = y -π (a(x, y ) -A(a)(x))dy .
Consider the ansatz v

(1) h = (1 -G 1,h hD x )v (2) 
h , where G 1,h will be chosen such that

G 1,h hD x = O L(L 2 ) (h -1 ). The new quasi-modes v (2)
h satisfy the equation

(P h + ihA(a) + ihQ 1,h hD x )v (2) h -[h 2 D 2 y , G 1,h hD x ]v (2) 
h = r 3,h where r 3,h =(1 -G 1,h hD x ) -1 r 2,h + (1 -G 1,h hD x ) -1 [h 2 D 2 x + ihA(a) + ihQ 1,h hD x , G 1,h hD x ]v (2) h + (1 -G 1,h hD x ) -1 -Id [h 2 D 2 y , G 1,h hD x ]v (2) 
h .

(5.10)

Note that if G 1,h hD x = O L(L 2 ) (h -1
), the operator (1 -G 1,h hD x ) is invertible for sufficiently small h (thus ). In particular, v

h = (1 -G 1,h hD x ) -1 v (1) h = ∞ n=0 (G 1,h hD x ) n v (1) h = 9 n=0 (G 1,h hD x ) n v (1) h + O L 2 (h 10 -10 ), (2) 
where the last error term is o L 2 (h 2 ). Since from Lemma 5.3, we may replace v

(1)

h by ψ( D x )v (1) h , modulo an error of O L 2 (h N 2 ) for any N ≤ m, we may also replace v (2) h by ψ( D x )v (2)
h implicitly in the argument below. Therefore, with G 1,h = Op h (g 1 ) ψ( D x ), we have

(P h + ihA(a))v (2) h + ihQ 1,h hD x v (2) h + ihOp h ({η 2 , g 1 })hD x v (2) h + h 2 C h hD x v (2) h = r 3,h ,
where C h is uniformly bounded on L 2 (T 2 ). Note that the last term on the right hand size is of size O L 2 (h 3 -1 ). Now we set 7

g 1 (x, y, η) = 2b(η) η y -π ∂ x A(x, y ) -A(∂ x A)(x) dy .
7 Recall that the support of b(η) is away from η = 0.

Then we have 2η∂

y g 1 -4(∂ x A)b(η) = -4A(∂ x A)(x)b(η). By the symbolic calculus, modulo an error of size O L 2 (h 3 -1 ), we can replace ih(Q 1,h +Op h ({η 2 , g 1 }))hD x v (2) h by -4ihA(∂ x A)b(hD y ) ψ( D x )hD x v (2) 
h . Therefore, the equation of v

(2)

h becomes (P h + ihA(a) -4ihA(∂ x A)b(hD y )hD x )v (2) h = r 4,h , where r 4,h = r 3,h + O L 2 (h 3 -1 ) = r 3,h + o L 2 (h 2 ). It is clear that v (2) h -v (1) h L 2 = O(h -1 ) = o(1)
, and from the relation

v (2) h = v (1) h + G 1,h hD x v (1) h + O L 2 (h 2 -2 ), we deduce that A(a) 1 2 v (2) h = o L 2 ( ). Set κ := - 4A(∂ x A) A(a) 1 2
, to complete the proof, we need to verify that

(i) κ ∈ W 1,∞ (T x ); (ii) r 3,h = o L 2 (h 2 ).
To verify (i), Observe that

A (f )(x) = A(∂ x f )(x)
, by Lemma 2.2 and Lemma 2.3 and the fact that σ < 1 4 , we have

|A(∂ j x A)| ≤ A(|∂ j x A|) ≤ CA(a) 1-jσ ≤ CA(a)
1 2 , ∀j = 1, 2, thanks to σ < 1 4 . This shows that κ, κ are bounded. It remains to prove (ii). Recall (5.10) and the fact that (1

-G 1,h hD x ) -1 -Id = O L(L 2 ) (h -1 ), it suffices to show that [h 2 D 2 x + ihA(a) + ihQ 1,h hD x , G 1,h hD x ]v (2) 
h = o L 2 (h 2 ) (5.11) and [h 2 D 2 y , G 1,h hD x ]v (2) 
h = o L 2 ( 3 ).
(5.12)

Denote by

A 2 (x, y) = y -π ∂ x A(x, y ) -A(∂ x A)(x) dy .
Pointwisely, we have

|A 2 | A(|∂ x A|) A(a) 1-σ , |∂ x A 2 | A(|∂ 2 x A|) A(a) 1-2σ and |∂ y A 2 | |∂ x A| + A(|∂ x A|) A(a) 1-σ ,
thanks to Lemma 2.3. Therefore,

|∇ j A 2 |v (2) h = o L 2 ( ), j = 0, 1.
(5.13) Note that by the symbolic calculus,

ih[Q 1,h hD x , G 1,h hD x ] = ih(h -1 ) 2 [Q 1,h D x , G 1,h D x ] = O L(L 2 ) (h 3 -1 ), which is o L(L 2 ) (h 2 ) since h 2 = o( 3 ).
For the other terms, if we only apply the symbolic calculus, we will gain only O(h 2 ) + O(h 3 -2 ) for (5.11) and O(h 2 -1 ) for (5.12), which are not enough to conclude.

