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Key Points:23

• Estimation of high-frequency reflection response using phase autocorrelations of24

seismic noise recorded on Mars at the InSight landing site.25

• Presentation of a new data processing method that avoids aseismic signal bias and26

stability analysis of the reflection response.27

• A signal at 10.6 s lag time is a possible candidate for a reflection from the base28

of the crust due to its strength, polarity, and stability.29
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Abstract30

Mars is the first extraterrestrial planet with seismometers (SEIS) deployed directly on31

its surface in the framework of the InSight (Interior Exploration using Seismic Inves-32

tigations, Geodesy and Heat Transport) mission. The lack of strong Marsquakes, how-33

ever, strengthens the need of seismic noise studies to additionally constrain the Martian34

structure. Seismic noise autocorrelations of single-station recordings permit the deter-35

mination of the zero-offset reflection response underneath SEIS. We present a new au-36

tocorrelation study which employs state-of-the-art approaches to determine a robust re-37

flection response by avoiding bias from aseismic signals which are recorded together with38

seismic waves due to unfavorable deployment and environmental conditions. Data se-39

lection and segmentation is performed in a data-adaptive manner which takes the data40

root-mean-square amplitude variability into account. We further use the amplitude-unbiased41

phase cross-correlation and work in the 1.2-8.9 Hz frequency band. The main target are42

crustal scale reflections, their robustness and convergence. The strongest signal appears43

at 10.6 s, and, if interpreted as P-wave reflection, would correspond to a discontinuity44

at about 24 km depth. This signal is a likely candidate for a reflection from the base of45

the Martian crust due to its strength, polarity, and stability. Additionally we identify,46

among the stable signals, a signal at about 6.85 s that can be interpreted as a P-wave47

reflection from the mid-crust at about 9.5 km depth.48

1 Introduction49

Since December 19, 2018, Mars is the first extraterrestrial planet with seismome-50

ters deployed directly on its surface. The seismometers are called SEIS (Seismic Exper-51

iment for Interior Structure) and have been brought by the InSight (Interior Exploration52

using Seismic Investigations, Geodesy and Heat Transport) mission (Lognonne et al., 2020).53

SEIS has been designed for planetary seismology (Lognonne et al., 2019) and consists54

of six axes to measure ground motion. It contains three very broad band (VBB) oblique55

axes which are sensitive to frequencies from tidal up to 10 Hz and three short period (SP)56

axes (one vertical, two horizontal) which are sensitive to frequencies from about 0.1 Hz57

to 50 Hz.58

Before InSight, two SP seismometers were already landed on Mars with the 197659

Viking 1 and 2 missions (e.g., Anderson et al., 1977; Lognonné & Johnson, 2007). In con-60

trast to InSight, both seismometers were mounted on the lander. While the Viking 1 seis-61
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mometer did not work properly, the Viking 2 seismometer picked up mostly vibrations62

from the lander owing to operation and wind sensitivity. The lander vibrations and non-63

ideal frequency-dependent sensitivity of the Viking SP sensor inhibited the detection of64

marsquakes and Viking did therefore fail to provide unambiguous data for Martian seis-65

mic activity and subsurface structure studies.66

SEIS has been deployed on the ground of the Homestead hollow, 1.81 m south of67

the closest lander foot (Stutzmann et al., 2021). Homestead hollow is a degraded impact68

crater of about 27 m diameter in Elysium Planitia with a smooth sandy, granule- and69

pebble-rich surface with few rocks (Golombek et al., 2020). After leveling and function-70

ality checks SEIS has been covered with a wind and thermal shield (WTS) to further pro-71

tect the sensors from environmental factors such as laminar and turbulent winds which72

can reach about 20 m/s, atmospheric pressure changes of a few Pa, low atmospheric tem-73

perature down to below -100◦C and daily temperature variability in the order of 80◦C74

(Lognonne et al., 2020). In spite of these harsh conditions, 174 mostly small marsquakes75

(Giardini et al., 2020) have been identified until 30 September 2019 thanks to the sen-76

sitivity of SEIS and its careful deployment on the Martian surface.77

Nevertheless, due to the unfavorable deployment conditions different aseismic sig-78

nals are being recorded together with events of seismic origin (Ceylan et al., 2021; Lognonne79

et al., 2020; Scholz et al., 2020; Stutzmann et al., 2021). That is, the seismic recordings80

contain a wealth of features caused by operational activities at the lander, noise induced81

by the lander due to atmospheric perturbations as laminar and turbulent winds, and ar-82

tifacts caused by the response of the instruments to the variability of the severe climatic83

factors as pressure and temperature. Data processing requires therefore special care and84

adapted approaches to avoid any bias in the results and even misinterpretation of sig-85

nals.86

SEIS is a key instrument to reveal the internal Martian structure and to monitor87

its seismic activity. However, the deployment of a seismometer at one single place lim-88

its the ample spectrum of seismological imaging and monitoring strategies to single-station89

approaches (e.g., Panning et al., 2015; van Driel et al., 2019; Drilleau et al., 2020). Promi-90

nent single-station methodologies are P- and S-wave receiver functions (e.g., Phinney,91

1964; Langston, 1979; Vinnik, 1977; Farra & Vinnik, 2000; Yuan et al., 2006), noise and92

coda autocorrelation functions (e.g., Claerbout, 1968; Galetti & Curtis, 2012; Tibuleac93
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& von Seggern, 2012; Pham & Tkalčić, 2017; Tauzin et al., 2019; Buffoni et al., 2019),94

surface wave inversions (e.g., Drilleau et al., 2020) and Rayleigh wave ellipticity and spec-95

tral ratio analyses (e.g., Nakamura, 1989; Yano et al., 2009; Hobiger et al., 2013; Berbellini96

et al., 2019).97

So far no unambiguous surface waves have been detected in SEIS data (Clinton et98

al., 2020; Giardini et al., 2020; Stutzmann et al., 2021). The very shallow structure down99

to 20 m depth at the InSight landing site has been probed using the travel time of mul-100

tiple hammer strokes of the HP3 (Heat Flow and Physical Properties Package) instru-101

ment and compliance observations (Kenda et al., 2020; Lognonne et al., 2020). The com-102

pliance approach employs seismic measurements of the surface deformation in response103

to pressure loading by dust-devils. First average crustal seismic attenuation and scat-104

tering results have been obtained from the body-wave coda shape of the best recorded105

marsquakes while first crustal layering has been inferred identifying body wave conver-106

sions in receiver functions (Lognonne et al., 2020). These results point to a crustal at-107

tenuation which is 3 times larger than on Moon and a highly variable upper crust layer108

of about 8 to 11 km thickness with S-wave velocities of 1.7 to 2.1 km/s. The exact thick-109

ness of the crust is still object of investigation, but receiver functions, event coda and110

noise autocorrelation results suggest that the crust is either about 15-26 or 27-47 km thick111

(Knapmeyer-Endrun et al., 2021). Deng and Levander (2020) have also computed noise112

autocorrelations for Mars and observe persistent signals which they interpret as Moho,113

upper-mantle transition and core-mantle boundary reflections. Their mantle signals have114

not yet been reproduced by other groups and can possibly be due to repeated glitches115

in the SEIS-data or interference of lander resonances (Kim, Davis et al., in preparation).116

High-frequency autocorrelations (5-7 Hz) have been presented by Suemoto et al. (2020)117

who showed robust signals which indicate the presence of two shallow reflectors in the118

first hundreds of meters. Noise and Marsquake autocorrelations have been also presented119

by Compaire et al. (2021), who find stable autocorrelations with signals related to crustal120

structure only during low-noise periods around 2.4 Hz121

In this study we use the VBB SEIS data to further analyze noise autocorrelations122

through independent approaches. Special care is given to avoid imprints of aseismic sig-123

nals and artifacts on the autocorrelation results. The main objective is to extract a sta-124

ble and clean reflection response from the noise recordings. We focus on crustal scale sig-125

nals from vertical component recordings within the 1-9 Hz frequency band, and use dif-126
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ferently selected subsidiary data sets. The data selection strategy is novel and we show127

that a stable noise response is built up within a few Martian days of data and that it128

consists of several signals. Some of the signals are stable over a broad frequency band129

which makes them possible candidates for reflections. In any case, the autocorrelations130

are still difficult to interpret and possible ambiguities in the signal interpretations are131

discussed.132

2 Determination of P-Wave Reflection Response at SEIS133

On Earth, seismic ambient noise correlations have been successfully used to map134

crustal scale discontinuities (e.g., Ruigrok et al., 2011; Tibuleac & von Seggern, 2012;135

Gorbatov et al., 2013; Kennett et al., 2015; Taylor et al., 2016; Oren & Nowack, 2016;136

Saygin et al., 2017; Becker & Knapmeyer-Endrun, 2018; Romero & Schimmel, 2018; Buf-137

foni et al., 2019). Strictly, the cross-correlation of a diffuse wave field recorded at two138

sensors provides the Green’s function (GF) at one of the sensors for a virtual source placed139

at the other sensor (Lobkis & Weaver, 2001; Derode et al., 2003; Wapenaar, 2004; Snieder,140

2004, among others). When both recordings are the same then the cross-correlation be-141

comes an autocorrelation and provides a zero-offset GF. The high-frequency zero-offset142

GF is the reflection response which mainly consists of body wave primary reflections and143

multiples from seismic discontinuities beneath the station.144

This principle has been presented already by Claerbout (1968) for one-dimensional145

(1-D) media as he demonstrated that the full reflection response can be obtained from146

the autocorrelation of a plane wave field which is transmitted from below the reflecting147

structure. Many years later, his finding has been extended to two-dimensional (2-D) and148

three-dimensional (3-D) acoustic and elastic media (e.g., Wapenaar, 2004).149

The numerical determination of the zero-offset reflection response is based on the150

computation of autocorrelations. For this purpose the continuous noise recordings are151

cut into short segments to compute the autocorrelations. Finally, the autocorrelations152

of all segments are being stacked to provide the reflection response. In practice, wave153

fields are generally not diffuse and the exact GF is unknown or only partly reconstructed.154

We therefore now refer to empirical GF (EGF) or reflection response rather than GF to155

emphasize its approximate character.156
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Note that outliers in the amplitudes of the data can affect correlation results and157

it is therefore common to preprocess the data before computing autocorrelations (e.g.,158

Bensen et al., 2007; Schimmel et al., 2011). Different strategies exist to balance the am-159

plitudes in the time and frequency domain. One-bit normalization and spectral whiten-160

ing are often employed methods (Bensen et al., 2007). A disadvantage of these approaches161

is that they reduce the information content of the signal in a non-unique manner which162

can cause a less efficient EGF extraction as shown in Schimmel et al. (2018). Here, we163

avoid amplitude normalization strategies by replacing the conventional cross-correlation164

and linear stack with the amplitude unbiased phase cross-correlation (PCC, Schimmel165

(1999)) and time-frequency phase weighted stack (tf-PWS, Schimmel and Gallart (2007);166

Schimmel et al. (2011)).167

In the following we highlight the main methods used to determine the reflection168

response at the InSight landing site and describe our data selection and processing.169

2.1 Phase Cross-Correlation and Stacking170

Correlations. The autocorrelation measures the self-similarity of a time series as171

function of lag time. It is a special case of the cross-correlation where both time series172

are the same. There exist different strategies to measure the self-similarity of time se-173

ries (e.g., Schimmel et al., 2018). Here, we employ the phase cross-correlation cPCC(τ)174

(PCC, Schimmel (1999)) which is based on the phase coherence of instantaneous phases175

as determined from analytic signal theory. PCC is expressed as:176

cPCC(τ) =
1

2T

T∑
t=1

∣∣∣eiΦ(t) + eiΨ(t+τ)
∣∣∣ν − ∣∣∣eiΦ(t) − eiΨ(t+τ)

∣∣∣ν . (1)

Φ(t) and Ψ(t) are the instantaneous phases of the two input time series, τ is the177

lag time of the second time series with respect to the first one, T is the length of the time178

window, and ν a parameter which permits to tune the sensitivity of the PCC.179

eiΦ(t) is the envelope normalized analytic signal of the first time series. The ana-180

lytic signal can be build with the Hilbert Transform and is a unique representation of181

a real-valued time series in the complex number space. PCC benefits from the fact that182

thanks to the analytic signal theory a real time series can be decomposed into an instan-183
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taneous phase and amplitude (envelope) function. PCC uses only the instantaneous phases184

and is therefore explicitly signal amplitude unbiased.185

The phase autocorrelation is obtained using Φ(t) = Ψ(t). Further, we use ν = 2186

since it permits to simplify the equations for fast computations (Ventosa et al., 2019).187

cPCC(τ) is, in analogy to a classical correlation, a real numbered functional with values188

ranging between -1 and 1. One of the main differences to the classical correlation is that189

waveform similarity is measured through the amount of phase-coherent samples rather190

than the sum of amplitude products.191

Stacking. The obtained autocorrelations need to be averaged over larger time spans192

to achieve a stable noise response. Stacking data over larger time spans improves the az-193

imuthal coverage of the noise wavefield and the cancellation of cross terms (e.g., Snieder,194

2004; Medeiros et al., 2015). Both are necessary conditions in seismic interferometry. Here195

we employ linear stacks and time-frequency Phase Weighted Stacks (tf-PWS, Schimmel196

and Gallart (2007); Schimmel et al. (2011)). The tf-PWS are based on the instantaneous197

phase coherence (in analogy to PCC) which is being measured in the time-frequency do-198

main during stacking. The weights range between 0 and 1 to attenuate less coherent sig-199

nals in the time-frequency domain. Finally, linear stacks are weighted by the time-frequency200

phase coherence to build the tf-PWS.201

The time-frequency representation of the data is obtained with the S-Transform202

by Stockwell et al. (1996) which is based on Fourier theory and frequency-dependent Gaussian-203

shaped windows. The obtained time-frequency representation can be made an analytic204

signal as shown in Schimmel and Gallart (2007) to enable the use of an instantaneous205

phase coherence measure which is the backbone of tf-PWS. Alternatively, tf-PWS can206

be presented using the wavelet transform (Ventosa et al., 2017) to reduce redundancies207

and to increase computational efficiency. This modification is based on the fact that the208

S-Transform with Gaussian-shaped windows can be derived from the Morlet wavelet trans-209

form (Ventosa et al., 2008). Both strategies provide exactly the same result.210

2.2 Data and Time Frame211

The VBB SEIS data are recorded on three oblique axes. Data from the three axes212

are needed to build the vertical and horizontal components (Lognonne et al., 2019). For213

this study we use vertical components, recorded from May 22, 2019 to June 30, 2020 at214
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20 samples-per-second and instrument corrected to ground velocity from 0.01 to 10 Hz.215

The correction is performed for the three oblique axes before rotation to the vertical and216

horizontal components. The late starting date has been chosen to avoid the initial de-217

ployment and testing phase. Key dates related to the seismic part of the mission are listed218

in Table 1.219

As time frame, we employ the Local Mean Solar Time (LMST) throughout the en-220

tire study. The Martian day, called Sol, is about 40 min longer than a day on Earth with221

a Martian year being about 687 Earth days. Thus, using LMST is justified since the time222

on Mars differs from Earth time. The Martian dates, as usual in other missions, are de-223

fined as simple numerical counts using Sol 1 for the first significant Mars-day which for224

InSight corresponds to November 26, 2018. The data used here are from Sol 172 (2019-225

05-21 at 22:39:52.32) to Sol 567 (2020-06-30 at 19:16:53.76). Our initial database has been226

obtained cutting the instrument-corrected, vertical component records within every Sol227

into 7400 s segments which overlap by 600 s.228

2.3 Data Segmentation and Selection229

We filter the seismic recordings to a broad frequency band, 1.2 - 9.8 Hz, and de-230

termine the relative RMS variability for sliding data windows. A maximum RMS vari-231

ability threshold is then defined to obtain a mask and to extract data segments with RMS232

variability below the threshold through a minimum time duration. We use this proce-233

dure to build subsidiary data sets which contain less data problems such as glitches and234

outlying amplitude events. The approach and the subsidiary data sets are described in235

the following.236

The moving window RMS r is determined for window i and length N using237

ri =

√√√√√ 1

N

i+N/2∑
n=i−N/2

a2
n, (2)

where n stands for the time index and an for the seismic record. i marks the center sam-238

ple of the sliding window. In a next step the relative variance s2 of the RMS amplitudes239

is computed during a second moving window analysis with window length M > N . The240

relative variance s2 of window j is expressed as241

s2
j =

(∑j+M/2
i=j−M/2 ri −Rj

)2

(M − 1)R2
j

with Rj =
1

M

j+M/2∑
i=j−M/2

ri, (3)
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where Rj is the non-zero mean RMS amplitude within the analysis window j. We de-242

fine the relative variance s2 as the variance divided by the square of the mean to obtain243

a dimensionless (scale invariant) measurement of variability. This definition permits to244

compare data segments with variable RMS mean and to adjust to different seismic back-245

ground noise levels which may happen along the Sol.246

In a next step, data segments are determined with s2
j < S2, where S2 is a cho-247

sen maximum RMS variability. A new subsidiary data base is then built accepting only248

data chunks with time duration larger than a minimum time duration, say tmin.249

Thus, the free parameters of this data selection and segmentation approach are the250

window length (N and M of eqs. 2 and 3) and step intervals (i and j) for the two anal-251

ysis windows, the maximum RMS-variability S2 and the minimum data segment length252

tmin.253

On one hand, the analysis windows should be several times longer than the largest254

period as defined by the lowest corner frequency of the bandpass filter to warrant sta-255

tistical significance. On the other hand, the windows should not be too long to permit256

tracking RMS-variability changes with time. Throughout this study we used window length257

and step interval of 5 s and 0.1 s for the sliding-window RMS measurements (eq. 2) and258

20 s and 1 s for the RMS-variability determination (eq. 3). Further, the shortest admit-259

ted data segment length (tmin) is 300 s and the chosen RMS-variability thresholds (S2)260

are 0.1 and 0.2. Using these parameters two subsidiary data sets have been set up which261

consist of data volumes of about 3% (RMS-variability threshold 0.1) and 30% (RMS-variability262

threshold 0.2) of the total data base. In the following, we will refer to these data sets263

as the total or 100%, 30%, and 3% data sets.264

Different other parameters have been tested. The thresholds on data segment lengths265

and RMS-variability have a direct influence on the amount of selected data while vary-266

ing the analysis window parameters within reasonable bounds has a minor or insignif-267

icant impact on the subsidiary data base. In any case, there exists a trade-off between268

the selected amount of data and tolerance of RMS-variability changes. A fine tuning with269

the parameters may make sense for data sets where outlying noise is clearly separated270

from the rest of the data. In our case, aseismic noise exists at any amplitude level and271

therefore, it seems easiest to just analyze the results for more or less restrictive subsidiary272

data sets.273
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Examples of the data selection and segmentation procedure are shown in Fig. 1.274

The top traces of Figs 1a-c show seismic recordings with a duration of about 2 h. The275

start time of each trace is given in the figure. The second and third traces of each panel276

are the corresponding RMS (ri) and RMS-variability (sj , eqs 2 and 3). The horizontal277

red lines mark the RMS-variability threshold (0.2) to find the data segments with low278

RMS-variability. Segments with a duration larger than tmin = 300 s are drawn in red279

and form part of the 30% data set.280

It can be seen from Fig. 1 that the selected red segments are data stretches with281

low-amplitude variability. I.e, outlying amplitude signals have been avoided by the ap-282

proach. Fig. 1c also shows that segments with different amplitudes are selected inher-283

ent to the use of relative variance s2
j . Further examples are shown in Fig. S1.284

Fig. 2a shows the evolution of the relative RMS variability as function of Sol. Plot-285

ted are mean (red dots), one standard deviation uncertainty (gray bars), minimum and286

maximum value (black triangles) per Martian-day. All these values stay stable until about287

Sol 450. From about Sol 450 a slight but systematic increase of the maximum and mean288

RMS variability is being observed. A more rapid increase of the minimum RMS variabil-289

ity is evident from about Sol 500 to Sol 530. At the end of the analyzed period all val-290

ues are increased with respect to the beginning of the study period. The RMS variabil-291

ity increase correlates with a systematic raise of bad weather attributed to the entrance292

into local winter with more storms (Spiga et al., 2020). For example, Fig. 2b illustrates293

the measured mean wind speed (red dots), its one standard deviation uncertainty (gray294

bars), and minimum and maximum wind speed as function of sol. It can be seen that295

the minimum wind speed increases fast from about Sol 500 on, which is in concordance296

with the rise of the minimum RMS variability caused by the presence of winds at the297

lander site at all times. The highest wind speeds and standard deviation values decrease298

from about Sol 420 which reflects that the wind characteristics and distribution changed299

at the lander as also recorded by SEIS.300

The just mentioned rise of RMS variability causes a decreased amount of selected301

data towards the last analyzed Sols as also documented in Fig. S2. This figure shows302

the LMST of the selected data segments as function of Sol for the 30% and 3% data sets.303

It can be seen that most of the selected data segments are from the evening and morn-304

ing hours. This is expected since lander and wind activity are low during the night. Still,305
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glitches and other aseismic abrupt signals may happen during night which makes our data306

adaptive selection and segmentation approach different from any time dependent (e.g.,307

day/night) selection. It is also seen that less data has been selected during the last 60308

Sols owing to the increase of bad weather during this period.309

The data segment length distribution for the 30% subsidiary data set is shown in310

Fig. 3a. One third of the data segments has lengths smaller than 10 min. The number311

of segments decays quickly as function of segment length. Fig. 3b illustrates a normal-312

ized RMS amplitude distribution. The vertical axis now shows the total time duration313

rather than the number of individual segments. The gray histogram is for the 100% data314

set while the red histogram corresponds to the 30% data set. The RMS normalization315

is the same for both data sets. The absolute RMS amplitude is not important here, but316

the comparison of both histograms shows that the 30% data set consists mostly of small-317

amplitude segments. The 100 % data set RMS amplitudes have been obtained for 2-hour318

windows which consist typically of small and high RMS amplitude variability. Conversely,319

the 30% data set has a variable window length and does not include data stretches of320

high amplitude variability. This explains the increased total time duration for small RMS.321

2.4 Phase Autocorrelation Spectra for Selected Data Sets322

The Fourier Transform of the conventional autocorrelation of a time series equals323

its energy spectral density (ESD) for time series which have finite duration and are square324

integrable. In analogy to the ESD, we compute here the Fourier amplitude spectra of325

phase autocorrelations. The obtained spectra do generally not equal the ESD of the data326

as we use PCC to determine autocorrelations. Dissimilarities are often small and inher-327

ent to the different measure of signal coherence with each autocorrelation approach. How-328

ever, outlying amplitude signals do not bias PCC which permits a fast convergence to329

the EGF and stable autocorrelation spectra as shown in Schimmel et al. (2018).330

Fig. 4 shows the Fourier amplitude spectra of the linear stack of the phase auto-331

correlations using the 100% (black line), 30% (red line) and 3% (blue line) data sets. The332

data have been band-pass filtered between 0.8 and 9.5 Hz before computation of the au-333

tocorrelations. Different spectral lines and bumps are visible in these spectra. The spec-334

tral lines at integer frequencies are related to the “tick noise“ which is an aseismic sig-335

nal caused by electrical coupling during the SEIS temperature acquisition at 1 sps (sam-336
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ple per second). The spectral amplitude bumps are related to lander modes and/or res-337

onance of the seismic subsurface structure (e.g., Ceylan et al., 2021). The main bumps338

have been labeled along the spectrum for the 100 % data set.339

Bump 1 and spectral lines at integer frequencies appear to be enhanced in the data340

sets with less RMS amplitude variability, i.e., for the 30% and specially 3% data sets.341

This is partly due to the attenuation of other signals and noise with higher RMS am-342

plitude variability. The origin of bump 1 is still under investigation. It is centered at about343

2.4 Hz and could be caused by the superposition of lander and structural resonances. The344

corresponding lander modes at bump 1 are expected to arise as a response of the solar345

array oscillations during laminar wind flow, i.e., at wind speeds below about 3 m/s. This346

may explain why this bump 1 appears to be enhanced for the data sets with less RMS347

amplitude variability. Conversely, bumps 2-6 are systematically attenuated in the 30%348

and 3% data sets. These data sets consist mostly of seismic recordings during the local349

evening hours (Fig. S2) which is when there are less wind and less air pressure pertur-350

bations (e.g., Lognonne et al., 2020; Stutzmann et al., 2021). Bumps 2 to 6 correspond351

to resonances that are related to different lander modes which are mostly excited by tur-352

bulent winds above a threshold speed of about 3 m/s (Dahmen et al., 2021). In the fol-353

lowing we will work in the 1.2 - 8.9 Hz frequency band to avoid resonances at 1 and 9354

Hz.355

2.5 Attenuation of Tick Noise, Lander and Shallow Structure Resonances356

Fig. 5a shows vertical-component phase autocorrelations stacks as function of au-357

tocorrelation lag time and recording date. The entire data set has been used without any358

selection criteria, cut into 2-hour data segments and frequency band passed between 1.2-359

8.9 Hz before computation of the phase autocorrelations. The autocorrelations have been360

stacked linearly for recording dates within non-overlapping sliding 3-Sol data windows.361

In this figure, the positive amplitudes have been filled with red color and the positively362

correlated signals seen at every full second are tick noise (Fig. 5a). We have chosen a363

window at large lag time to avoid the interference with reflections from shallow discon-364

tinuities to permit a visual judgment on the tick noise attenuation.365

The tick noise is caused by electro-magnetic coupling during the SEIS temperature366

acquisition at 1 sps with a recorded waveform which does not resemble an impulsive sig-367
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nal (Compaire et al., 2021). On vertical components and within the here considered fre-368

quency band, most of its energy is at 4, 7, and 2 Hz (Fig. 4).369

Recorded tick noise and lander modes may interfere with seismic weak-amplitude370

reflections and should ideally be removed from the data to warrant the detection of weak371

amplitude reflections. Similarly, structural resonances should also be attenuated as their372

dominant signals may impede the detection of weak amplitude reflections. Structural res-373

onances are caused by seismic energy which is trapped in a shallow subsurface layer due374

to strong impedance contrasts at the limits of the layer. Only little energy leaks to deeper375

layers which therefore can inhibit the imaging of deeper structures with frequencies in376

the structural resonance band.377

Here, we attenuate the tick noise together with other resonances using band-rejection378

filters. First, we try two band-rejection filters (3.9-4.4 Hz and 6.8-7.2 Hz) to remove the379

two strongest tick noise peaks at 4 and 7 Hz and neighboring lander modes (bumps 4380

and 6). Fig. 5b shows in full analogy to Fig. 5a the autocorrelations after the applica-381

tion of the two just mentioned band-rejection filters. Bump 3 has not been included into382

the first rejection band since this signal is already attenuated for the 30% data set (Fig.383

4, middle panel).384

It can be seen from Fig. 5b that there exist still some lower-frequent tick noise which385

justifies employing a third band-rejection filter from 1.9 to 2.5 Hz. The resulting auto-386

correlation section Fig. 5c is finally not dominated by tick noise anymore. Besides, the387

data has been cleaned from other resonances (bumps 1, 4 and 6).388

An alternative approach is to measure the tick waveform through stacking of 1 s389

data segments for subsequent subtraction from the data (Compaire et al., 2021). Here390

we chose a different and independent approach to further show stability in our results.391

3 Reflection Response and Interpretations392

Fig. 6 shows autocorrelations computed using PCC and stacked with the tf-PWS393

approach. The employed seismic recordings belong to the 30 % data set. We bandpass394

filtered these data from 1.2 to 8.9 Hz and applied the three band-rejection filters explained395

in the previous section. The autocorrelations have been stacked within non-overlapping396

3-Sol windows and negative amplitudes are plotted in blue. Note that P-wave reflections397

at seismic discontinuities with an impedance increase are expected to have negative am-398
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plitudes. The autocorrelation section of Fig. 6 has been split into three lag-time win-399

dows to apply an independent amplitude normalization in each window for visual pur-400

poses. The earliest lag time starts at 5 s as the first seconds are dominated by zero-lag401

autocorrelation sidelobes (e.g., Ruigrok & Wapenaar, 2012; Romero & Schimmel, 2018).402

The amount of stacked data is shown to the top of each autocorrelation. The maximum403

duration of the data used per autocorrelation is about 1 Sol rather than 3 Sol which is404

the length of the data window. This is because of the applied data selection which re-405

duced the data used here to about 30 %. The corresponding linearly stacked autocor-406

relation section is displayed in Fig. S4 of the Supplementary Material. As also shown407

further below, the tf-PWS approach provides cleaner results as incoherent signals and408

noise have been attenuated during the stacking.409

The autocorrelation section of Fig. 6 contains signals repeated on most autocor-410

relations at specific lag times. These signals are stable as they show up for independent411

autocorrelations along the entire analyzed time interval. One of the most outstanding412

signals is seen at about 10.6 s. If we interpret this arrival as a P-wave reflection and as-413

sume an average crustal P-wave velocity of 4.5 km/s then the reflector is expected to be414

at about 24 km depth. Note that the assumed average P-wave velocity is slower than415

for Earth as indicated by receiver function inversions (Lognonne et al., 2020; Knapmeyer-416

Endrun et al., 2021).417

As the raw data consists also of different other aseismic signals, an autocorrelation418

signal is not a synonym of a seismic reflection. Some of the signals are expected to be419

part of the seismic reflection response while other signals can be due to any coherent and420

repeated feature in the data or due to beating of resonating frequency components from421

the lander. Resonances with slightly different frequencies f1 and f2 > f1 cause an in-422

terference pattern (wellknown in music) with beat frequency fb = f2−f1 (e.g., Kinsler423

et al., 1999). The beats of the interferring signals manifest in time-domain autocorre-424

lations as distinct and repeating signals of maximum amplitude at lag times tn = n/fb425

with n ∈ N . Similarly, glitches or other signals which are repeated systematically with426

the same time interval are expected to show up in autocorrelations at lag time which cor-427

responds to the time separation of the repeated features.428

Indeed, the interpretation of autocorrelations without any further a priori infor-429

mation is difficult. However, receiver function studies of marsquakes (Knapmeyer-Endrun430
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et al., 2021; Lognonne et al., 2020) provide the first a priori information of the under-431

lying structure and expected crustal-scale P-wave reflections on Mars. In this respect,432

the strong arrival at 10.6 s lag time interpreted as a P-wave reflection seems to be con-433

sistent with P-to-s wave conversions observed with receiver functions (Knapmeyer-Endrun434

et al., 2021). Indeed, the 10.6 s signal is quite robust and a likely candidate for a P-wave435

reflection from the crust-mantle boundary. Note that Compaire et al. (2021) also report436

a signal at 10.6 s using a different approach.437

The 10.6 s signal is discernible in linear and tf-PWSs of the three data sets as shown438

in Fig. 7. This figure contains the linear stacks in black and the tf-PWSs in red for all439

autocorrelations from the 100 % (top traces), 30 % (middle traces), and 3 % (bottom440

traces) data sets. The traces have been normalized by their RMS amplitudes measured441

between 8 and 20 s lag time. Further, amplitudes are clipped during the first seconds442

to favor the visibility of later arriving signals. It can be seen that the 10.6 s signal is vis-443

ible with amplitude of about twice the amplitude of neighboring signals and noise. Its444

shape resembles more a zero-phase wavelet than a wave train. The direct comparison445

of the stacks also shows that the tf-PWS approach provides cleaner autocorrelations through446

the attenuation of incoherent signals and noise.447

3.1 Convergence448

We now look at the convergence of autocorrelation stacks towards a stable seismic449

noise response. In seismic interferometry, the minimum amount of data needed is con-450

trolled by the cancellation of noise-cross terms (e.g., Snieder, 2004) and the abundance,451

distribution, quality and duration of signals to build up a stable EGF.452

Under the assumption of stationarity and minimum frequency of 1 Hz, cross-terms453

cancel out within confidence level ε ≈ 0.01 after about 3 h (eq. 9 in Medeiros et al. (2015)).454

The SEIS data are highly variable and the assumption of stationarity is not valid. Nev-455

ertheless, the estimated 3 h can be taken as a guide value. This value is shorter than the456

used data length of each autocorrelation shown in the figures for the 30% and 100% data457

sets.458

The total data length needed to extract a robust reflection response can be esti-459

mated by a convergence analysis. In this approach the evolution of autocorrelation stacks460

of random subsidiary data sets is being inspected as function of amount of data used for461
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the autocorrelations in each of the stacks. For this purpose the individual autocorrela-462

tion stacks are being compared with a reference waveform obtained by stacking all avail-463

able data. The waveform similarity of the two stacks can be determined with the zero-464

lag cross-correlation of the two time-series. Here, we employ PCC and the geometrically465

normalized cross-correlation (CCGN, e.g., Schimmel (1999)). The reference traces are466

those shown in Fig. 7.467

There exist different data sampling strategies to draw the random autocorrelation468

stacks. We tested two strategies, random sampling without replacement and Bootstrap-469

ping which uses random sampling with replacement (Efron & Tibshirani, 1986). With-470

out replacement means that no autocorrelogram is used more than one time in a draw.471

We repeated the random drawing 40 times to enable the determination of mean and stan-472

dard deviation for the similarity to the reference waveform.473

Figs 8 and S5 demonstrate our results using the Bootstrapping resampling and PCC474

and CCGN, respectively, to measure waveform similarity in moving windows of 0.5 s length.475

The 30 % data set has been used for Figs 8a,b. Fig 8a shows the waveform similarity476

while Fig. 8b contains the standard deviation of the similarity. The similarity (red line)477

and corresponding standard deviation (gray error bars) at 10.6 and 19.5 s are shown in478

the Figs 8c,d. 19.5 s has been chosen arbitrarily for comparison. A plateau in the sim-479

ilarity curve means that stacking more autocorrelations is not changing significantly the480

waveform similarity. The figures illustrate that the 10.6 s signal converges faster than481

a signal at 19.5 s lag time. Using CCGN (Fig. S5) an apparent overall faster waveform482

similarity is measured than using PCC. This is expected as PCC is the more waveform483

sensitive measure due to the employed instantaneous phase coherence.484

From Figs 8a and S5a we also observe that signals at shorter lag time tend to con-485

verge faster than signals at larger lag time. For a P-wave reflection response a larger lag486

time means longer wave paths owing to a deeper discontinuity or multiple reverberation.487

Such signals may need more data to stabilize in the EGF since the corresponding waves488

are more susceptible to the different types of attenuation.489

A comparison of the similarities for the 100 %, 30 %, and 3% data sets is shown490

in Figs 8e,f and S5e,f. It can be seen that slowest signal convergence is achieved using491

the 100 % data set (black curves). This means that a high amplitude variability is not492

contributing significantly to the extraction of the EGF. Note that this result does not493

–16–



manuscript submitted to ESS

change when using only the data until Sol 410. I.e., the increasing RMS variability af-494

ter Sol 450 (Fig. 2) is not causing the slower convergence.495

The 3 % and 30 % data sets seem to provide more similar results. The 3 % and496

30 % data sets have a total length of 151.8 h and 1557.1 h. The 3 % data set results are497

therefore obtained with a higher replacement rate. Drawing the random data sets with-498

out replacement (not shown here) illustrates that the similarity curves for the 3 % and499

30 % data are still more similar than for the 100 % data set.500

3.2 Stability of Reflection Response over Time501

The autocorrelations for the three data sets are shown in Fig. 9. The only differ-502

ences to Fig. 6 are the respective data sets (from left to right: 100 %, 30 %, and 3%)503

and the use of non-overlapping 30-Sol windows rather than 3-Sol windows. 30-Sol win-504

dows have been employed to reduce the number of autocorrelations to permit a compar-505

ison of the three autocorrelation sections at one glance. A welcomed side effects is that506

these autocorrelations are more robust owning to the increased amount of data used in507

each of the stacks. The corresponding linear stacks are demonstrated in Fig. S6 for com-508

pleteness.509

The most striking observation is that the 100 % autocorrelations show systemat-510

ically changing noise responses, i.e., the autocorrelations from about Sol 450 towards the511

end of the section look different with respect to the autocorrelations obtained for the first512

Sols. This variability is likely due to changing climatic conditions with stronger storms513

and corresponding responses of the lander. In fact, the statistical properties of the seis-514

mic recordings start to change simultaneously at about Sol 450 as testified with the ob-515

served daily RMS variability shown in Fig. 2. In contrast to the 100 % data, the 30 %516

autocorrelations (middle panel of Fig. 9) show stable signals for all Sols. This is because517

the RMS variability threshold retained most of the seismic recordings with imprints of518

climate and lander response variability. This result reinforces that a thorough data se-519

lection is essential to warrant a minimum influence of aseismic signals which may bias520

any autocorrelation result. In this respect, a data adaptive approach is better than sim-521

ply selecting the data through LMST slots.522

Amplitude spectra of the just discussed autocorrelations are shown in Fig. 10. The523

amplitudes have been normalized at 6 Hz for visual purposes. Spectra for linearly stacked524
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autocorrelations are shown in Fig. S7 for comparison. It can be seen from both figures525

that the 100 % data set suffers at about 3.8 Hz and Sols larger than 500 from energy which526

appears at the corner of one of the applied band-rejection filter. These signals are more527

pronounced in the spectra of the linear stacks and are likely lander resonances in response528

to the bad weather. Amplitude spectra for linearly stacked autocorrelations computed529

for data without application of band-rejection filters (Fig. S8) reveal that the strongest530

amplitude changes indeed occur around 4 Hz. Broader band-rejection filters could at-531

tenuate these signals, but unnecessarily reduce the band width of the autocorrelations532

for data recorded before Sol 450.533

As expected from the time-domain autocorrelations of Fig. 9 the corresponding spec-534

tra (Fig. 10) for the 30 % and 3 % data sets show less variability than for the 100 % data535

set. The strongest resonances have still been attenuated by the data selection approach536

and three band-rejection filters.537

3.3 Stability of Reflection Signals over a Broad Frequency Band538

Finally, seismic signals related to structural discontinuities are expected to be de-539

tected for a rather broad than narrow frequency band, i.e., possible frequency-dependent540

reflectivity generally varies smoothly. Besides, at small lag time, sidelobes of the zero-541

lag autocorrelation peak may affect early structural arrivals. The autocorrelation side-542

lobes are caused by the convolution of a delta pulse with the effective noise source time543

function (e.g., Ruigrok & Wapenaar, 2012) and are expected to change faster with fre-544

quency than a reflection pulse (see Fig 6 in Romero and Schimmel (2018)).545

We therefore inspect the signal stability across different frequency bands. The first546

three panels in Fig. 11 show autocorrelations for the 30 % data set and different one-547

octave frequency bands. From top to bottom these are 1.5-3.0 Hz, 2.4-4.8 Hz, and 3.6-548

7.2 Hz. The effective band width, nevertheless, is smaller than an octave owing to the549

employed band-rejection filters. The tf-PWS of all autocorrelations is illustrated in red550

while the black lines show tf-PWSs of 10 % randomly drawn autocorrelations. The fourth551

panel shows the red color stacks of the top three panels plotted on top of each other. The552

lowermost panel contains the tf-PWS (red line) and linear stack (blue line) for the wide553

1.2-8.9 Hz band.554
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It can be seen from this figure that some signals are persistent or in phase along555

different frequency bands. Labels a-f mark some of these signals at lag times of 6.15 s,556

6.85 s, 8.66 s, 10.6 s, 16.85 s, 23,8 s and 24.49 s. The dashed vertical lines have been added557

to aid the visual inspection. Signals a and c are not seen for the lowest frequency band558

and have therfore been marked at the base of the figure. None of the signals is being ob-559

served for only one frequency band. E.g., signal b is in phase for the three frequency bands560

while signal d is in phase for the two lower bands. The latter signal, however, appears561

only in the middle frequency band as a clear signal. It is seen from the top two panels562

that the amplitude maxima of signal d are not coherent while its minimum amplitude563

occurs at the same lag time to build up the observed negative polarity when filtering over564

a broader frequency band. Features a and c are in phase for the two higher frequency565

bands. Signals e and f are also in phase and show also up as slightly distinctive features566

in the 1.2-8.9 Hz correlations. e and f are less impulsive as d, i.e., in the 1.2-8.9 Hz cor-567

relations they seem to be part of a larger waveform. f has been marked twice, at the first568

minimum amplitude and 0.6 s later at the lowest minimum. We use only one letter, as569

it is not clear if this are several signals which arrive at a similar time.570

In any case, a visible interference of zero-lag sidelobes or their misinterpretation571

is not expected owing to the stationarity of these signals over a broader frequency band572

(Romero & Schimmel, 2018).573

4 Discussion and Conclusion574

The 10.6 s signal, if interpreted as P-wave reflection, would point to a discontinu-575

ity at about 24 km depth considering expected Mars’s crustal average seismic velocities576

of 4.5 km/s. We observe the 10.6 s signal robustly on the 100 %, 30 %, and 3 % data577

sets with amplitudes which can reach twice the amplitude of other nearby signals and578

noise. The shape of the waveform resembles more a zero-phase wavelet with negative po-579

larity than a wave train. The negative polarity is consistent with a reflection from a dis-580

continuity with a seismic impedance increase while the wavelet shape can be explained581

by a sharp discontinuity and lack of other interfering signals as reflections from strong582

nearby discontinuities.583

Indeed, the 10.6 s signal is a likely candidate for a reflection from the base of the584

crust owing to its two-way travel time, negative polarity, strengths and robustness. En-585

–19–



manuscript submitted to ESS

ergy at similar lag time has also been reported by Deng and Levander (2020) and Compaire586

et al. (2021) and interpreted as P-wave Moho reflection. The 10.6 s signal seems to be587

consistent with models obtained for receiver functions from marsquake data (Lognonne588

et al., 2020; Knapmeyer-Endrun et al., 2021). Knapmeyer-Endrun et al. (2021) present589

two model families resulting from receiver function inversions where the 10.6 s signal can590

be explained either as a P-wave Moho or internal crustal discontinuity reflection. More591

events from different distances or other geophysical constraints are needed to further limit592

the model space and to aid the identification of autocorrelation signals. We prefer the593

first model class which can explain the 10.6 s signal as a Moho reflection since we ob-594

serve no other, at least equally-strong signal at a later time to explain a deeper Moho.595

This is based on the assumption that the crust-mantle boundary is stronger than a mid-596

crust discontinuity.597

The seismic data acquisition conditions are harsh on Mars and there exist a wealth598

of different aseismic signals (Lognonne et al., 2020; Ceylan et al., 2021; Scholz et al., 2020;599

Stutzmann et al., 2021) which also may show up on autocorrelations. For instance, reg-600

ularly repeated glitches (long duration pulses typically with frequencies below 1 Hz) and601

donks (short duration pulses typically at frequencies above 8 Hz, Ceylan et al. (2021))602

with similar waveforms can manifest, depending on their abundance and coherence, at603

their repeat time. To attenuate the effect of glitches and donks, Deng and Levander (2020)604

determine the absolute mean amplitude in moving data windows of 100 s length which605

then are used to weight the seismic data (e.g., Bensen et al., 2007). Finally, they observe606

at 11.5 s a signal which appears robustly on their Martian day-time and night-time data607

and which they interpret as Moho P-wave reflection.608

Conversely, Compaire et al. (2021) removed the tick noise and attenuated glitches609

using an algorithm by Scholz et al. (2020). High-frequency components of glitches re-610

main in the data and donks are not removed by the algorithm. All in all, they use data611

recorded during the evening hours for which autocorrelations have the highest signal-612

to-noise ratio (SNR) and find a signal at 10.6 s and at 21 s which they interpret as re-613

flections from crustal layers. They also show that glitches can not interfere with these614

reflections as they are separated by more than 30 s. The repeat time of donks, however,615

can be much smaller with maximum at about 10 s around 17-18 h LMST (Compaire et616

al., 2021). The authors argue that the observed stability of the 10.6 s signal with time617
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is not correlated with the overall distribution of donks which finally makes a donk ori-618

gin of these reflections unlikely.619

Here, we use a different data processing strategy. For instance, we do not de-glitch620

the records as high frequency glitch signatures seem to remain in the cleaned data. Fur-621

ther, we refrain from selecting data by choosing fixed time slots and design a data-adaptive622

approach to segment and pick seismic records based on their RMS amplitude variabil-623

ity. Our 30 % and 3 % data sets have been built selecting stretches of data with low RMS624

variability which also led to an attenuation of most lander resonances as seen from the625

spectra in Fig. 4. We further attenuated strong resonances using three band-rejection626

filters (1.9-2.5 Hz, 3.9-4.4 Hz and 6.8-7.2 Hz). These band-rejection filters were also cho-627

sen to remove jointly the strongest components of the tick noise.628

Our data selection procedure is expected to avoid large amplitude donks and glitches629

and should be less affected by aseismic features which are related to bad weather lan-630

der and SEIS responses. However, small amplitude donks which do not affect the RMS631

variability can still be present in the selected data. Concerning the 10.6 s signal, a donk632

origin would require a sharp repeat time distribution of opposite polarity donks to ex-633

plain the negative correlation peak and zero-phase shaped wavelet. A smooth distribu-634

tion of donks is expected to either cancel out or to produce wave train shaped signals635

at lag times which correspond to their repeat times. In any case, at present we are not636

aware of hidden donks, but can also not rule out their existence.637

Finally, large amplitude donks and glitches do not seem to have a dominant im-638

print on the autocorrelations as can be seen by comparing the autocorrelation sections639

for the 100 % and 30 % data sets (Fig. S9). This is because randomly distributed or in-640

coherent glitches and donks, as well as other outlying signals and noise do not affect the641

amplitude unbiased PCC. Therefore, PCC is an adequate approach for data from un-642

favorable deployment and detection conditions as shown in Schimmel et al. (2018).643

Another source of aseismic signals can be beats produced through interfering res-644

onances (Kinsler et al., 1999). Beats can manifest in autocorrelations at lag time which645

equals the inverse of the difference in frequency of the two resonances and multiples. I.e.,646

a 10.6 s autocorrelation signal could be due to a 0.094 Hz beat. The 10.6 s signal does647

not show a seasonal variability and would therefore require stable resonances through-648

out the analyzed data. We believe that the autocorrelations are not dominated by strong649
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beats as the main lander resonances have been attenuated through rejection filters and650

data selection on frequency band pass filtered data. Still, the presence of weak ampli-651

tude beats in the data can not be ruled out.652

Further, the fast convergence of the 10.6 s signal which can be extracted with about653

2 Sol of data is remarkable. There are no oceans on Mars, and all seismic energy is sup-654

posed to be released by weak magnitude events (the largest observed Marsquake has a655

magnitude of 4 Clinton et al. (2020)) and through atmospheric phenomena. In spite of656

the absence of strong sources, the low level of natural Martian noise (Lognonne et al.,657

2020) may favor the detectability of low-amplitude signals and therefore aid the conver-658

gence of the reflection response.659

We focused the discussion on the 10.6 s signal, as it appears to be a likely candi-660

date for a reflection from the base of the crust. Nevertheless, the obtained reflection re-661

sponse contains also other signals which likely are reflections and multiples from other662

discontinuities. Some of them have been marked in Fig. 11 (labels a to g) owing to their663

appearance over a broader frequency band. The lag times are 6.15 s, 6.85 s, 8.66 s, 10.6664

s, 16.85 s, 23,8 s and 24.49 s. Specially for the earlier arrivals the frequency stability is665

an important criteria to avoid misinterpretations or interferences with zero-lag autocor-666

relation sidelobes as shown in Romero and Schimmel (2018).667

Concerning inter-crustal discontinuities, receiver function studies (Lognonne et al.,668

2020; Knapmeyer-Endrun et al., 2021) provide stable estimates on a discontinuity at about669

8-11 km depths with S-wave velocities Vs of about 1.7-2.1 km/s. If we assume a mean670

discontinuity depth of 9.5 km and that our signal a at 6.15 s lag time (Fig. 11) is a re-671

flection from this discontinuity then the expected P-wave velocity Vp and Vp/Vs ratio672

for the 9.5 km layer are 3.1 km/s and 1.48-1.82 considering the Vs range. Under same673

assumptions, the close by signal b at 6.85 s lag time, would lead to Vp=2.8km/s and Vp/Vs674

ratio of about 1.33-1.65. We believe that signal a provides a more realistic Vp/Vs ra-675

tio than signal b and could therefore likely be the reflection from the base of the upper676

crust layer. For comparison, the Vp/Vs ratio for the very shallow regolith layer has been677

estimated to 1.67 (Lognonne et al., 2020).678

Finally, the estimated lag time dependent convergence of the autocorrelations shows679

that more data are needed to build the reflection response at later lag times. This makes680

sense as waves propagating over a longer time interval are more prone to scattering and681
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attenuation which needs to be compensated by stacking more autocorrelations. In any682

case, we see no reason for aseismic signals to show a systematic lag time dependent con-683

vergence.684
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May 5, 2018 InSight launched from Vandenberg Air Force Base (California)

November 26, 2018 (SOL 0) Landing near Elysium Planitia at 4.5024◦N, 135.6234◦E

December 19, 2018 (SOL 22) Deployment of SEIS on Martian ground

February 2, 2019 (SOL 66) SEIS is covered by Wind and Thermal Shield (WTS)

May 19, 2019 (SOL 169) SEIS heating system has been switched on

August 28, 2019 (SOL 267) Start of Mars Solar conjunction, i.e., no data transmission

September, 19, 2019 (SOL 289) End of Mars Solar conjunction, i.e., start of data transmission

Table 1. Summary of key dates and works related to SEIS deployment and operation on Mars.886
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Figure 1. Three data selection and segmentation examples. a) The top trace shows the

vertical component record with the selected segments in red. The two bottom traces are the nor-

malized RMS and the relative RMS variability. The horizontal red line marks the threshold RMS

variability used for the segment selection. The begin time (LMST) of the time series is written

to the top left. b) and c) show the same as a), but for different time records. More examples are

shown in Fig. S1 of the Supplementary Section.
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Figure 2. a) Evolution of seismic signal RMS variability as function of Sol measured on

Z-component filtered from 1.2-9.5 Hz. Red dots and gray error bars mark the mean and one

standard deviation uncertainty per Sol. Black triangles point to the minimum and maximum

RMS variability encountered per Sol. b) Wind speed as function of Sol. In analogy to the seismic

signal RMS variability plot, red dots and gray bars mark the mean and one standard deviation

uncertainty while black triangles point to the minimum and maximum RMS variability encoun-

tered per Sol.
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Figure 3. a) Histogram of segment length distribution for the 30% subsidiary data set. The

inset is a zoom for segment length between 30 and 130 min. Vertical axis contains the number of

segments in percentage while horizontal axis shows the segment length in minutes. b) Histogram

of normalized RMS distribution for the 100 % (gray) and 30 % (red) data sets. Vertical axis is

cumulative time in hours and horizontal axis is the base 10 logarithm of the normalized RMS

distribution. The increase of cumulative time for the subsidiary data set with respect to the total

data bases is due to the RMS variability and data segmentation.
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subsidiary data sets, respectively. Italic numbers 1-6 mark features discussed in the main text.
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Figure 5. a) Vertical-component autocorrelation stacks for sliding 3-Sol data windows. The

frequency band is 1.2-8.9 Hz, data windows do not overlap, and positive amplitudes are in red.

Shown are linear stacks of phase autocorrelations for the entire data set at lag time without re-

flections from shallow discontinuities. The tick noise are the positive amplitude signals at every

full second. b) Same as a), but two band-rejection filters, 3.9-4.4 Hz and 6.8-7.2 Hz have been

applied before computation of the phase autocorrelations. c) Same as b), but the data has been

filtered with a third band rejection filter 1.9-2.5 Hz. See Fig. S3 for another example employing

the 3 % data set and tf-PWS.
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Figure 6. Vertical-component autocorrelation stacks for sliding 3-Sol data windows. The fre-

quency band is 1.2-8.9 Hz and data windows do not overlap. Shown are tf-PWSs of phase auto-

correlations computed for the 30 % data set. Blue marks negative amplitudes. The three lag-time

windows have been used to improve the visibility through independent amplitude normalization.

Top panel shows the total duration of the selected data used to compute autocorrelations within

each of the 3-Sol data windows. Linear stacks for the same data are shown in Fig. S4.
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Figure 7. This figure shows the stacked autocorrelations for the 100 % data (top panel), 30

% data (middle panel), and 3 % data (bottom panel). The linear stacks are plotted in black and

the corresponding tf-PWS in red. The amplitudes of each stack have been normalized for visual

purposes. The 10.6 s signal appears with in impulsive shape for the three data sets and stands

out from its immediate surroundings.
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Figure 8. a) Autocorrelation waveform convergence as function of lag time and total length of

data using the 30% data set. Colors are used to contour the mean similarity of randomly stacked

autocorrelations with the reference trace. The reference trace is the linear stack of all autocor-

relations from the 30% data set (black trace, middle panel of Fig. 7). The total data length is

2350.2 h. b) Standard deviation of the similarity shown in a). c) Similarity (red) and standard

deviation (gray) of the 10.6 s signal for the 30 % data set. d) Same as c) but for a signal at 19.5

s lag time. e) Same as c) but showing also the results for the 3 % (blue) and 100% data sets

(black). The reference traces are based on a total data length of 201.2 h and 8355.6 h for the 3 %

and 100 % data sets, respectively. f) Same as e) but for the 19.5 s signal.
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Figure 9. Vertical-component noise autocorrelation stacks for sliding 30-Sol data windows.

The frequency band is 1.2-8.9 Hz and data windows do not overlap. Shown are time-frequency

phase weighted stacks of phase autocorrelations. Blue marks negative amplitudes. The three

lag-time windows have been used to improve the visibility through independent amplitude nor-

malization. The top panel shows the total duration of the selected data used to compute autocor-

relations within each of the 30-Sol data windows. The axis for the duration of the 30 % and 3 %

data set are scaled by the number to the top left. Linear stacks for the same data are shown in

Fig. S6.
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Figure 10. Amplitude spectra of tf-PWS autocorrelations shown in Fig. 9 as function of Sol

for the 100 % (left panel), 30 % (middle panel), and 3 % (right panel) data sets. Each amplitude

spectrum is placed at its window center time and has been normalized at 6 Hz. Spectra of linear

stacks are shown in Fig S7.
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Figure 11. Vertical-component noise autocorrelation stacks for the 30 % data set. tf-PWSs

are shown in red and black. Red traces are based on the entire 30 % data set while black traces

mark stacks for only 10% of the data. Lag-time windows correspond to those of Fig. 6 and have

been chosen to improve signal visibility. The first three panels are for 1.5-3.0 Hz, 2.4-4.8 Hz, and

3.6-7.2 Hz band-passed filtered noise. The forth panel compares the stacks from the top three

panels. The lowermost panel shows the linear stack (blue line) and tf-PWS (red line) for the

frequency band 1.2-8.9 Hz. Arrows mark signals mentioned in the text.
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Figure S1. Data selection and segmentation examples. The selected segments are marked in

red. The start time of each trace is given in LMST to the right of each record.
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a) b)

Figure S2. Selected data windows as function of Sol and LMST for the 30% (a) and 3% (b)

subsidiary data sets. Very short time windows are not well resolved. Nevertheless, this figure

shows that most of the selected time segments with low RMS variability are from the evening

when wind activity is low.
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Figure S3. Same as Fig. 5, but using tf-PWS and the 3 % data set rather than the linear

stack and the 100 % data set: a) Vertical-component noise autocorrelation stacks (tf-PWS) for

sliding 3-Sol data windows. The frequency band is 1.2-8.9 Hz, data windows do not overlap, and

positive amplitudes are in red. Phase autocorrelations are for a subsidiary data set of about 3%

of the total data volume, i.e., containing the traces with the lowest RMS amplitude variability.

The lag time window is large to avoid reflections from shallow discontinuities. The tick noise are

the positive amplitude signals at every full second. b) Same as a), but two band-rejection filters,

3.9-4.4 Hz and 6.8-7.2 Hz have been applied before computation of the phase autocorrelations. c)

Same as b), but the data has been filtered with a third band rejection filter 1.9-2.5 Hz.
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Figure S4. Same as Fig. 9, but employing the linear stack rather than the tf-PWS: Vertical-

component noise autocorrelation stacks for sliding 30-Sol data windows. The frequency band is

1.2-8.9 Hz and data windows do not overlap. Shown are linear stacks of phase autocorrelations.

Blue marks negative amplitudes. The three lag-time windows have been used to improve the

visibility through independent amplitude normalization. The top panel shows the total duration

of the selected data used to compute autocorrelations within each of the 30-Sol data windows.

The axis for the duration of the 30 % and 3 % data set are scaled by the number to the top left.
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Figure S5. Same as Fig. 8, but using zero-lag CCGN rather than PCC to measure the wave-

form similarity. This figure shows a faster waveform convergence as PCC is the more waveform

sensitive measure.
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Figure S6. Same as Fig. 9, but employing the linear stack rather than tf-PWS: Vertical-

component noise autocorrelation stacks for sliding 30-Sol data windows. The frequency band is

1.2-8.9 Hz and data windows do not overlap. Shown are linear stacks of phase autocorrelations.

Blue marks negative amplitudes. The three lag-time windows have been used to improve the

visibility through independent amplitude normalization. The top panel shows the total duration

of the selected data used to compute autocorrelations within each of the 30-Sol data windows.

The axis for the duration of the 30 % and 3 % data set are scaled by the number to the top left.
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Figure S7. Same as Fig. 10, but using linear stacks: Amplitude spectra of linearly stacked

autocorrelations as function of Sol for the 100 % (left panel), 30 % (middle panel), and 3 % (right

panel) data sets. Stacks are build using all available autocorrelations within non-overlapping

30-Sol data windows. Each amplitude spectrum is placed at its window center time and has been

normalized at 6 Hz. The total duration of data used to compute the autocorrelations within

each 30-Sol window is plotted to the top. The numbers to the top left are factors to reduce the

duration axes of the 30 % and 3 % data sets.
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Figure S8. Same as Fig. S7, but using a slightly broader frequency band (0.8-9.5 Hz) and no

band-rejection filters. Spectra are normalized at 1 Hz and amplitudes have been multiplied by 0.5

for the 100 % data set (left panel).
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Figure S9. Vertical-component autocorrelation stacks for sliding 3-Sol data windows. The

frequency band is 1.2-8.9 Hz and data windows do not overlap. Shown are tf-PWSs of phase au-

tocorrelations computed for the 100 % (left panel) and 30 % data set up to Sol 410. Most of the

signals appear for both data sets. This further testifies that PCC is a robust approach as data

problems, glitches and donks present in the 100 % data set do not bury the signals shown with

the 30 % data set.
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