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Uplift Modeling with Generalization Guarantees

In this paper, we consider the task of ranking individuals based on the potential benefit of being "treated" (e.g. by a drug or exposure to recommendations or ads), referred to as Uplift Modeling in the literature. This application has gained a surge of interest in recent years and it is found in many applications such as personalized medicine, recommender systems or targeted advertising. In real life scenarios the capacity of models to rank individuals by potential benefit is measured by the Area Under the Uplift Curve (AUUC), a ranking metric related to the well known Area Under ROC Curve. In the case where the objective function, for learning model parameters, is different from AUUC, the capacity of the resulting system to generalize on AUUC is limited. To tackle this issue, we propose to learn a model that directly optimizes an upper bound on AUUC. To find such a model we first develop a generalization bound on AUUC and then derive from it a learning objective called AUUC-max, usable with linear and deep models. We empirically study the tightness of this generalization bound, its effectiveness for hyperparameters tuning and show the efficiency of the proposed learning objective compared to a wide range of competitive baselines on two classical uplift modeling benchmarks using real-world datasets.

Introduction

In many applications there is a need to target actions to specific portions of a population so as to maximize a global utility. For instance, in personalized 1 medicine one is interested in prescribing a treatment only to patients for whom it would be beneficial [START_REF] Jaskowski | Uplift modeling for clinical trial data[END_REF].

Similarly in performance marketing, one would prefer to target advertisement budget towards potential customers that would be more likely to be persuadable to purchase [START_REF] Diemert | A large scale benchmark for uplift modeling[END_REF]. The term uplift designates the expected outcome difference between treated and untreated individuals and is related to treatment effectiveness. Practitioners are interested in models that predict an individual uplift given some observable characteristics of the individuals. Such predictions would then be used to design future treatment policies, usually under some budget constraints.

Recent reviews of the Uplift Modeling literature [START_REF] Devriendt | A literature survey and experimental evaluation of the state-of-the-art in uplift modeling: A stepping stone toward the development of prescriptive analytics[END_REF][START_REF] Zhang | A unified survey on treatment effect heterogeneity modeling and uplift modeling[END_REF] illustrate how such problems arise in a wide range of economic activities (credit scoring [START_REF] Nicholas | Differential response analysis: Modeling true response by isolating the effect of a single action[END_REF], catalog mailing, customer retention [START_REF] Nicholas | Using control groups to target on predicted lift: Building and assessing uplift model[END_REF], insurance [START_REF] Guelman | Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study[END_REF]), medicine studies (bone marrow transplant, tamoxifen prescription, hepatitis [START_REF] Jaskowski | Uplift modeling for clinical trial data[END_REF] and breast cancer treatment [START_REF] Kuusisto | Support vector machines for differential prediction[END_REF]) and social sciences evaluations (job training programs [START_REF] Imai | Estimating treatment effect heterogeneity in randomized program evaluation[END_REF], psychology [START_REF] Sören R Künzel | Metalearners for estimating heterogeneous treatment effects using machine learning[END_REF] and student growth [START_REF] Athey | Estimating treatment effects with causal forests: An application[END_REF]).

Illustrative example. Fig. 1 illustrates a typical Uplift Modeling pipeline, where data are available from prior, randomized experiments. It could be a pilot study using a randomized control trial (RCT) with placebo for medicine or an A/B test for marketing (step 1). Then, different models predicting the individual uplift can be learned and evaluated (step 2). A popular metric to value the quality of a model is the Area Under the Uplift Curve (AUUC) [START_REF] Rzepakowski | Decision trees for uplift modeling[END_REF]. This metric measures the cumulative uplift along individuals sorted by model predictions. A good model (with a high AUUC) scores higher those individuals for which the prediction is high (beneficial) compared to ones for which the prediction is low (neutral or even detrimental). Finally, practitioners use predictions to rank future instances and assign treatment to individuals with the highest scores (step 3) [START_REF] Devriendt | A literature survey and experimental evaluation of the state-of-the-art in uplift modeling: A stepping stone toward the development of prescriptive analytics[END_REF][START_REF] Fernandez | Methods for individual treatment assignment: An application and comparison for playlist generation[END_REF].

For a new cohort of individuals is available, the predictions of the model will be then used to target treatment: highest scored individuals would be treated (green individuals in Figure 1) whilst the lowest scored ones would be excluded from treatment (blue individuals). This strategy is useful as soon as treatment effect is heterogeneous (i.e. depending on observable covariates). Note that the prediction value itself is not of interest here but rather the ranking induced by the predictions.

The problem with pointwise uplift prediction. Uplift Modeling calls for a ranking objective in order to choose the top most responsive individuals as it is implemented in the AUUC metric. In the state-of-the-art, a large part of uplift modeling techniques resort to pointwise prediction, which consists in predicting accurate assessments of observations' relevance by defining a pointwise learning objective, as a sum or average over individual samples in the dataset (overview in Section 2). However, two methods that perform equally at predicting scores may perform differently at predicting the ranking of samples. This situation is also common in other tasks like classification where it has been shown that algorithms designed to minimize the error rate may not lead to the best possible Area Under the ROC Curve (AUC) as one may inadvertently degrade AUC whilst keeping a fixed error rate [START_REF] Cortes | Auc optimization vs. error rate minimization[END_REF].

Moreover, the Empirical Risk Minimization (ERM) principle gives guarantees of generalization to unseen data for the loss that is optimized. Hence it cannot be summoned to obtain such guarantees if the pointwise loss and the metric of interest (i.e. AUUC) are not the same. Finally, the situation we describe happens in practice, as it can be observed in a simple experiment: when selecting model hyperparameters by loss one can have similar training losses that lead to very different AUUC (see Sec. 4). For these theoretical and empirical reasons we propose to learn an uplift model by optimizing a quantity that is a direct surrogate of the AUUC.

Importance of generalization bounds. Many studies in machine learning and data-mining now often incorporate generalization bounds in the design of learning algorithms [START_REF] Langford | Tutorial on practical prediction theory for classification[END_REF]. These bounds are usually used for model selection or to analyze the model's generalization ability. Recent works in individual treatment effect estimation (see Section 2) and Uplift Modeling fields propose to bound generalization error of Precision when estimating Heterogeneous Effect (PEHE) [START_REF] Shalit | Estimating individual treatment effect: generalization bounds and algorithms[END_REF] and the deviation of a given pointwise estimator of the uplift with respect to a given loss function such as the least mean square error [START_REF] Yamane | Uplift modeling from separate labels[END_REF]. But as discussed above, these pointwise objective functions are not the most appropriate for AUUC.