We need to open the definition of G 1,h . Since h 2 = o( 3 ), it suffices to take into account the principal part of G 1,h . Therefore, without loss of generality, we assume that

G 1,h = A 2 (x, y)b 1 (hD y ) ψ( D x ), with b 1 (η) = 2b(η)
η . Note that any commutator will generate at least one more , the main contribu-

tion of [h 2 D 2 x , G 1,h hD x ] is -2ihb 1 (hD y ) ψ( D x )h 2 D 2 x (∂ x A 2 )v (2) h whose L 2 norm is o(h 3 -1 ) = o(h 2
), thanks to (5.13). Similarly, modulo acceptable errors from the commutators, the main contribution of

ih[A(a), G 1,h hD x ]v (2) h is ih 2 -1 b 1 (hD y )[A(a), ψ( D x ) D x ]A 2 v (2) h , whose L 2 norm is, thanks to (5.13), bounded by O(h 2 ) A 2 v (2) h L 2 = o(h 2
). This verifies (5.11). By the same argument, to verify (5.12), we note that, modulo acceptable errors from commutators, the main contribution of

[h 2 D 2 y , G 1,h hD x ]v (2) h is -ih -1 2h • hD y b 1 (hD y ) ψ( D x ) D x (∂ y A 2 )v (2) h , which is of size o L 2 (h 2 ) = o L 2 ( 3 )
, by (5.13). This verifies (5.12) and the proof of Proposition 5.6 is now complete.

One-dimensional resolvent estimate

From Proposition 5.6, v

h satisfies the equation

(P h + ihA(a))v (2) h + ihκ(x)A(a) 1 2 b(hD y )hD x v (2) h = r 4,h = o L 2 (h 2 ), (6.1) and v 
(2) h

L 2 = O(1), A(a) 1 2 v (2) h L 2 = o( ).
In this section, we are going to show that v

(2) h L 2 = o(1). Since the left hand side of (6.1) commutes with D y , by taking the Fourier transform in y, are can reduce the analysis to a sequence of one-dimensional problems.

6.1. 1D resolvent estimate for the Hölder damping. In order to finish the proof of Theorem 1.2, it remains to prove a one-dimensional resolvent estimate. Below we establish a slightly more general version. By abusing a bit the notation, we denote by v h,E ∈ H 2 (T x ), solutions of equations

-h 2 ∂ 2 x v h,E -Ev h,E + ihW (x)v h,E + h 2 κ h,E (x)W (x) 1 2 ∂ x v h,E = r h,E . (6.2)
We assume that (κ h,E ) h>0,E∈R is a uniform bounded family in W 1,∞ (T; R).

Proposition 6.1. Assume that W ∈ D m,2,θ (T x ), θ ≤ 1 4 be a non-negative function such that the set {W (x) > 0} is a disjoint unions of finitely many intervals

I j = (α j , β j ) ⊂ T x , j = 1, • • • , l and C -1 (x -α j ) 1 θ + ≤ W (x) ≤ C(x -α j ) 1 θ + in I j near α j (6.3) and C -1 (β j -x) 1 θ + ≤ W (x) ≤ C(β j -x) 1 θ
+ in I j near β j , (6.4) for all j ∈ {1, • • • , l}. Then there exists h 0 ∈ (0, 1) and C 0 > 0, such that for all h ∈ (0, h 0 ) and all E ∈ R, the solutions v h,E of (6.2) satisfy the uniform estimate

v h,E L 2 ≤ C 0 h -2-θ 2θ+1 r h,E L 2 + C 0 h -3θ+1 2(2θ+1) W 1 2 v h,E L 2 .
(6.5) Remark 6.2. We will reduce the proof, in the low-energy hyperbolic regime to a known onedimensional resolvent estimate (Proposition 6.9), which is the main result of [DKl]. However, in the paper of [DKl], the final gluing argument is not clear to the author and seems to be abundant.

For this reason as well as self-containedness, we will reprove Proposition 6.9 (thus Theorem 1.3) in a more transparent way in Appendix A.

We postpone the proof of Proposition 6.1 for the moment and proceed on proving Theorem 1.2.

