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Abstract 

Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a 

dataset of > 6,500 individuals from Mexico, Colombia, Peru, Chile and Brazil (including 

genome-wide SNP data and quantitative/categorical pigmentation phenotypes - the 

CANDELA dataset CAN). We evaluated accuracy in relation to different analytical 

methods and various phenotypic predictors. As expected from statistical principles, we 

observe that quantitative traits are more sensitive to changes in the prediction models 

than categorical traits. We find that Random Forest or Linear Regression are generally 

the best performing methods. We also compare the prediction accuracy of SNP sets 

defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and skin 

colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 

22 and 36 SNPs for eye, hair and skin colour prediction respectively). When training 

prediction models on the CAN data, we observe remarkably similar performances for 

HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (categorical) and 

eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for 

quantitative, but not for categorical skin pigmentation prediction. The performance of 

HIrisPlex-S, when models are trained in a world-wide sample (although consisting of 

80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative to training in the 

CAN data (particularly for hair and skin colour).  Altogether, our observations are 

consistent with common variation of eye and hair colour having a relatively simple 

genetic architecture, which is well captured by HIrisPlex-S, even in admixed Latin 

Americans (with partial European ancestry). By contrast, since skin pigmentation is a 

more polygenic trait, accuracy is more sensitive to prediction SNP set size, although 

here this effect was only apparent for a quantitative measure of skin pigmentation. Our 

results support the use of HIrisPlex-S in the prediction of categorical pigmentation 



traits for forensic purposes in Latin America, while illustrating the impact of training 

datasets on its accuracy.  

 

Keywords: DNA phenotyping, eye-colour, hair-colour, skin-colour, pigmentation prediction, 

admixture, Latin Americans 

  



Introduction 

 There is growing interest in the use of genetic data for the prediction of physical 

appearance, particularly in forensic, historical and paleo-anthropological studies[1–3]. 

Strong impetus for these studies has been provided by Genome Wide Association 

Studies (GWAS) of traits such as eye, hair and skin pigmentation, which show variation 

within and between continental populations. In the case of eye and hair colour, a large 

variation range is seen in Europeans [4–9], while other continents have limited 

variation, essentially within the narrow brown-black range [8,10–12]. By contrast, 

variation in skin colour in Europeans has a narrower range than in other continents. In 

terms of characterizing the genetic basis of variation in pigmentation traits, so far, the 

great majority of GWASs have been performed in Europeans[13–18], although recent 

GWAS in non-Europeans are enabling the identification of additional variants 

associated with pigmentation variation outside Europe[12,19], particularly for skin 

colour.  

Early studies on prediction of pigmentation traits, exploiting GWAS findings, 

focused on eye colour [20–23] and these analyses were subsequently extended to hair 

[24,25] and skin [26]. As a result, sets of SNPs have now been proposed for the 

simultaneous prediction of eye, hair and skin colour[27,28]. These SNP sets have been 

shown to have high prediction accuracy in European samples and there is now interest 

in evaluating the performance of these tools in non-European populations, as well as in 

populations of mixed continental ancestry. Latin Americans represent one of the largest 

recently admixed populations world-wide. The history of Latin America has involved 

extensive admixture, mostly between Native Americans, Europeans and sub-Saharan 

Africans. Consistent with its partly European ancestry, a recent GWAS for 

pigmentation traits in Latin Americans in the CANDELA cohort detected phenotypic 



effects for a number of loci previously identified in Europeans[12]. In addition to these, 

novel pigmentation SNPs with genome-wide significant association were also identified 

in that study. These included SNPs polymorphic only in East Asians and Native 

Americans, consistent with the independent evolution of skin pigmentation in West and 

East Eurasia[7,29,30]. The admixed ancestry of Latin America and the finding in the 

region of pigmentation variants not present in Europeans emphasizes the need to 

evaluate the accuracy of tools currently available for prediction of pigmentation traits 

in this population.  

 Here we aimed to evaluate the accuracy of prediction of pigmentation traits in a 

large Latin American dataset from Mexico, Colombia, Peru, Chile and Brazil [12,31–

36] characterized for eye colour, comparing methods, model predictors, and training 

datasets. We compared results from the widely-used HIrisPlex-S with sets of SNPs 

selected from the CANDELA data (and including a larger number of SNPs than 

HIrisPlex-S). We find that, when trained in the CANDELA data, the HIrisPlex-S SNP 

set has a performance similar to the CAN SNPs in the prediction of eye and hair colour, 

but its performance is somewhat lower for skin colour. This observation is consistent 

with the polygenicity of skin colour, relative to hair and (particularly) eye colour and 

the large variation in skin colour across the world. The work presented here sets the 

stage for the optimization of tools for the prediction of pigmentation traits across Latin 

America, for forensic purposes.  

 

Materials and Methods 

Study sample: phenotypes, genetic data and covariates 

We analyzed data previously studied by the CANDELA consortium for GWAS of 

pigmentation traits[12,31–34]. The consortium gathered genetic and phenotypic data from 



over 6,500 individuals recruited in five Latin American countries: Mexico (N=~1,200), 

Colombia (N=~1,700), Peru(N=~1,230), Chile (N=~1,730) and Brazil (N=~630).  