Our contributions. Considering the crucial role of treatment targeting in many applications, the need for models that optimize the metric of interest directly and the advances in the technical tools needed to study generalization properties of ranking models, we form the following research agenda: i) study generalization bounds for AUUC, ii) derive a learning objective and iii) experiment the corresponding empirical performance compared to traditional methods. Our main contributions in that respect are summarized as follows.

(a) In Section 3, we propose the first generalization bound for AUUC using data-dependent concentration inequalities on dependent variables.

(b) In Section 3.3, we present a ranking based algorithm, referred to as AUUC-max, directly maximizing a lower bound of the generalization error of AUUC, usable with different models, and that is efficient for hyperparameters tuning.

(c) Section 4 reports a thorough performance evaluation against a range of competitive baselines on two real-world datasets.

Background

Notations. Let X ∈ R d , x ∈ X be a feature vector, and Y ∈ {0, 1} be the outcome variable, indicating positive (y = 1) or negative (y = 0) outcome. Additionally, let the treatment variable G ∈ {T, C} denote whether an individual receives treatment (g = T ) or not (g = C). We assume a dataset from the RCT:

(x i , y i , g i ) iid ∼ P X ,Y,G ; X |= G.
We define then S g = {x i , y i , g} i=1...ng as the particular subset of the training set S of size N , i.e. S = S T ⊔ S C and N = n T + n C . Also let Sg = {x i , 1 -y i , g} i=1...ng be the version of subset with reverted labels. We define ȳg = -[Y |G = g] and λ g = ȳg (1 -ȳg ) the treatment dependent conditional mean and variance of Bernoulli outcome. Finally, let F = {f : X → R} be the set of real-valued functions.

How to evaluate models? We will review here the formal definition of AUUC along with basic concepts needed to frame the problem of maximizing AUUC. It is important to recall firstly that in Uplift Modeling one can never observe a given individual in both treated and untreated conditions which is also called fundamental problem of causal inference. Therefore metrics computing a difference to the true treatment effect can only work in a simulation setting, where it is possible to assign an individual to group T and C simultaneously and hence know both outcomes. A popular example of such a metric is Precision when Estimating Heterogeneous Effect (PEHE) [START_REF] Shalit | Estimating individual treatment effect: generalization bounds and algorithms[END_REF]. However, in real-life scenarios when only one of the outcomes is observed, using Uplift Model f one can estimate cumulative uplift for group of k points as V (f, k) (see Def. 1). This idea underlies the Area Under the Uplift Curve (AUUC) [START_REF] Rzepakowski | Decision trees for uplift modeling[END_REF] is the most popular method for evaluating Uplift Model in the literature. Intuitively, with a good model, the best scored individuals should yield a high prediction. An uplift curve can verify this property: it ranks individual samples according to predicted uplift (see the X-axis of Fig. 1) and cumulatively sum the observed uplift (in Y-axis). The AUUC is then the area under this curve. On Fig. 1 -middle picture, Uplift Model C is better than A or B as its area is greater, denoting that cumulated uplift is greater when individuals are ranked according to model C. AUUC is thus useful when i) all individuals could not be "treated" (e.g. because of limited budget) and ii) data comes from real-world (no simulation). Intuitively, AUUC penalizes heavily ranking errors on highest scored individuals, which is reasonable for settings where treatment would be administered only to highest predictions in future cohorts.

Formalization of AUUC. The Uplift Modeling literature yields multiple variants of uplift curves, with differences residing mainly in i) the way treatment imbalance is accounted for; and ii) whether treated and control groups are ranked separately or jointly. Readers can refer to Table 2 in [START_REF] Devriendt | Learning to rank for uplift modeling[END_REF] for a comprehensive picture of available alternatives. We chose the "separate, relative" uplift curve introduced in [START_REF] Devriendt | Learning to rank for uplift modeling[END_REF], their evaluations have concluded that this choice is robust to treatment imbalance and captures well the intended usage of Uplift Models to target future treatments. We give a self-contained formula in Def. 1, corresponding to (Eq. 10 and 16) of [START_REF] Devriendt | Learning to rank for uplift modeling[END_REF].

Definition 1 (Area Under the Uplift Curve). Let f (S T , p 100 n T ) and f (S C , p 100 n C ) be the first p percentages of S T and S C respectively when both ordered by prediction of model f . The empirical AUUC of the model f on S T and S C is given by:

AU U C(f, S T , S C ) = ∫ 1 0 V (f, x)dx ≈ 100 ∑ p=1 V (f, p 100 ) where V (f, p 100 ) = 1 n T ∑ i∈f (S T , p 100 n T ) y i - 1 n C ∑ j∈f (S C , p 100 n C ) y j
Basic models. We now introduce popular uplift models to materialize the task. Two Models (TM) [START_REF] Hansotia | Incremental value modeling[END_REF] is a trivial method to predict uplift. It uses two separate probabilistic models to predict outcome in treated or untreated conditions:

u T M (x) = P (y = 1|x, g = T ) -P (y = 1|x, g = C) (1)
and any prediction model can be used for the estimation of posteriors (typically logistic regression). We notice that when the average response is low and/or noisy there is the risk for the difference of predictions to be very noisy too and lead to arbitrary ranking of individuals overall (see [START_REF] Nicholas | Real-world uplift modelling with significance-based uplift trees[END_REF] for a detailed critic). This remark makes a general argument for using methods that combine knowledge of both parts of the dataset. Multi-task approaches, e.g. Shared Data Representation (SDR) have been proposed in [START_REF] Betlei | Uplift prediction with dependent feature representation in imbalanced treatment and control conditions[END_REF] to overcome this problem and showed better empirical performance when the treatment is imbalanced. Class Variable Transformation (CVT) [START_REF] Jaskowski | Uplift modeling for clinical trial data[END_REF] combines binary treatment and outcome in order to use a single classification model. For this purpose a new label and predictor are defined:

{ Z = Y G + (1 -Y )(1 -G) u CV T (x) = 2P (z = 1|x) -1 (2) 
Similar label transformations could be traced back to Robinson [START_REF] Peter M Robinson | Root-n-consistent semiparametric regression[END_REF] and extended to more general settings [START_REF] Nie | Quasi-oracle estimation of heterogeneous treatment effects[END_REF][START_REF] Athey | Machine learning methods for estimating heterogeneous causal effects[END_REF]. Other related, productive lines of research have been i) the adaptation of split criteria of Decision Trees [START_REF] Nicholas | Real-world uplift modelling with significance-based uplift trees[END_REF][START_REF] Rzepakowski | Decision trees for uplift modeling with single and multiple treatments[END_REF][START_REF] Sołtys | Ensemble methods for uplift modeling[END_REF] for uplift prediction and; ii) deep representation learning approaches for the observational case that carefully match treated/control embedding distributions [START_REF] Shalit | Estimating individual treatment effect: generalization bounds and algorithms[END_REF][START_REF] Bica | Estimating counterfactual treatment outcomes over time through adversarially balanced representations[END_REF][START_REF] Louizos | Causal effect inference with deep latentvariable models[END_REF].

Relation with CATE.

In causal inference one is often interested in estimating the Individual Treatment Effect (ITE), which corresponds to the individual difference of potential outcomes in the Neyman-Rubin causal framework [START_REF] Jasjeet S Sekhon | The neyman-rubin model of causal inference and estimation via matching methods[END_REF]. Such a quantity is not observable but plays an important theoretical role. An empiric counter-part is the Conditional Average Treatment Effect (CATE) which measures or predicts the expected difference in outcome (Y ) between being treated or not (T ), conditionally to observed co-variates (X):

CAT E(x) = E[Y |X = x, T = 1] -E[Y |X = x, T = 0]
. This quantity can be estimated from data and it is used to predict treatment benefits individually. Such predictions induce a natural ordering of individuals which in turn can be used to target future treatment to a portion of the population. In fact many usual Uplift Modeling methods learn the CATE and it is known that a perfect CATE model would maximize AUUC [START_REF] Yamane | Uplift modeling from separate labels[END_REF]. The interested reader can refer to [START_REF] Zhang | A unified survey on treatment effect heterogeneity modeling and uplift modeling[END_REF] for a unified view of Uplift Modeling and CATE.

On the Generalization Bound of AUUC and Learning Objective

In this section, we bound the difference between AUUC and its expectation and use this new bound to formulate a corresponding learning objective. For that purpose, we start by drawing a connection between AUUC and bipartite ranking risk (Section 3.1); and by means of Rademacher concentration inequalities build a generalization bound (Section 3.2). Then we define a principled optimization method with generalization guarantees for AUUC that leverages the bound as a robust learning objective (Section 3.3). Finally, we review related approaches and their merits as found in the literature (Section 3.4).

Connection between AUUC and Bipartite Ranking Risk

From the connection between the Area under the ROC curve (AUC) and the bipartite ranking risk, we can show that AUUC is a weighted combination of ranking losses for the treatment and control responses. Formal version of the decomposition is provided in Proposition 1.

Proposition 1. Let AU U C(f, S T , S C

) be the empirical area under uplift curve of the model f on the sets S T and S C ; and

AU U C(f ) = E S T ,S C [ AU U C(f, S T , S C )
] be its expectation. Then AU U C(f ) is related to ranking loss (Eq. 4) as:

AU U C(f ) = γ - ( λ T E S T [ R(f, S T )] + λ C E SC [ R(f, SC )] ) (3) 
where

R(f, S g ) = 1 n + g n - g ∑ (x i ,+1)∈Sg ∑ (x j ,0)∈Sg f (x i )≤f (x j ) (4) 
is the empirical bipartite ranking risk, g ∈ {T, C}, n + g , n - g are the amounts of positives and negatives respectively in the set S g (i.e. n g = n + g + n - g ), and [START_REF] Patrick | Quality measures for uplift models[END_REF]Eq. 13] allows us to express V (f, x) as a difference of cumulative outcome rates F S T f (x) and F S C f (x) (for the formal definition please refer to [START_REF] Patrick | Quality measures for uplift models[END_REF]) of collections S T and S C respectively, induced by model f :

γ = E S T ,S C [ȳ T -(ȳ T ) 2 2 -(ȳ C ) 2 2 ]. Proof. From Definition 1: AU U C(f, S T , S C ) = ∫ 1 0 V (f, x)dx
V (f, x) = F S T f (x) -F S C f (x) Hence, AU U C(f, S T , S C ) = ∫ 1 0 V (f, x)dx = ∫ 1 0 ( F S T f (x) -F S C f (x) ) dx = ∫ 1 0 F S T f (x)dx - ∫ 1 0 F S C f (x)dx (5) 
By the mean while, we have from [START_REF] Patrick | Quality measures for uplift models[END_REF]Eq. 9] a connection between F D f (x) and Gini coefficient Gini(f, D) -popular metric in binary classification indicated the ability of the model to discriminate between positive and negative classes and used frequently in credit scoring and direct marketing fields. So over the dataset D connection is:

Gini(f, D) = 2 ∫ 1 0 F D f (x)dx -ȳD ȳD (1 -ȳD ) ( 6 
)
where ȳD is average outcome rate on D. Note that the Gini coefficient is also related to the area under ROC curve as follows [START_REF] Tufféry | Data mining and statistics for decision making[END_REF]:

Gini(f, D) = 2AU C(f, D) -1 (7) 
From ( 6) and ( 7), it then comes :

∫ 1 0 F D f (x)dx = ȳD (1 -ȳD ) • AU C(f, D) + (ȳ D ) 2 2 (8) 
From ( 5) and ( 8) it comes :

AU U C(f, S T , S C ) = ȳT (1 -ȳT ) • AU C(f, S T ) -ȳC (1 -ȳC ) • AU C(f, S C ) + (ȳ T ) 2 2 - (ȳ C ) 2 2 
Now by reverting labels in

S C ; i.e. AU C(f, S C ) = (1 -AU C(f, SC )) we get AU U C(f, S T , S C ) = ȳT (1 -ȳT )AU C(f, S T ) + ȳC (1 -ȳC ) ( 1 -AU C(f, SC ) ) + (ȳ T ) 2 2 - (ȳ C ) 2 2 = ȳT (1 -ȳT ) • AU C(f, S T ) + ȳC (1 -ȳC ) • AU C(f, SC ) + (ȳ T ) 2 2 + (ȳ C ) 2 2 -ȳC
Using the connection between AUC and the empirical ranking loss AU C(f, D) = 1 -R(f, D), we have :