Let θ = 2 2β+1 and k = 2m, δ = θ 2θ+1 , and = h 2θ+1) . Let W (x) = A(a)(x). By Proposition 2.4, W ∈ D m,2,θ (T x ) and W satisfies (6.3), (6.4) near the vanishing points inside the damped region. Take the Fourier transform in y for (6.1) and denote by v

1+δ 2 = h 1 2 δ 1 2 h = h 3θ+1 2 ( 
(2) h,n (x) = F y (v (2) h )(x, n), we have (-h 2 ∂ 2 x + h 2 n 2 -1 + ihW (x) + h 2 κ(x)W (x) 1 2 b(hn)∂ x )v (2) h,n = F y r 4,h . Recall that r 4,h L 2 (T 2 ) = o(h 2 ) = o(h 2+δ ) and W 1 2 v (2) h L 2 (T 2 ) = o( ) = o(h 1+δ 
2 ). Let E = 1 -h 2 n 2 and κ h,E (x) = κ(x)b(hn) which is uniformly bounded in W 1,∞ (T) with respect to h and n. Applying Proposition 6.1 for each fixed n ∈ Z and then taking the l 2 n norm, by Plancherel we get

v (2) h L 2 h -2-δ r 4,h L 2 (T 2 ) + h -1+δ 2 W 1 2 v (2) h L 2 (T 2 ) = o(1).
This contradicts to (3.1) and the proof of Proposition 3.1 (as well as Theorem 1.2) is complete.

Now we provide the proof of Proposition 6.1. In what follows, we note that δ = θ 2θ+1 ≤ 1 6 . We argue by contradiction. Assuming that for any sequence h n → 0 and (E n ) ⊂ R, the solutions (v hn,En ) to

(-h 2 n ∂ 2 x -E n + ih n W (x) + h 2 n κ hn,En (x)W (x) 1 2 ∂ x )v hn,En = r hn,En (6.6) satisfy v hn,En L 2 = 1, r hn,En L 2 = o(h 2+δ n ), W 1 2 v hn,En L 2 = o(h 1+δ 2 n ).
In what follows, when we use the asymptotic notations as small o and O, we mean a limit (or bound) independent of the sequences h n → 0 and E n , as n → ∞. To simplify the notation, we will sometimes omit the subindex n in the sequel. For a function f , sometimes we denote by f = ∂ x f . Also, when we write , , the implicit bounds are independent of h and E.

We record an elementary weighted energy identity which allows us to deal with the elliptic regime where E h 2 . Lemma 6.3 (Weighted energy identity). Let w ∈ C 2 (T; R), then

T w(x)|h∂ x v h,E | 2 dx + T (- 1 2 h 2 ∂ 2 x w -Ew)|v h,E | 2 - h 2 2 T (wκ h,E W 1 2 ) |v h,E | 2 dx = Re T wr h,E v h,E dx.
(6.7)

Proof. Multiplying (6.6) by wv h,E and integrating over T, taking the real part and using the relation

(|v h,E | 2 ) = 2 Re(v h,E v h,E ), we get Re T h 2 (wv h ) v h,E dx - T Ew|v h,E | 2 - h 2 2 T (wκ h,E W 1 2 ) |v h,E | 2 dx = Re T wr h,E v h,E dx.
To finish the proof, we just write Re(w v h,E v h,E ) = 1 2 w (|v h,E | 2 ) and do the integration by part.

By choosing w = 1 and using the fact that κ h,E is uniformly bounded in L ∞ (T) and (W

1 2 ) W 1 4 , we have h 2 |((κ h,E W 1 2 ) , |v h,E | 2 ) L 2 | h 2 W 1 8 v h,E 2 L 2 ≤ h 2 v h,E 3 2 L 2 W 1 2 v h,E 1 2 L 2 = o(h 9+δ 4 ).
Since δ ≤ 1 6 , we have: Corollary 6.4 (Energy identity). There holds

h∂ x v h,E 2 L 2 -E v h,E 2 L 2 = o(h 2+δ ).
The proof of Proposition 6.1 will be divided into several steps, according to the range of E.

•(A) Elliptic regime E h 2 : Recall that W is supported on disjoint intervals I j = (α j , β j ) ⊂ (-π, π), j = 1, • • • , l.
Therefore, we are able to construct a weight w ∈ C 2 (T; R) such that w ≥ c 0 > 0, w < 0, in a neighborhood of T \ ∪ l j=1 I j . Therefore, there exists c 1 > 0, sufficiently small, such that -1 2 w (x) -c 1 w > 0, in a neighborhood of T \ ∪ l j=1 I j .

Lemma 6.5. If E ≤ c 1 h 2 , the solution v hn,En satisfies

v h,E L 2 h -2 r h,E L 2 + W 1 2 v h,E L 2 .
Proof. Since E ≤ c 1 h 2 , we have 1 2 h 2 w + Ew < 0 in a neighborhood of T \ ∪ l j=1 I j . Thus there exists a compact set K ⊂ ∪ l j=1 I j such that

T ( 1 2 h 2 ∂ 2 x w + Ew)|v h,E | 2 dx ≤ K ( 1 2 h 2 ∂ 2 x w + Ew)|v h,E | 2 dx h 2 T W (x)|v h,E | 2 dx.
Then applying Lemma 6.3, we have

c 0 h∂ x v h,E 2 
L 2 ≤ T w(x)|h∂ x v h,E | 2 dx ≤ Re T wr h,E v h,E dx + h 2 T W (x)|v h,E | 2 dx + C h 2 2 T (wκ h,E W 1 2 ) |v h,E | 2 dx. Note that |(wκ h,E W 1 2 ) | W 1 4 (x), by interpolation W 1 8 v h,E 2 
L 2 ≤ W 1 2 v h,E 1 2 L 2 v h,E 3 2 L 2
and Young's inequality, we deduce that

v h,E L 2 ≤ Ch -1 v h,E 1 2 L 2 r h,E 1 2 L 2 + C W 1 2 v h,E L 2 + v h,E L 2 , ∀ > 0.
By the Poincaré-Wirtinger inequality,

v h,E -v h,E (0) L 2 (T) ≤ C v h,E L 2 ,
where v h,E (0) = 1 2π T v h,E . Combining with the fact that T W > 0 and the elementary inequality

