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ABSTRACT 

Conditions for the regioselective palladium-catalyzed direct arylation of a 6,7-difluorobenzo[d]imidazole using aryl bromides as the 

coupling partners are described.  The site selectivity of the arylation was found to be in favor of the C2-carbon of the  

difluorobenzo[d]imidazole; whereas the difluoro-substituted ring remained untouched, even in the presence of an excess of aryl 

bromide.  This method tolerates a variety of substituents at para-, meta- and ortho-positions on the aryl bromide and also N-containing 

heteroaryl bromides. 

 

1. Introduction 

Fluoro-substituted benzimidazole units can be found in several important drugs (Fig. 1).1  For example, Abemaciclib is a drug for the 

treatment of advanced or metastatic breast cancers which was designated as a “breakthrough therapy” for breast cancer by the U.S. 

Food and Drug Administration in October 2015 (Fig. 1, left).  Selumetinib1a and Binimetinib1b are also an anti-cancer drugs developed 

to treat various cancers.   

 

Figure 1. Representative examples of drugs containing a fluorobenzimidazole unit. 

 
Since the seminal work by Ohta et al. in 1990 on the Pd-catalyzed arylation of a wide range of 5-membered ring heteroaromatics such 

as pyrroles, indoles or thiophenes, via a C-H bond functionalization,2 the so-called direct arylation of heteroarenes has been 

demonstrated to be a very effective tool to access (hetero)biaryls.3,4  When this methodology can be employed to the late-stage 

functionalization of drugs, it provides a very convenient method for the access to a library of compounds in only a few steps allowing 

an easier screening of the biological properties of a family of compounds with a specific unit.   

The first example of Pd-catalyzed direct arylation of a benzimidazole5 was reported by Miura and co-workers who obtained 2-

phenylbenzimidazole from 1-methylbenzo[d]imidazole and iodobenzene using Pd(OAc)2 as the catalyst (Scheme 1, a).5a  In 2010, 

Sames et al. described a general Pd-catalyzed approach to arylated imidazoles (Scheme 1, b).5f  For the C2-arylation of imidazoles, they 

employed Pd(OAc)2/P(nBu)Ad2 associated to NaOtBu as the base.  Polyfluorobenzenes are also a very important class of substrates in 

Pd-catalyzed direct arylation, as many of them allow to obtain the corresponding biaryls in good yields.6-8 Even 1,2-difluorobenzene 

was found to afford the corresponding difluorobiaryl using Pd(OAc)2/PMe(tBu)2 and K2CO3 as the catalytic system with 4-

bromotoluene as coupling partner (Scheme 1, c).8a   

——— 
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Scheme 1. Pd-catalyzed direct arylations of benzimidazoles and difluorobenzenes with aryl halides. 

 

According to Gorelsky calculations, the arylation of polyfluorobenzene rings using aryl halides as the aryl source likely proceed via 

a concerted metallation deprotonation (CMD) mechanism.9  The energy of activation of C-H bonds flanked by a fluoro substituent is 

higher for fluorobenzene (30.3 kcal mol-1), than for 1,2,3-trifluorobenzene (28.8 kcal mol-1) (Fig. 2, top left).  Therefore, for 1,2-

difluorobenzene it should be located between these two values.9b  Gorelsky also calculated the energy of activation for C2-arylation of 

1-methylimidazole via a CMD mechanism (26.5 kcal mol-1) (Fig. 2, top right).  Conversely, for (benzo)imidazoles, according to 

Gandon and Hoarau computational study the presence of a coordinating nitrogen atom may be involved in the mechanism.10  The azole 

coordination on palladium would strongly favor a non-concerted metallation deprotonation (nCMD) mechanism (Fig. 2, bottom right).  

Their calculations using a carbonate as base/ligand gives an energy of activation of 27.1 for the nCMD and 29.7 for the CMD 

mechanisms.10  Therefore, from a polyfluoro-substituted benzimidazole, a regioselective arylation at the C2-position was conceivable.  

However, to the best of our knowledge, the Pd-catalyzed direct arylation methodology has not been applied to the synthesis of fluoro-

substituted imidazoles yet.  Herein, we report on the site-selectivity of the Pd-catalyzed direct arylation of a difluorobenzo[d]imidazole 

and on the scope of the reaction (Scheme 1, d). 
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Figure 2. DFT calculated intermediates and energies of activation for the direct arylation of (poly)fluorobenzenes and imidazoles. 

 

2. Results and Discussion 

Based on our previous results on palladium-catalyzed direct arylation,11 we first examined the regioselectivity of the arylation of 1-

ethyl-6,7-difluorobenzo[d]imidazole with 1.5 equiv. of 3-bromopyridine.  In the presence of 2 mol% PdCl(C3H5)(dppb)12 catalyst and 

KOAc base at 150 °C in DMA, the C2-arylated imidazole 1a was regioselectively obtained in 22% yield (Table 1, entry 1). Under these 

conditions, the difluorobenzene ring remained untouched.  The use of Cs2CO3 as the base instead of KOAc provided 1a in a very low 

yield; whereas, the use of PivOK using a longer reaction time improved to yield to 40% (Table 1, entries 2-4).  The yield in 1a was not 

improved by using xylene, DMF or NMP as the solvents (Table 1, entries 5-7).  Phosphine-free catalyst Pd(OAc)2 (2 mol%) gave 1a in 

only 32%, but a higher loading of PdCl(C3H5)(dppb) catalyst (5 mol%) afforded 1a in 53% yield (Table 1, entries 8 and 9).  The use 

CuI as additive or of KOPiv and Cs2CO3 as a mixture of bases did not improved the reaction yield (Table 1, entries 10 and 11).  

Although an excess of 3-bromopyridine was employed (1.5 equiv.), in the course of these reactions no formation of C5-arylated or 

C2,C5-diarylated products 1b and 1c was observed.   
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Table 1. Influence of the reaction conditions for the palladium-catalysed direct coupling of 1-ethyl-6,7-difluorobenzo[d]imidazole with 3-

bromopyridine.13,14 

 

Entry Catalyst (mol %) Base Solvent Time (h) Yield in 1a 

(%) 

1 PdCl(C3H5)(dppb) (2) KOAc DMA 16 22 

2 PdCl(C3H5)(dppb) (2) Cs2CO3 DMA 16 <5 

3 PdCl(C3H5)(dppb) (2) KOPiv DMA 16 25 

4 PdCl(C3H5)(dppb) (2) KOPiv DMA 48 40 

5 PdCl(C3H5)(dppb) (2) KOPiv xylene 48 15 

6 PdCl(C3H5)(dppb) (2) KOPiv NMP 48 20 

7 PdCl(C3H5)(dppb) (2) KOPiv DMF 48 34 

8 Pd(OAc)2 (2) KOPiv DMA 48 32 

9 PdCl(C3H5)(dppb) (5) KOPiv DMA 48 53 

10 PdCl(C3H5)(dppb) (5) KOPiv (2 equiv.) + CuI (2 

equiv.) 

DMA 48 42a 

11 PdCl(C3H5)(dppb) (5) KOPiv + Cs2CO3 DMA 48 41 

Conditions: 1-Ethyl-6,7-difluorobenzo[d]imidazole (1 mmol), 3-bromopyridine (1.5 mmol), base (2 mmol), 150 °C, isolated yields. a The 

formation of a large amount of insoluble salt was also observed. 

 
Then, the influence of substituents on the aryl bromide for the C2-arylation of 1-ethyl-6,7-difluorobenzo[d]imidazole was studied 

using 5 mol% PdCl(C3H5)(dppb) catalyst and PivOK in DMA at 150 °C (Scheme 2).  We first employed electron-deficient para-

substituted aryl bromides.  A cyano substituent at the C4-position afforded product 2 in 50%; whereas, 4-bromobenzaldehyde gave the 

expected C2-arylated benzimidazole 3 in only 22% yield due to the formation of degradation products.  Benzoyl, trifluoromethyl, 

chloro and fluoro para-substituents on the aryl bromide were tolerated giving rise to products 4-7 in 36-43% yields.  Under these 

reaction conditions, no cleavage of the C-Cl bond was observed.  The electron-neutral bromobenzene and slightly electron-rich 4-

bromotoluene and 4-tert-butylbromobenzene gave the desired coupling products 8-10 in 39-56% yields revealing that with these aryl 

bromides, the oxidative addition step is not the rate limiting step of the catalytic cycle.  Conversely, the use of more electron-rich 4-

bromoanisole led to the C2-arylated benzimidazole 12 in only 20% yield, due to a poor conversion.  We also studied the influence of 

meta-substituents on the aryl bromide.  With Cyano-, chloro or fluoro-substituted aryl bromides, moderate yields in the expected 

products 13-15 were obtained; whereas more electron-rich 3-bromotoluene gave 16 in 81% yield.  With more sterically hindered ortho-

substituted aryl bromides, such as 2-bromobenzonitrile and 2-bromochlorobenzene, the arylated benzimidazole derivatives 17 and 18 

were obtained in 30% and 42% yield, respectively.  Again the use of more-electron rich 2-bromotoluene gave the target product 20 in a 

higher yield of 56%.  The N-containing 6-membered ring heterocycles are present in many very important drugs.15  Therefore, the 

reactivity of 4-bromopyridine, 3-bromoquinoline and also 4-bromoisoquinoline was also studied.  In all cases, the desired coupling 

products 22-24 were obtained.  The structure of 24 was confirmed by X-ray analysis.16  2-Bromo-6-(trifluoromethyl)pyridine was also 

found to be reactive leading to the desired arylation product 25 in 43% yield.  It should be mentioned that in all cases, no other 

regioisomers were detected by GC/MS analysis of the crude mixtures confirming that the difluoro-substituted ring is unreactive under 

these conditions.  
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Scheme 2. Scope of the Pd-catalyzed direct C2-arylations of 1-ethyl-6,7-difluorobenzo[d]imidazole using various aryl bromides. 

 

Based on our experimental results – e.g. better yields using PivOK base which is a base of choice for CMD mechanism than with 

Cs2CO3 usually employed for nCMD process - and on the energies of activation of the figure 2, a CMD mechanism seems to be slightly 

favored.  However, the coordination of the imidazole unit to palladium cannot be excluded. 
 

In summary, we report herein the first examples of metal-catalyzed C-H bond functionalizations of a fluoro-substituted 

benzimidazole.  The arylation occurred regiospecifically at the C2-position of benzimidazole; whereas, the C-H bond flanked by a 

fluorine atom remained untouched.  This selectivity might be due to the coordination of one of the nitrogen atoms of 

difluorobenzo[d]imidazole to palladium.  Low to moderate yields for C2-arylated difluorobenzimidazole were obtained using aryl 

bromides bearing useful functional groups such as nitrile, benzoyl, formyl, chloro, fluoro, trifluoromethyl or methoxy.  Nitrogen-

containing heteroaryl bromides were also tolerated.  Therefore, this direct arylation methodology which employs easily available 

reactants, catalyst and base, provides a straightforward access to fluoro-substituted 2-arylbenzimidazoles allowing to tune or modify 

easily their properties. 
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Experimental procedures, products characterizations and copies of the 1H, 13C NMR, LRMS and HRMS for all compounds.   
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