AU U C(f, S T , S C ) = ȳT (1 -ȳT ) • ( 1 -R(f, S T ) ) + ȳC (1 -ȳC ) • ( 1 -R(f, SC ) ) + (ȳ T ) 2 2 + (ȳ C ) 2 2 -ȳC = γS T ,S C - ( λ T R(f, S T ) + λ C R(f, SC ) )
where, for sake of notation, we use group T and group C instead of datasets S T and S C in the upper indices of ȳ; and

λ T = ȳT (1 -ȳT ), λ C = ȳC (1 -ȳC ), γS T ,S C = ȳT -(ȳ T ) 2 2 -(ȳ C ) 2 2 .
By taking the expectations in both sides of equation we finally get :

AU U C(f ) = E S T ,S C [ AU U C(f, S T , S C ) ] = γ - ( λ T E S T [ R(f, S T )] + λ C E SC [ R(f, SC )]
)

where, γ = E S T ,S C [γ S T ,S C ].

Rademacher Generalization Bounds

Let us now consider the minimization problems of the pairwise ranking losses over the treatment and the control subsets (Eq. 4), and the following dyadic transformation defined over each of the groups S T and SC :

T (S g ) = { (z = (x, x ′ ), ỹ) ((x, y), (x ′ , y ′ )) ∈ S g × S g ∧ y ̸ = y ′ } (9)
where, g ∈ {T, C}, ỹ = +1 iff y = +1 and y ′ = 0 and ỹ = -1 otherwise. Here we suppose that T (S g ) contains just one of the two pairs that can be formed by two examples of different classes. This transformation corresponds then to the set of n + g n - g pairs of observations in S g that are from different classes. From this definition and the class of functions, H, defined as:

H = {h : z = (ϕ(x), ϕ(x ′ )) → f (ϕ(x)) -f (ϕ(x ′ )), f ∈ F}, ( 10 
)
where, ϕ(x) is the feature representation associated to observation x. The empirical loss (Eq. 4) can then be rewritten as:

R(h, T (S g )) = 1 n + g n - g ∑ (z,ỹ)∈T (Sg) ỹh(z)≤0 . ( 11 
)
The loss defined in (Eq. 11) is equivalent to a binary classification error over the pairs of examples in T (S g ). With this equivalence, one may expect to use efficient generalization bounds developed in binary classification. However, (Eq. 11) is a sum over random dependent variables; as each training examples in S g may be present in different pairs of examples in T (S g ), and the study of the consistency of the Empirical Risk Minimization principle cannot be carried out using classical tools; as the central i.i.d. assumption on which these tools are built on is transgressed. For this study, we consider T (S g ) as a dependency graph of random variables on its nodes, and similar to [START_REF] Usunier | Generalization error bounds for classifiers trained with interdependent data[END_REF], we decompose it using the exact proper fractional cover of the graph proposed by [START_REF] Janson | Large deviations for sums of partly dependent random variables[END_REF] and defined as:

Definition 2. Let G = (V, E) be a graph. C = {(C j , ω j )} j∈[J]
, for some positive integer J, with C j ⊆ V and ω j ∈ [0; 1] is an exact proper fractional cover of G, if:

1. it is proper: ∀j, C j is an independent set, i.e., there is no connections between vertices in C j ;

2. it is an exact fractional cover of G: ∀v ∈ V, ∑ j:v∈C j ω j = 1.

The weight W (C) of C is given by:

W (C) = ∑ j∈[J] ω j and the minimum weight χ * (G) = min C∈K(G) W (C) over the set K(G) of all exact proper fractional covers of G is the fractional chromatic number of G.
Here, the weight W (C) of C is given by W (C) = ∑ J k=1 ω k and the minimum weight, called the fractional chromatic number, and defined as χ * (G) = min C∈K(G) W (C) corresponds to the smallest number of subsets containing independent variables. A trivial property that we rely on here is that for a dependency graph induced by a bipartite ranking problem we always have that χ * (G) is equal to the minimal chromatic number which in turn is simply the cardinality of the largest class: max(n + , n -).

For the sake of clarity we show an example on Fig. 2, where a set of example S g is composed of 2 positive (x + 1 , x + 2 with output y = 1) and 3 negative (x ′- 1 , x ′- 2 , x ′- 3 : y = 0) examples; the left part depicts all the possible pairs of examples over which the ranking loss is estimated; in the right, the corresponding set T (S g ) and the induced dependency graph G between pairs of examples (where edges denote statistical dependence between pairs in T (S g ); the minimal coloring of G that are covers containing each independent pairs is, in this case, equal to the fractional chromatic number χ * (G).

From the definition of covers C = {(C j , ω j } j∈[J] containing independent pairs, it is possible to adapt complexity terms, proposed to estimate the capacity of function classes in the i.i.d. setting, to the interdependent case [START_REF] Usunier | Generalization error bounds for classifiers trained with interdependent data[END_REF]. The resulting capacity measure is defined as the weighted sum of complexity terms, each defined with respect to an element of C. This capacity measure, denoted as fractional Rademacher complexity can be computed over the training set for a class of functions with bounded variance [START_REF] Ralaivola | Entropy-based concentration inequalities for dependent variables[END_REF]; based on local Rademacher complexities [START_REF] Peter | Local rademacher complexities[END_REF] that have been found tight in practice. In this case, a strategy which consists in choosing a model with the best generalization error tends to select functions with small variance in their predictions and a small bounded complexity that is computable on a training set. 