T W dx | v h,E (0)| 2 ≤ C T W (x)|v h,E (x)| 2 dx + C T W (x)|v h,E (x) -v h,E (0)| 2 dx, we deduce that v h,E L 2 + v h,E L 2 h -1 wv h,E 1 2 L 2 r h,E 1 2 L 2 + W 1 2 v h,E L 2 .
Using Young's inequality again to absorb v h,E L 2 to the left, we complete the proof of Lemma 6.5.

•(B) High energy hyperbolic regime E > h 1+δ : In this regime, we put the damping terms to the right as remainders and use the estimate from the geometric control as a black box. Let us recall: Lemma 6.6. Let I ⊂ T be a non-empty open set. Then there exists C = C I > 0, such that for any v ∈ L 2 (T),

f 1 ∈ L 2 (T), f 2 ∈ H -1 (T), λ ≥ 1, if (-∂ 2 x -λ 2 )v = f 1 + f 2 , we have v L 2 (T) ≤ Cλ -1 f 1 L 2 (T) + C f 2 H -1 (T) + C v L 2 (I) .
The proof is standard and can be found, for example in [START_REF] Burq | Decays for Kelvin-Voigt Damped Wave Equations I: The Black Box Perturbative Method[END_REF] (Proposition 4.2). In the onedimensional setting, a straightforward proof using the multiplier method is also available. Consequently, we have:

Corollary 6.7. If E > h 1+δ , then v h,E L 2 (T) h -3+δ 2 r h,E L 2 (T) + h -1+δ 2 W v h,E L 2 (T) + W 1 2 v h,E L 2 . Proof. Let λ = h -1 E 1 2 (≥ h -1-δ 2 ), then (-∂ 2 x -λ 2 )v h,E = h -2 r h,E -ih -1 W v h,E -κ h,E W 1 2 ∂ x v h,E . Applying Lemma 6.6 to v = v h,E , f 1 = h -2 r h,E -ih -1 W v h,E , f 2 = -κ h,E W 1 2 v h,E with I = (α 1 + 0 , β 1 -0 ) for some 0 < β 1 -α 1 2 , we get v h,E L 2 (T) 0 λ -1 h -2 r h,E -ih -1 W v h,E L 2 (T) + κ h,E W 1 2 v h,E H -1 (T) + v h,E L 2 (I) h -3+δ 2 r h,E L 2 + h -1+δ 2 W v h,E L 2 + (κ h,E W 1 2 v h,E ) -(κ h,E W 1 2 ) v h,E H -1 (T) . Since (κ h,E W 1 2 ) W 1 4
, the last term on the right hand side is bounded by

C W 1 4 v h,E L 2 ≤ C W 1 2 v h,E 1 2 L 2 v h,E 1 2 
L 2 . By Young's inequality, we obtain the desired estimate.

•(C) Low energy hyperbolic regime: c

1 h 2 < E ≤ h 1+δ Again we denote by λ = h -1 E 1 2 , then λ ≤ h -1-δ 2 .
In this situation, the non self-adjoint term h 2 κ h,E W 1 2 v h,E can be absorb to the right as a remainder: Lemma 6.8. Assume that E ≤ h 1+δ , then

W 1 2 v h,E L 2 (T) h -2 r h,E L 2 + h -1-δ 2 W 1 2 v h,E L 2 + W 1 2 v h,E 1 2 L 2 v h,E 1 2 L 2 . Proof. With the notation λ = h -1 E 1 2 , v h,E solves the equation -v h,E -λ 2 v h,E + ih -1 W v h,E = h -2 r h,E -κ h,E W 1 2 v h,E .
(6.8) Doing the integration by part and inserting the equation (6.8), we have

Re T W v h,E v h,E dx = -Re T W v h,E v h,E dx -Re T W v h,E v h,E dx = -Re T W v h,E v h,E dx -Re T W v h,E (-λ 2 v h,E + ih -1 W v h,E -h -2 r h,E + κ h,E W 1 2 v h,E )dx. By writing Re(v h,E v h,E ) = 1 2 (|v h,E | 2 ) , we have -Re T W v h,E v h,E dx = 1 2 T W |v h,E | 2 dx W 1 4 v h,E 2 L 2 ≤ W 1 2 v h,E L 2 v h,E L 2 , where we used |W | W 1 2 . Writing Re T W v h,E κ h,E W 1 2 v h,E dx = 1 2 T W 3 2 κ h,E (|v h,E | 2 ) dx = - 1 2 T (κ h,E W 3 2 ) |v h,E | 2 dx, one verifies that Re T W v h,E • κ h,E W 1 2 v h,E dx W 1 2 v h,E 2 L 2 . Since λ 2 ≤ h -(1-δ) , we have T κ h,E W 3 2 λ 2 |v h,E | 2 dx h -(1-δ) W 1 2 v h,E 2 L 2 . The last term Re T W v h,E (-ih -1 W v h,E -h -2 r h,E )dx = h -2 Re T W v h,E r h,E dx,
and it can be easily controlled by h

-2 r h,E L 2 W 1 2 v h,E L 2 .
Putting the bounds together, we complete the proof of Lemma 6.8.

