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Abstract
In this paper, we consider the task of ranking individuals based on

the potential benefit of being "treated" (e.g. by a drug or exposure to
recommendations or ads), referred to as Uplift Modeling in the liter-
ature. This application has gained a surge of interest in recent years
and it is found in many applications such as personalized medicine,
recommender systems or targeted advertising. In real life scenarios
the capacity of models to rank individuals by potential benefit is mea-
sured by the Area Under the Uplift Curve (AUUC), a ranking metric
related to the well known Area Under ROC Curve. In the case where
the objective function, for learning model parameters, is different from
AUUC, the capacity of the resulting system to generalize on AUUC
is limited. To tackle this issue, we propose to learn a model that
directly optimizes an upper bound on AUUC. To find such a model
we first develop a generalization bound on AUUC and then derive
from it a learning objective called AUUC-max, usable with linear and
deep models. We empirically study the tightness of this generaliza-
tion bound, its effectiveness for hyperparameters tuning and show the
efficiency of the proposed learning objective compared to a wide range
of competitive baselines on two classical uplift modeling benchmarks
using real-world datasets.

1 Introduction
In many applications there is a need to target actions to specific portions of
a population so as to maximize a global utility. For instance, in personalized
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medicine one is interested in prescribing a treatment only to patients for
whom it would be beneficial [23].

Similarly in performance marketing, one would prefer to target advertise-
ment budget towards potential customers that would be more likely to be
persuadable to purchase [15]. The term uplift designates the expected out-
come difference between treated and untreated individuals and is related to
treatment effectiveness. Practitioners are interested in models that predict
an individual uplift given some observable characteristics of the individu-
als. Such predictions would then be used to design future treatment policies,
usually under some budget constraints.

Recent reviews of the Uplift Modeling literature [14, 52] illustrate how
such problems arise in a wide range of economic activities (credit scoring [35],
catalog mailing, customer retention [34], insurance [18]), medicine studies
(bone marrow transplant, tamoxifen prescription, hepatitis [23] and breast
cancer treatment [27]) and social sciences evaluations (job training programs
[21], psychology [26] and student growth [5]).

Illustrative example. Fig. 1 illustrates a typical Uplift Modeling pipeline,
where data are available from prior, randomized experiments. It could be a
pilot study using a randomized control trial (RCT) with placebo for medicine
or an A/B test for marketing (step 1). Then, different models predicting the
individual uplift can be learned and evaluated (step 2). A popular metric to
value the quality of a model is the Area Under the Uplift Curve (AUUC) [39].
This metric measures the cumulative uplift along individuals sorted by model
predictions. A good model (with a high AUUC) scores higher those individ-
uals for which the prediction is high (beneficial) compared to ones for which
the prediction is low (neutral or even detrimental). Finally, practitioners use
predictions to rank future instances and assign treatment to individuals with
the highest scores (step 3) [14, 16].

For a new cohort of individuals is available, the predictions of the model
will be then used to target treatment: highest scored individuals would be
treated (green individuals in Figure 1) whilst the lowest scored ones would be
excluded from treatment (blue individuals). This strategy is useful as soon as
treatment effect is heterogeneous (i.e. depending on observable covariates).
Note that the prediction value itself is not of interest here but rather the
ranking induced by the predictions.

The problem with pointwise uplift prediction. Uplift Modeling calls
for a ranking objective in order to choose the top most responsive individuals
as it is implemented in the AUUC metric. In the state-of-the-art, a large part
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Figure 1: Typical Uplift Modeling pipeline schematized in three steps. Step
1 starts with a randomized control trial using an A/B test. Then Step 2
consists in learning and evaluating several uplift models and selecting the
best performing one by AUUC on data gathered at Step 1. Finally at Step
3, the best uplift model is used to target treatment on the next cohort of
individuals.

of uplift modeling techniques resort to pointwise prediction, which consists
in predicting accurate assessments of observations’ relevance by defining a
pointwise learning objective, as a sum or average over individual samples
in the dataset (overview in Section 2). However, two methods that perform
equally at predicting scores may perform differently at predicting the ranking
of samples.

This situation is also common in other tasks like classification where it
has been shown that algorithms designed to minimize the error rate may not
lead to the best possible Area Under the ROC Curve (AUC) as one may
inadvertently degrade AUC whilst keeping a fixed error rate [12].

Moreover, the Empirical Risk Minimization (ERM) principle gives guar-
antees of generalization to unseen data for the loss that is optimized. Hence
it cannot be summoned to obtain such guarantees if the pointwise loss and
the metric of interest (i.e. AUUC) are not the same. Finally, the situation
we describe happens in practice, as it can be observed in a simple experiment:
when selecting model hyperparameters by loss one can have similar training
losses that lead to very different AUUC (see Sec. 4). For these theoretical
and empirical reasons we propose to learn an uplift model by optimizing a
quantity that is a direct surrogate of the AUUC.

Importance of generalization bounds. Many studies in machine
learning and data-mining now often incorporate generalization bounds in the
design of learning algorithms [28]. These bounds are usually used for model
selection or to analyze the model’s generalization ability. Recent works in in-
dividual treatment effect estimation (see Section 2) and Uplift Modeling fields
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propose to bound generalization error of Precision when estimating Heteroge-
neous Effect (PEHE) [42] and the deviation of a given pointwise estimator of
the uplift with respect to a given loss function such as the least mean square
error [49]. But as discussed above, these pointwise objective functions are
not the most appropriate for AUUC.

Our contributions. Considering the crucial role of treatment targeting
in many applications, the need for models that optimize the metric of interest
directly and the advances in the technical tools needed to study generaliza-
tion properties of ranking models, we form the following research agenda: i)
study generalization bounds for AUUC, ii) derive a learning objective and
iii) experiment the corresponding empirical performance compared to tradi-
tional methods. Our main contributions in that respect are summarized as
follows.

(a) In Section 3, we propose the first generalization bound for AUUC using
data-dependent concentration inequalities on dependent variables.

(b) In Section 3.3, we present a ranking based algorithm, referred to as
AUUC-max, directly maximizing a lower bound of the generalization
error of AUUC, usable with different models, and that is efficient for
hyperparameters tuning.