R Sg (F r ) = 1 n + g n - g E σ   ∑ j∈[J] ω j E X C j   sup f ∈Fr ∑ i∈C j σ i f (x i )     (12) 
with σ = (σ 1 , . . . , σ n + g n - g ) being n + g n - g independent Rademacher variables verifying:

P(σ i = +1) = P(σ i = -1) = 1/2; ∀i ∈ {1, . . . , n + g n - g }.
From these statements, we can now present the first data-dependent generalization lower bound for AUUC. Theorem 1. Let S = {x i , y i } i=1...m ∈ (X × Y) m be a dataset of m examples drawn i.i.d. according to a probability distribution D over X × Y, and decomposable according to treatment S T and reverted label control SC subsets. Let T (S T ) and T ( SC ) be the corresponding transformed sets. Then for any 1 > δ > 0 and 0/1 loss ℓ : {-1, +1} × R → [0, 1], with probability at least (1 -δ) the following lower bound holds for all f ∈ F r :

AU U C(f ) ≥ γ - ( λ T Rℓ (f, S T ) + λ C Rℓ (f, SC ) ) -C δ (F r , S T , SC ) - 25 48 
( λ T n + T + λ C n + C ) log 2 δ where, C δ (F r , S T , SC ) = λ T R S T (F r ) + λ C R SC (F r ) + ( 5 2 √ R S T (Fr)+ 5 4 √ 2r √ n + T λ T + 5 2 √ R SC (Fr) + 5 4 √ 2r √ n - C λ C ) √ log 2
δ is defined with respect to local fractional Rademacher complexities of the class of functions F r estimated over the treatment and the control sets.

Proof. From Proposition 1:

AU U C(f ) = γ - ( λ T E S T [ R(f, S T )] + λ C E SC [ R(f, SC )] ) (13) 
From [START_REF] Ralaivola | Entropy-based concentration inequalities for dependent variables[END_REF], we have the following upper bounds for each of the ranking losses hold with probability 1 -δ/2 :

∀F r , E S T [ R(f, S T )] -R(f, S T ) ≤ inf a T >0   (1 + a T )R S T (F r ) + 5 4 √ 2r log 2 δ n + T + 25 16 
( 1 3 + 1 a T ) log 2 δ n + T   ∀F r , E SC [ R(f, SC )] -R(f, SC ) ≤ inf a C >0   (1 + a C )R SC (F r ) + 5 4 √ 2r log 2 δ n - C + 25 16 
( 1 3 + 1 a C ) log 2 δ n - C  
The infinimums of the upper-bounds are reached for respectively

a T = 5 4 √ log 2 δ n + T R S T (F r ) , a C = 5 4 √ log 2 δ n - C R SC (F r
) By plugging back these values into the upper-bounds the result follows from the union bound.

Note that the convergence rate of the bound is governed by least represented class in both treatment and reverted control subsets.

AUUC-max Learning Objective

From Theorem 1, we can formulate an optimization problem for the expected value of AUUC as follows:

argmax f ∈Fr AU U C(f ) ≡ argmin θ,r ( λ T R(f θ , S T ) + λ C R(f θ , SC ) + C δ (F r , S T , SC ) ) ( 14 
)
where θ are parameters of the model. There are two remarks that we can make at this point. First, both terms R(f θ , S T ) and R(f θ , SC ) in ( 14) are defined over the instantaneous ranking loss ỹ(f (x)-f (x ′ ))≤0 and in practice we need a differentiable surrogate over these losses so that the minimization problem can be solved using standard optimization techniques. Second, the local fractional Rademacher complexities R S T (F r ) and R S C (F r ) that appear in C δ (F r , S T , SC ) should be estimated for some fixed class of functions F r with a well suited value of r.

For the first point, we propose to use differentiable surrogates of the instantaneous ranking loss, such as s log (z) = ln (1 + e -z ) / ln(2) and s poly (z) = (-(z -µ)) p z<µ [START_REF] Yan | Optimizing classifier performance via an approximation to the wilcoxonmann-whitney statistic[END_REF]. Note that s log (z) upper-bounds the indicator function z≤0 . This is also the case for s poly (z) with µ = 1 and p = 3.

For the second point, we propose to upper bound both local Rademacher complexities R S T (F r ) and R S C (F r ) following Proposition 2.

Proposition 2. Let S g be a sample of size n g with n +

g samples with positive labels and such that ∀x ∈ S g ∥ϕ(x)∥ ≤ R. Let F r = {ϕ(x) → w ⊤ ϕ(x) : ∥w∥ ≤ Λ; f ∈ F : Vf ≤ r}, be the class of linear functions with bounded variance and bounded norm over the weights. Then for any 1 > δ > 0, the empirical local fractional Rademacher complexity of F r over the set of pairs T (S g ) of size n + g n - g , can be bounded with probability at least 1 -δ 2 by:

R Sg (F r ) ≤ √ R 2 Λ 2 n + g + √ log 2 δ 2n + g ( 15 
)
Proof.

R Sg (F r ) = 1 n + g n - g ∑ j∈[J] E X C j |C j |   1 |C j | E σ   sup f ∈Fr ∑ i∈C j σ i f (x i )     = 1 n + g n - g ∑ j∈[J] |C j | E X C j [ RC j (F r ) ] R C j (Fr)
[31, Eq. 3.14]

≤ 1 n + g n - g n - g ∑ k=1 n + g ( RC j (F r ) + √ log 2 δ 2n + g ) [31, Th. 4.3] ≤ 1 n + g n - g n - g ∑ k=1 n + g (√ R 2 Λ 2 n + g + √ log 2 δ 2n + g ) = √ R 2 Λ 2 n + g + √ log 2 δ 2n + g .
Finally, we apply Cauchy-Swartz and Popoviciu's inequalities to bound the variance of any function f ∈ F r , Vf , by r = Λ 2 R 2 (see appendix A). Noting that R is a constant depending on the set of feature representations we can transform the optimization problem in (θ, r) in (Eq. 14) to a problem in (w, Λ). Furthermore, the constraint on the weights Λ can be considered in practice as a max-norm regularizer [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] and taken as a hyperparameter of the model.

From these settings, and the definition of a given surrogate loss s : R → R + over the instantaneous ranking loss, the version of the optimization problem ( 14) that we consider is given in (Eq. 16). In the following, we refer to the derived algorithm as AUUC-max. At the high level we decompose the optimization problem in (w, Λ) of (Eq. 16) by choosing a grid of values for Λ and make use of the generalization guarantees of the bound to select the best model w * , that corresponds to the maximum lower bound value. Note that AUUC-max is working with both linear and deep models, as we derive (Eq. 16) using feature representations ϕ(x).

AUUC-max optimization problem

min w Lw (S T , SC ) = 1 n + T n - T ∑ {x i ,+1}∈S T ∑ {x j ,0}∈S T s(w ⊤ ϕ(x i ) -w ⊤ ϕ(x j ) + 1 n + C n - C ∑ {x k ,+1}∈ SC ∑ {x l ,0}∈ SC s(w ⊤ ϕ(x k )-w ⊤ ϕ(x l ))+C δ (F Λ 2 R 2 , S T , SC ) subject to ∥w∥ ≤ Λ (16)
Theoretically, a joint or alternate optimization over (w, Λ) is also possible. Interestingly, a small grid of Λs is sufficient in practice to obtain competitive performance (see Section 4).

Note that the usual practice for Uplift Models (see Fig. 1) is to iterate over hyperparameters grids (e.g. for optimization and regularization) and select the best model by estimating the mean empirical AUUC over a k-fold cross-validation: this implies an inner "for" loop in place of our lower bound computation and consequently additional calculations.

Related Works

In this section, we review some related works that address the problems of AUUC maximization and the generalization study of uplift and CATE .

SVM for Differential Prediction [START_REF] Kuusisto | Support vector machines for differential prediction[END_REF] proposes to maximize AUUC directly by expressing it as a weighted sum of two AUCs and maximizing it using a Support Vector Machine method. Our work bears similarity to their seminal work by borrowing the idea of decomposing AUUC into a weighted sum of AUCs. We further propose to optimize differentiable surrogates of the objective in the case of imbalanced treatment, and provide an algorithm allowing to maximize AUUC using linear or deep models with generalization guarantees as well as an efficient hyperparameter tuning procedure.

Promoted Cumulative Gain [START_REF] Devriendt | Learning to rank for uplift modeling[END_REF] draw a list-wise learning to rank formulation of AUUC and use the LambdaMART [START_REF] Christopher | From ranknet to lambdarank to lambdamart: An overview[END_REF] algorithm to optimize it, alleviating the need for derivable surrogates at the price of more complex models.

Representation learning for CATE prediction. Important work has been published recently using a broad family of methods to perform CATE prediction: TARNet, CFRNet [START_REF] Shalit | Estimating individual treatment effect: generalization bounds and algorithms[END_REF], CRN [START_REF] Bica | Estimating counterfactual treatment outcomes over time through adversarially balanced representations[END_REF], CEVAE [START_REF] Louizos | Causal effect inference with deep latentvariable models[END_REF], BNN [START_REF] Johansson | Learning representations for counterfactual inference[END_REF], GANITE [START_REF] Yoon | Ganite: Estimation of individualized treatment effects using generative adversarial nets[END_REF], DeepMatch [START_REF] Kallus | Deepmatch: Balancing deep covariate representations for causal inference using adversarial training[END_REF]. Most of the methods are designed for observational data and revolve around ways to lessen the covariate shift between P X|G=1 and P X|G=0 due to treatment selection bias. However, several approaches (TARNet, GANITE) perform well also in randomized case. TAR-Net represents deep architecture where group-dependent sets of layers (for groups T and C) follow the shared set of layers (for all data). GANITE is a variant of generative adversarial network that consists of two blocks: counterfactual block imputes counterfactual outcome, then ITE block learn distribution of ITE having access to both factual and counterfactual outcomes. Nevertheless, all of these methods aim to estimate CATE and not focus on finding optimal ranking. Generalization bounds. The work of [START_REF] Shalit | Estimating individual treatment effect: generalization bounds and algorithms[END_REF] provide a bound for the PEHE metric (so usable for simulation settings) and pioneered the use of generalization bounds for CATE . More closely to our work, [START_REF] Yamane | Uplift modeling from separate labels[END_REF] proposed a generalization bound for uplift prediction. However, the main differences with our approach is that the upper-bound of AUUC proposed in [START_REF] Yamane | Uplift modeling from separate labels[END_REF] is a MSE-like proxy that is applicable in the case where the variables Y and G are never observed together whereas we bound AUUC directly without such hypothesis. Further, the definition of the proxy objective proposed in [START_REF] Yamane | Uplift modeling from separate labels[END_REF] assumes that samples are i.i.d., whilst in our study the equivalence between the ranking objective (4) and the classification error over the pairs of examples [START_REF] Cheng | Wide & deep learning for recommender systems[END_REF] gives rise to the consideration of dependent samples that calls for specific concentration inequalities, namely local fractional Rademacher theory, that ensures fast convergence rates [START_REF] Peter | Local rademacher complexities[END_REF]. Finally, from an optimization side the approach developed in [START_REF] Yamane | Uplift modeling from separate labels[END_REF] leads to a mini-max optimization problem, that is avoided in AUUC-max by using the "revert label in control" trick.

Experimental Results

We conducted an number of experiments aimed at evaluating the merits of pairwise ranking and the proposed approach for AUUC maximization.

Experimental Setting. We use two open, real-life datasets. Hillstrom [START_REF] Hillstrom | The MineThatData e-mail analytics and data mining challenge[END_REF] contains results of an e-mail campaign for an Internet retailer. Treatment (receiving women's merchandise e-mails) is balanced and independent of co-variates; outcome is visiting the retailer website. Criteo-UPLIFT v2 [START_REF] Diemert | A large scale benchmark for uplift modeling[END_REF] is a large scale dataset donated by the AdTech company Criteo as part of a contribution to the AdKDD'18 workshop. It is constructed from incre-mentality A/B tests, a special procedure where a portion of users that could be exposed to advertising banners is prevented to see them. Treatment (seeing ads) is therefore severely unbalanced as it incurs a loss of business to the advertising platform. Note that this dataset is much larger-scale than Hillstrom with 13M samples. We report results for the "visit" outcome which has a very low positive ratio and average uplift compared to Hillstrom. This fact explains the lower AUUC numbers that are observed in the former (Table 1). To compare algorithms1 each dataset was split into train (70%) and test (30%) sets. Then, 5-fold cross-validation was used on train set for hyperparameters tuning before retraining the best model on the whole train set. Hyperparameters grids for the all algorithms are of similar size and values can be found in appendix B, as well as the details about used prediction models. Finally, algorithms are compared by AUUC on test set, using an empirical Bernstein bound [START_REF] Maurer | Empirical bernstein bounds and sample variance penalization[END_REF] to compute a 95% confidence test set bound on the expectation of AUUC. More details are provided in appendix C.

Evidence of the generalization problem with pointwise objectives. We perform the following experiment to highlight the problem of AUUC-generalization with learning models that optimize a pointwise objective. As baseline model, we consider Class Variable Transformation (CVT) [START_REF] Jaskowski | Uplift modeling for clinical trial data[END_REF] introduced in Section 2, which is also based on label reverting as our approach, but that optimizes a pointwise log-loss objective, on Hillstrom dataset. Experiments are conducted by varying the regularization parameter L2 of CVT and AUUC-max and computing the correlation, R, between the corresponding training loss and test loss (Fig. 3 

Tightness of Local Fractional Rademacher bounds.

We also examine the choice of local fractional Rademacher complexity in the generalization bound. For that purpose we compute the generalization error on the Hillstrom dataset for different variants of Th. 1: using the local fractional Rademacher concentration inequality on bipartite ranking risk (our proposition, in blue on Fig. 4) or [START_REF] Agarwal | Generalization bounds for the area under the roc curve[END_REF][START_REF] Usunier | A data-dependent generalisation error bound for the AUC[END_REF] (in orange) or [START_REF] Freund | An efficient boosting algorithm for combining preferences[END_REF] (in green). We observe that our bound makes an average error of 0.015, which is much tighter than the alternatives. This result illustrates the benefit of a variance based datadependent analysis framework that we propose for AUUC. Influence of the constraint on Λ. This term controls the bound tightness and also model regularization in the AUUC-max learning objective. A smaller Λ gives a tighter bound but also a more constrained model, up to some point where it is too constrained to be useful. In practice there is a region where both are near optimal as can be observed for the Hillstrom dataset on Fig. 6 in appendix D.

Tuning parameters by bound is efficient. Following [START_REF] Ambroladze | Tighter pac-bayes bounds[END_REF] we compare our method applied to linear model with hyperparameters chosen by bound (that is original AUUC-max) versus chosen by cross-validation (+CV) in Table 9 in appendix E. Models tuned by either methods are practically equivalent (up to the 4th digit) whilst the bound method yields computation savings in O(k) where k is the number of folds. We observed similar behavior when using deep models.

AUUC-max is competitive in practice. Table 2 contains quantitative performance results of AUUC-max and a large selection of competitive baselines on Hillstrom. Firstly we remark that, in line with previous studies [START_REF] Diemert | A large scale benchmark for uplift modeling[END_REF][START_REF] Devriendt | Learning to rank for uplift modeling[END_REF][START_REF] Kuusisto | Support vector machines for differential prediction[END_REF][START_REF] Jaskowski | Uplift modeling for clinical trial data[END_REF], it is difficult to observe statistically significant results on this task. Nonetheless, small increases in AUUC can lead to important gains in the application [START_REF] Nicholas | Real-world uplift modelling with significance-based uplift trees[END_REF]. We note that AUUC-max (deep, s log ) and AUUC-max (linear, s poly ) ranks 1st and 3rd respectively, indicating that our method is competitive both in performance and training time, which is in the last column of Table 2 (time is indicated relative to TM).

Additionally, Figure 5 presents uplift curves of the top ranked methods on the first 30% of population on Hillstrom. It is often the case in practice that we want to target only a small portion of the population for efficiency or budget constraints. One can see that bipartite ranking-based techniques (AUUC-max and SVM-DP) produce the highest cumulative uplifts on this threshold, which is an additional evidence of usefulness of bipartite ranking methods in Uplift Modeling . Figure of the full uplift curves for all methods are provided in appendix F.

For evaluation on the larger Criteo-UPLIFT v2 collection we select best performing methods on Hillstrom that can be trained reasonably fast. Results in Table 3 show very little variability and we find that no method performing significantly better than another, as on Hillstrom, though AUUCmax (deep, s log ) ranks 2nd.

Conclusion and future works

We propose the first, data-dependent generalization lower bound for the Uplift Modeling metric, AUUC, used in numerous practical cases. Then we derive a robust learning objective that optimizes a derivable surrogate of the AUUC lower bound. Our method alleviates the need of cross-validation for choosing regularization and optimization parameters, as we empirically show. .03171 .02752 ± .00324 23 0.53x SVM-DP [START_REF] Kuusisto | Support vector machines for differential prediction[END_REF] .03273 .02957 ± .00321 23 0.02x † DDR [START_REF] Betlei | Uplift prediction with dependent feature representation in imbalanced treatment and control conditions[END_REF] .03218 .02842 ± .00325 47 1.10x SDR [START_REF] Betlei | Uplift prediction with dependent feature representation in imbalanced treatment and control conditions[END_REF] .03299 .02958 ± .00327 67 2.44x TARNet [START_REF] Shalit | Estimating individual treatment effect: generalization bounds and algorithms[END_REF] .03292 .02863 ± .00325 34,882 11.60x GANITE [START_REF] Yoon | Ganite: Estimation of individualized treatment effects using generative adversarial nets[END_REF] . .00925 .00922 ± .00001 SVM-DP [START_REF] Kuusisto | Support vector machines for differential prediction[END_REF] .00928 .00925 ± .00002 DDR [START_REF] Betlei | Uplift prediction with dependent feature representation in imbalanced treatment and control conditions[END_REF] .00925 .00920 ± .00001 SDR [START_REF] Betlei | Uplift prediction with dependent feature representation in imbalanced treatment and control conditions[END_REF] .00926 .00923 ± .00001 AUUC-max (linear, s poly ) .00925 .00921 ± .00001 AUUC-max (deep, s log ) .00927 .00924 ± .00001

As a result we highlight its simplicity and computational benefits. Experiments show that our method is competitive with the most relevant baselines from the literature, all methods being properly and fairly tuned. An exciting area for future works would be to compare Proposition 2 with the novel techniques of bounding R Sg (F r ) for deep networks [START_REF] Andrew R Barron | Complexity, statistical risk, and metric entropy of deep nets using total path variation[END_REF]. Another promising direction is about to adapt our bound to the other uplift models (e.g. SDR or TARNet). As a final word we expect that thanks to the availability of a powerful learning objective suited for deep models we could witness much progress in the field in the future, especially as researchers take advantage of recent advances in neural architecture search developed for other models and apply it to Uplift Modeling . Generalization problem with AUUC proxies experiment (Fig. 3). The regularization parameter is L2 for both CVT and AUUC-max ; values are 30 equally spaced points between [0, 1]. The dataset used is Hillstrom. We experienced similar behavior with other baselines such as TM.

Evaluation of the generalization bound (Fig. 4). To assess the tightness of our bound, we depict the distribution of the differences between the true AUUC (= E[AU U C]) and the lower bound computed on the Hillstrom dataset. For that purpose, we learn an AUUC-max model and record the train and test AUUCs. E[AU U C] is estimated from the upper bound of an Empirical Bernstein inequality [START_REF] Maurer | Empirical bernstein bounds and sample variance penalization[END_REF] on the test sets obtained from 3,500 random train/test splits, giving a precision greater or equal than .001 with probability > .99. The distribution of the generalization error modeled by the bound is then simply the difference between train and test AUUCs.

Surrogates. For the polynomial surrogate s poly for AUUC-max we used additional hyperparameters µ and p on the ranges of [0.1,0.3,0.5,0.7,1] and [START_REF] Agarwal | Generalization bounds for the area under the roc curve[END_REF][START_REF] Ambroladze | Tighter pac-bayes bounds[END_REF] respectively, according to the recomendations of [START_REF] Yan | Optimizing classifier performance via an approximation to the wilcoxonmann-whitney statistic[END_REF]. We report the best performing surrogates in Tables 2 and3.

Hardware information. All experiments were run on a Linux machine with 32 CPUs (Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz), with 2 threads per core, and 120Gb of RAM, with parallelising across 16 CPUs. 

Figure 1 :

 1 Figure 1: Typical Uplift Modeling pipeline schematized in three steps. Step 1 starts with a randomized control trial using an A/B test. Then Step 2 consists in learning and evaluating several uplift models and selecting the best performing one by AUUC on data gathered at Step 1. Finally at Step 3, the best uplift model is used to target treatment on the next cohort of individuals.

Figure 2 :Definition 3 .

 23 Figure 2: Dependency structure of a bipartite ranking problem composed of n + g = 2 positive and n - g = 3 negative examples. (left: original data S g and the composition of pairs shown in dashed; right: induced dependency graph G; edges indicate dependencies between pairs in T (S g ), colors show covers that contain independent pairs, in this case we have χ * (G) = max(n + g , n - g ) = 3).

  top) and between the training loss and AUUC on the test set (Fig. 3 bottom). Results indicate that i) both algorithms generalize in terms of their internal objective (top row) ii) CVT training loss does not correlate with test AUUC and many points with a similar train loss give very different test performance (bottom left) iii) AUUC-max training loss is mildly correlated to test AUUC and shows better performance across different regularization parameters (bottom right).

Figure 3 :

 3 Figure 3: AUUC generalization problem with a pointwise objective on the Hillstrom dataset. CVT optimizing pointwise log-loss objective (left), AUUCmax optimizing (Eq. 16) -right. R is the correlation coefficient.

Figure 4 :

 4 Figure 4: AUUC bound tightness depending on inner bipartite ranking risk bounding technique (closer to 0 is better).

Figure 5 :Table 3 :

 53 Figure 5: Uplift curves for the first 30% of population on Hillstrom. (higher is better)

Figure 6 :

 6 Figure 6: Influence of Λ on bound tightness and AUUC-max model performance.

  

Table 1 :

 1 Benchmark datasets

	Data set	Hillstrom Criteo-UPLIFT2
	Size	42,693	13,979,592
	Features	22	12
	Group T ratio	0.49905	0.85
	Positive class ratio	0.12883	0.047
	Pos. class ratio in group T 0.1514	0.04854
	Pos. class ratio in group C 0.10617	0.03820
	Average uplift	0.04523	0.01034

Table 2 :

 2 Hillstrom: comparison of baselines and AUUC-max. Top-2 results are in bold. †: original implementation of algorithm on LIBSVM was used.

	Model	Train AUUC Test AUUC	# params Time
	TM (Eq. 1)	.03240	.02860 ± .00326 46	1.00x
	CVT (Eq. 2)			

Table 4 :

 4 Hyperparameters grid for TM, CVT, DDR and SDR on Hillstrom data ,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2,5e-2,1e-1] l 2 reg. term [0,1e-6,1e-5,1e-4,1e-3,1e-2]

	Parameter	TM & CVT & DDR & SDR
	batch size	[128,512,1024]
	learning rate [1e-5

Table 9 :

 9 Hillstrom: comparison of different parameter tuning techniques for AUUC-max. Training time is indicated relative to the AUUC-max (linear, s log ) + CV

	Model	Train AUUC Test AUUC	Time

For research purpose we will release the code.

A Bounding variance of f

Let us remind function f from Proposition 2: f (ϕ(x)) = w ⊤ ϕ(x), where ∥w∥ ≤ Λ, ∥ϕ(x)∥ ≤ R.

We need to proof that V(f

Proof. Firstly we use Cauchy-Schwartz inequality for f (ϕ(x)):

We apply then Popoviciu inequality on variances:

B Experimental Setup details

Implementation details. Technically we implemented all surrogate losses and methods (except SVM-DP for which we used original code implemented on LIBSVM codebase) in Tensorflow framework [START_REF] Abadi | Tensorflow: A system for large-scale machine learning[END_REF]. For the optimization, Adam algorithm was used with step decay to update the learning rate. Prediction models. For the TM, CVT, DDR and SDR methods we applied logistic regression as a prediction model. As was reported on TARNet paper, feed-forward neural network with fully-connected exponential-linear layers was used. For the deep model of AUUC-max we used feed-forward neural network with Wide & Deep architecture [START_REF] Cheng | Wide & deep learning for recommender systems[END_REF] which is focused on training linear model and deep neural network jointly in order to profit simultaneously from memorization and generalization.

Hyperparameters. For SVM-DP we found best parameter C on the range [1e-3,1e-2,1e-1,1e0,1e1,1e2,1e3]. For the other algorithms we applied random search through 50 and 30 parameters combinations for Hillstrom and Criteo-UPLIFT v2 respectively, grids of the hyperparameters for the datasets are provided in Tables 4,5,6 and Tables 7,8 respectively. 

C Test set bound

We derived test set bound on AUUC in order to get tight confidence intervals using only one train/test split. As a building block we used the test set bound for U-statistic [START_REF] Peel | Empirical bernstein inequalities for u-statistics[END_REF] which is based on empirical Bernstein bound [START_REF] Maurer | Empirical bernstein bounds and sample variance penalization[END_REF], then we constructed a union bound similarly to the our main result in Th. 1. With