Pigmentation traits evaluated directly on the research subjects consists of (A) hair 

pigmentation (recorded in four categories: 1-red/reddish, 2-blond, 3-dark blond/light brown 

or 4-brown/black. However, due to their very low frequency (<0.6%), individuals in the 

‘red/reddish’ category were not included here), (B) eye colour, recorded as five ordered 

categories: 1-blue/grey, 2-honey, 3-green, 4-light brown, 5-dark brown/black. For increasing 

consistency with previous publications[23,26,37–39], here we recoded these data into just 

three categories: 1-Blue/Grey, 2-Intermediate (honey or green) and 3-Brown/Black (light 

brown or dark brown/black) and (C) a quantitative measure of skin pigmentation from an 

area unexposed to sunlight (the Melanin Index MI, obtained by reflectometry). We also had 

available additional measures of iris pigmentation, extracted from digital photographs, using 

the HCL colour space (Hue, Chroma and Luminance). Hue being an angle (recorded in arc 

degree), we linearized this trait with cosine and shifted the angle by 15° in order to maximize 

the number of samples in the range [0,180°]; hence the trait considered is cos(Hue+15). The 

frequency distribution for these traits in the CANDELA dataset is shown in Supplementary 

Figure S1.  

To enable comparison with previous studies on categorical skin colour [26,37], 

we converted the quantitative MI values into a three-level categorical trait (Fair, 

Intermediate and Dark skin colour). For this, we used the individual genetic ancestry 

estimates in the CANDELA dataset to select individuals with estimated 100% European 

ancestry (N=70) and individuals with African ancestry higher than both the European 

and Native estimates (i.e. >39% African ancestry; N=23). Based on the MI distribution 

in these two groups, we defined MI values of 33 and 47 as thresholds for three skin 

colour categories: Fair (MI <33; N= 2,506), Intermediate (MI 33-47; N=3,840) and Dark 



(MI>47; N=180) (Supplementary figure S2). These thresholds are in line with values 

obtained in a previous study of Brazilians[40]. 

The genetic data consisted of ~9 million genotypes, ~700k of which were obtained 

experimentally by genotyping Illumina’s Omni Express chip, the remainder obtained by 

imputation as described in Adhikari et al[12]. We applied several filters to the CANDELA 

dataset prior to the trait prediction analyses. Firstly, we retained only individuals aged 18 to 

45. Secondly, we removed 8 pairs of individuals whose pairwise probability of IBD was 

estimated close to 1, to discard potential sample mix-ups (hence, 16 individuals removed), 

and individuals whose estimated African ancestry was more than European and native 

ancestry estimations (23 individuals), as those were considered as genetic outliers and thus 

excluded. Finally, we excluded all individuals with missing data on any of the covariates 

(age, sex, BMI). Note that BMI was considered as a covariate since we found it significantly 

correlated to some pigmentation phenotypes; that correlation is most likely a confounding 

effect of continental genetic ancestry. The final sample size used in the analyses was: 6,495 

for hair colour, 6,526 for MI, 6,529 for categorical eye colour and 5,738 for quantitative eye 

colour traits – Hue, Chroma and Luminance. These three eye colour phenotypes constitute 

the bicone colour space model – HCL scale for human perception of eye colours (previously 

explained by Adhikari et al[12]). 

 

Pigmentation SNP sets used for prediction  

We used two sets of SNPs for the prediction analyses. Firstly, we devised 

“CANDELA” (CAN) SNP sets for prediction of each pigmentation trait (E-eye; H-hair; S-

skin) based on results from a GWAS conducted in the CANDELA sample[12]. To pre-select 

SNPs for each trait, we used the following protocol: (1) selection of all SNPs with GWAS 

association p-values <10-5, (2) grouping SNPs in high LD and (3) for each SNP group, 



selection of the SNP with highest predictive power (as the most significant SNP is not 

necessarily the most predictive [41]). We thus pre-selected 1,471, 207 and 701 SNPs for skin, 

hair and eye pigmentation prediction, respectively. For each trait, the preselected SNPs 

were ranked based on decreasing conditional predictive power and R2 of prediction 

models computed sequentially, each time adding a SNP from the ranked list. We set a 

limit for the number of SNPs included in a set when R2(i)>=max(R2)*.999. Details of the 

approach used for SNP selection are provided in Supplementary method S1, and the resulting 

CAN-E, CAN-S and CAN-H SNP sets are described in the Results section. 

Secondly, as a benchmark, we used HIrisPlex-S, a SNP set that has been 

developing over the years for the prediction of eye, hair and skin pigmentation 

[20,24,27] HIrisPlex-S currently includes 41 SNPs, of which 6/22/36 are relevant 

respectively for prediction of eye/hair/skin pigmentation. Of the 41 SNPs included in 

HIrisPlex-S 22 SNPs were directly genotyped in the CANDELA samples, the remaining 

having been imputed. We only retained SNPs with MAF >= 1% in the CANDELA data. 

This led to seven HIrisPlex-S SNPs being excluded, thus reducing the set used here to 34 

SNPs (6/16/32 of these being used for eye/hair/skin prediction, respectively, 

Supplementary table S1). Due to the low MAF frequency in the CANDELA data, the 

exclusion of these SNPs has a negligible impact on prediction accuracy. The lack of 

informativity of the 7 discarded SNPs in the CANDELA dataset is underlined by the 

fact that they are all located in the MC1R region, and are important mainly for red hair 

prediction, a trait nearly absent in the CANDELA data (the few red/reddish individuals 

with red hair were removed due to their low frequency). Of the 34 SNPs retained for the 

analyses, 13 had imputed genotypes, all with high imputation quality metrics 

(IMPUTE2’s INFO > 0.8 – see Supplementary table S1). 