The importance of Lemma 6.8 is that, in the low energy hyperbolic regime, the term h 2 κ h,E W 1 2 v h,E has the same size o(h 2+δ ) in L 2 , and thus can be absorbed as a remainder.

At this state, we are able to apply the following 1D resolvent estimate for the Hölder-like damping in [DKl]: Proposition 6.9 ( [DKl]). Let γ ≥ 0. Assume that W = W (x) ≥ 0 and {W > 0} is disjoint unions of intervals I j = (α j , β j ), j = 1, 2, • • • , l and that for each j

∈ {1, • • • , l}, C 1 V j (x) ≤ W (x) ≤ C 2 V j (x) on (α j , β j ),
where V j (x) > 0 are continuous functions on (α j , β j ) such that

V j (x) =      (x -α j ) γ , α j < x < 3α j + β j 4 (β j -x) γ , α j + 3β j 4 < x < β j .
(6.9)

Then there exist h 0 > 0, c 1 > 0, C > 0, such that for all 0 < h < h

0 , √ c 1 ≤ λ ≤ h -1-δ 2
and all solutions v h,λ of the equation

-v h,λ -λ 2 v h,λ + ih -1 W (x)v h,λ = r h,λ , we have v h,λ L 2 ≤ Ch -1 γ+2 r h,λ L 2 .
(6.10)

The proof of Proposition 6.9 will be given in Appendix C.

Finally, applying Proposition 6.9 for γ = 1 θ (then

1 γ+2 = δ = θ 2θ+1 ), v h,λ = v h,E and r h,λ = h -2 r h,E -κ h,E W 1 2 v h,E in our previous setting, combining with Lemma 4.2, we deduce that when c 1 h 2 ≤ E < h 1+δ , v h,E L 2 ≤ Ch -2-δ r h,E L 2 + h -1+δ 2 W 1 2 v h,E L 2 + h -δ W 1 2 v h,E 1 2 L 2 v h,E 1 2 L 2 .
(6.11)

Combining the estimates for all the possible regimes, we obtain finally that (6.12) This completes the proof of Proposition 6.1. In summary, the proof of Theorem 1.2 is now complete.

v h,E L 2 ≤ Ch -2-δ r h,E L 2 + h -1+δ 2 W 1 2 v h,E L 2 .
Lemma A.4. If λ ≥ h -δ 2 , we have v 1 L 2 h δ 2 r L 2 + h -1+δ 2 W 1 2 v L 2 .
Proof. By Lemma 6.6, we have

v 1 L 2 λ -1 χ h r -ih -1 W v 1 + χ h v L 2 + (χ h v) H -1 + W v 1 L 2 h δ 2 r L 2 + h -1+ α+δ 2 W 1 2 v L 2 + h -3δ 2 l j=1 v L 2 ( I j,h ) + h α 2 W 1 2 v L 2 ,
where we use the fact that W h α on supp(χ h ). Since W ∼ h α on I j,h and α + 2δ = 1, we have

v L 2 ( I j,h ) h -α 2 W 1 2 v L 2 h -1 2 +δ W 1 2 v L 2 .
This completes the proof of Lemma A.4.

It remains to deal with the regime where c

1 2 1 ≤ λ < h -δ 2
, the key point is to exclude the possible concentration of the energy density

e 0 (x) := |v 1 (x)| 2 + λ 2 |v 1 (x)| 2
in the damped shell of size h δ near the interface where W = 0. The tool used in [DKl] is a Morawetz type inequality introduced: Lemma A.5 (Morawetz type inequality). Let Φ ∈ C 0 (T) be a piece-wise C 1 function on T, then there exists a uniform constant C > 0, such that

T Φ (x)e 0 (x)dx ≤Ch -1 T Φ(x)W (x)v 1 v 1 dx +C Re T Φ(x)v 1 • (χ h r -2(χ h v) + χ h v)dx . (A.4) Proof. Direct computation yields (Φe 0 ) = Φ e 0 + 2 Re(Φv 1 v 1 + λ 2 Φ(|v 1 | 2 ) ).
Using the equation (A.3), we have

(Φe 0 ) =Φ e 0 + λ 2 Φ∂ x (|v 1 | 2 ) -2λ 2 Re(Φv 1 v 1 ) + 2h -1 Re(iΦv 1 • W v 1 ) -2 Re[Φv 1 (χ h r -2(χ h v) + χ h v)]. Since 2λ 2 Re(Φv 1 v 1 ) = λ 2 Φ • ∂ x (|v 1 | 2
), integrating the above identity, we obtain the desired estimate (A.4).