(c) Section 4 reports a thorough performance evaluation against a range
of competitive baselines on two real-world datasets.

2 Background
Notations. Let X ∈ Rd, x ∈ X be a feature vector, and Y ∈ {0, 1}
be the outcome variable, indicating positive (y = 1) or negative (y = 0)
outcome. Additionally, let the treatment variable G ∈ {T,C} denote whether
an individual receives treatment (g = T ) or not (g = C). We assume a
dataset from the RCT: (xi, yi, gi)

iid∼ PX ,Y,G;X |= G. We define then Sg =
{xi, yi, g}i=1...ng as the particular subset of the training set S of size N , i.e.
S = ST ⊔ SC and N = nT + nC . Also let S̃g = {xi, 1 − yi, g}i=1...ng be
the version of subset with reverted labels. We define ȳg = E[Y |G = g] and
λg = ȳg(1 − ȳg) the treatment dependent conditional mean and variance of
Bernoulli outcome. Finally, let F = {f : X → R} be the set of real-valued
functions.
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How to evaluate models? We will review here the formal definition of
AUUC along with basic concepts needed to frame the problem of maximizing
AUUC. It is important to recall firstly that in Uplift Modeling one can never
observe a given individual in both treated and untreated conditions which is
also called fundamental problem of causal inference. Therefore metrics com-
puting a difference to the true treatment effect can only work in a simulation
setting, where it is possible to assign an individual to group T and C simulta-
neously and hence know both outcomes. A popular example of such a metric
is Precision when Estimating Heterogeneous Effect (PEHE) [42]. However,
in real-life scenarios when only one of the outcomes is observed, using Uplift
Model f one can estimate cumulative uplift for group of k points as V (f, k)
(see Def. 1). This idea underlies the Area Under the Uplift Curve (AUUC)
[39] is the most popular method for evaluating Uplift Model in the literature.
Intuitively, with a good model, the best scored individuals should yield a
high prediction. An uplift curve can verify this property: it ranks individual
samples according to predicted uplift (see the X-axis of Fig. 1) and cumu-
latively sum the observed uplift (in Y-axis). The AUUC is then the area
under this curve. On Fig. 1 - middle picture, Uplift Model C is better than
A or B as its area is greater, denoting that cumulated uplift is greater when
individuals are ranked according to model C. AUUC is thus useful when i)
all individuals could not be "treated" (e.g. because of limited budget) and
ii) data comes from real-world (no simulation). Intuitively, AUUC penalizes
heavily ranking errors on highest scored individuals, which is reasonable for
settings where treatment would be administered only to highest predictions
in future cohorts.

Formalization of AUUC. The Uplift Modeling literature yields multi-
ple variants of uplift curves, with differences residing mainly in i) the way
treatment imbalance is accounted for; and ii) whether treated and control
groups are ranked separately or jointly. Readers can refer to Table 2 in [13]
for a comprehensive picture of available alternatives. We chose the "separate,
relative" uplift curve introduced in [13], their evaluations have concluded that
this choice is robust to treatment imbalance and captures well the intended
usage of Uplift Models to target future treatments. We give a self-contained
formula in Def. 1, corresponding to (Eq. 10 and 16) of [13].

Definition 1 (Area Under the Uplift Curve). Let f(ST ,
p

100
nT ) and f(SC ,

p
100

nC)
be the first p percentages of ST and SC respectively when both ordered by pre-
diction of model f . The empirical AUUC of the model f on ST and SC is
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given by:

ÂUUC(f, ST , SC) =

∫ 1

0

V (f, x)dx ≈
100∑
p=1

V (f,
p

100
)

where
V (f,

p

100
) =

1

nT

∑
i∈f(ST , p

100
nT )

yi −
1

nC

∑
j∈f(SC , p

100
nC)

yj

Basic models. We now introduce popular uplift models to materialize
the task. Two Models (TM) [19] is a trivial method to predict uplift. It uses
two separate probabilistic models to predict outcome in treated or untreated
conditions:

uTM(x) = P (y = 1|x, g = T ) − P (y = 1|x, g = C) (1)

and any prediction model can be used for the estimation of posteriors
(typically logistic regression). We notice that when the average response is
low and/or noisy there is the risk for the difference of predictions to be very
noisy too and lead to arbitrary ranking of individuals overall (see [36] for a de-
tailed critic). This remark makes a general argument for using methods that
combine knowledge of both parts of the dataset. Multi-task approaches, e.g.
Shared Data Representation (SDR) have been proposed in [8] to overcome
this problem and showed better empirical performance when the treatment
is imbalanced. Class Variable Transformation (CVT) [23] combines binary
treatment and outcome in order to use a single classification model. For this
purpose a new label and predictor are defined:{

Z = Y G+ (1− Y )(1−G)

uCV T (x) = 2P (z = 1|x)− 1
(2)

Similar label transformations could be traced back to Robinson [38] and
extended to more general settings [32, 4]. Other related, productive lines of
research have been i) the adaptation of split criteria of Decision Trees [36,
40, 43] for uplift prediction and; ii) deep representation learning approaches
for the observational case that carefully match treated/control embedding
distributions [42, 9, 29].
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Relation with CATE. In causal inference one is often interested in esti-
mating the Individual Treatment Effect (ITE), which corresponds to the in-
dividual difference of potential outcomes in the Neyman-Rubin causal frame-
work [41]. Such a quantity is not observable but plays an important theoreti-
cal role. An empiric counter-part is the Conditional Average Treatment Effect
(CATE) which measures or predicts the expected difference in outcome (Y )
between being treated or not (T ), conditionally to observed co-variates (X):
CATE(x) = E[Y |X = x, T = 1]− E[Y |X = x, T = 0]. This quantity can be
estimated from data and it is used to predict treatment benefits individually.
Such predictions induce a natural ordering of individuals which in turn can
be used to target future treatment to a portion of the population. In fact
many usual Uplift Modeling methods learn the CATE and it is known that
a perfect CATE model would maximize AUUC [49]. The interested reader
can refer to [52] for a unified view of Uplift Modeling and CATE.