Overall, for all the imputed SNPs used in the analyses (either from CAN or 

HIrisPlex SNP sets), the average imputation quality metric (INFO) was high, 0.942. In 

addition, we verified the accuracy of imputed genotypes for these SNPs by comparing 

with two independently sequenced datasets. A set of Native American samples collected 

and chip genotyped for a previous study [35] were sequenced at high coverage and 

variants filtered. We calculated the concordance for these samples as the proportion of 

imputed genotypes that match the sequence data exactly. The average concordance was 

high for these SNPs, 98.8%. For another set of sequenced European samples, the 

average concordance for these SNPs were equally high at 98.5%. 

 

Prediction methods and models evaluated 

A broad array of statistical methods have been employed in the literature to predict 

pigmentation traits, such as (multiple) linear[42,43] or (multinomial) logistic 

regression[23,24], decision trees[42,44], neural networks[42,45], and naïve Bayes 

classifiers[37,46,47]. Each method has its advantages and disadvantages, and are better suited 

for certain types of traits, e.g. linear regression for quantitative traits[42,43] and logistic 

regression for categorical traits[23,24]. 

The overall strategy we used for performing pigmentation prediction in the 

CANDELA dataset is shown in Figure 1. Linear Regression (LR) or Multinomial Logistic 

Regression (MLR) were used as the reference methods for quantitative or categorical traits, 

respectively. These two methods were used to evaluate three prediction models, incorporating 

an increasing number of predictors (Fig. 1A): 

1- Using only non-genetic covariates as predictors: 

� ~ ��� + ��	 + 
�� (equation 1) 

2- Incorporating genetic ancestry to model 1:      



� ~ ��� + ��	 + 
�� + 
���������� + ����������� (equation 2) 

Here we included as predictors the estimates of European and African ancestry 

(obtained by unsupervised admixture estimation on genome-wide data). Native 

American ancestry was omitted so as to avoid collinearity (since the three continental 

ancestries sum to 1).  

3- Incorporating pigmentation SNPs to model 2: 

� ~ ��� + ��	 + 
�� + 
���������� + ����������� +  ∑ �����∈�� ���� , (equation 3) 

where SNPsets refers to SNPs included either in the HIrisPlex-S or CAN sets defined above.  

For the third (full) model, in addition to regression, the following statistical and 

machine-learning methods were used, in order to evaluate their relative performance for 

prediction: Random Forest (RF), Extreme Gradient Boosting (XGB), Artificial Neural 

Network (ANN), Ordinal regression (OR) and Stepwise regression (SR). We provide more 

details on their implementation in Supplementary method S2. 

Figure 1. Study overview. (A) Models tested, predictors used and prediction methods: 
multinomial regression (MLR), linear regression (LR), ordinal regression (OR), stepwise 
regression (SR), random forests (RF), extreme gradient boosting (XGB) and artificial neural 
network (ANN). (B) 10-fold cross-validation: the full data is randomly split into 10 equally-
sized data sub-groups. For each of the 10 sub-groups, the estimation of model parameters (C) 
or optimization of model hyperparameters (D) was performed on a pool of the nine remaining 
sub-groups. 
 



 

 

Evaluation of prediction accuracy  

To measure prediction accuracy in quantitative traits, we used the coefficient of 

determination (�!, the proportion of phenotype variance that is explained by the model, 

measured as 1 − ����� ���$�⁄ , where ����� and ���$� respectively stand for the residual and 

total sum of squares). For categorical traits, we used a metric denoted “accuracy” that is the 

proportion of correctly classified individuals in confusion matrices. For these traits, we also 

computed the Area Under the ROC Curve (AUC – ranging from 0.5 to 1) as well as the 

expected accuracies from two benchmark strategies (either using the categories’ frequency – 

PropStrat, or always guessing the most frequent category – maxP; see Supplementary Method 

S3) for comparison.  

Accuracy of prediction was evaluated using 10-fold cross validation (10-fold CV) 

(Fig. 1B).  For this, the full dataset is split into 10 approximately equal subsets based on a 

stratified sampling on the trait (so that trait distribution is similar across subsets). Each of the 

1/10th subsets is used as test data for evaluating prediction accuracy of methods trained using 



the other 9/10th of the data. For regression methods (MLR, LR, SR, OR), coefficient 

parameters are estimated in the training data (Fig. 1C). For Machine Learning models, the 

training data is further split into a tuning data (70% of the training data) and validation data 

(30% of the training data). The parameter space for these methods are tuned creating a grid of 

all possible combinations of the hyperparameters and the particular combination producing 

best result on the validation data is selected as the set of optimal combination for the whole 

training data (see Supplementary Method S2). Each one of the ten folds is taken as the test 

data in turn, while the rest nine folds are used for training, producing 10 different train-

test data combinations and the hyperparameters are tuned based on that subsequently gives 

rise to 10 prediction accuracy results (Fig. 1D). These measures of goodness of fit are used in 

a boxplot, or the average of them is used as a single prediction accuracy metric of the 

method. This helps us in avoiding inflation in the results and the predictions are more robust 

to small changes in the data.  

