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Abstract: Using solar power for industrial process heat is an increasing trend to fight against climate
change thanks to renewable heat. Process heat demand and solar flux can both present intermittency
issues in industrial systems, therefore solar systems with storage introduce a degree of freedom
on which optimization, on a mathematical basis, can be performed. As the efficiency of solar
thermal receivers varies as a function of temperature and solar flux, it seems natural to consider an
optimization on the operating temperature of the solar field. In this paper, a Mixed Integer Linear
Programming (MILP) algorithm is developed to optimize the operating temperature in a system
consisting of a concentrated solar thermal field with storage, hybridized with a boiler. The MILP
algorithm optimizes the control trajectory on a time horizon of 48 h in order to minimize boiler
use. Objective function corresponds to the boiler use, for completion of the heat from the solar field,
whereas the linear constraints are a simplified representation of the system. The solar field mass flow
rate is the optimization variable which is directly linked to the outlet temperature of the solar field.
The control trajectory consists of the solar field mass flow rate and outlet temperature, along with the
auxiliary mass flow rate going directly to the boiler. The control trajectory is then injected in a 0D
model of the plant which performs more detailed calculations. For the purpose of the study, a Linear
Fresnel system is investigated, with generic heat demand curves and constant temperature demand.
The value of the developed algorithm is compared with two other control approaches: one operating
at the nominal solar field output temperature, and the other one operating at the actual demand mass
flow rate. Finally, a case study and a sensitivity analysis are presented. The MILP’s control shows
to be more performant, up to a relative increase of the annual solar fraction of 4% at 350 ◦C process
temperature. Novelty of this work resides in the MILP optimization of temperature levels presenting
high non-linearities, applied to a solar thermal system with storage for process heat applications.

Keywords: MILP; SIPH; SHIP; concentrated solar thermal; concentrated solar heat; operating tem-
perature optimization; flexible heat integration; process heat; system modelling; control strategy

1. Introduction

SHIP (Solar for Industrial Process Heat) is gaining more and more attention in research
and in industry worldwide. Recent European projects regarding Solar Thermal are oriented
towards SHIP such as InSun, SHIP2Fair, ASTEP or FriendSHIP. Besides, a dedicated IEA
task (task 64) is devoted to Solar Process Heat and entities like Solar Heat Europe are
promoting the use of solar thermal technology for renewable heating and cooling.

Indeed, heat for industry accounts for 34% of the total energy need, and represents
73% of the total energy needed by industries [1]. Nowadays, less than 5% of this energy
need is met by renewables. Solar thermal energy is one of the most efficient ways to provide
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renewable heat. As a result, there is a growing interest in solar thermal due to its potential
to save thousands of tons of greenhouse gas emissions in the context of climate change.

Most of the actual SHIP plants are working at low temperature (below 150 ◦C) with
solar fields based on flat plate collectors or evacuated tube collectors. Medium temperature
(150–400 ◦C) is also investigated: this corresponds to 27% of the industrial heat need [2],
and can be addressed by linear concentrators, i.e., linear Fresnel (LFR) and parabolic trough
(PTC). Some of these systems were implemented in different industries or commercial and
administrative places, as is presented per example in Pietrushka et al. [3]. The website
SHIP plants [4], created in the framework of IEA’s task 49, provides a non-exhaustive list
of solar thermal plants through the world; 336 projects are referenced in 2021, 69 of which
use concentrating collectors. [2]

Solar system can almost always benefit from thermal storage to decorrelate the pro-
duction and the use of the heat, allowing a broader solar fraction. It also often needs a
complementary source of heat, because of the daily, weekly and seasonal variability of
solar radiation. Moreover, the heat demand varies over time, depending on the season,
the time of the week and the process schedule. Because of the complexity of those kinds
of systems, optimization on a mathematical basis enables higher revenues and therefore
should favor SHIP use through the world.

Little investigations were performed on operating optimizations of SHIP systems.
Wallerand et al. [5] used a MILP algorithm (Mixed Integer Linear Programming) to optimize
the design and control of a solar dish with a photovoltaic cells for Hybrid Concentrated
Photovoltaics; a stratified thermal storage was also present. Optimization was performed
on the thermal part, considering a constant demand; temperature levels were kept constant,
and optimization was performed on a yearly basis: the objective was to compare with a
TRNSYS precise formulation. The MILP algorithm proved to be faster in estimating annual
revenues. They found a 5% difference, and considered that this MILP algorithm was suited
for quick estimations. Omu et al. [6] performed design and control optimization on a
solar domestic hot water system, through the use of two iterative MILP: one minimized
the design cost, while another evaluated the energy outcome of the system for one year.
Iteration between the sizing and the operation module was done as such: sizing module
gave the size of the system components, while the operation module returned the efficiency
of the collectors for each hour, in order to simplify both MILP algorithms and allow for
quicker convergence and optimal design of the system. Tilahun et al. [7] and Fitsum
et al. [8] performed an agent-based optimization on design and control of a dyeing textile
industry in Ethiopia. In [7], control optimization is performed in order to keep constant the
outlet temperature of the storage, in opposition to a constant mass flow rate in the solar
collector. Three subprocesses are investigated. The constant outlet temperature strategy
shows a decrease of 0.3 years for the payback period. Ghazouani et al. [9] performed an
optimization based on genetic algorithms, in which the hourly mass flow rates in a small
PTC and the different design parameters were optimized. No storage unit was considered,
and the heat demand was assumed as constant over the year. Results showed that lowering
the inlet temperature and increasing the mass flow rates increased the exergetic efficiency.

MILP algorithms are often used to continuously define the best scheduling strate-
gies for a given time horizon. For example, many articles describe its use for electricity
production in a Concentrated Solar Power (CSP) plant. Because of the varying cost of
electricity in day-ahead, spot market and ancillary services, an optimization regarding
storage and electricity price can be performed and lead to higher revenues, such as in
Wagner et al. [10], Vasallo and Bravo [11] optimized the plant schedule through a MILP
procedure and then run a simulation of the real power plant, with the MILP results, to
estimate the real production profits—they obtain a relative increase in profits from 3%
to 4%. Uncertainty upon future solar radiation is important for such works: different
methods, such as robust formulation in He et al. [12] or chance-constrained programming
were evaluated. Petrollese et al. [13] made a MILP model to investigate the differences
between robust, stochastic and deterministic optimization. They found out that taking
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forecast uncertainty into account increases the revenue, but that choice between both meth-
ods ought to be done depending on the quality of the forecast. Dowling et al. [14] made
a different approach: they used a MILP algorithm for choosing the on–off period of the
plant, and then solved a NLP for accurate results; this was justified by the necessity to take
fast dynamics into account when working on real time market. Discussion over the use of
MINLP (Mixed Integer Non-Linear Programming) and meta-heuristic optimization such as
particle swarm optimization or artificial neural network can be found in Omu et al. [6]. The
main reason for the choice of a MILP algorithm is the quality of the calculated optimum
and the low computation cost.