3 On the Generalization Bound of AUUC and
Learning Objective

In this section, we bound the difference between AUUC and its expectation
and use this new bound to formulate a corresponding learning objective. For
that purpose, we start by drawing a connection between AUUC and bipar-
tite ranking risk (Section 3.1); and by means of Rademacher concentration
inequalities build a generalization bound (Section 3.2). Then we define a prin-
cipled optimization method with generalization guarantees for AUUC that
leverages the bound as a robust learning objective (Section 3.3). Finally, we
review related approaches and their merits as found in the literature (Section
3.4).

3.1 Connection between AUUC and Bipartite Rank-
ing Risk

From the connection between the Area under the ROC curve (AUC) and the
bipartite ranking risk, we can show that AUUC is a weighted combination
of ranking losses for the treatment and control responses. Formal version of
the decomposition is provided in Proposition 1.
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Proposition 1. Let ÂUUC(f, ST , SC) be the empirical area under uplift
curve of the model f on the sets ST and SC; and AUUC(f) = EST ,SC

[
ÂUUC(f, ST , SC)

]
be its expectation. Then AUUC(f) is related to ranking loss (Eq. 4) as:

AUUC(f) = γ −
(
λTEST

[R̂(f, ST )] + λCES̃C
[R̂(f, S̃C)]

)
(3)

where
R̂(f, Sg) =

1

n+
g n

−
g

∑
(xi,+1)∈Sg

∑
(xj ,0)∈Sg

1f(xi)≤f(xj) (4)

is the empirical bipartite ranking risk, g ∈ {T,C}, n+
g , n

−
g are the amounts

of positives and negatives respectively in the set Sg (i.e. ng = n+
g + n−

g ), and
γ = EST ,SC

[ȳT − (ȳT )2

2
− (ȳC)2

2
].

Proof. From Definition 1:

ÂUUC(f, ST , SC) =

∫ 1

0

V (f, x)dx

[45, Eq. 13] allows us to express V (f, x) as a difference of cumulative
outcome rates F ST

f (x) and F SC
f (x) (for the formal definition please refer to

[45]) of collections ST and SC respectively, induced by model f :

V (f, x) = F ST
f (x)− F SC

f (x)

Hence,

ÂUUC(f, ST , SC) =

∫ 1

0

V (f, x)dx =

∫ 1

0

(
F ST
f (x)− F SC

f (x)
)
dx

=

∫ 1

0

F ST
f (x)dx−

∫ 1

0

F SC
f (x)dx (5)

By the mean while, we have from [45, Eq. 9] a connection between FD
f (x)

and Gini coefficient Gini(f,D) - popular metric in binary classification indi-
cated the ability of the model to discriminate between positive and negative
classes and used frequently in credit scoring and direct marketing fields. So
over the dataset D connection is:

Gini(f,D) =
2
∫ 1

0
FD
f (x)dx− ȳD

ȳD(1− ȳD)
(6)
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where ȳD is average outcome rate on D. Note that the Gini coefficient is also
related to the area under ROC curve as follows [46]:

Gini(f,D) = 2AUC(f,D)− 1 (7)

From (6) and (7), it then comes :∫ 1

0

FD
f (x)dx = ȳD(1− ȳD) · AUC(f,D) +

(ȳD)
2

2
(8)

From (5) and (8) it comes :

ÂUUC(f, ST , SC) = ȳT (1− ȳT ) · AUC(f, ST )

− ȳC(1− ȳC) · AUC(f, SC) +
(ȳT )

2

2
− (ȳC)

2

2

Now by reverting labels in SC ; i.e. AUC(f, SC) = (1− AUC(f, S̃C)) we get

ÂUUC(f, ST , SC) = ȳT (1− ȳT )AUC(f, ST )

+ ȳC(1− ȳC)
(
1− AUC(f, S̃C)

)
+

(ȳT )
2

2
− (ȳC)

2

2
= ȳT (1− ȳT ) · AUC(f, ST )

+ ȳC(1− ȳC) · AUC(f, S̃C) +
(ȳT )

2

2
+

(ȳC)
2

2
− ȳC

Using the connection between AUC and the empirical ranking loss AUC(f,D) =
1− R̂(f,D), we have :

ÂUUC(f, ST , SC) = ȳT (1− ȳT ) ·
(
1− R̂(f, ST )

)
+ ȳC(1− ȳC) ·

(
1− R̂(f, S̃C)

)
+

(ȳT )
2

2
+

(ȳC)
2

2
− ȳC

= γ̂ST ,SC
−
(
λT R̂(f, ST ) + λCR̂(f, S̃C)

)
where, for sake of notation, we use group T and group C instead of

datasets ST and SC in the upper indices of ȳ; and λT = ȳT (1 − ȳT ), λC =

ȳC(1− ȳC), γ̂ST ,SC
= ȳT − (ȳT )2

2
− (ȳC)2

2
.
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By taking the expectations in both sides of equation we finally get :

AUUC(f) = EST ,SC

[
ÂUUC(f, ST , SC)

]
= γ −

(
λTEST

[R̂(f, ST )] + λCES̃C
[R̂(f, S̃C)]

)
where, γ = EST ,SC

[γ̂ST ,SC
].

3.2 Rademacher Generalization Bounds
Let us now consider the minimization problems of the pairwise ranking losses
over the treatment and the control subsets (Eq. 4), and the following dyadic
transformation defined over each of the groups ST and S̃C :

T (Sg) =
{
(z = (x,x′), ỹ)

∣∣((x, y), (x′, y′))∈Sg× Sg ∧ y ̸= y′
}

(9)

where, g ∈ {T,C}, ỹ = +1 iff y = +1 and y′ = 0 and ỹ = −1 otherwise. Here
we suppose that T (Sg) contains just one of the two pairs that can be formed
by two examples of different classes. This transformation corresponds then
to the set of n+

g n
−
g pairs of observations in Sg that are from different classes.