Let

j < β j -α j 2 , j ∈ {1, • • • , n}. Define Ψ h (x) :=              h -δ , x ∈ ∪ l j=1 I j,h ; 1, x ∈ ∪ l j=1 (α h + 2πh δ , α j + j ) ∪ (β j -j , β j -2πh δ ); -M, x ∈ ∪ l j=1 I j \ ((α j , α j + j ) ∪ (β j -j , β j )); 1, x ∈ T \ ∪ l j=1 I j
where the constant M > 0 (independent of h) is chosen such that T Ψ h (x)dx = 0. Then the primitive function Φ h ∈ C 0 (T) is well-defined, piecewise smooth and Φ h (x) = Ψ h (x). Since Φ h is unique up to a constant, we choose Φ h such that Φ h

(0) = 0, then Φ h L ∞ (T) ≤ C M . Define Θ(x) = Φ h (x)1 Φ h >0 ,
since supp(e 0 ) ⊂ supp(χ h ), we have Φ h (x)e 0 (x) = Θ(x)e 0 (x). From Lemma A.5 and v A.5) where the terms in the third line of the right side is obtained by integration by part of

1 = χ h v + χ h v , we have T Θ(x)e 0 (x)dx ≤Ch -1 T W (x)(χ 2 h vv + 2χ h χ h |v| 2 )dx +C T |χ h r(χ h v + χ h v )|dx + C T |χ h v(χ h v + χ h v )|dx +C Re T χ h vΦ h (x)χ h v dx + C T |χ h (Φ h χ h ) vv |dx + C T |χ h v(Φ h (x)χ h v) |dx, ( 
Re T Φ h (x)v 1 (χ h v) dx .
Here we keep the real part for this term in order to perform some cancellation when replacing v by -λ 2 v + ih -1 W v -r later on, after using the equation (A.1) of v. Denote by I h = ∪ l j=1 I j,h and I h = ∪ l j=1 I j,h . Using (A.2) and the facts that λ 2 ≤ h -δ , W ∼ h α on I h , we can control terms on the right hand side of (A.5) by the sum of following types: 

II h -1 W 1 2 v1 I h L 2 W 1 2 1 I h v L 2 .
(A.6)

Note that on I h , Θ(x) = h -δ , we have

II h -1+ α 2 W 1 2 v L 2 1 I h v L 2 ≤ h -1+ α 2 + δ 2 W 1 2 v L 2 T Θ(x)e 0 (x)dx 1 2 .
Since α + 2δ = 1, using Young's inequality, we have

II ≤ T Θ(x)e 0 (x)dx + C h -(1+δ) W 1 2 v 2 L 2 , ∀ > 0.
Plugging into (A.5), we get

v 1 2 L 2 ≤ T Θ(x)e 0 (x)dx h -(1+δ) W 1 2 v 2 L 2 + h -δ v L 2 r L 2 + r L 2 v L 2 .
Since λ ≤ h -δ 2 , by (a) of Lemma A.1, Proof. We do the proof for the standard quantization. The same proof applied to the Weyl quantization. Denote by T j = ad j κ (Op h (b)) and K j (x, y) the Schwartz kernel of T j . Then K j (x, y) = (κ(x) -κ(y)) j K 0 (x, y),

v 2 L 2 ≤ o(h δ ) + λ 2 v 2 L 2 ≤ o(h -δ ).
where Finally, taking L 2 norm in y, the proof is complete.

K 0 (x, y) = 1 (2πh) d
We also need a special version of symbolic calculus, used in the proof of Lemma 4.2:

Lemma B.4. Let κ ∈ C 1 c (R 2 ), ϕ = ϕ(ξ) ∈ C ∞ c (R) and b 2 ∈ C 1 c (R 2 ), b 2 ∈ C 2 c (R 2
). Denote by c(x, y, ξ) = κ(x, y)ϕ(ξ). Then Proof. Since c does not depend on η, by viewing y as a parameter as in the proof of Lemma B.1, it suffices to view Op h (c), b as operators acting on L 2 (R x ) and prove the one-dimensional estimate. Hence we will not display the dependence in y in the analysis below.

For j = 1, 2, note that the symbol of operators Op h (c)b j are given by Therefore, the symbol of the operator Op h (c)b 1 -Op h (cb 1 ) is h 1 0 Φ 1,t (x, ξ)dt and the symbol of the operator Op h (c)b 2 -Op h (cb 2 ) -h i Op h (∂ ξ c∂ x b 2 ) is h 2 1 0 (1 -t)Φ t (x, ξ)dt. It suffices to show that operators T j,t with Schwartz kernels K j,t (x, x ) := 1 2πh R e i(x-x )ξ h Φ j,t (x, ξ)dξ, j = 1, 2 are uniformly bounded on L 2 (R) with respect to t ∈ (0, 1) and h ∈ (0, 1]. Since c(x, ξ) = κ(x)ϕ(ξ), explicit computation yields K j,t (x, x ) = 1 i j h ϕ (j) x -x h κ(x) • (∂ j x b j )((1 -t)x + tx ), j = 1, 2.