 

Comparison with prediction accuracy from HIrisPlex-S-online 

Several studies have examined the prediction accuracy of HIrisPlex-S for categorical 

pigmentation traits using an online tool (https://hirisplex.erasmusmc.nl, referred to here 

as HIrisPlex-S-Online). This implementation uses MLR prediction models trained in a 

reference dataset comprising individuals with various continental origins (80% from 

Europe, 16% from North-America – including individuals of European, African and 

Asian ancestry – and 4% from Africa and Oceania)[20,24,27].  For Eye colour 

HIrisPlex-S-Online predicts eye colour categories corresponding to those used in the 

CANDELA dataset (Blue/Grey; Intermediate and Brown/Black). For hair colour, 

HIrisPlex-S-Online predicts the categories Red, Blond, Brown and Black. The last three 

correspond to hair categories common in the CANDELA dataset. However, due to their 



low frequency, individuals in the CANDELA dataset with Red hair were removed prior 

to these analyses. We therefore adjusted the prediction probabilities estimated by 

HIrisPlex-S-Online in the CANDELA dataset, for Blond, Brown and Black by the 

probability of Red hair colour. Finally, HIrisPlex-S-Online predicts five categories of 

Skin colour (modified from the Fitzpatrick scale): Very pale, Pale, Intermediate, Dark 

and Dark-Black. To allow comparison with the three-category predictions from models 

trained in the CANDELA data, we followed Walsh et al. 2017 in merging the prediction 

probabilities for Very pale, Pale and Intermediate into one category (Light, 

corresponding to the “White” category of Fitzpatrick). The Dark and Dark-Black of 

HIrisPlex-S-Online correspond to the Brown and Black categories of the Fitzpatrick 

scale (Walsh et al. 2017). This three-level categorization thus matches the one defined in 

the CANDELA dataset based on the transformation of MI values (described above)  

 

Prediction of MI in Native American individuals of unknown phenotype 

Genotype and geo-localization data for 117 Native American individuals (with an 

estimated >99% Native American ancestry) from 17 Native American populations were 

available from a previous study[35]. We analysed genotypes for these ‘pure’ Native 

American individuals, predicted their MI, and regressed these predicted values on the amount 

of solar radiation at the site of population sampling. We trained two RF models (one with 

CAN-S and one with HIrisPlex-S) using 550 CANDELA individuals with >= 80% native 

ancestry and using sex as the only covariate. Solar radiation levels were defined as insolation 

incident on a horizontal surface (in kWh/m2/day) as reported in the NASA Surface 

meteorology and Solar Energy (SSE) Web site (https://eosweb.larc.nasa.gov/sse/) (data 

previously used in[12]).  

 



Results 

The CANDELA dataset analyzed here consisted of individual genome-wide SNP 

genotypes and pigmentation traits. In that dataset eye colour was recorded both as 

categorical and quantitative variables, hair colour as a categorical variable, and skin 

colour as a quantitative variable (the Melanin Index). In what follows we compare the 

performance of HIrisPlex-S with SNP sets devised here for the prediction of eye (CAN-E), 

hair (CAN-H) and skin (CAN-S) from summary statistics of a pigmentation GWAS 

performed in the CANDELA sample (Materials and Methods and Supplementary method 

S1). The sets devised here consist of : 56 (CAN-E), 101 (CAN-H) and 120 (CAN-S) 

pigmentation-associated SNPs and are detailed in Supplementary table S2. Consistent with 

the genetic correlation of eye, hair and skin pigmentation, some SNPs are shared across the 

CAN-E/H/S sets, as well as with the HIrisPlex-S set. The overlap between these four SNP 

sets is shown in Figure 2.  

 

 

Figure 2. Overlap between SNP sets used for prediction of pigmentation traits. CAN-E, 
CAN- S and CAN-H refer, respectively, to SNP sets designed here for the prediction of eye, 
skin and hair pigmentation, based on a GWAS performed in the CANDELA sample[12]. 
HIrisPlex-S is a SNP assay developed for simultaneous Eye, Hair and Skin colour 
prediction[27]. Numbers refer to SNPs shared between the SNP sets. 
 



 
 

 

Prediction Accuracy in relation to models, methods and pigmentation SNP sets 

Figure 3 presents the accuracy of prediction for various phenotypes of eye, hair and 

skin colour. For categorical traits, the baseline model (i.e. including only non-genetic 

predictors: age, sex and BMI), reaches 84.9% and 81.7% accuracy (proportion of correctly 

classified individuals) for eye and hair colour, respectively. That level of accuracy is actually 

also reached by always guessing the phenotype to be the most frequent category (maxP 

strategy, see Supplementary table S3 and Supplementary Method S2). This high accuracy 

obtained by a deterministic strategy probably relates to the highly skewed trait distribution in 

the CANDELA individuals: ~ 82% having black/dark brown hair and 85% having 

Brown/Black eyes. Alternately, randomly guessing the phenotypes based solely on the 

frequency of the traits (PropStrat; cyan line in Figure 3) also yields good levels of accuracy 

(~74% and ~69% for categorical eye and hair colour, respectively).  

Figure 3. Prediction accuracy in relation to models, methods and pigmentation SNP 

sets. For continuous traits (Hue (transformed), Luminance, Chroma and Melanin Index; top 
and middle panels) we used R2 as measure of prediction accuracy. For categorical traits (Eye 



and Hair colour; bottom panels) accuracy is the proportion of correctly classified individuals. 
Magenta and blue lines indicate the accuracy obtained when only non-genetic predictors or 
non-genetic + genomic ancestry are included in regression models, respectively. For 
categorical traits, the performance of a random guessing strategy (PropStrat) was also 
evaluated (cyan line). For these traits, the average accuracy of the deterministic maxP 
strategy is numerically the same as the accuracy obtained when only non-genetic predictors 
are used (magenta line), hence is not shown separately in this figure. For the full prediction 
model (non-genetic predictors + genetic ancestry + pigmentation SNPs) the performance of 
regression and four additional prediction methods was evaluated (bars are coloured: green = 
LR/MLR; yellow = SR/OR; brown = RF; pink = XGB; purple = ANN). Detailed numerical 
values are given in Supplementary Table S3. The pigmentation SNP set incorporated in the 
prediction models is indicated at the bottom of the plots.  
 

 
 

 

It is important to keep the maxP strategy in context when assessing prediction 

performance for categorical traits, since it represents how skewed the trait distribution is – a 

binary trait with a frequency distribution of 90% and 10% of the two categories will have 

90% accuracy under the simplest maxP strategy (even though its sensitivity will be 0 for the 

rare category; see Supplementary Method S3). Thus, a skew in the trait distribution causes an 

upward shift in accuracy of prediction methods, especially those methods which are biased to 

the most frequent category, making them appear better-performing than they actually are. 

The PropStrat strategy is comparatively less biased as it gives proportional weight to the rare 



category (hence non-zero sensitivity for this category), and thus has lower accuracy than the 

maxP strategy. It is therefore a better benchmark to compare the performance of other 

strategies for assessing their gain in accuracy. Conversely, a comparison of those strategies to 

the maxP benchmark better represents their relative change in incorrect classification rather 

than the relative gain in correct classification (i.e. gain in accuracy).  

Although the accuracies of these basic strategies are already high due to our skewed 

trait distributions, adding genetic ancestry to the model has a further impact, especially for 

hair colour: it decreases the proportion of error by ~6% (from 18.3% of error to 17.1% - 

detailed numbers in Supplementary table S3). Then the further addition of pigmentation 

SNPs has an even larger effect: the remaining proportion of errors decreases by another 

~16% and ~27% respectively for hair and eye colour. It is also noticeable that the gain in 

prediction brought by SNPs relatively to that brought by genetic ancestries is much larger for 

eye colour (~14x) than for hair colour (~3x).  

For continuous traits, we observe a large increase in prediction accuracy (R2) when 

genetic ancestry is incorporated in regression models, relative to the baseline (including only 

non-genetic predictors). Furthermore, when pigmentation SNP sets are incorporated in the 

regression model, accuracy usually more than doubles over that obtained with genetic 

ancestry plus non-genetic covariates (green bar versus blue line in Figure 3). When using this 

full prediction model, lowest LR prediction accuracy was observed for Chroma (R2 ~0.12) 

and highest for Luminance (R2 ~0.58), two quantitative estimates of eye colour variation.  

Comparing different prediction methods for the full model (i.e. incorporating all 

predictors) we do not observe large differences in performance, with the exception of a 

relatively lower accuracy of regression for Hue and Chroma. For those two traits, RF 

markedly outperforms regression methods, more than doubling the accuracy of LR in the 

case of Chroma. For the two other continuous traits (Luminance and Melanin Index), 



regression models are as effective as machine learning models (Figure 3). We also note that 

those rank similarly throughout categorical and continuous traits: RF is almost always better 

than the other tree-based model (extreme gradient boosting; XGB) and artificial neural 

networks (ANN) always underperform compared to tree-based models. 

Regarding the two SNP sets tested, we observe little difference between them in 

prediction accuracy across traits and methods (despite the number of SNPs being 

considerably larger in the CAN sets than in HIrisPlex-S), except for the skin Melanin 

Index. For that trait, CAN-S consistently outperforms HIrisPlex-S, particularly with 

regression methods.  

 

Prediction accuracy at varying levels of European/Native American ancestry 

Since a substantial fraction of individuals in the CANDELA sample have minimal 

African ancestry, we sought to evaluate prediction accuracy specifically for varying levels of 

European/Native American ancestry in the CANDELA sample. To this aim, we pooled 

individuals with negligible African ancestry in ~20% ancestry bins (so that the smallest pool 

size included at least 570 individuals) and examined prediction accuracy in the pools (see 

Supplementary table S4). Furthermore, for categorical traits, we ensured that at least two trait 

categories, each with >20 individuals, were observed in the pools, which led to withdraw the 

most Native-American pool. We assessed prediction accuracy using RF, a full model (i.e. 

equation 3 but without genetic ancestry as predictor) including only pigmentation SNPs 

having >1% MAF in the pool of individuals being tested. 

For the categorical traits, there is a drop in prediction accuracy (from ~95% to ~70%) 

at increasing European ancestry (Figure 4 and Supplementary table S5). However, as 

European ancestry increases there is greater accuracy relative to random guessing based on 

trait frequency, probably reflecting the trait being less variable at higher Native American 



ancestry levels. For the quantitative eye pigmentation variables (particularly H and L, Figure 

4), as the percentage of European ancestry increases there is a trend for an increase in trait 

variation (red line in Figure 4) and also in prediction R2. For skin pigmentation (MI) we 

observe an opposite trend in trait variability in relation to ancestry, relative to hair/eye colour: 

variation in MI decreases at increasing European ancestry. There is also a trend towards an 

increase in the performance of the CAN-S SNP set at decreasing European ancestry: in 

individuals with <20% European ancestry CAN-S has an accuracy that is nearly twice that 

observed for HIrisPlex-S. Although CAN-S tends to outperform HIrisPlex-S in most 

comparisons, it is only for MI that such a large difference in performance was observed. In 

summary, across all pigmentation traits we observe a gain in prediction accuracy for the 

Native American/European ancestry bins showing greater phenotypic diversity, with CAN 

SNPs markedly outperforming HIrisPlex-S only for MI in individuals with low (<20%) 

European ancestry. 

Figure 4. Prediction accuracy for individuals with varying Native American/European 

admixture. Prediction was assessed in individual bins varying ~20% in admixture (bottom 
axis; for eye and hair pigmentation <20 individuals with >80% Native Ancestry were 
available in each trait category, thus preventing estimation of prediction accuracy). Coloured 
bars indicate accuracy obtained with Random Forest models using non-genetic + 
pigmentation SNP sets as predictors (R2 being used as prediction measure for quantitative 
traits: Hue, Luminance, Chroma and Melanin index). Blue bars indicate the CAN-E/H/S SNP 
sets. Yellow bars indicate the HIrisPlex-S set. The standard deviation of the quantitative traits 
in each ancestry bin is indicated as a red line. For the categorical traits (Eye and Hair Colour), 
accuracy (proportion of correctly classified individuals) is used as the metric for prediction 
measures. Accuracy obtained without genetic predictors using a guessing strategy is indicated 
with a horizontal blue line for Proportional Strategy (random guessing) and magenta line for 
maxP (deterministic guessing). Detailed numerical values are given in Supplementary Table 
S4 and S5. 
 



 

 

Prediction accuracy in CANDELA relative to other population samples 

Table 1 compares published HIrisPlex-S-Online prediction accuracy estimates 

with those we obtained here with the CAN and HIrisPlex-S SNP sets using our 

implementation of MLR models trained in the CANDELA data and three-level colour 

categories for eyes, hair and skin (as described in Material and Methods). Prediction 

accuracy estimates for eye colour have been reported for HIrisPlex-S-Online in a Latin 

American sample (including 99 individuals from Venezuela and Brazil) and in a European 

sample[23,27,28]. The light (blue/grey) and dark (Brown/Black) colour categories have 

similar prediction accuracies across studies (~90-93%), except for the prediction of light eye 

colour reported for HIrisPlex-S-Online in the Venezuelan/Brazilian sample, where accuracy 

is lower (85%). The main difference in eye-colour prediction across studies lies in the 

intermediate category. No intermediate eye colours were predicted by HIrisPlex-S-Online in 

the Venezuelan/Brazilian sample. Our predictions for the intermediate category in the 

CANDELA sample have higher accuracy than that reported for this category for HIrisPlex-

S-Online in Europeans, both when the prediction model was trained in the CANDELA data 



or in the reference HIrisPlex-S data (respectively 89% and 85%, versus 73% in Europeans). 

Prediction accuracy, in the CANDELA sample, of the CAN-E and HIrisPlex-S SNP sets was 

identical.  

Estimates for hair colour prediction accuracy using HIrisPlex-S-Online have been 

reported for a European sample[39]. Prediction accuracy estimates obtained here for the 

CANDELA sample are higher than reported in Europeans for all hair colours, except in the 

case of intermediate hair-colour (i.e. brown) predicted with HIrisPlex-S-Online. The highest 

hair-colour prediction accuracy was consistently obtained with the CAN-H SNP set, although 

the difference relative to HIrisPlex-S trained in the CANDELA data is marginal.  

Concerning skin colour, we observe that predictions from HIrisPlex-S-Online have 

markedly lower accuracy in the CANDELA sample than reported for a world-wide sample. 

Model training in the CANDELA dataset increases prediction accuracy substantially, both for 

HIrisPlex-S and CAN-S (with CAN-S SNP set marginally outperforming HIrisPlex-S), 

although the accuracy values obtained for both sets are still below those reported for 

HIrisPlex-S-Online. 

 

Portability of models for pigmentation prediction in individuals with high Native 

Ancestry 

Considering the impact of training datasets in the performance of HIrisPlex-S (Table 

1), we specifically examined the portability of RF models developed in two training datasets 

with extreme differences in ancestry (extracted from the CANDELA sample – see 

Supplementary figure S3): (i) a highly European training dataset (European ancestry >= 80% 

and Native American ancestry < 20%) and (ii) a highly Native training dataset (European 

ancestry < 20% and Native American ancestry >= 80%). We examined the performance of 

the resulting prediction models in a subset of the highly Native test dataset (Figure 5) in a 



cross-validation scheme. We observe that models developed in the highly Native training 

dataset have a better performance than those developed in the highly European training 

dataset for Chrome, Luminance and MI. The most striking difference in performance is seen 

for MI, where the model trained with highly Native data has a prediction accuracy ~6 times 

that of the model trained in highly European data (Figure 5). Hue is the only trait for which 

the model trained in the highly European dataset very slightly outperforms the model trained 

in the highly Native dataset, but prediction accuracy in this case is extremely low (<2%), and 

the confidence intervals substantially overlap. 

 

 

Figure 5. Portability of prediction models trained in highly European/Native American 

cohorts. For each continuous trait (cos(H+15), C, L and Melanin Index) we compare 
prediction accuracy on the same test data (a highly Native ancestry cohort). The prediction 
models were trained either on a highly Native (Blue) or highly European (Pink) cohort 
established from the CANDELA sample. For testing, we created equally-sized 4-folds for 
each pool of individuals. We built the RF models using three of the folds and evaluated 
prediction accuracy in the left-out fold from the Native ancestry cohort (see Supplementary 
figure S3). 
 



 

Prediction of skin pigmentation in Native Americans 

 We examined prediction performance of the CAN-S and HIrisPlex-S sets in a 

highly Native dataset independent of CANDELA by predicting MI in 117 individuals 

from 17 Native American populations[35]. As above, we trained RF prediction models 

using CANDELA individuals with >= 80% native ancestry. Since performance could not 

be measured directly in this dataset (due to the lack of phenotypic data), we examined the 

correlation of predicted skin pigmentation (MI) with solar radiation levels at the site of 

population sampling (Figure 6). Previous surveys of skin pigmentation in native populations 



from across the world have found a correlation between skin pigmentation and solar 

radiation[48], an observation that has been interpreted as the result of selection throughout 

human evolution. In the Native Americans examined here we obtained correlations of 0.516 

(p-value 2 x 10-9) and 0.156 (p-value 0.1) with the CAN-S and HIrisPlex-S SNP sets, 

respectively (Figure 6). 

Figure 6. Solar radiation levels and skin pigmentation (MI) predicted with CAN-S and 

HIrisplex-S SNP sets. (a) Annual average of insolation incident on a horizontal surface 
(kWh/m^2/day - data from NASA Surface meteorology and Solar Energy, 2008) and location 
of the Native American population sampled. The predicted MI and solar radiation levels at 
the sampling site for 117 individuals from 17 Native American populations is shown in (b) 
CAN-S and (c) HIrisPlex-S.  
 
 

 

 

 

 

Discussion 

Our comparison of different methods for predicting pigmentation traits agree 

with previous studies[23,42] in finding that regression and RF generally outperform 

other approaches. Owing to its tree-based structure, RF implicitly models underlying 



interaction between SNPs. Since it has been shown that epistasis (SNP-SNP 

interactions) occurs to variable degrees for pigmentation traits [4,5,49], it is possible 

that prediction accuracy could be further increased by specifically allowing for 

interaction between SNPs. The difference in accuracy between tree-based methods 

relative to additive linear/logistic models could also shed light on the genetic 

architecture of these trait. For instance, it is tempting to hypothesize that SNP 

interactions may have a more substantial impact on the genetic architecture of Hue and 

Chroma [12,50], especially considering that these traits are less linear in nature (e.g. 

Hue is an angle, i.e. a circular trait)[49]. Furthermore, differences in accuracy are 

larger for linear compared to tree-based models (up to +0.19 gain in R2 – see 

Supplementary table S3) than they are for HIrisPlex-S compared to CAN-E (up to 

+0.014 gain in R2), whereas these two SNP sets only have 5 SNPs in common. We might 

therefore expect that relevant interactions would be limited to a handful of SNPs, 

consistent with proposals of significant interactions only between major pigmentation 

SNPs[4,5,12]. By contrast, skin pigmentation has been proposed to have greater 

additive polygenicity[4,6]. Consistent with this, linear models outperform tree-based 

methods for skin pigmentation prediction and the number of SNPs used in the model 

improves accuracy (Figure 3).  

Previous studies[12,32,51,52] have shown that genetic ancestry correlates with 

pigmentation, probably as a result of the variable frequency of various pigmentation-

associated alleles across populations. Here we observe that continental genetic ancestry 

has considerable predictive power (Figure 3, Supplementary table S3) and that the 

SNPs used for pigmentation prediction rank among the most correlated to continental 

ancestry components (see Supplementary table S2). Inclusion in the prediction models 

of SNPs selected based on pigmentation GWAS results further increases predictive 



power, especially so for quantitative traits. We find that, for MI and the eye colour 

measurements, pigmentation-associated SNPs add, on an average, twice the prediction 

accuracy of that brought in by the genetic ancestry. The increase in prediction accuracy 

provided by pigmentation SNPs is less pronounced for categorical traits, but still, 

inclusion of these SNPs in the models reduces the proportion of incorrect classifications 

by a larger amount than does genetic ancestry, especially for eye colour. 

The differences in predictive power that we observe between categorical and 

quantitative pigmentation traits is partly the result of the intrinsically lower statistical 

informativeness of discrete relative to continuous variables. This is accentuated here by 

the fact that categorical eye and hair colour have a highly skewed distribution in the 

CANDELA sample: 82% of individuals in this sample are assigned to the darkest 

category for eye and 85% for hair colour. The highly skewed distribution of these traits 

in the CANDELA sample results from lightly pigmented eyes and hair being essentially 

Western Eurasian traits [4–9]. That is, the occurrence of lightly pigmented hair and 

eyes in the CANDELA sample reflects the partly European ancestry of Latin 

Americans. This is consistent with the HIrisPlex-S SNP set (built using a world-wide 

sample, though consisting of 80% Europeans) and the CAN (E and H) SNP sets 

performing about equally for the prediction of eye and hair colour (despite the CAN 

sets including a much larger number of SNPs), and matching what has been reported in 

the literature [4,46,53].  

Contrasting with eye and hair colour, differences in the prediction accuracy of 

skin colour appear to also influenced by the different genetic architecture of skin 

pigmentation, reflecting the world-wide variation that is observed for this trait[54]. Our 

analysis of prediction along a gradient of Native American-European ancestry shows 

the highest gain in accuracy for the ancestry bins with the greatest phenotypic diversity: 



the highest European bin for eye/hair colour and the highest Native American bin for 

skin colour. In the bin with lowest European ancestry, there is hardly any gain in 

prediction accuracy for eye/hair colour over the deterministic maxP strategy, as almost 

all individuals in that bin are in the highly pigmented category. By contrast, this bin has 

the highest variation in skin pigmentation, and also shows the highest accuracy for the 

CAN-S (strongly outperforming HIrisPlex-S in this ancestry bin, Figure 4). Although 

this could be partly the result of model training, Figure 3 shows that the difference in 

performance is larger for MI than for eye and hair colour. A similar trend is observed 

in Table 1: there is a greater difference between the two HIrisPlex-S results for skin 

colour than for eye and hair colour. These observations point to skin pigmentation 

prediction in Latin Americans being impacted by the genetic architecture of this trait in 

non-European populations. Our finding of a stronger correlation of predicted MI with 

solar radiation levels in Native Americans for the CAN-S set, relative to HIrisPlex-S, is 

also consistent with this, and with literature reporting comparatively poor portability of 

European-based skin pigmentation prediction models in non-European 

populations[4,46,53].  

Although quantitative variables are intrinsically more informative than 

categorical ones, forensic applications are mostly interested in the prediction of discrete 

categories, often just two (e.g. blue v. non-blue eyes) or three (light, intermediate or 

dark pigmentation). In that setting we find that for the CANDELA dataset there is 

remarkably little difference in performance between HIrisPlex-S and the much larger 

CAN SNP sets, particularly for eye and hair colour. As discussed above, this is likely to 

relate to the lower informativity of categorical traits, to which several other factors 

could be contributing, such as HIrisPlex-S capturing particularly well the genetic 

architecture of eye and hair colour, and having been optimized for the prediction of 



categorical traits. However, our analyses indicate that use of the online implementation 

of HIrisPlex-S for the prediction of pigmentation traits in Latin Americans should be 

performed with caution. This likely relates mostly to the reference population set used 

for training of the prediction model implemented in the online HIrisPlex-S tool, not 

being sufficiently representative of the diversity of Latin-American populations.  

In conclusion, our analyses of the large CANDELA pigmentation data underline 

the impact on prediction accuracy of greater polygenicity of skin, compared to eye and 

hair pigmentation. As expected from statistical principles, the effect of this greater 

polygenicity on prediction accuracy is more manifest for quantitative (MI) than for 

categorical skin colour. Prediction methods more sensitive to this polygenicity (e.g. 

regression) can therefore improve their accuracy for MI, through the inclusion of 

additional genetic predictors. This could be of considerable interest for certain 

evolutionary studies, as shown in Figure 6[55]. However, for forensic applications, in 

which predictions of interest mostly relate to discrete categories, increasing the number 

of genetic predictors does not appear to provide much benefit, even for skin colour. The 

HIrisPlex-S SNP set, optimised precisely for this type of application, already provides 

excellent prediction accuracy. However, use of HIrisPlex-S for forensic studies in Latin 

America should carefully consider training of prediction models in reference datasets 

that more closely match the genetic diversity of the region.  
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Tables 

 

Table 1. Overall Accuracy (%) and trait AUC (%) for categorical eye (A), hair (B) and 

skin (C) colour obtained here and in other studies (% frequency of trait in sample is 

shown in parentheses). 
 
(A) 

Sample 
CANDELA 

N=6,529 
Venezuela/Brazilb 

N = 99 
Europeansd 

N=2,364 
SNP set  CAN-Ea HIrisPlex-Sa HIrisPlex-S-Online 

Overall Accuracy  89 89 87    83 

1. Blue/grey (3) 93 93  93 (12) 85 (68) 91 

2. Intermediate (13) 89  89  85  (23) NA (10) 73 

3. Brown/black  (85) 92 92  90  (64) 91 (23) 93 

 

 

 (B) 

Sample 
CANDELA 

N=6,495 
Europeansc 

N = 385 
SNP set  CAN-Ha HIrisPlex-Sa HIrisPlex-S-Online 

Overall Accuracy   85 84 56  71 
1.Red (0) NA NA NA (25) 90 
2. Blond (3) 94 92 90 (54) 75 
3. Brown (16) 82 81 65 (9) 72 
4. Black (82) 87 85 80 (12) 78 

 

(C) 

 

Sample 
CANDELA 

N=6,526 
World-wide 

N=2,025e 

SNP set  CAN-Sa HIrisPlex-Sa HIrisPlex-S-Online 

Overall Accuracy    73 72 26  87 

1. Fair (38) 83 81 78 (92) 97 

2. Intermediate (59) 77 77 71 (3) 83 

3. Dark  (3) 86 84 76 (5) 96 

 

 
HIrisPlex-S-Online: https://hirisplex.erasmusmc.nl 
 
a Including only SNPs as predictors and with MLR as prediction method (as in HIrisPlex-S-Online). 

b Obtained with HIrisPlex as described in  Freire-Aradas et al. 2014[38]. 

c Obtained with HIrisPlex-S as described in Branicki et al 2011[39], including individuals with red hair. 

d Obtained from the specificity reported in Liu et al 2009[23]  

e Prediction values reported in Walsh et al 2017[26]  