From this definition and the class of functions, H, defined as:

H = {h : z = (ϕ(x), ϕ(x′)) 7→ f(ϕ(x))− f(ϕ(x′)), f ∈ F}, (10)

where, ϕ(x) is the feature representation associated to observation x. The
empirical loss (Eq. 4) can then be rewritten as:

R̂(h, T (Sg)) =
1

n+
g n

−
g

∑
(z,ỹ)∈T (Sg)

1ỹh(z)≤0. (11)

The loss defined in (Eq. 11) is equivalent to a binary classification error
over the pairs of examples in T (Sg). With this equivalence, one may expect
to use efficient generalization bounds developed in binary classification. How-
ever, (Eq. 11) is a sum over random dependent variables; as each training
examples in Sg may be present in different pairs of examples in T (Sg), and
the study of the consistency of the Empirical Risk Minimization principle
cannot be carried out using classical tools; as the central i.i.d. assumption
on which these tools are built on is transgressed. For this study, we consider
T (Sg) as a dependency graph of random variables on its nodes, and similar
to [48], we decompose it using the exact proper fractional cover of the graph
proposed by [22] and defined as:
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Definition 2. Let G = (V,E) be a graph. C = {(Cj, ωj)}j∈[J ], for some
positive integer J , with Cj ⊆ V and ωj ∈ [0; 1] is an exact proper fractional
cover of G, if:

1. it is proper: ∀j, Cj is an independent set, i.e., there is no connections
between vertices in Cj;

2. it is an exact fractional cover of G: ∀v ∈ V,
∑

j:v∈Cj ωj = 1.

The weight W (C) of C is given by: W (C) =
∑

j∈[J ] ωj and the minimum weight
χ∗(G) = minC∈K(G) W (C) over the set K(G) of all exact proper fractional
covers of G is the fractional chromatic number of G.

Here, the weight W (C) of C is given by W (C) =
∑J

k=1 ωk and the
minimum weight, called the fractional chromatic number, and defined as
χ∗(G) = minC∈K(G) W (C) corresponds to the smallest number of subsets con-
taining independent variables. A trivial property that we rely on here is that
for a dependency graph induced by a bipartite ranking problem we always
have that χ∗(G) is equal to the minimal chromatic number which in turn is
simply the cardinality of the largest class: max(n+, n−).

For the sake of clarity we show an example on Fig. 2, where a set of
example Sg is composed of 2 positive (x+

1 ,x
+
2 with output y = 1) and 3

negative (x′−
1 ,x′−

2 ,x′−
3 : y = 0) examples; the left part depicts all the possible

pairs of examples over which the ranking loss is estimated; in the right,
the corresponding set T (Sg) and the induced dependency graph G between
pairs of examples (where edges denote statistical dependence between pairs in
T (Sg); the minimal coloring of G that are covers containing each independent
pairs is, in this case, equal to the fractional chromatic number χ∗(G).

From the definition of covers C = {(Cj, ωj}j∈[J ] containing independent
pairs, it is possible to adapt complexity terms, proposed to estimate the ca-
pacity of function classes in the i.i.d. setting, to the interdependent case [48].
The resulting capacity measure is defined as the weighted sum of complexity
terms, each defined with respect to an element of C. This capacity mea-
sure, denoted as fractional Rademacher complexity can be computed over
the training set for a class of functions with bounded variance [37]; based on
local Rademacher complexities [7] that have been found tight in practice. In
this case, a strategy which consists in choosing a model with the best general-
ization error tends to select functions with small variance in their predictions
and a small bounded complexity that is computable on a training set.
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Figure 2: Dependency structure of a bipartite ranking problem composed of
n+
g = 2 positive and n−

g = 3 negative examples. (left: original data Sg and the
composition of pairs shown in dashed; right: induced dependency graph G;
edges indicate dependencies between pairs in T (Sg), colors show covers that
contain independent pairs, in this case we have χ∗(G) = max(n+

g , n
−
g ) = 3).

Definition 3. The Local Fractional Rademacher Complexity, RSg(Fr), of
the class of functions with bounded variance
Fr = {f : X 7→ R : Vf ≤ r} over the dyadic transformation, T (Sg) of
size n+

g n
−
g , of the set Sg, is given by:

RSg(Fr)=
1

n+
g n

−
g

Eσ

∑
j∈[J ]

ωjEXCj

 sup
f∈Fr

∑
i∈Cj

σif(xi)

 (12)

with σ = (σ1, . . . , σn+
g n−

g
) being n+

g n
−
g independent Rademacher variables ver-

ifying:
P(σi = +1) = P(σi = −1) = 1/2;∀i ∈ {1, . . . , n+

g n
−
g }.

From these statements, we can now present the first data-dependent gen-
eralization lower bound for AUUC.

Theorem 1. Let S = {xi, yi}i=1...m ∈ (X × Y)m be a dataset of m exam-
ples drawn i.i.d. according to a probability distribution D over X × Y, and
decomposable according to treatment ST and reverted label control S̃C sub-
sets. Let T (ST ) and T (S̃C) be the corresponding transformed sets. Then for
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any 1 > δ > 0 and 0/1 loss ℓ : {−1,+1} × R → [0, 1], with probability at
least (1− δ) the following lower bound holds for all f ∈ Fr:

AUUC(f)≥ γ −
(
λT R̂ℓ(f, ST ) + λCR̂ℓ(f, S̃C)

)
− Cδ(Fr, ST , S̃C)−

25

48

(
λT

n+
T

+
λC

n+
C

)
log

2

δ

where, Cδ(Fr, ST , S̃C) = λTRST
(Fr) + λCRS̃C

(Fr)

+

(
5
2

√
RST

(Fr)+
5
4

√
2r√

n+
T

λT +
5
2

√
RS̃C

(Fr) + 5
4

√
2r√

n−
C

λC

)√
log 2

δ is defined with respect to lo-
cal fractional Rademacher complexities of the class of functions Fr estimated
over the treatment and the control sets.
Proof. From Proposition 1:

AUUC(f) = γ −
(
λTEST

[R̂(f, ST )] + λCES̃C
[R̂(f, S̃C)]

)
(13)

From [37], we have the following upper bounds for each of the ranking
losses hold with probability 1− δ/2 :

∀Fr,EST
[R̂(f, ST )]− R̂(f, ST ) ≤

inf
aT>0

(1 + aT )RST
(Fr) +

5

4

√
2r log 2

δ

n+
T

+
25

16

(
1

3
+

1

aT

)
log 2

δ

n+
T


∀Fr,ES̃C

[R̂(f, S̃C)]− R̂(f, S̃C) ≤

inf
aC>0

(1 + aC)RS̃C
(Fr) +

5

4

√
2r log 2

δ

n−
C

+
25

16

(
1

3
+

1

aC

)
log 2

δ

n−
C


The infinimums of the upper-bounds are reached for respectively

aT =
5

4

√
log 2

δ

n+
TRST

(Fr)
, aC =

5

4

√
log 2

δ

n−
CRS̃C

(Fr)

By plugging back these values into the upper-bounds the result follows from
the union bound.