Other authors used MILP to investigate CSP dispatch with hybridization; a few
differences arise, regarding the objective function implemented: solar fraction is put in
evidence, in order to reduce fuel consumption; a multi-objective function can be defined.
Pousinho et al. [15] applied a MILP to a fossil-fuel/CSP hybrid, regarding the same
markets than above; they implemented robust optimization to take into account the forecast
uncertainty. Pousinho et al. [16] investigated the day-ahead market and the reserve market
for a wind/CSP hybrid, and compared the results with a genetic algorithm; they found out
the MILP to be more efficient. Wind/CSP hybridization, along with electrical heaters, was
investigated by Yang et al. [17] and Zhao et al. [18] through the use of MILP algorithm; the
latter introduced chance-constrained algorithm for taking under consideration the wind
and solar uncertainty. Hamilton et al. [19] investigated a CSP-TES-PV-batteries system,
with dispatch optimization with a MILP algorithm.

The concept of flexible heat integration was investigated by Rashid et al. [20] and
Ellingwood et al. [21] for CSP (electricity production). As heat losses get larger with
higher temperature and/or lower Direct Normal Irradiance (DNI), operating at lower
temperature leads to higher revenues because of a better efficiency and so a lower use of
the complementary heat source (called boiler in the following). Rashid et al. [20] showed an
increase of the solar fraction of the hybrid plant compared to a hybrid plant with optimum
flexible heat integration from 13.3% to 15%.

The novelty of this paper resides in the use of a MILP algorithm for optimization of
the boiler use by varying the temperature level and mass flow rates instead of energy as
was done in previous works: to the authors’ knowledge, such optimization on temperature
levels with a MILP algorithm was only recently performed by Wirtz et al. [22] for district
heating. This approach is applied to optimizing the solar field output temperature for SHIP
applications considering a thermal storage along with a boiler.

2. Envisaged System and Algorithm Structure
2.1. Concentrated Solar Thermal System under Consideration

The heat integration point and the nature of storage are determining factors in the
design of a SHIP system [2]. For the purpose of the study, it is therefore necessary to choose
one system architecture on which to perform the optimization. Nonetheless, the proposed
MILP algorithm can be applied to any kind of solar collector. Indeed, the temperature
range and the collector-receiver performances underline the interest of optimization: a
higher process temperature will increase the heat losses and give more range for this
optimization. This section describes the envisaged system and its simulation, along with
the main hypothesis.

2.1.1. Schematic and System Description

The considered concentrating solar system is constituted of a solar field (SF), with a
two-tank thermal storage in series and a boiler.

Figure 1 shows a solar field connected in series with a hot tank. Mass flow rate from
the solar field (

.
mSF) at the SF’s outlet temperature (TSF) can go to the storage (

.
mSF→st)

or bypass it (
.

mSF→boiler) and pass to the boiler directly. HTF can come from the hot tank
(

.
mst→boiler) at the tank’s temperature (Tst). The storage is characterized by the mass in the
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hot tank (Mst) and its temperature (Tst). The cold tank is not modeled. It is considered that
the mass fluctuations in the hot tank are compensated by the cold tank.
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Figure 1. Schematic of the system of interest and control variables.

There is a third inlet to the boiler that permits to bypass the solar field and storage
(

.
maux).The three mass flow rates at the inlet of the boiler must be equal to the process’

demand mass flow rate (
.

mdemand). If necessary, the boiler heats up the total HTF’s mass
flow rate in order to reach the process’ demand temperature.

The system’s cold inlet mass flow rate of HTF equals the system’s hot outlet mass
flow rate of HTF, which ensures that the total HTF’s mass remains constant in the consid-
ered system. The block separation between SF Model and Plant Model comes from the
optimization performed on the solar field, as explained in Section 2.2.

2.1.2. Main Hypothesis

Different hypotheses were made in this first order 0D model, as the objective of this
paper is to assess the interest of temperature optimization in a solar field for SHIP:

1. Some thermal and parasitic losses are neglected: heat losses from night’s recirculation
to avoid freezing, line pumping power...

2. Perfectly mixed hot tank: uniform temperature in the tank.
3. Heat losses’ approximation in the SF: they are classically taken as the module’s losses,

with the average temperature of the SF.
4. Constant fluid properties with temperature.
5. Constant boiler efficiency. No limitations on the power (maximal or minimal) are considered.
6. No heat losses in the cold tank: no calculations were made on the cold tank, although

heat losses do happen in it as well.
7. Perfect solar forecast: this hypothesis is chosen in order to exclude the influence of

the forecasting model.
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2.2. Algorithm Structure

Figure 2 describes the co-simulation approach performed in this work.
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Figure 2. Schematic approach to control optimization.

Inlet data are the process demand curve (hourly mass flow rates and return tempera-
ture) and the process temperature, the meteorological data (hourly solar irradiation) and
the design of the system, i.e., the solar field (number of modules per loop, number of
loops, aperture area, nominal and maximal mass flow rates, optical efficiency and heat
losses); as well as the design of the storage (maximal mass in the storage, heat losses). The
temperature range is discretized; the MILP algorithm choses the best temperature in a
given set. Tmin and Tmax are taken as the minimum return temperature and the process
temperature respectively.

The SF Model is described in Section 3.1. Solar production, i.e., heats and mass flow
rates, are calculated for every hour on a time horizon of 48 h and for every temperature
issued from the discretization, considering thermal inertia of the SF. Those calculations are
performed upstream of the MILP algorithm, enabling linear optimization despite the high
non-linearities of the SF’s equations.

The MILP algorithm is described in Section 4. This optimization algorithm chooses
the optimal trajectory that minimizes the use of the boiler, through the optimization of a
simplified linearized system: it is not possible to optimize on the real system as it contains
numerous non-linearities. It is run on 48 h in order for the MILP algorithm to optimize the
storage for the night and the following day; if run only for 24 h, the optimization would
just discharge the storage.

The Plant Model is described in Section 3.2. This model deduces the overall system be-
haviour from the optimized control trajectory on 24 h. Indeed, the control trajectory consists
of (

.
mSF, TSF,

.
maux), from which the other variables, i.e., (

.
mSF→st, Tst,

.
mSF→boiler,

.
mst→boiler,.

maux,
.
qboiler) are deduced.

The final state of the system, which consists in our model of the storage state
(Mst(24), Tst(24)), is then sent back as input for the algorithm in order to loop over the
year, while interesting data are stored for future analysis.
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3. Physical Model

In this section, the physical model is presented; it is physical in opposition to the MILP
algorithm, which is a mathematical approximation of the physical model: MILP algorithms
necessitate linearized equations. In Section 3.1, the SF model is presented, separately from
the plant model, as the SF Model results are injected in the MILP algorithm. In Section 3.2,
the Plant Model is described, as the MILP algorithm equations (Section 4) are derived from
the Plant Model.

3.1. 0D Solar Field Model

The chosen solar field is made of LF-11 Fresnel collectors from Industrial Solar [23]
which includes a vacuum tube absorber. A North-South orientation is chosen.

• Sun position

The sun position is computed with the declination and hour angle related to the day
and hour of the simulation, using a simplified version of the PSA algorithm for declination.
The solar vector is computed as in Blanco et al. [24], considering (Ox) oriented towards
east, (Oy) towards north and (Oz) towards the vertical.

• Optical efficiency

The optical efficiency is computed using an interpolation on the longitudinal (θL)
and transversal angle(θT) of their respective incidence angle modifiers (IAM), shown in
Figure 3. Those angles are defined as: θL =

∣∣arcsin
(
sy
)∣∣ and θT =

∣∣∣arcsin
(
− sx

cos(θL)

)∣∣∣, with
sx the solar vector coordinates pointing to the east and sy to the north. This definition is
adapted from Morin et al. [25] and can be easily retrieved through algebraic manipulations.
The optical efficiency is then computed as:

ηopt

( →
s
)
= η0 ∗ IAML(θL) ∗ IAMT(θT) (1)Energies 2021, 14, x FOR PEER REVIEW 7 of 24 
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With η0 the optical efficiency at normal incidence. For the LF-11 of Industrial Solar,
η0 = 0.686 [23].

• Heat losses

The SF’s heat losses are calculated with polynomial heat losses:
.
qlosses,SF(TSF,out, TSF,in, Tamb) = a1 ∗

(
TSF,out + TSF,in

2
− Tamb

)
+ a4 ∗

(
TSF,out + TSF,in

2
− Tamb

)4
(2)
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With
.
qlosses,SF the heat losses in W/m2 of aperture area, TSF,out the outlet temperature

of the solar field in ◦C, TSF,in the inlet temperature of the solar field in ◦C and Tamb the
ambient temperature in ◦C, and a1 and a4 the heat losses correlation coefficients. For the
LF-11 Fresnel collector, a1 = 0.032913 W

m2.K and a4 = 1.48 ∗ 10−9 W
m2.K4 . Those coefficients are

taken from a single module and extrapolated to the entire SF, assuming that the temperature
evolves linearly in the SF.

The heat losses of the LF-11 Fresnel collector as a function of the outlet temperature
are shown in Figure 4.

• Heat from the solar field
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The solar production is then expressed as:
.
qabs

(
TSF,out, TSF,in,

→
s sun, Tamb, DNI

)
= (ηopt

(→
s sun

)
∗ DNI − .

qlosses,SF(TSF,out, TSF,in, Tamb)) ∗ ASF (3)

With
.
qabs the heat absorbed by the solar field in W, TSF,in and TSF,out respectively the

inlet and outlet temperatures of the solar field,
→
s sun the solar vector, Tamb the ambient

temperature, DNI the direct normal irradiation in W/m2, ηopt the optical efficiency, and
.
qlosses the heat losses in W/m2.

• Mass flow rate of the SF from outlet temperature, considering inertia.

Wagner et al. [26] describes the heat balance at a node as done in SAM (see Figure 5).
In the present simple model, the node is the entire SF. U is the internal energy of the solar
field, T is the average temperature of the solar field,

.
mHTF =

.
mSF is the SF’s mass flow rate,

.
qin =

.
mSF ∗ Cp ∗ Tin is the inlet heat to the SF, while

.
qout =

.
mSF ∗ Cp ∗ Tout is the outlet heat

of the SF.

Energies 2021, 14, x FOR PEER REVIEW 8 of 24 
 

 

�̇�𝑎𝑏𝑠(𝑇𝑆𝐹,𝑜𝑢𝑡 , 𝑇𝑆𝐹,𝑖𝑛, 𝑠𝑠𝑢𝑛 , 𝑇𝑎𝑚𝑏 , 𝐷𝑁𝐼) = (𝜂𝑜𝑝𝑡(𝑠𝑠𝑢𝑛) ∗ 𝐷𝑁𝐼 − �̇�𝑙𝑜𝑠𝑠𝑒𝑠,𝑆𝐹(𝑇𝑆𝐹,𝑜𝑢𝑡 , 𝑇𝑆𝐹,𝑖𝑛 , 𝑇𝑎𝑚𝑏)) ∗ 𝐴𝑆𝐹 (3) 

With �̇�𝑎𝑏𝑠 the heat absorbed by the solar field in W, 𝑇𝑆𝐹,𝑖𝑛 and 𝑇𝑆𝐹,𝑜𝑢𝑡 respectively 

the inlet and outlet temperatures of the solar field, 𝑠𝑠𝑢𝑛 the solar vector, 𝑇𝑎𝑚𝑏  the ambi-
ent temperature, DNI the direct normal irradiation in W/m2, 𝜂𝑜𝑝𝑡 the optical efficiency, 

and �̇�𝑙𝑜𝑠𝑠𝑒𝑠 the heat losses in W/m2. 

 Mass flow rate of the SF from outlet temperature, considering inertia.  

Wagner et al. [26] describes the heat balance at a node as done in SAM (see Figure 5). 

In the present simple model, the node is the entire SF. U is the internal energy of the solar 

field, �̅� is the average temperature of the solar field, �̇�𝐻𝑇𝐹 = �̇�𝑆𝐹 is the SF’s mass flow 
rate, �̇�𝑖𝑛 = �̇�𝑆𝐹 ∗ 𝐶𝑝 ∗ 𝑇𝑖𝑛 is the inlet heat to the SF, while �̇�𝑜𝑢𝑡 = �̇�𝑆𝐹 ∗ 𝐶𝑝 ∗ 𝑇𝑜𝑢𝑡  is the out-

let heat of the SF. 

 

Figure 5. Heat balance over a node. Taken from Wagner et al. [26]. 

The heat balance gives:  

�̇�𝑎𝑏𝑠 + �̇�𝑖𝑛 = �̇�𝑜𝑢𝑡 +
𝜕𝑈

𝜕𝑡
  (4) 

As the outlet temperature is given by the control model, mass flow rate has to be 

deduced from this equation: 

�̇�𝑆𝐹 =
1

𝐶𝑝 ∗ (𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛)
∗ (�̇�𝑎𝑏𝑠 −

𝜕𝑈

𝜕𝑡
)  (5) 

In general, mass flow rate is limited by various technological or physical constraints. 

In this work, the maximal mass flow rate written �̇�𝑆𝐹,𝑚𝑎𝑥 , is considered as twice the nom-

inal mass flow rate. 

Furthermore, according to [26], the internal energy variation can be expressed as:  

𝜕𝑈

𝜕𝑡
= ((𝑚𝑐)𝑏𝑎𝑙 + 𝑚𝐻𝑇𝐹 ∗ 𝐶𝑝,𝐻𝑇𝐹) ∗

𝜕�̅�

𝜕𝑡
= 𝐼𝑡 ∗

𝜕�̅�

𝜕𝑡
  (6) 

with (𝑚𝑐)𝑏𝑎𝑙 the inertia of the receiver in J/K, 𝑚𝐻𝑇𝐹 the HTF mass present in the receiver 
in kg, 𝐶𝑝,𝐻𝑇𝐹 the specific heat capacity at constant pressure of the HTF in J/kg·K and �̅� =
(𝑇𝑖𝑛,𝑆𝐹+𝑇𝑜𝑢𝑡,𝑆𝐹)

2
 the average temperature in the solar field. The inertia term is written as: 𝐼𝑡 =

(𝑚𝑐)𝑏𝑎𝑙 + 𝑚𝐻𝑇𝐹 ∗ 𝐶𝑝,𝐻𝑇𝐹, in J/K. 

 Validation 

Validation of the solar field model was performed using SAM [27]: the Linear Fresnel 

Molten Salt Model was run with constant fluid properties with temperature. Inlet and 

outlet temperatures of SAM were reinjected in the 0D solar field model, which calculated 

the expected mass flow rate. The relative difference, defined in this part as 
∑ |�̇�𝑆𝐴𝑀−�̇�0𝐷|𝑑𝑎𝑦

∑ �̇�𝑆𝐴𝑀𝑑𝑎𝑦
 

with �̇�𝑆𝐴𝑀 the daily mass flow rate in SAM and �̇�0𝐷 the daily mass flow rate from the 

proposed model, gave a value of 9.8%. A difference of 2° could be observed on the longi-

tudinal and transversal angles, which can come from a difference in the reference time for 

Figure 5. Heat balance over a node. Taken from Wagner et al. [26].

The heat balance gives:
.
qabs +

.
qin =

.
qout +

∂U
∂t

(4)
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As the outlet temperature is given by the control model, mass flow rate has to be
deduced from this equation:

.
mSF =

1
Cp ∗ (Tout − Tin)

∗
(

.
qabs −

∂U
∂t

)
(5)

In general, mass flow rate is limited by various technological or physical constraints. In
this work, the maximal mass flow rate written

.
mSF,max, is considered as twice the nominal

mass flow rate.
Furthermore, according to [26], the internal energy variation can be expressed as:

∂U
∂t

=
(
(mc)bal + mHTF ∗ Cp,HTF

)
∗ ∂T

∂t
= It ∗

∂T
∂t

(6)

with (mc)bal the inertia of the receiver in J/K, mHTF the HTF mass present in the receiver
in kg, Cp,HTF the specific heat capacity at constant pressure of the HTF in J/kg·K and

T =
(Tin,SF+Tout,SF)

2 the average temperature in the solar field. The inertia term is written as:
It = (mc)bal + mHTF ∗ Cp,HTF, in J/K.

• Validation

Validation of the solar field model was performed using SAM [27]: the Linear Fresnel
Molten Salt Model was run with constant fluid properties with temperature. Inlet and outlet
temperatures of SAM were reinjected in the 0D solar field model, which calculated the

expected mass flow rate. The relative difference, defined in this part as ∑day| .
mSAM−

.
m0D|

∑day
.

mSAM
with

.
mSAM the daily mass flow rate in SAM and

.
m0D the daily mass flow rate from the proposed

model, gave a value of 9.8%. A difference of 2◦ could be observed on the longitudinal
and transversal angles, which can come from a difference in the reference time for solar
position evaluation—SAM defines the solar vector differently. Using the solar position of
SAM gave a 3.6% relative difference. Remaining differences are expected to come from
inertia considerations and modeling assumptions (mainly 1D vs. 0D).

In this section, the SF Model was presented. In the following section, the Plant
Model is exposed: for this model, the control trajectory, i.e., (

.
mSF, TSF,

.
maux) is known, for

every hour h of the upcoming day, as well as the initialization state, which in our case
can be summarized as the hot HTF mass present in the hot tank and its temperature at
t0 (midnight).

3.2. Plant Model
3.2.1. Mass and Mass Flow Rates Balance (Storage and Demand)

The demand mass flow rate has to be met, which gives:

.
mdemand =

.
mSF→boiler +

.
mst→boiler +

.
maux (7)

The dispatch of the mass flow rate from the solar field gives:

.
mSF =

.
mSF→boiler +

.
mSF→st (8)

The storage’s mass balance is then written as:

dM
dt

=
.

mSF→st −
.

mst→boiler (9)

Reinjection of Equations (7) and (8) in Equation (9) gives:

dM
dt

= (
.

mSF−
.

mSF→boiler)−
( .
mdemand −

.
maux −

.
mSF→boiler

)
=

.
mSF +

.
maux−

.
mdemand (10)
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Discretization gives:

Mh+1 = Mh + ∆t ∗
( .
mSF,h +

.
maux,h −

.
mdemand,h

)
(11)

Verification is then performed on the control trajectory: if the stored mass of hot HTF
tends to exceed the maximum or minimum storage capacity, either a defocus is imposed or
an increase of the auxiliary mass flow rate.

• Case 1: Mh+1 > Mmax. Too much mass flow rate at the inlet, need to defocus.
Implementation:

.
mSF,h ←

.
mSF,h −

Mh+1 −Mmax

∆t
and Mh+1 ← Mmax

• Case 2: Mh+1 < 0. Demand was not answered correctly, need to increase the auxiliary
mass flow rate. Implementation:

.
maux,h ←

.
maux,h −

Mh+1
∆t

and Mh+1 ← 0

The other mass flow rates are then identified as follows; by writing ∆Mh = Mh+1 −
Mh, the cases ∆Mh > 0 and ∆Mh ≤ 0 are separated. This allows identifying the state of the
storage, respectively charging or discharging.

If the storage is charging, therefore
.

mst→boiler,h = 0; from Equation (9), it follows that
.

mSF→st,h = ∆Mh
∆t and from Equation (8) that

.
mSF→boiler,h =

.
mSF,h −

.
mSF→st,h.

If the storage is discharging, therefore
.

mSF→st,h = 0; from Equation (9), it follows up
that

.
mst→boiler,h = −∆Mh

∆t and from Equation (8) that
.

mSF→boiler,h =
.

mSF,h.

3.2.2. Temperature of the Storage

The storage is supposed perfectly mixed, which gives a unique storage temperature
Tst of the hot tank.

d(Mst ∗ hst)

dt
=

.
mSF→st ∗ hSF,out −

.
mst→boiler ∗ hst −

.
qlosses,st (12)

With hst the specific enthalpy of the fluid in the hot tank, hSF,out the specific enthalpy
of the fluid at the outlet of the Solar Field and

.
qlosses,st the heat losses of the storage.

Heat losses of the storage are modeled through a constant heat transfer coefficient:

.
qlosses,st = UA ∗ (Tst − Tamb) (13)

With U Newton’s heat transfer coefficient, A the external area of the tank, Tst the
temperature of the storage and Tamb the ambient temperature.

The reference enthalpy is 0 at 0 K. After discretization of Equation (12), it can be
written that:

Mh+1 ∗ Cp ∗ Tst,h+1

∆t
=

Mh ∗ Cp ∗ Tst,h

∆t
+

.
mSF→st,h ∗ Cp ∗ TSF,h −

.
mst→boiler,h ∗ Cp ∗ Tst,h −UA ∗ (Tst,h − Tamb) (14)

One can therefore obtain the temperature of the storage from Equation (14); if the
storage is empty, equilibrium with ambient temperature is reached.

3.2.3. Boiler Model

The boiler heats up the HTF coming from the storage, the HTF coming from the SF and
the auxiliary mass flow rate. Therefore the heat production of the boiler can be written as:

.
qboiler,h =

.
mSF→boiler ∗ Cp ∗

(
Tprocess − TSF,h

)
+

.
maux ∗ Cp ∗

(
Tprocess − Tin

)
+

.
mst→boiler ∗ Cp ∗

(
Tprocess − Tst

)
(15)



Energies 2021, 14, 3731 10 of 22

3.2.4. Plant Metrics

In this section, the definition of the solar fraction and of the defocusing percentage in
the solar field is presented.

Solar Fraction is defined as the part of the heat not supplied by the boiler:

SFa = 1− Qboiler
Qdemand

Defocus is defined as the difference between the potential power at the outlet and
the actual power. It is an approximation as defocus is not continuous but rather constant
per pieces. The defocused energy is written as the difference of production between the
possible mass flow rate (from Equation (5)) and the chosen mass flow rate, multiplied
by Cp∆T:

.
qde f ocused = (

.
mpossible(Tout,h, Tout,h−1, h)− .

mSF,actual) ∗ Cp ∗ (Tout,h − Tin,h)

After presenting the SF and plant model, the following section presents the MILP
model derived from those models. Two simpler and deterministic control approaches are
also introduced for comparison.

4. Control Models
4.1. MILP Algorithm
4.1.1. General Description of MILP Algorithm and Solver

MILP algorithms are optimization algorithms consisting in a linear cost function (such
as boiler use, operating costs, yearly revenues...) to be minimized or maximized, and linear
constraints representing the model. Optimization variables can be integers or continuous.
The general mathematical formulation is [28]:

min f (x) = t f .x

Subject to:
bmin ≤ Ax ≤ bmax
xmin ≤ x ≤ xmax

xj integer, j ∈ J

with f , bmin, bmax, xmin, xmax vectors of n coordinates, matrix and J a subset of {0, . . . , n}.
In this work, the solver used is the open-source MIP solver Coin-Or CBC v.2.10.5,

downloaded from [29]; time step is one hour. Typical solve time is around 1.5 min for the
entire year.

4.1.2. Methodology: How Is the Mathematical Problem Posed

As is described in Figure 2, considering the temperature discretization from the process
data, the solar production is calculated for every temperature at every hour h, considering
every temperature at h-1: because thermal inertia is taken into account, every possibility
has to be calculated. Binary variables per temperature level at hour h and hour h-1 choose
the optimal temperature level and mass flow rate, the one that minimizes the boiler use.
As we do not go into details of the dispatch, the boiler use is taken as the addition of the
heat up of the outlet SF’s mass flow rate and the compensation of heat losses in the storage.

The optimization is performed considering a time horizon of 48 h, with a receding
horizon of 24 h. This means that the optimization is performed on 48 h, and that the plant
model is used to get accurate results on 24 h, and then optimization is restarted: this way,
optimization takes the storage into account for the following day. Indeed, if optimization is
run on 24 h, the storage just empties itself.
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4.1.3. From Algorithm Parameters to MILP Algorithm’s Parameters

In this chapter, the words “parameters” and “variables” will be used from the MILP
point of view, and not from the overall algorithm point of view. For example, from the
overall algorithm point of view, the different calculated mass flow rates are variables;
but from the MILP algorithm’s point of view, these are parameters, calculated and fixed
beforehand. The algorithm parameters such as the solar field area, process temperatures
and mass flow rate are noted straight. The MILP algorithm’s parameters such as solar
production and the temperature range are noted in italic. On the other side, the operating
temperature and the auxiliary mass flow rate are optimization variable; they are noted in
bold. t is the time set; hourly resolution is chosen, with a time horizon of 48 h.

• Temperature range discretization:

Ti = Tin + i ∗
Tprocess − Tin

Ndiscr
, i ∈ {0, . . . , Ndiscr} (16)

With Ndiscr the number of discretization chosen by the user.

• Absorbed heat from the sun, from Equation (3):

.
qabs,h,i =

.
qabs

(
TSF,out = Ti, Tin, Tamb(h),

→
s =

→
s (h), DNI = DNI(h)

)
, h ∈ t (17)

• Mass flow rate calculation:

Discretization of the inertia term from Equation (6) is necessary: ∂T
∂t =

Th−Th−1
∆t , with

Th the temperature at hour h and ∆t = 3600 s the time discretization interval.
Therefore, the mass flow rate at hour h, supposing Th = Ti and Th−1 = Tj can be

calculated from Equation (5):

.
mSF,h,i,j =

.
qabs,h,i

Cp ∗ (Ti − Tin)
− It

∆t
∗

Ti − Tj

Cp ∗ (Ti − Tin)
, h ∈ t , (i, j) ∈ {0, . . . , Ndiscr} (18)

4.1.4. From MILP Parameters to MILP Formulation

In this section, variables are related to each other and to the MILP algorithm’s pa-
rameters. This is done through the constraints. The cost function is the objective to be
minimized by the algorithm.

In our approach, binary variables were implemented to choose the most interesting
temperature; as inertia is taken into account, those binary variables are to be valued over a
minimum of 2 time steps:

zh,i,j =

{
1 i f Th = Ti and Th−1 = Tj

0 else
, h ∈ T, (i, j) ∈ {0, . . . , Ndiscr} (19)

The implementation of this definition as constraints is given by:

0 ≤ zh,i,j ≤ 1, h ∈ T, (i, j) ∈ {0, . . . , Ndiscr} (20)

∑
i,j

zh,i,j = 1, h ∈ T (21)

zh,i,j integer, h ∈ T, (i, j) ∈ {0, . . . , Ndiscr} (22)

One can observe that Th = ∑
i,j

zh,i,j ∗ Ti.

Furthermore, there is a relation between the hour h and h-1; indeed, from the definition
comes that Th−1 = ∑

i,j
zh,i,j ∗ Tj = ∑

i,j
zh−1,i,j ∗ Ti: the binary variables at hour h must be
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related to the binary variables at hour h-1, as the information on the temperature at hour
h-1 are present in the binary variables of hour h. This gives:

∀k ∈ {0, . . . , Ndiscr} : ∑
i

zh,i,k = ∑
j

zh−1,k,j, h ∈ T (23)

Boundary constraints for those binary variables are also necessary: when no produc-
tion is possible, it might be of better interest to preheat the solar field in order to produce
more, and at higher temperature, as soon as the demand restarts. Nonetheless, it is neces-
sary to force the binary variable to be 0 when its corresponding mass flow rate is also 0. If
not, the algorithm would choose to work at the highest possible temperature in order to
withdraw this energy at restart; which is not realistic. This gives:

∀(i, j) ∈ {1, . . . , Ndiscr}2 :
.

mSF,h,i,j = 0 => 0 ≤ zh,i,j ≤ 0 (24)

Following this definition of the binary variables, it is possible to implement the mass
flow constraint:

0 ≤ .
mSF,h ≤∑

i,j
zh,i,j ∗

.
mh,i,j (25)

The optimization will naturally maximize
.

mSF,h; specifying an inequality instead of an
equality allows partial defocus, in case the storage tank is filled, or if it is of higher interest
to store later during the day, for example.

The mass flow rate is also constrained by the maximal mass flow rate:

.
mSF,h ≤

.
mSF,max (26)

The conservation of mass in the storage is discretized as in Equation (11), which gives:

Mh = Mh−1 +
( .
mSF,h +

.
maux,h −

.
mdemand,h

)
∗ ∆t (27)

The storage is constrained by its capacity, which can be written as:

0 ≤ Mh ≤ Mmax (28)

Heat losses in the storage have to be considered: in this work, they are integrated to
the MILP in the cost function—as the boiler will have to compensate those losses. A 0D
estimation of those losses can be written through the following equations: as Vstorage =
Mstorage
ρstorage

= πR2h, the surface in contact with the hot fluid can be written as A = 2πRh+πR2,
with Vstorage the hot fluid volume, R the radius of the tank and h the height of fluid in the
tank. The constant losses through the bottom (πR2) would not influence the cost function
of the MILP algorithm, they are therefore ignored; heat losses in the MILP algorithm are
written as:

HLh =
2UMh
ρR

(
Tprocess − Tamb

)
(29)

Finally, the boiler consumption is written as:

.
qboiler,h = ∑

i,j
zh,i,j ∗

.
mh,i,j ∗Cp ∗

(
Tprocess − Ti

)
+

.
maux,h ∗Cp ∗

(
Tprocess − Tin

)
(30)

It has to be noted that the boiler consumption might be slightly overestimated in
case of defocus, as

.
mSF,h is inferior to the chosen

.
mSF,h,i,j as Equation (26) is an inequation.

Nonetheless, defocus mostly happens when solar energy is too high, and therefore the
working temperature is Tprocess, which puts the term equal to zero. The difference with the
Plant Model is quite visible here: the boiler use is estimated at solar production time and
not at boiler use time.
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The cost function to be minimized is expressed as:

min

(
∑
h

.
qboiler,h + HLh

)
(31)

4.2. Control Models for Comparison

To evaluate the approach of MILP temperature optimization in the solar field, two other
control approaches—i.e., for the choice of the working temperature—were implemented.

4.2.1. Control Approach 1 (CA1)

The CA1 approach tries to work at Tprocess whenever it is possible; if it is not (i.e., too
high heat losses), it will work at the highest possible temperature.

If the solar field produces more mass flow rate than necessary for the demand, the
excess part is stored. If the storage is full, defocus is applied. If the solar field produces less
mass flow rate than necessary for demand, storage is discharged; if there is not enough in
storage, the auxiliary mass flow rate is used through the boiler.

4.2.2. Control Approach 2 (CA2)

The second control approach is more complex and the corresponding logic flowchart
is proposed in Figure 6.
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If the solar field can produce more than the demand mass flow rate at the process
temperature, the solar field works at the process’ temperature, storing the excess. If storage
is full, defocus is applied. If the solar field cannot produce the necessary heat at the demand
temperature, the demand mass flow rate is sent into the solar field, heating it up as much
as possible and the boiler only completes (no storage). When solar energy is not sufficient,
then if the storage is not empty, it is used; else, it is completed by the boiler.

5. Case study and Results
5.1. Case Study

In this subsection, a case study is detailed, i.e., the parameters for the overall algorithm.
Table 1 resumes the different parameters.
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Table 1. Summary of the case study’s parameters.

Variable Value (Unit) Description

φ 41.117◦ Latitude
Qdaily 451 MWh/day Daily heat demand

Tprocess 350 ◦C Process temperature
Treturn 50 ◦C Return temperature
ηdesign 0.6 Design efficiency (defined in Section 4.1)

SM 1.5 Solar Multiple (defined in Section 4.1)
ASF 113,367 m2 Solar field area

NModule 31 Number of modules in one loop
Nloop 159 Number of loops

∆tstorage 8 h Storage hours
Mmax 864 t Tank capacity
UA 570 W/K Heat losses of the storage

Location: Taragonna, Spain (φ = 41.117◦), TMY data: from PVGIS [30].
Process data: a demand curve is specified; the same curve was taken every day, with a

demand mass flow rate of 50 kg/s from 8 a.m. to 19 p.m., solar hour and 10 kg/s in the
remaining time-lapse.

5.2. Hourly Results

In this section, results from co-simulations for the three control models are exposed:
examples of summer and winter days are discussed.

Figure 7 reports the main simulation’s hourly results on two consecutive summer days,
in June. The following variables are displayed: DNI (Figure 7a), the absorbed power on the
solar field (Figure 7b), the ambient temperature (Figure 7c), the demand mass flow rate
(Figure 7d), and then for the 3 dispatch strategies, the solar field temperature (Figure 7(e.x)),
the solar field mass flow rate (Figure 7(f.x)), the storage level in percentage (Figure 7(g.x)),
the storage temperature (Figure 7(h.x)), the power of the boiler (Figure 7(i.x)), the auxiliary
mass flow rate (Figure 7(j.x)), the power losses in the SF (Figure 7(k.x)) and the energy
defocused in the solar field (Figure 7(l.x)).

On the first day, all strategies present defocus (Figure 7(l.x)) and work at the process
temperature of 350 ◦C(Figure 7(e.x)). The main difference between the three strategies
on this day is when the defocus takes place: MILP’s control defocuses in the morning
(Figure 7(l.1)) and fills the storage during the afternoon (Figure 7(g.1)), while the two
other strategies fill the storage in the morning (Figure 7(g.2,g.3)) and then defocus in the
afternoon (Figure 7(l.2,l.3)). This dissymmetry is as well observed on the mass flow rates
(Figure 7(f.x)). It is explained by the heat losses in the storage: MILP strategy intends
to lower heat losses in the storage, by storing later, and therefore maintaining a higher
temperature in the storage (Figure 7(h.1), as compared to Figure 7(h.2,h.3)). It can be
observed that the MILP doesn’t fill the storage at 100%, as 80% is enough to go through the
night: no auxiliary mass flow rate is needed (Figure 7(j.1)).

Figure 7(i.3) shows CA2 limits: there is a peak in boiler use at 19 p.m., because rather
than using the storage, CA2 chooses to run the solar field at the demand mass flow rate
although the outlet temperature is not the process temperature (Figure 7(e.3)).

Figure 8 reports the main results obtained by using the dispatch strategies MILP, CA1
and CA2 in cosimulations for two consecutive winter days in February, in the same way as
in Figure 7. The main differences are observed on the first reported day characterized by a
variable DNI, which will be commented hereafter. Figure 8(h.1) shows that MILP’s control
uses the storage at lower temperature than process temperature. Indeed, the maximum
storage temperature is 150 ◦C while the process temperature is set to 350 ◦C. CA1 and CA2
do not use the storage as no excess production is possible for those control approaches
upon that day (Figure 8(g.2,g.3)). This allows lower heat losses in the solar field for the
MILP strategy (maximum value of 0.4 MWh in Figure 8(k.1)) on the first day while CA1
show values twice as high (Figure 8(k.2)). CA2 shows low heat losses as well, compared
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to CA1: it works at higher mass flow rate and so lower solar field temperature. Indeed,
CA1 operates at 350 ◦C (Figure 8(e.2)) while the maximum operating temperature of CA2
is 315 ◦C (Figure 8(e.3)) and 180 ◦C for MILP’s control (Figure 8(e.1)). Therefore the solar
fraction is improved thanks to the MILP’s control; over this two-day range, the solar
fraction reaches 35.2% for MILP, 33.2% for CA1 and 34.9% for CA2. MILP’s control boiler
usage (Figure 8(i.1)) is smoothed during the DNI peak because of the storing strategy that
compensates the fluctuations, as compared to CA1 and CA2 which stopped the boiler
during the DNI peak around 1 p.m. Figure 8(e.2) illustrates the CA1′s strategy of keeping a
constant temperature, whereas Figure 8(f.3) illustrates the CA2′s strategy of keeping the
solar field flow rate at the demand mass flow rate.
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5.3. Yearly Results

Figure 9 presents the monthly results for the three control strategies. Figure 9a displays
the monthly solar fraction, Figure 9b displays the average percentage of mass in the hot
tank per month, Figure 9c presents the energy defocused in the solar field and Figure 9d
displays a box repartition of the mass flow rate in the solar field when it is greater than 0.
Figure 9a shows that MILP’s control always reaches a higher solar fraction than the two
CAX control; CA2 surpasses CA1 in winter, due to its lower temperature in the solar field.
Nonetheless, CA2′s discharge strategy in summer implies greater defocusing (Figure 9c),
as its storage is more filled on average (Figure 9b).Figure 9b highlights that MILP’s control
uses storage in winter, as compared to the two CAX control approaches; nonetheless, it
is less used in summer for the reason discussed in Section 5.2. Figure 9d shows that the
median mass flow rate in the solar field in the MILP is higher than the two other control
approach; CA1 has the lowest median mass flow rate due to the high temperature aimed,
and CA2 runs almost constantly at 50 kg/s. MILP shows higher maximal mass flow rate, as
it doesn’t necessarily work at the highest temperature whenever hourly demand is fulfilled.
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The annual solar fraction gives 50.9% for the MILP, 49.6% for CA1 and 48.6% for CA2.
This highlights the better performance of the MILP approach for this base case. In the
following, a sensitivity study is proposed to enlarge the analysis.

6. Sensitivity Analysis

In this section, discussion is driven through a sensitivity analysis on different parame-
ters and over 4 different demand curves.

6.1. Methodology

The following demand curves are considered:
Figure 10 describes the different demand mass flow rate investigated and their

acronym. DC1 corresponds to a constant demand; DC2 corresponds to the case study
demand, which is a higher demand during the day and lower one at night; DC3 corre-
sponds to a demand occurring only at night; DC4 corresponds to a batch demand. The
same process temperature is taken for each demand curve. All mass flow demand curves
were chosen to give the same daily heat demand, in order to obtain the same system design
from the following methodology.

The system is systematically designed as follows:

- the number of modules in one loop is determined with the nominal mass flow rate of
the module, the inlet and outlet temperature at design, under a condition of 900 W/m2:

ALoop =
.

mnominal ∗ Cp ∗
Tprocess−Treturn

ηdes∗900

Nmodule =
⌈

ALoop
Amodule

⌉
ALoop = Nmodule ∗Amodule

ηdes, the efficiency at design point, is taken as 0.6 in the calculations.

- the number of loops in parallel is determined with the solar field area necessary to
answer the need with the available DNI on a user-chosen clear-sky day, the design
efficiency, and the solar multiple:
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ASF =
∑24

h=0
.
qdemand,h

ηdes∗∑24
h=0DNIh

∗ SM

Nloop =
⌈

ASF
ALoop

⌉
ASF = Nloop ∗Aloop

- the size of the storage is calculated from the number of storage hours and the average
mass flow rate demand in kg/h:

Mmax =
∑24

h=0
.

mdemand,h

24
∗ ∆tstorage

It has to be noted that this design methodology does not present any optimum, it is
used in order to compare the different control approach.

Energies 2021, 14, x FOR PEER REVIEW 19 of 24 
 

 

 

Figure 10. Considered Demand profiles. 

The system is systematically designed as follows: 

- the number of modules in one loop is determined with the nominal mass flow rate of 

the module, the inlet and outlet temperature at design, under a condition of 900 W/m2: 

𝑨𝑳𝒐𝒐𝒑 = �̇�𝒏𝒐𝒎𝒊𝒏𝒂𝒍 ∗ 𝑪𝒑 ∗
𝑻𝒑𝒓𝒐𝒄𝒆𝒔𝒔 − 𝑻𝒓𝒆𝒕𝒖𝒓𝒏

𝜼𝒅𝒆𝒔 ∗ 𝟗𝟎𝟎
 

𝑵𝒎𝒐𝒅𝒖𝒍𝒆 = ⌈
𝑨𝑳𝒐𝒐𝒑

𝑨𝒎𝒐𝒅𝒖𝒍𝒆

⌉ 

𝑨𝑳𝒐𝒐𝒑 = 𝑵𝒎𝒐𝒅𝒖𝒍𝒆 ∗ 𝑨𝒎𝒐𝒅𝒖𝒍𝒆 

 

𝜼𝒅𝒆𝒔, the efficiency at design point, is taken as 0.6 in the calculations. 

- the number of loops in parallel is determined with the solar field area necessary to 

answer the need with the available DNI on a user-chosen clear-sky day, the design 

efficiency, and the solar multiple: 

𝑨𝑺𝑭 =
∑ �̇�𝒅𝒆𝒎𝒂𝒏𝒅,𝒉

𝟐𝟒
𝒉=𝟎

𝜼𝒅𝒆𝒔 ∗ ∑ 𝑫𝑵𝑰𝒉
𝟐𝟒
𝒉=𝟎

∗ 𝑺𝑴 

𝑵𝒍𝒐𝒐𝒑 = ⌈
𝑨𝑺𝑭

𝑨𝑳𝒐𝒐𝒑

⌉ 

𝑨𝑺𝑭 = 𝑵𝒍𝒐𝒐𝒑 ∗ 𝑨𝒍𝒐𝒐𝒑 

 

- the size of the storage is calculated from the number of storage hours and the average 

mass flow rate demand in kg/h: 

𝑀𝑚𝑎𝑥 =
∑ �̇�𝑑𝑒𝑚𝑎𝑛𝑑,ℎ

24
ℎ=0

24
∗ Δ𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒  

It has to be noted that this design methodology does not present any optimum, it is 

used in order to compare the different control approach. 

Figure 10. Considered Demand profiles.

6.2. Process Temperature

In this section, the influence of process temperature on the Annual Solar Fraction is
investigated. Inlet temperature is kept constant at 50 ◦C.

Figure 11 presents the evolution of the annual solar fraction to the variation of the
process temperature on the different demand curves for the three control approaches. On
every figure, although not instinctive, the solar fraction starts increasing: this is due to
the limitation in maximum mass flow rate, not adapted to such low temperatures. DC3
shows low values of solar fraction due to the size of storage and because of a night only
demand. In DC3 and DC4, MILP’s control does not show a significant decrease of solar
fractions with temperature; this is because a better response is given from the MILP’s
control with higher temperature: storage is much more used, but at lower temperature,
and those two demand curves have higher share of demand during the night. Indeed,
every curve shows an increase in MILP’s control’s average mass in storage with the outlet
temperature (not shown here), which can be explained by the higher number of loops, due
to design methodology.

6.3. Heat Losses

Figure 12 presents the evolution of the annual solar fraction with the increase of heat
losses in the solar field. It can be observed that the annual solar fraction is linearly related
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to this coefficient; nonetheless, MILP’s control shows a lower slope than the two other
control approaches. MILP algorithm’s interest is therefore directly related to the heat losses
in the solar field.
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6.4. Other Sensibility Analyses

Other analyses were performed, and will be only commented here for the sake of
brevity: the number of discretization of the temperature range showed very small impact
beyond Ndiscr = 8. Solar Multiple would not influence strongly the difference between the
control approaches, as well as the size of the storage—which mostly influenced the results
of night demand DC3.

7. Discussion and Perspectives

Rashid et al. [20] performed flexible heat integration for electricity production. Apply-
ing optimization on the temperature level raised the solar fraction of the considered solar
system from 0.133 to 0.150, which appears coherent with the present simulations.

MILP algorithms present themselves as interesting optimization for real-time opti-
mization: calculation time is very low, which would allow re-calculation for every solar
irradiation prediction update. Nonetheless, the complexity of the considered system will be
limited, due to the need for linear equations. Future works should investigate the possibility
of re-calculation during the day considering various probabilities in the prediction.

The solar field 0D model did not compare perfectly with the SAM’s 1D model, due to
inertia, the dimension difference and recirculation considerations mostly. Further works
will involve 1D detailed solar field model, along with non-constant fluid properties with
temperature or even steam properties.

Model of the boiler should incorporate various efficiencies considering load per
example, as this varies depending on the technology and/or fuel.

Two-tank storage is not foreseen for SHIP applications, although it might remain
interesting for medium and high temperature processes. Further work will involve dual-
phase thermocline storage due to its lower cost.

Finally, a new dimension of optimization has to be investigated: various processes, or
varying temperature demand would allow more flexibility, and therefore open a higher
range for optimization.

8. Conclusions

This paper presented a systematic approach for temperature optimization in the case
of concentrated solar plant with storage that assists a boiler to deliver heat to a process.
First, a 0D plant model was described, then the MILP algorithm for the optimization
was detailed, and finally a case study and a sensitivity analysis were proposed. Results
are highly dependent on the demand curve and other inlet parameters. The pertinence
of this optimization was shown to be particularly relevant for solar technologies with
high temperature range and/or presenting high heat losses. Indeed, at low temperature
range and highly efficient system, the relative difference in solar fraction with the other
control approaches could reach values as low as 0.05%, whereas it could reach 4% for high
temperature demand and/or high heat losses. This approach could be applied to other
technologies, and might promote less efficient design at lower costs.

Novelty of this work consists in the use of binary variables for a choice on calculations
done upstream of a MILP algorithm. This seems an attractive solution for finding optimal
behavior of systems which present high non-linearities in only one part of the system.
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Abbreviations

Nomenclature
A Area (m2)

a1, a4 Heat losses coefficient
(

W/m2·K, W/m2·K4 )

Cp Specific heat capacity at constant pressure (J/kg·◦C)
DNI Direct Normal Irradiation (W/m2)
h Specific enthalpy (J/kg)
IAM Incidence Angle Modifier (-)
It Inertia of the fluid (J/K)
M Mass (kg)
.

m Mass flow rate (kg/s)
N Integer number (-)
Q Heat (J or Wh)
.
q Heat flux (W)
SFa Solar Fraction (-)
SM Solar Multiple (-)
→
s Solar vector
T Temperature (◦C)
UA Heat losses of the storage (W/K)
Greek Symbols
α Azimuth of the sun (0◦ North, 90◦ East)
η Efficiency
γ Elevation of the sun (0◦ Horizon, 90◦ Zenith)
θ Incidence angle on collector
φ Latitude
Subscripts
abs Absorbed
amb Ambient
aux Auxiliary
boiler Boiler
h Hour h
in Inlet of the solar field
L Longitudinal
opt Optical
out Outlet of the solar field
SF Solar Field
St Storage
T Transversal
x → y Flow from component x to component y
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