Since |K j,t (x, x )| ≤ C 1 h ϕ x -x h . Finally, by Young's convolution inequality, we obtain that

T j,t f L 2 (R) ≤ C f L 2 (R)
for j = 1, 2. This completes the proof of Lemma B.4.

The above estimates can be generalized on to symbols and functions on compact manifolds. In the special situation where the manifold is T d , we still have explicit formulas. Indeed, following [START_REF] Zworski | Semiclassical analysis[END_REF] Finally, we recall the definition of the semiclassical wavefront set, following Chapter 8 of [START_REF] Zworski | Semiclassical analysis[END_REF]. The semiclassical wavefront set WF h (u) associated with a h-tempered family u = (u h ) 0<h≤h 0 is the complement of the set of points (z 0 , ζ 0 ) ∈ T * T d for which there exists a symbol c ∈ S 0 such that a(z 0 , ζ 0 ) = 0 and Op h (c)u h = O L 2 (h N ) for all N . The semiclassical wavefront set of order m WF m h (u) is a modification of the definition WF h (u). It is the complement of the set of points (z 0 , ζ 0 ) ∈ T * T d for which there exists c ∈ S 0 with c(z 0 , ζ 0 ) = 0 and Op h (c)u h = O L 2 (h N ) for all N ≤ m.

5. 1 .

 1 The first averaging. Throughout this section, we denote by A(x, y) := y -π (a(x, y ) -A(a)(x))dy .

T

  Type I : I= h -δ v1 I h L 2 r L 2 + r L 2 v χ h L 2 ; Type II : II = h -1 T W |vv |1 I h dx + h -1We analyze the type II term. By Cauchy-Schwarz,

Corollary B. 2 .

 2 Assume that κ ∈ W 1,∞ (R d ) and b ∈ S 0 (T * R d ), then there exists C > 0 such that [κ, Op h (b)] L(L 2 (R d )) + [κ, Op w h (b)] L(L 2 (R d )) ≤ Ch.Moreover generally, for some m ≥ 1, we havead m κ (Op h (b)) L(L 2 (R d )) + ad m κ (Op w h (b)) L(L 2 (R d )) ≤ Ch m .

Ψ

  kernel of Op h (b). Since κ ∈ W 1,∞ (R d ), there exists Ψ ∈ L ∞ (R 2d ; R d ), such that κ(x) -κ(y) = (x -y) • Ψ(x, y).Thus by integration by part, (j k ) (x, y)dξ.Applying Lemma B.1, we deduce that T m L(L 2 (R d )) ≤ Ch m . Corollary B.3. Let κ = κ(x, y) ∈ C c (R 2 ) be a bounded continuous function on R 2 and ϕ = ϕ(ξ) ∈ C ∞ c (R).Then the operator Op h (ϕ(ξ)κ(x, y)) is bounded on L 2 (R 2 ), uniformly in h ∈ (0, 1].Proof. Take f ∈ S(R 2 ), we haveOp h (ϕκ)f (x, y) x )•ξ h f (x , y)dx dξ =(Op h (ϕκ(•, y))f (•, y))(x).By hypothesis, κ(•, y) L ∞ (R) is bounded and independent of y, from Lemma B.1, we have Op h (ϕκ)f (•, y) L 2 (Rx) ≤ C f (•, y) L 2 (Rx) .

  (a) Op h (c)b 1 -Op h (cb 1 ) L(L 2 (R 2 )) ≤ C 1 h; (b) Op h (c)b 2 -Op h (cb 2 ) -h i Op h (∂ ξ c • ∂ x b 2 ) L(L 2 (R 2 )) ≤ C 2 h 2 ,where the constants C 1 depend only on κ W 1,∞ , b 1 W 1,∞ and C 2 depend only on κ W 1,∞ and b 2 W 2,∞ .

0 ∂ 0 Φ 0 ( 1

 0001 ξ + ξ 1 )b j (x + x 1 )dx 1 dξ 1 = 1 2π R e ixξ c(x, ξ + hξ ) b j (ξ )dξ .Note that the Fourier transform makes sense since the function b j has compact support. By the Taylor expansions up to order 1 and 2:c(x, ξ + hξ ) = c(x, ξ) + hξ 1 ξ c(x, ξ + thξ )dt, c(x, ξ + hξ ) = c(x, ξ) + hξ ∂ ξ c(x, ξ) + h 2 ξ 2 1 0 (1 -t)∂ 2 ξ c(x, ξ + thξ )dt,we havec 1 (x, ξ) = c(x, ξ)b 1 (x) + h 1 1,t (x, ξ)dt and c 2 (x, ξ) = c(x, ξ)b 2 (x) + h i ∂ ξ c(x, ξ)∂ x b 2 (x) + h 2 1 -t)Φ 2,t (x, ξ)dt,whereΦ 1,t (x, ξ) = 1 2πi R e ixξ ∂ ξ c(x, ξ + thξ ) ∂ x b 1 (ξ )dξ and Φ 2,t (x, ξ) = -1 2π R e ixξ ∂ 2 ξ c(x, ξ + thξ ) ∂ 2 x b 2 (ξ )dξ .