Note that the convergence rate of the bound is governed by least repre-
sented class in both treatment and reverted control subsets.
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3.3 AUUC-max Learning Objective
From Theorem 1, we can formulate an optimization problem for the expected
value of AUUC as follows:

argmax
f∈Fr

AUUC(f) ≡

argmin
θ,r

(
λT R̂(fθ, ST ) + λCR̂(fθ, S̃C) + Cδ(Fr, ST , S̃C)

)
(14)

where θ are parameters of the model.
There are two remarks that we can make at this point. First, both terms

R̂(fθ, ST ) and R̂(fθ, S̃C) in (14) are defined over the instantaneous ranking
loss 1ỹ(f(x)−f(x′))≤0 and in practice we need a differentiable surrogate over
these losses so that the minimization problem can be solved using standard
optimization techniques. Second, the local fractional Rademacher complexi-
ties RST

(Fr) and RSC
(Fr) that appear in Cδ(Fr, ST , S̃C) should be estimated

for some fixed class of functions Fr with a well suited value of r.
For the first point, we propose to use differentiable surrogates of the in-

stantaneous ranking loss, such as slog (z) = ln (1 + e−z) / ln(2) and spoly (z) = (− (z − µ))p 1z<µ

[50]. Note that slog (z) upper-bounds the indicator function 1z≤0. This is also
the case for spoly (z) with µ = 1 and p = 3.

For the second point, we propose to upper bound both local Rademacher
complexities RST

(Fr) and RSC
(Fr) following Proposition 2.

Proposition 2. Let Sg be a sample of size ng with n+
g samples with positive

labels and such that ∀x ∈ Sg ∥ϕ(x)∥ ≤ R. Let Fr = {ϕ(x) 7→ w⊤ϕ(x) :
∥w∥ ≤ Λ; f ∈ F : Vf ≤ r}, be the class of linear functions with bounded
variance and bounded norm over the weights. Then for any 1 > δ > 0, the
empirical local fractional Rademacher complexity of Fr over the set of pairs
T (Sg) of size n+

g n
−
g , can be bounded with probability at least 1− δ

2
by:

RSg(Fr) ≤

√
R2Λ2

n+
g

+

√
log 2

δ

2n+
g

(15)
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Proof.

RSg(Fr) =
1

n+
g n

−
g

∑
j∈[J ]

EXCj
|Cj|

 1

|Cj|
Eσ

 sup
f∈Fr

∑
i∈Cj

σif(xi)


=

1

n+
g n

−
g

∑
j∈[J ]

|Cj|EXCj

[
R̂Cj(Fr)

]
︸ ︷︷ ︸

RCj (Fr)

[31, Eq. 3.14]
≤ 1

n+
g n

−
g

n−
g∑

k=1

n+
g

(
R̂Cj(Fr) +

√
log2

δ

2n+
g

)
[31, Th. 4.3]

≤ 1

n+
g n

−
g

n−
g∑

k=1

n+
g

(√
R2Λ2

n+
g

+

√
log2

δ

2n+
g

)
=

√
R2Λ2

n+
g

+

√
log2

δ

2n+
g

.

Finally, we apply Cauchy-Swartz and Popoviciu’s inequalities to bound
the variance of any function f ∈ Fr, Vf , by r = Λ2R2 (see appendix A).
Noting that R is a constant depending on the set of feature representations
we can transform the optimization problem in (θ, r) in (Eq. 14) to a problem
in (w,Λ). Furthermore, the constraint on the weights Λ can be considered
in practice as a max-norm regularizer [44] and taken as a hyperparameter of
the model.

From these settings, and the definition of a given surrogate loss s : R →
R+ over the instantaneous ranking loss, the version of the optimization prob-
lem (14) that we consider is given in (Eq. 16). In the following, we refer to
the derived algorithm as AUUC-max. At the high level we decompose the
optimization problem in (w,Λ) of (Eq. 16) by choosing a grid of values for
Λ and make use of the generalization guarantees of the bound to select the
best model w∗, that corresponds to the maximum lower bound value. Note
that AUUC-max is working with both linear and deep models, as we derive
(Eq. 16) using feature representations ϕ(x).
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AUUC-max optimization problem

min
w

L̂w(ST , S̃C) =
1

n+
T n

−
T

∑
{xi,+1}∈ST

∑
{xj ,0}∈ST

s(w⊤ϕ(xi)−w⊤ϕ(xj)

+
1

n+
Cn

−
C

∑
{xk,+1}∈S̃C

∑
{xl,0}∈S̃C

s(w⊤ϕ(xk)−w⊤ϕ(xl))+Cδ(FΛ2R2 , ST , S̃C)

subject to ∥w∥ ≤ Λ

(16)

Theoretically, a joint or alternate optimization over (w,Λ) is also possible.
Interestingly, a small grid of Λs is sufficient in practice to obtain competitive
performance (see Section 4).

Note that the usual practice for Uplift Models (see Fig. 1) is to iterate
over hyperparameters grids (e.g. for optimization and regularization) and
select the best model by estimating the mean empirical AUUC over a k-fold
cross-validation: this implies an inner "for" loop in place of our lower bound
computation and consequently additional calculations.

3.4 Related Works
In this section, we review some related works that address the problems of
AUUC maximization and the generalization study of uplift and CATE .

SVM for Differential Prediction [27] proposes to maximize AUUC
directly by expressing it as a weighted sum of two AUCs and maximizing it
using a Support Vector Machine method. Our work bears similarity to their
seminal work by borrowing the idea of decomposing AUUC into a weighted
sum of AUCs. We further propose to optimize differentiable surrogates of
the objective in the case of imbalanced treatment, and provide an algorithm
allowing to maximize AUUC using linear or deep models with generalization
guarantees as well as an efficient hyperparameter tuning procedure.

Promoted Cumulative Gain [13] draw a list-wise learning to rank
formulation of AUUC and use the LambdaMART [10] algorithm to optimize
it, alleviating the need for derivable surrogates at the price of more complex
models.

Representation learning for CATE prediction. Important work
has been published recently using a broad family of methods to perform
CATE prediction: TARNet, CFRNet [42], CRN [9], CEVAE [29], BNN [24],
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GANITE [51], DeepMatch [25]. Most of the methods are designed for obser-
vational data and revolve around ways to lessen the covariate shift between
PX|G=1 and PX|G=0 due to treatment selection bias. However, several ap-
proaches (TARNet, GANITE) perform well also in randomized case. TAR-
Net represents deep architecture where group-dependent sets of layers (for
groups T and C) follow the shared set of layers (for all data). GANITE
is a variant of generative adversarial network that consists of two blocks:
counterfactual block imputes counterfactual outcome, then ITE block learn
distribution of ITE having access to both factual and counterfactual out-
comes. Nevertheless, all of these methods aim to estimate CATE and not
focus on finding optimal ranking.

Generalization bounds. The work of [42] provide a bound for the
PEHE metric (so usable for simulation settings) and pioneered the use of
generalization bounds for CATE . More closely to our work, [49] proposed
a generalization bound for uplift prediction. However, the main differences
with our approach is that the upper-bound of AUUC proposed in [49] is
a MSE-like proxy that is applicable in the case where the variables Y and
G are never observed together whereas we bound AUUC directly without
such hypothesis. Further, the definition of the proxy objective proposed
in [49] assumes that samples are i.i.d., whilst in our study the equivalence
between the ranking objective (4) and the classification error over the pairs of
examples (11) gives rise to the consideration of dependent samples that calls
for specific concentration inequalities, namely local fractional Rademacher
theory, that ensures fast convergence rates [7]. Finally, from an optimization
side the approach developed in [49] leads to a mini-max optimization problem,
that is avoided in AUUC-max by using the "revert label in control" trick.

4 Experimental Results
We conducted an number of experiments aimed at evaluating the merits of
pairwise ranking and the proposed approach for AUUC maximization.

Experimental Setting. We use two open, real-life datasets. Hillstrom
[20] contains results of an e-mail campaign for an Internet retailer. Treat-
ment (receiving women’s merchandise e-mails) is balanced and independent
of co-variates; outcome is visiting the retailer website. Criteo-UPLIFT v2
[15] is a large scale dataset donated by the AdTech company Criteo as part
of a contribution to the AdKDD’18 workshop. It is constructed from incre-
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mentality A/B tests, a special procedure where a portion of users that could
be exposed to advertising banners is prevented to see them. Treatment (see-
ing ads) is therefore severely unbalanced as it incurs a loss of business to the
advertising platform. Note that this dataset is much larger-scale than Hill-
strom with 13M samples. We report results for the "visit" outcome which has
a very low positive ratio and average uplift compared to Hillstrom. This fact
explains the lower AUUC numbers that are observed in the former (Table 1).

Table 1: Benchmark datasets

Data set Hillstrom Criteo-UPLIFT2

Size 42,693 13,979,592
Features 22 12
Group T ratio 0.49905 0.85
Positive class ratio 0.12883 0.047
Pos. class ratio in group T 0.1514 0.04854
Pos. class ratio in group C 0.10617 0.03820
Average uplift 0.04523 0.01034

To compare algorithms1 each dataset was split into train (70%) and test
(30%) sets. Then, 5-fold cross-validation was used on train set for hyper-
parameters tuning before retraining the best model on the whole train set.
Hyperparameters grids for the all algorithms are of similar size and values
can be found in appendix B, as well as the details about used prediction
models. Finally, algorithms are compared by AUUC on test set, using an
empirical Bernstein bound [30] to compute a 95% confidence test set bound
on the expectation of AUUC. More details are provided in appendix C.

Evidence of the generalization problem with pointwise objec-
tives. We perform the following experiment to highlight the problem of
AUUC-generalization with learning models that optimize a pointwise objec-
tive. As baseline model, we consider Class Variable Transformation (CVT)
[23] introduced in Section 2, which is also based on label reverting as our
approach, but that optimizes a pointwise log-loss objective, on Hillstrom
dataset. Experiments are conducted by varying the regularization parame-
ter L2 of CVT and AUUC-max and computing the correlation, R, between
the corresponding training loss and test loss (Fig. 3 top) and between the

1For research purpose we will release the code.
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training loss and AUUC on the test set (Fig. 3 bottom). Results indicate
that i) both algorithms generalize in terms of their internal objective (top
row) ii) CVT training loss does not correlate with test AUUC and many
points with a similar train loss give very different test performance (bottom
left) iii) AUUC-max training loss is mildly correlated to test AUUC and
shows better performance across different regularization parameters (bottom
right).

Figure 3: AUUC generalization problem with a pointwise objective on the
Hillstrom dataset. CVT optimizing pointwise log-loss objective (left), AUUC-
max optimizing (Eq. 16) - right. R is the correlation coefficient.

Tightness of Local Fractional Rademacher bounds. We also ex-
amine the choice of local fractional Rademacher complexity in the general-
ization bound. For that purpose we compute the generalization error on the
Hillstrom dataset for different variants of Th. 1: using the local fractional
Rademacher concentration inequality on bipartite ranking risk (our proposi-
tion, in blue on Fig. 4) or [2, 47] (in orange) or [17] (in green). We observe
that our bound makes an average error of 0.015, which is much tighter than
the alternatives. This result illustrates the benefit of a variance based data-
dependent analysis framework that we propose for AUUC.
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Figure 4: AUUC bound tightness depending on inner bipartite
ranking risk bounding technique (closer to 0 is better).

Influence of the constraint on Λ. This term controls the bound
tightness and also model regularization in the AUUC-max learning objective.
A smaller Λ gives a tighter bound but also a more constrained model, up
to some point where it is too constrained to be useful. In practice there is
a region where both are near optimal as can be observed for the Hillstrom
dataset on Fig. 6 in appendix D.

Tuning parameters by bound is efficient. Following [3] we com-
pare our method applied to linear model with hyperparameters chosen by
bound (that is original AUUC-max) versus chosen by cross-validation (+CV)
in Table 9 in appendix E. Models tuned by either methods are practically
equivalent (up to the 4th digit) whilst the bound method yields computation
savings in O(k) where k is the number of folds. We observed similar behavior
when using deep models.

AUUC-max is competitive in practice. Table 2 contains quantita-
tive performance results of AUUC-max and a large selection of competitive
baselines on Hillstrom. Firstly we remark that, in line with previous stud-
ies [15, 13, 27, 23], it is difficult to observe statistically significant results
on this task. Nonetheless, small increases in AUUC can lead to important
gains in the application [36]. We note that AUUC-max (deep, slog) and
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AUUC-max (linear, spoly) ranks 1st and 3rd respectively, indicating that our
method is competitive both in performance and training time, which is in
the last column of Table 2 (time is indicated relative to TM).

Additionally, Figure 5 presents uplift curves of the top ranked methods
on the first 30% of population on Hillstrom. It is often the case in practice
that we want to target only a small portion of the population for efficiency
or budget constraints. One can see that bipartite ranking-based techniques
(AUUC-max and SVM-DP) produce the highest cumulative uplifts on this
threshold, which is an additional evidence of usefulness of bipartite ranking
methods in Uplift Modeling . Figure of the full uplift curves for all methods
are provided in appendix F.

For evaluation on the larger Criteo-UPLIFT v2 collection we select best
performing methods on Hillstrom that can be trained reasonably fast. Re-
sults in Table 3 show very little variability and we find that no method
performing significantly better than another, as on Hillstrom, though AUUC-
max (deep, slog) ranks 2nd.

5 Conclusion and future works
We propose the first, data-dependent generalization lower bound for the Up-
lift Modeling metric, AUUC, used in numerous practical cases. Then we
derive a robust learning objective that optimizes a derivable surrogate of the
AUUC lower bound. Our method alleviates the need of cross-validation for
choosing regularization and optimization parameters, as we empirically show.

Table 2: Hillstrom: comparison of baselines and AUUC-max. Top-2 results
are in bold. †: original implementation of algorithm on LIBSVM was used.

Model Train AUUC Test AUUC # params Time

TM (Eq. 1) .03240 .02860 ± .00326 46 1.00x
CVT (Eq. 2) .03171 .02752 ± .00324 23 0.53x
SVM-DP [27] .03273 .02957 ± .00321 23 0.02x †

DDR [8] .03218 .02842 ± .00325 47 1.10x
SDR [8] .03299 .02958 ± .00327 67 2.44x
TARNet [42] .03292 .02863 ± .00325 34,882 11.60x
GANITE [51] .02563 .02900 ± .00326 7,045 1.12x

AUUC-max (linear, spoly) .03239 .02912 ± .00326 23 0.37x
AUUC-max (deep, slog) .03246 .02999 ± .00325 15,469 1.34x
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Figure 5: Uplift curves for the first 30% of population on Hillstrom. (higher
is better)

Table 3: Criteo UPLIFT v2 : comparison of baselines and AUUC-
max. Top-2 results are in bold.

Model Train AUUC Test AUUC

TM (Eq. 1) .00925 .00922 ± .00001
SVM-DP [27] .00928 .00925 ± .00002
DDR [8] .00925 .00920 ± .00001
SDR [8] .00926 .00923 ± .00001

AUUC-max (linear, spoly) .00925 .00921 ± .00001
AUUC-max (deep, slog) .00927 .00924 ± .00001

As a result we highlight its simplicity and computational benefits. Experi-
ments show that our method is competitive with the most relevant baselines
from the literature, all methods being properly and fairly tuned. An excit-
ing area for future works would be to compare Proposition 2 with the novel
techniques of bounding RSg(Fr) for deep networks [6]. Another promising
direction is about to adapt our bound to the other uplift models (e.g. SDR
or TARNet). As a final word we expect that thanks to the availability of
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a powerful learning objective suited for deep models we could witness much
progress in the field in the future, especially as researchers take advantage
of recent advances in neural architecture search developed for other models
and apply it to Uplift Modeling .
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A Bounding variance of f

Let us remind function f from Proposition 2:

f(ϕ(x)) = w⊤ϕ(x),where ∥w∥ ≤ Λ, ∥ϕ(x)∥ ≤ R.

We need to proof that V(f) ≤ r = Λ2R2.

Proof. Firstly we use Cauchy-Schwartz inequality for f(ϕ(x)):

|w⊤ϕ(x)| ≤ ∥w∥ · ∥ϕ(x)∥ ≤ ΛR,

so now −ΛR ≤ w⊤ϕ(x) ≤ ΛR.
We apply then Popoviciu inequality on variances:

V(f(ϕ(x))) = V(w⊤ϕ(x)) ≤ (ΛR + ΛR)2

4
= (ΛR)2 = r.

B Experimental Setup details
Implementation details. Technically we implemented all surrogate losses
and methods (except SVM-DP for which we used original code implemented
on LIBSVM codebase) in Tensorflow framework [1]. For the optimization,
Adam algorithm was used with step decay to update the learning rate.

Prediction models. For the TM, CVT, DDR and SDR methods we ap-
plied logistic regression as a prediction model. As was reported on TARNet
paper, feed-forward neural network with fully-connected exponential-linear
layers was used. For the deep model of AUUC-max we used feed-forward neu-
ral network with Wide & Deep architecture [11] which is focused on training
linear model and deep neural network jointly in order to profit simultaneously
from memorization and generalization.

Hyperparameters. For SVM-DP we found best parameter C on the
range [1e-3,1e-2,1e-1,1e0,1e1,1e2,1e3]. For the other algorithms we applied
random search through 50 and 30 parameters combinations for Hillstrom and
Criteo-UPLIFT v2 respectively, grids of the hyperparameters for the datasets
are provided in Tables 4,5,6 and Tables 7,8 respectively.
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Table 4: Hyperparameters grid for TM, CVT, DDR and SDR on Hillstrom
data

Parameter TM & CVT & DDR & SDR

batch size [128,512,1024]
learning rate [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2,5e-2,1e-1]
l2 reg. term [0,1e-6,1e-5,1e-4,1e-3,1e-2]

Generalization problem with AUUC proxies experiment (Fig.
3). The regularization parameter is L2 for both CVT and AUUC-max ; val-
ues are 30 equally spaced points between [0, 1]. The dataset used is Hillstrom.
We experienced similar behavior with other baselines such as TM.

Evaluation of the generalization bound (Fig. 4). To assess the
tightness of our bound, we depict the distribution of the differences between
the true AUUC (= E[AUUC]) and the lower bound computed on the Hill-
strom dataset. For that purpose, we learn an AUUC-max model and record
the train and test AUUCs. E[AUUC] is estimated from the upper bound of
an Empirical Bernstein inequality [30] on the test sets obtained from 3,500
random train/test splits, giving a precision greater or equal than .001 with
probability > .99. The distribution of the generalization error modeled by
the bound is then simply the difference between train and test AUUCs.

Surrogates. For the polynomial surrogate spoly for AUUC-max we used
additional hyperparameters µ and p on the ranges of [0.1,0.3,0.5,0.7,1] and
[2,3] respectively, according to the recomendations of [50]. We report the
best performing surrogates in Tables 2 and 3.

Hardware information. All experiments were run on a Linux machine
with 32 CPUs (Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz), with 2 threads
per core, and 120Gb of RAM, with parallelising across 16 CPUs.
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Table 5: Hyperparameters grids for TARNet and GANITE on Hillstrom data

Parameter TARNet

batch size [128,512,1024]
learning rate [1e-5,5e-5,1e-4,5e-4,1e-3]
l2 reg. term [0,1e-6,1e-5,1e-4,1e-3,1e-2]
# layers [2, 3, 4]
# neurons [32, 64, 128]

Parameter GANITE

batch size [128,512,1024]
learning rate [1e-5, 1e-4, 1e-3]
# epochs [50, 100, 500]
α [1, 10, 100, 1000]
h_dim [50, 100, 500]

Table 6: Hyperparameters grids for AUUC-max on Hillstrom data

Parameter AUUC-max (linear) AUUC-max (deep)

batch size [256,512,1024] [128,256,512,1024]
learning rate [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2] [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2]
Λ [1e-2,5e-2,1e-1,5e-1,1e0,5e0,1e1,5e1,1e2] [1e-2,5e-2,1e-1,5e-1,1e0,5e0,1e1,5e1,1e2]
l2 reg. term - [0, 1e-5, 1e-3]
# layers - [2, 3, 4]
# neurons - [32, 64, 128]

Table 7: Hyperparameters grid for baselines on Criteo-UPLIFT v2 data

Parameter TM & DDR & SDR

batch size [128,512,1024]
learning rate [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2,5e-2,1e-1]
l2 reg. term [0,1e-6,1e-5,1e-4,1e-3,1e-2]

C Test set bound
We derived test set bound on AUUC in order to get tight confidence intervals
using only one train/test split. As a building block we used the test set bound
for U-statistic [33] which is based on empirical Bernstein bound [30], then we
constructed a union bound similarly to the our main result in Th. 1. With
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Table 8: Hyperparameters grids for AUUC-max on Criteo-UPLIFT v2 data

Parameter AUUC-max (linear) AUUC-max (deep)

batch size [512,1024,2048] [512,1024,2048]
learning rate [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2] [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2]
Λ [1e-2,5e-2,1e-1,5e-1,1e0,5e0,1e1,5e1,1e2] [1e-2,5e-2,1e-1,5e-1,1e0,5e0,1e1,5e1,1e2]
l2 reg. term - [0, 1e-5, 1e-3]
# layers - [2, 3, 4]
# neurons - [32, 64, 128]

probability at least (1− δ):

AUUC(f) ≤ ÂUUC(f, ST
test, S

C
test)

+ λT

(√
4Σ̂2(ST

test) log
8
δ

nT

+
10

nT

log
8

δ

)

+ λC

(√
4Σ̂2(SC

test) log
8
δ

nC

+
10

nC

log
8

δ

)
,

where Σ̂2(ST
test) is empirical variance of ranking loss for the treatment subset

of test set, similarly for the control subset.

D Influence of Λ

E Effectiveness of AUUC-max for hyperpa-
rameters tuning

F Uplift curves on Hillstrom

G Comparison of AUUC-max with PCG
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Figure 6: Influence of Λ on bound tightness and AUUC-max model per-
formance.

Table 9: Hillstrom: comparison of different parameter tuning techniques for
AUUC-max. Training time is indicated relative to the AUUC-max (linear,
slog) + CV

Model Train AUUC Test AUUC Time

AUUC-max (linear, slog) .03230 .02878 ± .00325 0.27x
AUUC-max (linear, slog) + CV .03235 .02918 ± .00326 1.00x

AUUC-max (linear, spoly) .03239 .02912 ± .00326 0.22x
AUUC-max (linear, spoly) + CV .03240 .02934 ± .00326 0.94x
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Figure 7: Uplift curves on Hillstrom. (higher is better)

Table 10: Hillstrom: comparison of AUUC-max with PCG. Result of PCG
is taken from [13], Table 11.

Model Test AUUC

PCG .03055 ± N/A

AUUC-max (linear, spoly) .02958 ± .00326
AUUC-max (deep, slog) .03069 ± .00326
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