  (Chapter 5), for a symbol c(z, ζ) on T * T d , by periodicity c(z+ 2πk, ξ) = c(z, ζ), k ∈ Z d , the quantization is explicitly given by Op h (c)f (z) = k∈Z d C k f (z), C k f (z) := 1 (2πh) d R d T d c(z, ζ)e i(z-z +2πk)•ζ h f (z )dz dζ. Then C k = 1 T d Op w h (a k )1 T d where a k (z, ζ) = a(z -2πk, ζ). By the stationary phase analysis, for symbols c ∈ S 0 (T * T d ) and for |k| > 2,C k L(L 2 (T d )) = O(h N k -N ), ∀N ∈ N.These facts imply that Lemma B.2, Lemma B.1 and Lemma B.4 still hold by replacing R d , R 2 , R to T d , T 2 , T, with respectively.

  any linear operator B, d ds (e sG h Be -sG h ) = e sG h ad G h (B)e -sG h , (5.1)

where ad A (B) := [A, B]. Consequently, for any bounded operator B on H,

In general, by lifting T 2 to T 2 v , the covering map T 2 v → T 2 is isometric, hence each connected component of the lifted damped regions is still convex. See Subsection 3.2 for more details about the changing coordinates.

Note that A(a) commutes with ∂ j x G h .

Appendix A. Proof of Proposition 6.12

In this appendix, we prove Proposition 6.9. Note that the proof works also for γ = 0, thus covering the main result in [St] for the piecewise constant rectangular damping. Without loss of generality, we assume that ∪ l j=1 I j = T, otherwise, we can apply Theorem 1.7 of [LLe] and the corresponding resolvent estimate h 2 γ+2 is much better than (6.10).

Recall the numerology: δ = 1 γ+2 . To simplify the notation in the exposition, we argue by contradiction. We assume that there exists a sequence h n → 0 and

For simplicity, we will ignore the subindex n for h n , λ n and write simply v = v h,λ , r = r h,λ sometimes without displaying their dependence in h and λ. First we record the apriori estimate, for which the proof is a direct consequence of integration by part (see the proof of Lemma 3.2)

2 ).

Pick χ ∈ C ∞ (R; [0, 1]) such that χ(s) ≡ 1 when s ≤ 1 and χ(s) ≡ 0 when s > 2. Denote by I j = (α j , β j ) and without loss of generality, we assume that

Define the function

Here the constant σ < 2π is chosen so that χ h | I j is constant on I \ I j,h . Hence supp(χ h ), supp(χ h ) are all contained in ∪ l j=1 I j,h , and

When γ > 0, v 2 is supported in the damped region W h α while v 1 is supported on W h α , where

Proof. First we assume that γ > 0, then from (b) of Lemma A.1,

It remains to estimate v 1 . We see that v 1 solves the equation

, the choice of cutoff χ h is the same as χ(h -α W ). Note that the parameter α is chosen so that the size of ih -1 W v and χ h v are the same in L 2 . This choice of cutoff is more accurate than the choice χ(h -1 W ) in [START_REF] Burq | Hitrik Energy decay for damped wave equations on partially rectangular domains[END_REF], in order to balance the size of ih -1 W v and χ h v coming from the commutator on the right hand side of (A.3).

If λ is relatively large, we are still able to apply the estimate from the geometric control:

2 ), we get

Since we have already shown that v 2 L 2 = o(1), this is a contradiction to our assumption that v L 2 = 1. The proof of Proposition 6.9 is now complete.

Appendix B. Semiclassical pseudo-differential calculus

For m ∈ R, the symbol class S m (T * R d ) consists of smooth functions c(z, ζ) such that

Given a symbol c(z, ζ), we associate it with the Weyl quantization Op w h (c):

Most of the time we will use the standard quantization Op h (c):

An important mapping property is the following theorem due to Calderón-Vaillancourt:

Theorem B.1. There exists a constant C > 0 such that for any function c on T * R d with uniformly bounded derivatives up to order d, we have

We use frequently the sharp Gårding inequality:

Theorem B.2 (Sharp Gårding's inequality). Assume that c ∈ S 0 (T * R d ) and c(z, ζ) ≥ 0 for all (z, ζ) ∈ T * R d . Then there exist C > 0 and h 0 > 0 such that for all 0 < h ≤ h 0 and f

Since we deal with symbols (damping) of limited regularity in this article, we need additional estimates. First we recall the following boundedness property on L 2 : Proof. The proof with µ 0 = 1 can be found in Lemma A.1 of [BS20]. The same argument works for all µ 0 > 0.

A direct consequence is the following commutator estimates for Lipschitz functions: