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Abstract

We provide a setting and a general approach to fair online learning with stochas-
tic sensitive and non-sensitive contexts. The setting is a repeated game between
the Player and Nature, where at each stage both pick actions based on the con-
texts. Inspired by the notion of unawareness, we assume that the Player can only
access the non-sensitive context before making a decision, while we discuss both
cases of Nature accessing the sensitive contexts and Nature unaware of the sensi-
tive contexts. Adapting Blackwell’s approachability theory to handle the case of
an unknown contexts’ distribution, we provide a general necessary and sufficient
condition for learning objectives to be compatible with some fairness constraints.
This condition is instantiated on (group-wise) no-regret and (group-wise) calibra-
tion objectives, and on demographic parity as an additional constraint. When the
objective is not compatible with the constraint, the provided framework permits to
characterise the optimal trade-off between the two.

1 Introduction

Classically, the goal of the decision maker in sequential environment is purely performance driven
— she wants to obtain as high reward as if she has had a complete information about the environment.
In contrast, algorithmic fairness shifts the attention from the performance-driven behavior by taking
into account additional ethical considerations. The latter is often formalized via the notion of fairness
constraint [10, 21, 6] on the decision maker’s strategies. The goal of this work is to bring to light
Blackwell’s approachability theory as a suitable theoretical formalism for fair online learning under
group fairness constraints. The appealing feature of this theory is two-fold: first, it gives explicit
criteria when learning is possible; second, if this criteria is met, it comes with an explicit strategy.

Related works. Several frameworks have been proposed to tackle various problems of fairness aris-
ing in the context of online learning. Blum et al. [4] consider the problem of online prediction
with experts and define fairness via (approximate) equality of average payoffs. Hébert-Johnson
et al. [16], Gupta et al. [14] consider the problem of group-wise calibration. Bechavod et al. [2]
consider the problem of online binary classification with delayed feedback and equal opportunity
constraint [15]. We treat the above works as sources of inspiration, and apply the general formalism
of approachability theory to give new insights into fair online learning. In particular, the general-
ity of this formalism allows to derive (im)possibility results nearly effortlessly. Moreover, it gives
a clear strategy for the study of trade-offs between incompatible (fair) learning objectives, which
often arise in batch setup [6].

Contributions and outline. We describe our approachability setting in Section 2 and provide some
learning objectives (no-regret and calibration) and fairness constraints (group-wise controls, demo-
graphic parity, equalized average payoffs) that fit our framework. A slight extension of the classical
result of Blackwell [3] is required and discussed in Section 3. We then support the generality of our
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framework by deriving (im)possibility results for some objective–constraint pairs in Section 4. We
also illustrate in Section 5 how this formalism can be used to derive optimal trade-offs (Pareto fron-
tiers) between performance and fairness for incompatible objective–constraint pairs; as an example,
we deal with group-wise calibration (studied by [16, 14]) under demographic parity constraint. For
the sake of exposition, we deal in Sections 2–5 with stochastic sensitive contexts whose distribution
is known; Section 6 explains how to overcome this.

Notation. The Euclidean norm is denoted by ‖ · ‖, while the ℓ1 norm is denoted by ‖ · ‖1. Given

a convex closed set C ⊂ R
d, we denote by ProjC(·) the projection operator onto C in Euclidean

norm.

2 Fair online learning cast as an approachability problem

In this section, we propose a setting for fair online learning based on approachability—a theory
introduced by Blackwell [3] (see also the more modern expositions by Perchet [20] or Mertens et al.
[19]). More precisely, we consider the following repeated game between a Player and Nature, with
stochastic contexts. The existence of these contexts is a (minor) variation on the classical statement
of the approachability problem.

The Player and Nature have respective finite action sets A and B. The sets of sensitive and non-
sensitive contexts are respectively denoted by S and X . The set X is a general Borel set, while S is
a finite set with cardinality denoted by |S|. Typical choices are S = {0, 1} and X = R

m for some
m ∈ N. A joint distribution Q on X ×S is fixed and is unknown to the Player. Finally, a (bounded)
Borel-measurable vector-valued payoff function m : A × B × X × S → R

d, as well as a closed
target set C ⊆ R

d, are given and known by the Player.

At each round t > 1 the pair of non-sensitive and sensitive contexts (xt, st) ∼ Q is generated
independently from the past. The Player observes only the non-sensitive context xt; while Nature
also observes xt, it may or may not observe the sensitive context st. Then, Nature and the Player
simultaneously pick (possibly in a randomized fashion) bt ∈ B and at ∈ A, respectively. The Player
finally accesses the obtained reward m(at, bt, xt, st) and the sensitive context st, while Nature has a
more complete monitoring and may observe at and st. We introduce an observation operation G to
indicate whether Nature observes xt only—i.e.,G(xt, st) = xt, the case of Nature’s unawareness—
or whether Nature observes both contexts—i.e.,G(xt, st) = (xt, st), the case of Nature’s awareness.

We consider the short-hand notation mt := m(at, bt, xt, st),

mT :=
1

T

T∑

t=1

m(at, bt, xt, st), and cT = ProjC
(
mT

)
= argmin

v∈C
‖mT − v‖

for the instantaneous and average payoffs of the player, as well as the Euclidean projection of the
latter onto the closed set C, respectively. The distance of mT to C thus equals dT := ‖mT − cT ‖.
The game protocol is summarized below.

PROTOCOL 2.1

Parameters: Observation operator G for Nature; distribution Q on X × S
For t = 1, 2, . . .

1. Contexts (xt, st) are sampled according to Q, independently from the past;
2. Simultaneously,

• Nature observes G(xt, st) and picks bt ∈ B;
• the Player observes xt and picks an action at ∈ A;

3. The Player observes the reward m(at, bt, xt, st) and the sensitive context st,
while Nature observes (at, bt, xt, st).

Aim: The Player wants to ensure that mT → C a.s., i.e., dT = ‖mT − cT ‖ → 0 a.s.

We recall that the Player does not know the context distribution Q.

Definition 1. A target set C is called m–approachable by the Player under the distribution Q if
there exists a strategy of the Player such that, for all strategies of the Nature, mT → C a.s.
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Remark 1 (Awareness for the Player). We are mostly interested in a Player unaware of the sensitive
contexts st (Gajane and Pechenizkiy [13]). However, the setting above also covers the case of a
Player aware of these contexts: simply consider the lifted non-sensitive contexts x′t = (xt, st).

We now describe payoff functions and target sets corresponding to online learning objectives or
online fairness constraints. They may be combined together. For instance, vanilla calibration
corresponds below to the mcal–approachability of a set Ccal, demographic parity, to the mDP–
approachability of a set CDP, so that vanilla calibration under a demographic parity constraint trans-
lates into the (mcal,mDP)–approachability of the product set Ccal × CDP. We therefore consider each
objective and each constraint as some elementary brick, to be combined with one or several other
bricks. We recall that S is a finite set and will indicate the cases where we only consider S = {0, 1}.

We discuss two objectives: no-regret and approximate calibration, as well as three fairness con-
straints: group-wise (per-group) control, demographic parity, and equal average payoffs.

2.1 Statement of the objectives

For the sake of a more compact exposition, we define the objectives in two forms: global objectives
(the vanilla form of objectives) and group-wise objectives. We denote γs = P(st = s), so that
(γs)s∈S corresponds to the marginal of Q on S.

Objective 1: (Vanilla and group-wise) no-regret. The definition is based on some payoff func-
tion r, possibly taking contexts into account: at each round t, the Player obtains the payoff
r(at, bt, xt, st). The aim is to get, on average, almost as much payoff as the best constant action, all
things equal. The vanilla (average) regret equals

RT = min
a∈A

1

T

T∑

t=1

(
r(at, bt, xt, st)− r(a, bt, xt, st)

)
,

while the group-wise (average) regret equals

Rgr,T = min
s∈S

min
a′
s∈A

1

T

T∑

t=1

(
r(at, bt, xt, st)− r(a′s, bt, xt, st)

)
I{st = s} .

The aim is that lim inf RT > 0 a.s. (no-regret) and lim inf Rgr,T > 0 a.s. (group-wise no-regret),
respectively. We could replace the 1/T factor by a 1/(γsT ) factor in the definition of Rgr,T , as we
will do for the CT calibration criterion, but given the wish of a non-negative limit, this is irrelevant.

Denote by N = |A| the cardinality of A. No-regret corresponds to the mreg–approachability of(
[0,+∞)

)N
, with the global payoff function mreg(a, b, x, s) =

(
r(a, b, x, s) − r(a′, b, x, s)

)
a′∈A.

We also duplicate mreg into the group-wise payoff function

mgr-reg(a, b, x, s) =
(
mreg(a, b, x, s) I{s′ = s}

)
s′∈S .

Group-wise no-regret then corresponds to the mgr-reg–approachability of Cgr-reg =
(
[0,+∞)

)N |S|
.

Objective 2: Approximate (vanilla or group-wise) calibration. Online calibration was first
solved by Foster and Vohra [12] and Foster [11]; see the monograph by Cesa-Bianchi and Lugosi
[5, Section 4.8] for references to other solutions and extensions. For simplicity, we focus on binary
outcomes bt ∈ {0, 1} and ask the Player to provide at each round forecasts at in [0, 1], and even in
a discretization of [0, 1] based on a fixed number N > 2 of points:

A =
{
a(k) := (k − 1/2)/N, k ∈ {1, . . . , N}

}
.

Each x ∈ [0, 1] can be approximated by some a(k) ∈ A with |x − a(k)| 6 1/(2N). At each round,

the Player picks kt ∈ {1, . . . , N} and forecasts at = a(kt). The action set A can thus be identified
with {1, . . . , N}.

This problem is actually called 1/N–calibration or approximate calibration. The global (vanilla)
form of the criterion reads

CT =
N∑

k=1

∣∣∣∣∣
1

T

T∑

t=1

(
a(k) − bt

)
I{kt = k}

∣∣∣∣∣ ,
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while the approximate group-wise calibration criterion is defined as

Cgr,T =
∑

s∈S

N∑

k=1

∣∣∣∣∣
1

γsT

T∑

t=1

(
a(k) − bt

)
I{kt = k} I{st = s}

∣∣∣∣∣ .

The aim is that lim supCT 6 1/N a.s. or lim supCgr,T 6 1/N , respectively. Note that unlike
vanilla calibration, its group-wise version requires to be calibrated on each sensitive attribute s ∈ S.
In particular, the classical 1/T factor is replaced by 1/(γsT ), the expected number of appearances
of st = s for t = 1, . . . , T .

Mannor and Stoltz [17] and Abernethy et al. [1] rewrote the problem of approximate calibration as
an approachability problem as follows: introduce the global payoff function

mcal(k, b) =
(
(a(1) − b) I{k = 1}, . . . , (a(N) − b) I{k = N}

)
,

and duplicate it into the group-wise payoff function as follows:

mgr-cal(k, b, s) =
(
mcal(k, b) I{s = s′}/γs′

)
s′∈S .

The calibration criteria CT and Cgr,T can now be rewritten as the ℓ1–norms of the average pay-
off vectors mcal,T and mgr-cal,T . Approximate vanilla calibration thus corresponds to the mcal–

approachability of Ccal =
{
v ∈ R

N : ‖v‖1 6 1/N
}

, while approximate group-wise calibration
corresponds to the mgr-cal–approachability of Cgr-cal =

{
v ∈ R

N |S| : ‖v‖1 6 1/N
}

.

Note that non-sensitive contexts play no role in the calibration objectives, but the Player can (and
must) leverage these non-sensitive contexts to possibly infer sensitive contexts when handling group-
wise calibration.

2.2 Statement of the fairness constraints

Fairness constraint 1: Group-wise objectives. We already considered possibly group-wise ob-
jectives above and Section 4 will show that handling them is already a challenge in our setting where
the Player is unaware of the sensitive contexts.

Fairness constraint 2: Demographic parity. We will consider it only in the setting of approx-
imate calibration and further restrict our attention to the case of two groups: S = {0, 1}. The
demographic parity criterion measures the difference between the average forecasts issued for the
two groups:

DT =

∣∣∣∣∣
1

γ0T

T∑

t=1

at I{st = 0} − 1

γ1T

T∑

t=1

at I{st = 1}
∣∣∣∣∣ .

Given the discretization used, the wish is that lim supDT 6 1/N . Abiding by a demographic parity

constraint is equivalent to mDP–approaching CDP =
{
(u, v) ∈ R

2 : |u− v| 6 1/N
}

, where

mDP(k, s) =
(
a(k) I{s = 0}/γ0, a(k) I{s = 1}/γ1

)
.

Fairness constraint 3: Equalized average payoffs. This criterion is to be combined with a no-
regret criterion; in particular, a base payoff function r is considered. We restrict our attention to the
case of two groups, S = {0, 1}, and measure the difference of average payoffs:

PT =

∣∣∣∣∣
1

γ0T

T∑

t=1

r(at, bt, xt, st) I{st = 0} − 1

γ1T

T∑

t=1

r(at, bt, xt, st) I{st = 1}
∣∣∣∣∣ .

Ensuring lim supPT 6 ε corresponds to meq-pay–approaching Ceq-pay =
{
(u, v) ∈ R

2 : |u−v| 6 ε
}

,
where

meq-pay(a, b, x, s) =
(
r(a, b, x, 0) I{s = 0}/γ0, r(a, b, x, 1) I{s = 1}/γ1

)
.

Remark 2. Note that in this general form, the equality of average payoffs encompasses the demo-
graphic parity constraint. Indeed, the latter is obtained by setting r(a, b, x, s) = a and ε = 1/N .
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Criterion Vector payoff function Closed convex target set

Calibration mcal(k, b) =
(
(a(k

′) − b) I{k = k′}
)
k′∈A Ccal =

{
v ∈ R

N : ‖v‖1 6 1/N
}

Group-calibration mgr-cal(k, b, s) =
(
mcal(k, b) I{s = s′}/γs′

)
s′∈S Cgr-cal =

{
v ∈ R

N |S| : ‖v‖1 6 1/N
}

No-regret mreg(a, b, x, s) =
(
r(a, b, x, s)− r(a′, b, x, s)

)
a′∈A Creg =

(
[0,+∞)

)N

Group-no-regret mgr-reg(a, b, x, s) =
(
mreg(a, b, x, s) I{s′ = s}

)
s′∈S Cgr-reg =

(
[0,+∞)

)N |S|

Demographic parity mDP(k, s) =
(
a(k) I{s = 0}/γ0, a(k) I{s = 1}/γ1

)
CDP =

{
(u, v) ∈ R

2 : |u− v| 6 1/N
}

Equalized payoffs meq-pay(a, b, x, s) =
(
r(a, b, x, s′) I{s = s′}/γs′

)
s′∈{0,1} Ceq-pay =

{
(u, v) ∈ R

2 : |u− v| 6 ε
}

2.3 Summary table

The table below gives a summary of different criterion and associated pairs of payoff function and
target set. We remark that some of the payoff functions depend on the marginals (γs)s∈S . Mean-
while, Protocol 2.1 assumes the perfect knowledge of the latter. In Section 6 we will show how to
bypass this issue, transferring all the unknown quantities into the target set and estimating it.

3 Approachability theory adapted

We provide a rather straightforward extension of the approachability theory to deal with Protocol 2.1,
namely, with the existence of stochastic contexts, drawn according to an unknown distribution Q.
We want to characterize closed convex sets that are approachable.

Pure vs. mixed actions. To conclude the description of the setting, we provide more details on
the randomized draws of the (pure) actions at+1 and bt+1 of the Player and Nature at round t + 1.
We denote by ht the information available to Player at the end of round t, and by Ht the full history
of the first t rounds: ht = (mt′ , xt′ , st′)t′6t and Ht = (at′ , bt′ , xt′ , st′)t′6t. At the beginning

of round t + 1, the Player thus picks in a ht–measurable way a measurable family
(
p
x
t+1

)
x∈X of

probability distributions over A (i.e., a collection of distributions such that x ∈ X 7→ p
x
t+1 is

Borel-measurable), and then draws at+1 independently at random according to the mixed action

p
xt+1

t+1 . Similarly, Nature picks in a Ht–measurable way a measurable family
(
q
G(x,s)
t+1

)
(x,s)∈X×S of

probability distributions over B, and uses q
G(xt+1,st+1)
t+1 to draw bt+1.

Approachability strategy. We adapt the original strategy by Blackwell [3] by asuming the exis-

tence of and substituting a sequence of estimates Q̂t that are ht–adapted in place of the unknown
distribution Q. We will assume that this sequence is convergent in the total variation distance in the
sense of Assumption 1. To state the strategy, we extend linearly m: for all probability distributions
p over A and q over B, for all (x, s) ∈ X × S,

m(p, q, x, s
)
=
∑

a∈A

∑

b∈B
p(a) q(b)m(a, b, x, s) .

Now, the Player uses an arbitrary measurable family of distributions (px
1)x∈X for the first round,

gets the estimate Q̂1, and then uses, for rounds t+ 1, where t > 1:

(px
t+1)x∈X ∈ argmin

(px)x∈X

max
(qG(x,s))(x,s)∈X×S

〈
mt − ct,

∫

X×S
m
(
p
x, qG(x,s), x, s

)
dQ̂t(x, s)

〉
, (1)

where the minimum and maximum are over all measurable families of probability distributions over

A and B, respectively. The Player then gets access to ht+1 and may compute the estimate Q̂t+1 to
be used at the next round.

Necessary and sufficient condition for approachability. We were able to work out such a con-

dition under the assumption that Q can be estimated well enough, e.g., faster than at a 1/ ln3(T )
rate in total variation distance. We recall that the total variation distance between two probability
distributions Q1 and Q2 on X × S equals (see, e.g., Devroye [8]):

TV(Q1,Q2) = sup
E⊆X×S

∣∣Q1(E)−Q2(E)
∣∣ = 1

2

∫

X×S

∣∣g1(x, s)− g2(x, s)
∣∣ dµ(x, s) ,
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where the supremum is over all Borel sets E of X × S, and where g1 and g2 denote densities of Q1

and Q2 with respect to a common dominating probability distribution µ.

Assumption 1 (fast enough sequential estimation of Q). The sequence of (ht)–adapted estimators

(Q̂t) used is such that
∑+∞

t=1
1
t

√
E
[
TV2(Q̂t,Q)

]
< +∞.

The above assumption implies both 1
T

∑T−1
t=1

√
E
[
TV2(Q̂t,Q)

]
and

∑
t>T+1

1
t

√
E
[
TV2(Q̂t,Q)

]

converge to zero (with T ; see Appendix A for details). Assumption 1 is trivially satisfied in the case

when Q is known, as it is sufficient to take Q̂t = Q. When both X and S are finite sets, we may

use the empirical frequencies as estimators Q̂t; they satisfy E[TV2(Q̂t,Q)] = O(1/t); see, e.g.,
[7, Lemma 3]. The general case of an uncountable X , e.g., X = R

m requires results for density
estimation in the L1 or L2 norms; such results rely typically on moving averages or kernel estimates
and may be found, for instance, in the monographs by Devroye and Györfi [9] and Devroye [8] (see
also Tsybakov [22]). Under mild conditions, the estimation takes place at a polynomial rate in total

variation distance (e.g., a T−1/5 rate in dimension m = 1). Note that the needed rate of decrease

for E
[
TV2(Q̂t,Q)

]
in Assumption 1 is extremely slow: a 1/ ln3(T ) rate would suffice.

Assumption 2 (boundedness). We assume that ‖m‖∞,2:= max
a,b∈A×B

sup
(x,s)∈X×S

‖m(a, b, x, s)‖<+∞.

Theorem 1. Assume that C is a closed convex set and that Assumptions 1 (fast enough sequential
estimation of Q) and 2 (bounded reward function) are satisfied, then C is approachable if and only
if

∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X s.t.

∫

X×S
m

(
p
x, qG(x,s), x, s

)
dQ(x, s) ∈ C . (2)

In this case, the strategy of Eq. (1) achieves the following rates forL2 and almost-sure convergences:

E
[
d2T
]
6

√
K

T
+ 4‖m‖∞,2

:=∆T︷ ︸︸ ︷
1

T

T−1∑

t=1

√
E
[
TV2(Q̂t,Q)

]
and

P

(
sup
t>T

dt > ε

)
6

3K

Tε2
+

16‖m‖∞,2

ε2

(√
K

T − 1
+ 2

(
sup
t>T

∆t

)(
∆T+

∑

t>T

1

t

√
E
[
TV2(Q̂t,Q)

])
)

whereK < +∞ denotes the maximal distance to C of an element of the compact set m(A,B,X ,S).

4 Working out some objective–constraint pairs: (im)possibility results

In this section we apply Theorem 1 to deal with some examples of objective–constraint pairs de-
scribed in Sections 2.1 and 2.2. Some of them have been considered before in the literature (some-
times in the batch setup) using various tools [4, 16, 18, 14], as discussed in Section 1.

We keep the original criteria and obtain possiblity or impossibility results. This is a first step, mean-
while, Section 5 will explain how to go further and obtain a trade-off, if needed, between the objec-
tive and the fairness constraint.

Additional notation. We recall that γs = P(st = s) and denote by Qs the conditional distribution of
xt given st=s, so that dQ(x, s) = γs dQ

s(x). We denote by supp(Qs) ⊆ X the support of Qs.

Example 1: Vanilla calibration under a demographic parity constraint—achievable. Con-
sider the following payoff function and target set, obtained by simultaneously considering the
objective of vanilla calibration and the constraint of demographic parity: m = (mcal,mDP) and
C = Ccal × CDP.

6



Defining ψ(u1, u2) := |u1 − u2|, the approachability condition (2) then reads as follows (where we
introduce short-hand notation C and DP):

∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X s.t.





C :=

∥∥∥∥∥

∫

X×{0,1}
mcal

(
p
x, qG(x,s)

)
dQ(x, s)

∥∥∥∥∥
1

6
1

N
;

DP := ψ

(∫

X×{0,1}
mDP(p

x, s) dQ(x, s)

)
6

1

N
.

(3)
Recalling the notation Q0 and Q1 for the conditional distributions, we observe that

DP =

∣∣∣∣∣

∫

X

N∑

k=1

p
x(k) a(k) dQ0(x)−

∫

X

N∑

k=1

p
x(k) a(k) dQ1(x)

∣∣∣∣∣ .

We now show that the condition in Eq. (3) is satisfied. For any (qG(x,s)), we define the family (px)
as the constant family

(
dirac(QA)

)
, where dirac(QA) denotes the Dirac mass supported onQA, the

closest point of A to Q :=
∫
X×{0,1} q

G(x,s)(1) dQ(x, s). We have DP = 0 as px does not depend

on x. Substituting the expression for mcal into the definition of C, we observe that for such a choice
of (px)x∈X , we have

C =

∣∣∣∣∣

∫

X×{0,1}

(
QA − q

G(x,s)(1)
)
dQ(x, s)

∣∣∣∣∣ 6
1

2N
+

∣∣∣∣∣

∫

X×{0,1}

(
Q− q

G(x,s)(1)
)
dQ(x, s)

︸ ︷︷ ︸
=0

∣∣∣∣∣ ,

where the inequality holds by taking the effect of discretization in A into account and by the very
definition of Q. The condition of Eq. (3) is thus satisfied. Therefore, under Assumption 1 (the
existence of fast enough sequential estimators of Q) and thanks to Theorem 1, the vanilla calibration
and the demographic parity can be achieved simultaneously no matter the monitoring of the Nature.

Example 2: Group-wise no-regret—mixed picture. Let the target set be Cgr-reg =
(
[0,+∞)

)N |S|

and the payoff function be mgr-reg, i.e., we consider the case of group-wise no-regret under no addi-
tional constraint. The approachability condition in Eq. (2) demands that

∀(qG(x,s)) ∃(px) s.t.

∫

X×S
mgr-reg

(
p
x, qG(x,s)

)
dQ(x, s) ∈

(
[0,+∞)

)N |S|
, i.e., (4)

∀(a′, s),

∫

supp(Qs)

∑

a∈A
p
x(a)

(∑

b∈B
q
G(x,s)(b)

(
r(a, b, x, s)− r(a′, b, x, s)

)
)
dQs(x) > 0 .

No-regret seems a harmless challenge, and it is so when the sensitive context is directly observed
by the Player, which we do not assume. (In this case, the Player may simply run several no-regret
algorithms in parallel, one per sensitive group s.) In our context, the direct observation is emulated
in some sense when the non-sensitive context x reveals the sensitive context s; this is the case, for
instance, when the supports of the distributions Qs are pairwise disjoint. Note, however, that these
distributions Qs are unknown to the Player and need to be learned. The second part of Proposition 1
shows that in this case, the group-wise no-regret may be controlled. We get a similar control in
the case when the sensitive context is irrelevant, i.e., does not affect the payoffs and is not used
by Nature; see the first part of Proposition 1, which corresponds to the case of vanilla no-regret
minimization. In both cases, the group-wise no-regret can be controlled under Assumption 1, thanks
to Theorem 1. However, as we show by means of counter-examples, these are the only cases that
may be favorably dealt with.

Proposition 1. The condition of Eq. (4) holds when

• the sensitive context is irrelevant, i.e., the payoff function is such that r(a, b, x, s) =
r(a, b, x) and Nature’s monitoring is G(x, s) = x;

• for all s 6= s′, it holds that supp(Qs) ∩ supp(Qs′) = ∅, no matter Nature’s monitoring G.
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Otherwise, the condition of Eq. (4) may not hold.

Proof. We mimic the classical proof of no-regret by approachability for the positive results. For
the first positive result: for any (qx), we define ax ∈ argmaxa∈A

∑
b∈B q

x(b) r(a, b, x) and let

(px) =
(
dirac(ax)

)
. For the second positive result: fix any (qG(x,s)); we define (px)x∈X point-

wise as follows. For all s ∈ S, all x ∈ supp(Qs), we set px = dirac(ax), where we validly define

ax ∈ argmaxa∈A
∑

b∈B q
G(x,s)(b) r(a, b, x, s) on the union of the supports of (Qs)s∈S , since they

are pair-wise disjoint; we define the ax arbitrarily elsewhere.

Two counter-examples detailed in Appendix B back up the final part of the proposition: we show
that Eq. (4) does not hold. In the first counter-example, the monitoring is G(x, s) = x, the payoff
function depends on s, and the supports of (Qs)s∈S have non negligible intersection. In the second
example, the monitoring is G(x, s) = (x, s), the payoff function does not depend on s, and the
supports of (Qs)s∈S have non negligible intersection.

Example 3: (Vanilla) no-regret under the equalized average payoffs constraint. For the sake
of space we deal with this example in Appendix B, obtaining similar conclusions as that of Blum
et al. [4].

5 Group-wise calibration under a demographic parity constraint: trade-off

In this section, we consider the problem of group-wise calibration under the demographic parity
constraint; in particular, S = {0, 1}. As we will see, except for special cases, the corresponding
two error criteria cannot be simultaneously smaller than the desired 1/N in the limit. However, a
(possibly optimal) trade-off may be set between the calibration error ε and the violation level δ of
demographic parity. To that end, we introduce neighborhoods of the original target sets Cgr-cal and
CDP:

Cε
gr-cal =

{
v ∈ R

2N : ‖v‖1 6 ε
}

and Cδ
DP =

{
(u, v) ∈ R

2 : |u − v| 6 δ
}
.

We define a pair (ε, δ) ∈ R+ × R+ to be achievable when Cε
gr-cal × Cδ

DP is approachable with m =
(mgr-cal,mDP). Theorem 1 provides a characterization of this approachability as well as an associated
strategy; in particular, when (ε, δ) is achievable, this strategy ensures that the calibration error CT

and the violation DT of demographic parity satisfy: lim supCT 6 ε a.s. and lim supDT 6 δ a.s.

The goal of this section is to identify all achievable pairs (ε, δ). We will do so by determining, for
δ > 0 of interest, the smallest ε > 0 such that (ε, δ) is achievable1; we denote it by ε⋆(δ). The line(
δ, ε⋆(δ)

)
is a Pareto frontier.

Re-parametrization of the problem. Under Assumption 1 (the existence of fast enough sequen-
tial estimators of Q) and thanks to Theorem 1, the (mgr-cal,mDP)–approachability of Cε

gr-cal × Cδ
DP

holds if and only if the condition of Eq. (2) is satisfied. The latter can be stated as follows:

∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X s.t.





∥∥∥∥∥

∫

X×{0,1}
mgr-cal

(
p
x, qG(x,s)

)
dQ(x, s)

∥∥∥∥∥
1

6 ε ;

ψ

(∫

X×{0,1}
mDP(p

x, s) dQ(x, s)

)
6 δ ,

(5)
where we recall that ψ(u1, u2) = |u1 − u2|. Now, one can show (see comments after Lemma 3
of Appendix C) that the ψ( . . . ) term above is always smaller than TV(Q0,Q1). Thus, we can
re-parameterize the problem and focus only on δτ = τ · TV(Q0,Q1), where τ ∈ [0, 1].

1Note that if (ε, δ) is achievable, then (ε′, δ′) with ε′ > ε and δ′ > δ is also achievable.
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Computation of the Pareto frontier. The condition of Eq. (5) indicates that

ε⋆(δτ ) = max
(qG(x,s))

min
(px)

∥∥∥∥∥

∫

X×{0,1}
mgr-cal

(
p
x, qG(x,s), s

)
dQ(x, s)

∥∥∥∥∥
1

s.t. ψ

(∫

X×{0,1}
mDP(p

x, s) dQ(x, s)

)
6 τ · TV(Q0,Q1) .

(6)

Propositions 2 and 3 below compute the values (up to the 1/N discretization error) of ε⋆(δτ ) in two
scenarios, depending on whether Nature observes the sensitive contexts st.

Proposition 2 (Nature awareness: G(x, s) = (x, s)). Under Assumption 1 and with the monitoring

G(x, s) = (x, s) for Nature, the Pareto frontier
(
ε⋆(δτ ), δτ

)
τ∈[0,1]

of achievable pairs satisfies

δτ = τ · TV(Q0,Q1) and 1− τ · TV(Q0,Q1) 6 ε⋆(δτ ) 6 1− τ · TV(Q0,Q1) +
1

N
.

Proposition 3 (Nature unawareness: G(x, s) = x). Under Assumption 1 and with the monitoring

G(x, s) = x for Nature, the Pareto frontier
(
ε⋆(δτ ), δτ

)
τ∈[0,1]

of achievable pairs satisfies:

δτ = τ · TV(Q0,Q1) and (1 − τ) · TV(Q0,Q1) 6 ε⋆(δτ ) 6 (1− τ) · TV(Q0,Q1) +
1

N
.

We observe that in the case when the true label bt provided by the Nature can be directly influenced
by the sensitive attribute st, Proposition 2 shows that approximate group-wise calibration with ε =
1/N is never possible, unless TV(Q0,Q1) = 1 (and τ = 1 is picked). The latter case corresponds
to the situation when the supports of Q0 and Q1 are disjoint, hence allowing the Player to infer
the sensitive context s from the non-sensitive one x, essentially reducing (up to unknown Q) the
problem to the previously studied setup of Player’s awareness [16].

When the true label bt provided by the Nature is not directly influenced by the sensitive attribute
st (it is influenced by st only via xt), Proposition 3 indicates that calibration is always possible
by setting τ = 1, no matter the value of TV(Q0,Q1). Interestingly, this proposition also shows
that if TV(Q0,Q1) = 0, i.e., the xt and the st are independent, then the Player is able to achieve
calibration and satisfy the demographic parity constraint simultaneously.

6 Approachability of an unknown target set

A limitation of the calibration problems under demographic parity constraint discussed in Section 4
(Example 1) and Section 5 is that the unknown probabilities γ0 and γ1 enter the payoff functions
mgr-cal and mDP. We already pointed out this issue in Section 2.3. Even worse, the trade-off claimed
in Propositions 2 and 3 relies on the knowledge of the unknown TV(Q0,Q1), to set the values of
the achievable pair (δ, ε) targeted; that is, the target set is unknown. To bypass the first limitation
we transfer the unknown (γ0, γ1) to the target set, which makes the payoff function fully known to
the Player. We will then be left with the problem of approaching an unknown target set only. For
instance, in the context of Section 5, we can define

m̃gr-cal(k, y, s) = (mcal(k, y) I{s = s′})s′=0,1 and m̃DP(k, s) =
(
a(k) I{s = 0}, a(k) I{s = 1}

)
,

and set m̃ := (m̃gr-cal, m̃DP). Taking into account the definition of mcal, we note that m̃ does not
depend on (γ0, γ1). Furthermore, by considering the closed convex target sets

C̃ε
gr-cal =

{
(v0,v1) ∈ R

2N : ‖v0‖1

γ0
+ ‖v1‖1

γ1
6 ε
}
, C̃δ

DP =
{
(u, v) ∈ R

2 :
∣∣ u
γ0

− v
γ1

∣∣ 6 δ
}
,

we remark that the (m̃gr-cal, m̃DP)–approachability of C̃ε
gr-cal × C̃δ

DP is equivalent to the (mgr-cal,mDP)–

approachability of Cε
gr-cal ×Cδ

DP. The unknown quantities appear only in the target set C̃ε
gr-cal ×C̃δ

DP (and

δ and ε count as unknown quantities given the trade-off exhibited), while the payoff m̃ is known
beforehand. Thus, it is sufficient to consider the setup of Protocol 2.1 with an unknown target set C.
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Approachability strategy for an unknown target set C. We still assume that the Player is able to

build an ht–adapted sequence of estimates Q̂t. Additionally, we assume that for Tr := 2r, with r >

0, the Player can construct an hTr
–adapted estimate Ĉr of C. We define d(Ĉr, C) = supx∈Ĉr

d(x, C).
Assumption 3. There exist B < +∞ and a summable non-increasing sequence (βr)r>0 such

that for all r > 0, the sets Ĉr are convex closed, with ‖v − ProjĈr
(v)‖ 6 B for all v ∈

m(A,B,X , {0, 1}),

P
(
C ⊂ Ĉr

)
> 1− 1/(2Tr), and max

{
E
[
d(Ĉr, C)2

]
, E
[
d(C, Ĉr)2

]}
6 β2

r .

For all r > 0 and all t ∈ {Tr, . . . , Tr+1 − 1}, define ĉt := ProjĈr
(mt). The idea of the approach-

ability strategy is to use ĉt in place of ct in Eq. (1) and update the estimate Ĉr of the target C only at
the end of rounds t = Tr. More precisely, the strategy of the Player is:

(px
t+1)x∈X ∈ argmin

(px)

max
(qG(x,s))

〈
mt − ĉt,

∫
m
(
p
x, qG(x,s), x, s

)
dQ̂t(x, s)

〉
. (7)

Theorem 2. Under Assumption 3 and the assumptions of Theorem 1, a convex closed set C, unknown
to the Player, is m–approachable if and only if Blackwell’s condition in Eq. (2) is satisfied. In this
case, the strategy of Eq. (7) is an approachability strategy.

Appendix D provides estimators for the target set C̃ε
gr-cal×C̃δ

DP of Section 5 and a proof of Theorem 2.
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Supplementary Material for

“A Unified Approach to Fair Online Learning
via Blackwell Approachability”

This supplementary material contains all the proofs omitted from the main body. Each section pro-
vides the proofs of claims, theorems, or propositions of a section of the main body; more precisely,
Appendix A provides proofs for Section 3, Appendix B does so for Section 4, Appendix C, for
Section 5, and finally, Appendix D deals with Section 6.

A Proofs for Section 3

We start by proving a claim stated right after Assumption 1: that

+∞∑

t=1

1

t

√
E
[
TV2(Q̂t,Q)

]
:= C < +∞ entails ∆T :=

1

T

T−1∑

t=1

√
E
[
TV2(Q̂t,Q)

]
−→ 0 .

Indeed,

1

T

T−1∑

t=1

√
E
[
TV2(Q̂t,Q)

]
=

1

T

⌊
√
T ⌋∑

t=1

√
E
[
TV2(Q̂t,Q)

]
+

1

T

T−1∑

t=⌊
√
T ⌋+1

√
E
[
TV2(Q̂t,Q)

]

6
1√
T

⌊
√
T⌋∑

t=1

1

t

√
E
[
TV2(Q̂t,Q)

]

︸ ︷︷ ︸
6C

+
T∑

t=⌊
√
T⌋+1

1

t

√
E
[
TV2(Q̂t,Q)

]
,

which converges to 0, as it is the sum of C/
√
T with a quantity smaller than the remainder of a

convergent series.

We recall that for all Borel-measurable functions f : X × S → R
d with sup

(x,s)∈X×S
‖f(x, s)‖ 6M ,

∥∥∥∥
∫

X×S
f(x, s) dQ1(x, s) −

∫

X×S
f(x, s) dQ2(x, s)

∥∥∥∥

6

∫

X×S
‖f(x, s)‖

∣∣g1(x, s)− g2(x, s)
∣∣ dµ(x, s) 6 2M · TV(Q1,Q2) , (8)

where g1 and g2 denote densities of the distributions Q1 and Q2 with respect to a common dominat-
ing measure µ.

We now move to the proof of Theorem 1, which we restate below. It relies on two lemmas stated
below in Section A.1. Unless stated otherwise (namely, for matters related to the estimation of Q),
all material is standard and was introduced by Blackwell [3] (see also the more modern expositions
by Perchet [20] or Mertens et al. [19]).

Theorem 1. Assume that C is a closed convex set and that Assumptions 1 (fast enough sequential
estimation of Q) and 2 (bounded reward function) are satisfied, then C is approachable if and only
if

∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X s.t.

∫

X×S
m
(
p
x, qG(x,s), x, s

)
dQ(x, s) ∈ C . (2)

In this case, the strategy of Eq. (1) achieves the following rates forL2 and almost-sure convergences:

E
[
d2T
]
6

√
K

T
+ 4‖m‖∞,2

:=∆T︷ ︸︸ ︷
1

T

T−1∑

t=1

√
E
[
TV2(Q̂t,Q)

]
and

P

(
sup
t>T

dt > ε

)
6

3K

Tε2
+

16‖m‖∞,2

ε2

(√
K

T − 1
+ 2

(
sup
t>T

∆t

)(
∆T+

∑

t>T

1

t

√
E
[
TV2(Q̂t,Q)

])
)

whereK < +∞ denotes the maximal distance to C of an element of the compact set m(A,B,X ,S).
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Proof of Theorem 1. Part I: Necessity. Assume that the condition in Eq. (2) is not satisfied, then

∃(qG(x,s)
0 )(x,s)∈X×S ∀(px)x∈X s.t.

∫

X×S
m(px, q

G(x,s)
0 , x, s) dQ(x, s) /∈ C .

Since C is closed and by continuity of the norm, there exists α > 0 such that

∀(px)x∈X min
v∈C

∥∥∥∥v −
∫

X×S
m(px, q

G(x,s)
0 , x, s) dQ(x, s)

∥∥∥∥ > α . (9)

Let Nature play using this distribution (q
G(x,s)
0 )(x,s) at each stage t > 1 to draw bt. Given that the

sensitive attributes and contexts (xt, st) are drawn i.i.d., the conditional expectation of the reward
of the player at round t > 1 based on the history Ht−1 = (at′ , bt′ , xt′ , st′)t′6t−1 equals

E
[
m(at, bt, xt, st)

∣∣Ht−1

]
=

∫

X×S
m
(
p
x
t , q

G(x,s)
0 , x, s

)
dQ(x, s) .

Then, for any strategy of the player, it holds by martingale convergence (e.g., by the Hoeffding-
Azuma inequality and the Borel–Cantelli lemma, used for each component of m) that

∥∥∥∥∥
1

T

T∑

t=1

m(at, bt, xt, st)−
1

T

T∑

t=1

∫

X×S
m
(
p
x
t , q

G(x,s)
0 , x, s

)
dQ(x, s)

∥∥∥∥∥ −→ 0 a.s.

Set px
T :=

1

T

T∑

t=1

p
x
t , then the above implies that

∥∥∥∥mT −
∫

X×S
m(px

T , q
G(x,s)
0 , x, s) dQ(x, s)

∥∥∥∥ −→ 0 a.s. (10)

By the triangle inequality for the Euclidean norm, Eqs. (9) and (10) entail that

lim inf
T→+∞

d
(
mT , C

)
= lim inf

T→+∞

∥∥mT − cT

∥∥ = lim inf
T→+∞

min
v∈C

∥∥v −mT

∥∥ > α a.s.

That is, Nature prevents the player from approaching C (and even: Nature approaches the comple-
ment of the α-neighborhood of C).

Note that in this part we did not use that the target set C was convex, only that it was a closed set.

Part II: Sufficiency. Recall that we denoted by dt := ‖mt − ct‖2 the Euclidean distance of mt

to C. Observe that by definition of the projections ct+1 and ct and by expanding the square norm,

d2t+1 6 ‖mt+1 − ct‖2 =

∥∥∥∥
t

t+ 1
(mt − ct) +

1

t+ 1
(mt+1 − ct)

∥∥∥∥
2

=

(
t

t+ 1

)2
d2t +

‖mt+1 − ct‖2
(t+ 1)2

+
2t

(t+ 1)2
〈mt − ct,mt+1 − ct〉 .

(11)
Moreover, we have, by definition of (px

t+1)x∈X in Eq. (1) as the argmin of a maximum,

〈mt − ct,mt+1 − ct〉

=

〈
mt − ct,mt+1 −

∫

X×S
m

(
p
x
t+1, q

G(x,s)
t+1 , x, s

)
dQ̂t(x, s)

〉

+

〈
mt − ct,

∫

X×S
m
(
p
x
t+1, q

G(x,s)
t+1 , x, s

)
dQ̂t(x, s) − ct

〉

6

〈
mt − ct,mt+1 −

∫

X×S
m
(
p
x
t+1, q

G(x,s)
t+1 , x, s

)
dQ̂t(x, s)

〉

+ min
(px)x

max
(qG(x,s))G(x,s)

〈
mt − ct,

∫

X×S
m
(
p
x, qG(x,s), x, s

)
dQ̂t(x, s)− ct

〉
.

(12)
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Furthermore, the Cauchy-Schwarz inequality, followed by an application of the bound of Eq. (8),

indicates that for all (px)x and all (qG(x,s))(x,s),
∣∣∣∣
〈
mt − ct,

∫

X×S
m
(
p
x, qG(x,s), x, s

)
dQ̂t(x, s)−

∫

X×S
m
(
p
x, qG(x,s), x, s

)
dQ(x, s)

〉∣∣∣∣

6 dt ·
∥∥∥∥
∫

X×S
m
(
p
x, qG(x,s), x, s

)
dQ̂t(x, s)−

∫

X×S
m
(
p
x, qG(x,s), x, s

)
dQ(x, s)

∥∥∥∥

6 2dt · TV(Q̂t,Q) · ‖m‖∞,2 .

Hence, using twice this bound in Eq. (12) and introducing

Zt+1 :=

〈
mt − ct,mt+1 −

∫

X×S
m
(
p
x
t+1, q

G(x,s)
t+1 , x, s

)
dQ(x, s)

〉
, (13)

we obtain

〈mt − ct,mt+1 − ct〉 6 Zt+1 + 4dt · TV(Q̂t,Q) · ‖m‖∞,2

+ min
(px)x

max
(qG(x,s))G(x,s)

〈
mt − ct,

∫

X×S
m
(
p
x, qG(x,s), x, s

)
dQ(x, s)− ct

〉
.

(14)
We recall that the Euclidean projection c of a vector n onto a closed convex set C ⊂ R

d satisfies:

∀c′ ∈ C, 〈n− c, c′ − c〉 6 0 .

Thus, thanks to von Neumann’s minmax theorem (for the equality) and the Blackwell’s condition in
Eq. (2) together with the above-recalled property of the projection,

min
(px)x

max
(qG(x,s))G(x,s)

〈
mt − ct,

∫

X×S
m

(
p
x, qG(x,s), x, s

)
dQ(x, s) − ct

〉

= max
(qG(x,s))G(x,s)

min
(px)x

〈
mt − ct,

∫

X×S
m

(
p
x, qG(x,s), x, s

)
dQ(x, s)− ct

〉
6 0 . (15)

Hence, combining Eqs. (14) and (15) with Eq. (11), and bounding ‖mt+1−ct‖2 byK (by definition
of K), we have obtained so far

d2t+1 6

(
t

t+ 1

)2
d2t +

K

(t+ 1)2
+

2t

(t+ 1)2

(
Zt+1 + 4dt · TV(Q̂t,Q) · ‖m‖∞,2

)
. (16)

The 4dt · TV(Q̂t,Q) · ‖m‖∞,2 is the sole difference to the standard proof of approachability. We
deal with it by adapting the conclusions of the original proof.

Before we do so, we note that the Zt+1 introduced in Eq. (13) form a martingale difference sequence
with respect to the historyHt: indeed, mt and ct areHt–measurable and so are the (px

t+1)x and the

(q
G(x,s)
t+1 )x,s; since in addition (xt+1, st+1) is drawn independently from everything according to Q

and at+1 and bt+1 are drawn independently at random according to p
xt

t+1 and q
G(xt,st), we have

E[mt+1 |Ht] = E
[
m(at+1, bt+1, xt+1, st+1)

∣∣Ht

]
=

∫

X×S
m
(
p
x
t+1, q

G(x,s)
t+1 , x, s

)
dQ(x, s) ,

so that E[Zt+1 |Ht] = 0.

Part II: Sufficiency—convergence in L2. In particular, taking expectations in Eq. (16) and ap-
plying the tower rule (for the first inequality) and applying the Cauchy-Schwarz inequality (for the
second inequality), we have

E
[
d2t+1

]
6

(
t

t+ 1

)2
E
[
d2t
]
+

K

(t+ 1)2
+

8t‖m‖∞,2

(t+ 1)2
E
[
dt · TV(Q̂t,Q)

]

6

(
t

t+ 1

)2
E
[
d2t
]
+

K

(t+ 1)2
+

8t‖m‖∞,2

(t+ 1)2

√
E
[
d2t
]√

E
[
TV2(Q̂t,Q)

]
. (17)
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Applying Lemma 1 below, we get

√
E
[
d2T
]
6 BT :=

√
K

T
+ 4‖m‖∞,2

1

T

T−1∑

t=1

√
E
[
TV2(Q̂t,Q)

]

︸ ︷︷ ︸
:=∆T

. (18)

By (a consequence of) Assumption 1, the second term in the right-hand side converges to zero, and
we obtain convergence in L2.

Part II: Sufficiency—almost-sure convergence. We define

ST := d2T + E


∑

t>T

(
K

(t+ 1)2
+

8t‖m‖∞,2

(t+ 1)2
dt · TV(Q̂t,Q)

) ∣∣∣∣HT


 ,

and note that (ST )T>1 is a non-negative super-martingale with respect to the filtration induced
by (HT )T>1; indeed, the recursion of Eq. (16) entails, together with

(
t/(t+ 1)

)2
6 1 and

E[ZT+1 |HT ] = 0:

E[ST+1 | HT ] = E
[
d2T+1 | HT

]
+ E


 ∑

t>T+1

(
K

(t+ 1)2
+

8t‖m‖∞,2

(t+ 1)2
dt · TV(Q̂t,Q)

) ∣∣∣∣HT




6 d2T + E


∑

t>T

(
K

(t+ 1)2
+

8t‖m‖∞,2

(t+ 1)2
dt · TV(Q̂t,Q)

) ∣∣∣∣HT


 = ST .

We may thus use d2T 6 ST and apply Doob’s maximal inequality for non-negative super-martingales
(Lemma 2):

P

(
sup
T ′>T

dT ′ > ε

)
= P

(
sup
T ′>T

d2T ′ > ε2
)

6 P

(
sup
T ′>T

ST ′ > ε2
)

6
E[ST ]

ε2
.

The proof is concluded by upper bounding E[ST ]. The tower rule, the Cauchy-Schwarz inequality,
and the bound t/(t+ 1)2 6 1/(t+ 1) 6 1/t yield

E[ST ] 6 E
[
d2T
]
+
∑

t>T

K

(t+ 1)2
+ 8‖m‖∞,2

∑

t>T

√
E
[
d2t
]
√
E
[
TV2(Q̂t,Q)

]

t
.

We substitute the bound from Eq. (18), keeping in mind that the total variation distance is always
smaller than 1:

E[ST ] 6 E
[
d2T
]
+
K

T
+ 8‖m‖∞,2

∑

t>T

1

t

√
K

t
+ 32‖m‖2∞,2

∑

t>T

∆t

√
E
[
TV2(Q̂t,Q)

]

t
.

Eq. (18) also implies, together with (a+b)2 6 2a2+2b2, that E
[
d2T
]
6 2K/T +32‖m‖2∞,2(∆T )

2.
All in all, we get the final bound

E[ST ] 6
3K

T
+

16‖m‖∞,2

√
K√

T − 1
+ 32‖m‖2∞,2

(
sup

t>T+1
∆t

)
∆T +

∑

t>T

1

t

√
E
[
TV2(Q̂t,Q)

]

 .

A.1 Two lemmas used in the proof of Theorem 1

The following lemma is an ad-hoc and new, but elementary, tool to deal with the additional term
appearing in Eq. (17) compared to the original proof of approachability.
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Lemma 1. Let t∗ > 0, and consider two non-negative sequences (dt)t>t∗ and (δt)t>t∗ fulfilling,
for t > t∗, the recursive inequality

d2t+1 6

(
t

t+ 1

)2
d2t +

K

(t+ 1)2
+

2t

(t+ 1)2
δt dt . (19)

Then, for all t > t∗ + 1,

dt 6

√
K(t− t∗)

t
+

1

t

t−1∑

t′=t∗

δt′ +
t∗dt∗

t
.

In particular, if (dt)t>1 and (δt)t>1 are two non-negative sequences fulfilling the recursive inequal-

ity (19) for t > 1, and if d1 6
√
K, then, for all t > 1,

dt 6

√
K

t
+

1

t

t−1∑

t′=1

δt′ .

Proof. Second part of the lemma. Let us first check that the second part of the lemma follows from

the first part. Setting d0 = δ0 = 0, the sequences (dt)t>0 and (δt)t>0 fulfill Eq. (19) for t > t∗ = 0,
hence

dt 6

√
K

t
+

1

t

t−1∑

t′=0

δt′ =

√
K

t
+

1

t

t−1∑

t′=1

δt′ ,

where the equality in the right-hand side comes from δ0 = 0.

First part of the lemma. Set Ut = t dt and ∆∗
t = δt∗ + . . .+ δt with the convention that ∆∗

t = 0 for

all t < t∗. It is equivalent to prove that for all t > t∗ + 1, we have

Ut 6
√
K(t− t∗) + ∆∗

t−1 + Ut∗ . (20)

We observe that Eq. (20) trivially holds for t = t∗. Assume that Eq. (20) holds for t > t∗. By
assumption, we have U2

t+1 6 U2
t +K + 2δtUt 6 (Ut + δt)

2 +K . Substituting Eq. (20) together
with the fact that Ut > 0 and δt > 0, we get

U2
t+1 6 (Ut + δt)

2 +K 6
(√

K(t− t∗) + ∆∗
t + Ut∗

)2
+K

= K(t+ 1− t∗) + (∆∗
t + Ut∗)

2 + 2
√
K(t− t∗) (∆t + Ut∗)

6
(√

K(t+ 1− t∗) + ∆∗
t + Ut∗

)2
.

We have proved that Ut+1 6
√
K(t+ 1− t∗) + ∆∗

t + Ut∗ , and we conclude by induction.

Two maximal inequalities for martingales are called Doob’s inequality. We use the less famous one,
for non-negative super-martingales.

Lemma 2 (One of Doob’s maximal inequalities). Let (Sn)n>1 be a non-negative super-martingale,
then

P

(
sup
m>n

Sm > η

)
6

E[Sn]

η
.
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B Proofs for Section 4

We first detail the two counter-examples alluded at in the proof of Proposition 1, relative to Exam-
ple 2 on group-wise no-regret. We then discuss Example 3 on vanilla no-regret under the equalized
average payoffs constraint.

B.1 Counter-examples for group-wise no-regret

First counter-example. We take S = A = B = {0, 1} and let X be an arbitrary finite set. The
monitoring is assumed to be G(x, s) = x. Finally, we consider the specific payoff function

∀(a, b, x) ∈ A× B × X , r(a, b, x, 0) = a2 and r(a, b, x, 1) = (a− 1)2 .

The integral conditions in Eq. (4) read: for all a′ ∈ {0, 1},
∫

X

∑

a∈{0,1}
p
x(a) a2 dQ0(x) > (a′)2 and

∫

X

∑

a∈{0,1}
p
x(a) (a− 1)2 dQ1(x) > (a′ − 1)2 ,

or equivalently, simply
∫

supp(Q0)

p
x(1) dQ0(x) > 1 and

∫

supp(Q1)

p
x(0) dQ1(x) > 1 .

As p
x(1) ∈ [0, 1], the fact that the first integral above is larger than 1 entails that px(1) = 1 on

supp(Q0). Similarly, px(0) = 1 on supp(Q1). As we also have px(0) + p
x(1) = 1 for all x ∈ X ,

we see that the condition in Eq. (4) cannot hold as soon as supp(Q0) ∩ supp(Q1) 6= ∅.

Second counter-example. Again, we take S = A = B = {0, 1} and let X be an arbitrary finite
set but assume this time that Nature’s monitoring is G(x, s) = (x, s). Another difference is that we
consider a payoff function not depending on s:

∀(a, b, x, s) ∈ A× B × X × S, r(a, b, x, s) = I{a = b} = 1− (a− b)2 .

Nature picks the following difficult family of distributions: q(x,0) = (1, 0)⊤ and q
(x,1) = (0, 1)⊤

for all x ∈ X , so that q(x,s)(b) = 1 if and only if b = s. The integral conditions in Eq. (4) therefore
read: for all s ∈ {0, 1},

min
a′∈{0,1}

∫

X

∑

a∈{0,1}
p
x(a)

(
r(a, s, x, s) − r(a′, s, x, s)

)
dQs(x) =

∫

X
p
x(s) dQs(x)− 1 > 0 .

From here we conclude similarly to the previous counter-example.

B.2 Vanilla no-regret under the equalized average payoffs constraint

Blum et al. [4, Section 4] study online regret minimization under a constraint of equal average
payoffs, that is, they discuss the (mreg,meq-pay)–approachability of Creg ×Ceq-pay, with the notation of
Section 2.

Their setting is different from the setting considered in this article, as the latter relies on the no-regret
based on a fixed base payoff function r, while the former considers prediction with expert advice,
that may be assimilated to an adversarially chosen sequence (rt) of payoff functions.

Yet, we mimic the spirit of their results, which is two-fold.

First, we show an impossibility result for the simultaneous satisfaction of the vanilla no-regret ob-
jective and the constraint of equal average payoffs, i.e., for the (mreg,meq-pay)–approachability of
Creg × Ceq-pay. We do so for an example of binary online classification. This corresponds to Theo-
rem 4 of Blum et al. [4, Section 4].

Second, we provide a positive result for the mentioned approachability problem, in the case of
a Player aware of the sensitive contexts, i.e., following Remark 1, when the Player accesses the
contexts x′t = (xt, st). This corresponds to Theorem 3 of Blum et al. [4, Section 4].
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Before we do so, we first instantiate the approachability condition of Eq. (2) with the vector payoff

function m = (mreg,meq-pay) and the target set C = Creg × Ceq-pay; it reads: ∀(qG(x,s))(x,s) ∃(px)x
such that∫

X×{0,1}
r
(
p
x, qG(x,s), x, s

)
dQ(x, s) > max

a′∈A

∫

X×{0,1}
r
(
a′, qG(x,s), x, s

)
dQ(x, s) (21)

and

∣∣∣∣
∫

X
r
(
p
x, qG(x,0), x, 0

)
dQ0(x) −

∫

X
r
(
(px, qG(x,1), x, 1

)
dQ1(x)

∣∣∣∣ 6 ε . (22)

Second, we also introduce some additional notation.

Additional notation and reminder on total variation distance. Recall that we denoted by Q0

and Q1 the two marginals of Q on X . We fix some measure µ which dominates both Q0 and Q1,
e.g., µ = Q0+Q1, and denote by g0 and g1 densities of Q0 and Q1 with respect to µ. We introduce
the following three sets (defined up to µ–neglectable events):

X0 =
{
x ∈ X : g0(x) > g1(x)

}
,

X1 =
{
x ∈ X : g1(x) > g0(x)

}
,

X= =
{
x ∈ X : g1(x) = g0(x)

}
.

Using the above defined sets and densities, we remind that the total variation distance between Q0

and Q1 can be expressed in the following equivalent ways (see, e.g., Devroye [8] or Tsybakov [22,
Lemma 2.1]):

TV(Q0,Q1) =
1

2

∫

X

∣∣g0(x)− g1(x)
∣∣ dµ(x)

=

∫

X1

(
g1(x)− g0(x)

)
dµ(x) =

∫

X0

(
g0(x) − g1(x)

)
dµ(x)

= 1−
∫

X
min

{
g0(x), g1(x)

}
dµ(x) .

We may now describe the impossibility example.

Impossibility example for online classification. Binary classification corresponds to the sets of
actions A = B = {0, 1} and to the payoff function r(a, b, x, s) = I{a = b}. In particular, for all
distributions q and q, for all contexts (x, s),

r(p, q, x, s) = p(0) q(0) + p(1) q(1) := 〈p, q〉 .
We focus our attention on the monitoring G(x, s) = x, which gives less freedom to Nature. Our
impossibility result holds in particular in the case of the more complete monitoringG(x, s) = (x, s).

We will have Nature pick distributions (qx)x∈X such that qx(0) > 1/2 for all x ∈ X ; the maximum
in the right-hand side of Eq. (21) is then achieved for a′ = 0. Because of this and with the notion
introduced, the regret criterion of Eq. (21) may be rewritten as∫

X×{0,1}

(〈
p
x, qx

〉
− q

x(0)︸ ︷︷ ︸
60

)
dQ(x, s) > 0 .

The inequality
〈
p
x, qx

〉
− q

x(0) 6 0 holds because qx(0) > q
x(1) by the constraint qx(0) > 1/2;

this inequality is strict unless px(1) = 0. Therefore, the regret constraint imposes
〈
p
x, qx

〉
= q

x(0)

and p
x(1) = 0 on the support of Q (which is the union of the supports of Q0 and Q1).

The constraint of equal average payoffs relies on the following difference, which we rewrite based
on the equality just proved:∫

X

〈
p
x, qx

〉
dQ0(x)−

∫

X

〈
p
x, qx

〉
dQ1(x) =

∫

X
q
x(0) dQ0(x)−

∫

X
q
x(0) dQ1(x) .

We let Nature pick the distributions (qx) defined by

q
x(0) =

{
1 for x ∈ supp(Q0),

1/2 + ε for x ∈ supp(Q1).
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We also replace dQ0 and dQ1 by g0 dµ and g1 dµ, respectively. The difference in average payoffs
thus rewrites, given the various expressions of the total variation distance recalled above:
∫

X
q
x(0) dQ0(x) −

∫

X
q
x(0) dQ1(x) =

∫

X
q
x(0)

(
g0(x) − g1(x)

)
dµ(x)

=

∫

X0

(
g0(x)− g1(x)

)
dµ(x)

︸ ︷︷ ︸
=TV(Q0,Q1)

+

(
1

2
+ ε

)∫

X1∪X=

(
g0(x)− g1(x)

)
dµ(x)

︸ ︷︷ ︸
=−TV(Q0,Q1)

=

(
1

2
− ε

)
TV(Q0,Q1) .

All in all, the equal average payoffs constraint of Eq. (22), and thus, the approachability condition
of Eq. (2), hold if and only if

TV(Q0,Q1) 6
ε

1/2− ε
,

i.e., if the distributions Q0 and Q1 are close enough.

This is typically not the case, and having such a small distance between Q0 and Q1 should be
considered a degenerate case. The limit case TV(Q0,Q1) = 0 indeed corresponds to the case when
the sensitive attributes st are independent of the non-sensitive contexts xt.

Positive result for a Player aware of the st and a fair-in-isolation payoff function r. The posi-
tive result will be exhibited in the same spirit as the one of Theorem 3 of Blum et al. [4, Section 4].
This spirit is interesting but somewhat limited, as it relies on a (heavy) fair-in-isolation assump-
tion. The latter indeed indicates that for all sequences of contexts and observations, the average loss
achieved by a given expert is the same among sensitive groups. This “for all sequences” requirement
is particularly demanding. (A question not answered in Blum et al. [4] is the existence of experts
that are fair in isolation, for general reward functions rt or general loss functions ℓt, and metrics M,
using their notation.) See comments after Eq. (23) below for the adaptation of this assumption in
our context.

A second ingredient for the positive result is that the Player accesses the sensitive contexts st. Fol-
lowing Remark 1, this translates into our setting by considering that the Player accesses the contexts
x′t = (xt, st); hence, the distributions picked by the Player will be indexed by (x, s) in this example.
Nature’s monitoring is G(x, s) = (x, s) as well.

Given (q(x,s)), to fulfill the no-regret condition

∫

X×{0,1}
r
(
p
(x,s), q(x,s), x, s

)
dQ(x, s) > max

a′∈A

∫

X×{0,1}
r
(
a′, q(x,s), x, s

)
dQ(x, s) ,

the Player may pick p
(x,s) based only on s:

p
(x,s) = dirac(as) , where as ∈ argmax

a∈A

∫

X
r
(
a, q(x,s), x, s

)
dQs(x) .

This corresponds to using separate no-regret algorithms in the construction of Theorem 3 of Blum
et al. [4], one algorithm per sensitive context. The no-regret algorithms based on approachability
used here actually have a regret converging to zero in the limit (they do not just approach the set of
non-negative numbers) and thus share the same “not worse but not better” property with respect to
the best action a as the one used in Theorem 3 of Blum et al. [4].

The constraint of equal average payoffs requires that the following difference is smaller than ε in
absolute values:

∫

X
r
(
p
(x,0), q(x,0), x, 0

)
dQ0(x) −

∫

X
r
(
p
(x,1), q(x,1), x, 1

)
dQ1(x)

= max
a∈A

∫

X
r
(
a, q(x,0), x, 0

)
dQ0(x)−max

a∈A

∫

X
r
(
a, q(x,1), x, 1

)
dQ1(x) . (23)
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This constraint is automatically taken care of by the fair-in-isolation assumption: its analogue in our
context (keeping in mind that the actions a ∈ A play here the role of the experts in Blum et al. [4])

is to require that for all distributions (q(x,s)) picked by the opponent,

∀a ∈ A,
∣∣∣∣
∫

X
r
(
a, q(x,0), x, 0

)
dQ0(x) −

∫

X
r
(
a, q(x,1), x, 1

)
dQ1(x)

∣∣∣∣ 6 ε .

This basically corresponds to an assumption on the effective range of the payoff function r and is
therefore a heavy assumption, of limited interest.
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C Proofs for Section 5

We recalled various expressions of the total variation distance in Section B.2. We keep the notation
defined therein. The following inequality will be used repeatedly in our proofs.

Lemma 3. For all Borel-measurable functions f : X → [0, 1],
∣∣∣∣
∫

X
f dQ0 −

∫

X
f dQ1

∣∣∣∣ =
∣∣∣∣
∫

X
f (g0 − g1) dµ

∣∣∣∣ 6 TV(Q0,Q1) .

Proof. The proof heavily relies on the fact that f takes values in [0, 1]. Since, by definitions of X0,
X1, and X=, ∫

X
f (g0 − g1) dµ =

∫

X0

f (g0 − g1︸ ︷︷ ︸
>0

) dµ+

∫

X1

f (g0 − g1︸ ︷︷ ︸
<0

) dµ ,

we have

−TV(Q0,Q1) = −
∫

X1

(g1 − g0) dµ 6

∫

X
f (g0 − g1) dµ 6

∫

X0

(g0 − g1) dµ = TV(Q0,Q1) ,

which concludes the proof.

An application of Lemma 3 is the bound TV(Q0,Q1) on the ψ( . . . ) quantity of Eq. (5). Indeed,

DP := ψ

(∫

X×{0,1}
mDP(p

x, s) dQ(x, s)

)

=

∣∣∣∣∣

∫

X

N∑

k=1

p
x(k) a(k) dQ0(x)−

∫

X

N∑

k=1

p
x(k) a(k) dQ1(x)

∣∣∣∣∣

=

∣∣∣∣∣

∫

X
A(px) dQ0(x)−

∫

X
A(px) dQ1(x)

∣∣∣∣∣ 6 TV(Q0,Q1) ,

where we introduced

A(px) :=

N∑

k=1

p
x(k) a(k) ∈ [0, 1] .

Before providing the proofs of Propositions 2 and 3 we introduce some additional short-hand nota-
tion. We set

t∗ := TV(Q0,Q1) .

The objective function of the maxmin problem in (6), relative to group-wise calibration, is denoted
by and equals

GC :=

∥∥∥∥
∫

X×S
mgr-cal

(
p
x, qG(x,s)

)
dQ(x, s)

∥∥∥∥
1

=

N∑

k=1

∣∣∣∣
∫

X
p
x(k)

(
a(k) − q

G(x,0)(1)
)
g0(x) dµ(x)

∣∣∣∣

+
N∑

k=1

∣∣∣∣
∫

X
p
x(k)

(
a(k) − q

G(x,1)(1)
)
g1(x) dµ(x)

∣∣∣∣ .

The problem of Eq. (6) can now be written as

ε⋆(δτ ) = max
(qG(x,s))

min
(px)

{GC : DP 6 τt∗} . (24)

The proof technique for each of Propositions 2 and 3 consists of two steps. First, by setting some

convenient family (qG(x,s))(x,s), we obtain a lower bound on ε⋆(δτ ). Second, by exhibiting some
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convenient family (px)x, possibly based on the knowledge of (qG(x,s))(x,s), an upper bound on

ε⋆(δτ ) is derived.

The definitions of these families will be based on a rounding operator p ∈ [0, 1] 7→ ΠA ∈ A, that
maps a number p ∈ [0, 1] to the closest element in the grid A. Note that by definition of A and
ΠA, it holds that |p− ΠA(p)| 6 1/(2N) for all p ∈ [0, 1]. We are finally in the position of proving
Propositions 2 and 3, and start with the former.

Proof of Proposition 2. Fix some τ ∈ [0, 1]. Recall that G(x, s) = (x, s), so that families of distri-
butions picked by Nature are “truly” indexed by (x, s).

For the lower bound on ε⋆(δτ ), we consider, for all x ∈ X ,

q
(x,0) = dirac(1) and q

(x,0) = dirac(0) .

Then, for all choices (px)x, using that

N∑

k=1

p
x(k) = 1 for each x ∈ X :

GC =
N∑

k=1

∣∣∣∣
∫

X
p
x(k)

(
a(k) − 1

)
g0(x) dµ(x)

∣∣∣∣ +
N∑

k=1

∣∣∣∣
∫

X
p
x(k) a(k) g1(x) dµ(x)

∣∣∣∣

=

N∑

k=1

∫

X
p
x(k)

(
1− a(k)

)
g0(x) dµ(x) +

N∑

k=1

∫

X
p
x(k) a(k) g1(x) dµ(x)

=

∫

X
g0(x) dµ(x)

︸ ︷︷ ︸
=1

+

∫

X
A(px)

(
g1(x)− g0(x)

)
dµ(x)

︸ ︷︷ ︸
absolute value equals DP

> 1− DP ,

so that the rewriting of Eq. (24) entails ε⋆(δτ ) > 1− τt∗, as claimed.

To derive an upper bound on ε⋆(δτ ), we consider, for each (q(x,s))(x,s)∈X×S and each x ∈ X ,

p
τ,x = (1− τ) · dirac

(
ΠA(1/2)

)
+ τ · dirac

(
f(x)

)
,

where f(x) =

{
ΠA
(
q
(x,1))(1)

)
if x ∈ X1 ∪ X= ;

ΠA
(
q
(x,0))(1)

)
if x ∈ X0 .

(25)

Note that for this strategy of the Player, DP 6 τt∗; indeed,A(pτ,x) = (1− τ) ·ΠA(1/2)+ τ · f(x),
so that

DP =

∣∣∣∣∣

∫

X
A(pτ,x) dQ0(x)−

∫

X
A(pτ,x) dQ1(x)

∣∣∣∣∣ = τ ·
∣∣∣∣∣

∫

X
f(x) dQ0(x)−

∫

X
f(x) dQ1(x)

∣∣∣∣∣
6 τ · TV(Q0,Q1) ,

where we applied Lemma 3 for the final inequality. Moreover, the choice of Eq. (25) ensures that
GC 6 1 − τt∗ + 1/N , as we will prove below. This will lead to ε⋆(δτ ) 6 1 − τt∗ + 1/N and will
conclude the proof. Indeed,

GC =
N∑

k=1

∣∣∣∣
∫

X
p
τ,x(k)

(
a(k) − q

(x,0)(1)
)
g0(x) dµ(x)

∣∣∣∣

+
N∑

k=1

∣∣∣∣
∫

X
p
τ,x(k)

(
a(k) − q

(x,1)(1)
)
g1(x) dµ(x)

∣∣∣∣

= (1− τ)

∣∣∣∣
∫

X

(
ΠA(1/2)− q

(x,0)(1)
)
g0(x) dµ(x)

∣∣∣∣

+ (1 − τ)

∣∣∣∣
∫

X

(
ΠA(1/2)− q

(x,1)(1)
)
g1(x) dµ(x)

∣∣∣∣

+ τ

∣∣∣∣
∫

X

(
f(x)− q

(x,0)(1)
)
g0(x) dµ(x)

∣∣∣∣ + τ

∣∣∣∣
∫

X

(
f(x)− q

(x,1)(1)
)
g1(x) dµ(x)

∣∣∣∣ .
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We replace f(x) by its specific values and take care of all rounding operators ΠA by adding a
2× 1/(2N) = 1/N term after application of triangle inequalities:

GC 6
1

N
+ (1− τ)

∣∣∣∣
∫

X

(
∈[−1/2, 1/2]︷ ︸︸ ︷

1/2− q
(x,0)(1)

)
g0(x) dµ(x)

∣∣∣∣ + (1− τ)

∣∣∣∣
∫

X

(
∈[−1/2, 1/2]︷ ︸︸ ︷

1/2− q
(x,1)(1)

)
g1(x) dµ(x)

∣∣∣∣

+ τ

∣∣∣∣
∫

X1∪X=

(
∈[−1,1]︷ ︸︸ ︷

q
(x,1)(1)− q

(x,0)(1)
)
g0(x) dµ(x)

∣∣∣∣ + τ

∣∣∣∣
∫

X0

(
∈[−1,1]︷ ︸︸ ︷

q
(x,0)(1)− q

(x,1)(1)
)
g1(x) dµ(x)

∣∣∣∣

6
1

N
+

1− τ

2
+

1− τ

2
+ τ

∫

X1∪X=

g0(x) dµ(x) + τ

∫

X0

g1(x) dµ(x)

= 1− τ + τ

∫

X
min

{
g0(x), g1(x)

}
dµ(x)

︸ ︷︷ ︸
=1−t∗

+
1

N
= 1− τt∗ +

1

N
,

where we used one of the expressions of t∗ = TV(Q0,Q1) in the last equality.

Proof of Proposition 3. Fix some τ ∈ [0, 1]. Recall that G(x, s) = x, so that families of distribu-
tions picked by Nature are only indexed by x and may not depend on s.

For the lower bound on ε⋆(δτ ), we consider (qx)x∈X defined as

q
x =

{
dirac(1) if x ∈ X1 ∪ X= ;

dirac(0) if x ∈ X0 .

Then, for all choices (px)x, using the notation A(px) and the fact that

N∑

k=1

p
x(k) = 1 for each

x ∈ X :

GC =

N∑

k=1

∣∣∣∣
∫

X
p
x(k)

(
a(k) − q

x(1)
)
g0(x) dµ(x)

∣∣∣∣ +
N∑

k=1

∣∣∣∣
∫

X
p
x(k)

(
a(k) − q

x(1)
)
g1(x) dµ(x)

∣∣∣∣

=

N∑

k=1

∣∣∣∣
∫

X1∪X=

p
x(k)

(
a(k) − 1

)
g0(x) dµ(x) +

∫

X0

p
x(k) a(k) g0(x) dµ(x)

∣∣∣∣

+
N∑

k=1

∣∣∣∣
∫

X1∪X=

p
x(k)

(
a(k) − 1

)
g1(x) dµ(x) +

∫

X0

p
x(k) a(k) g1(x) dµ(x)

∣∣∣∣

>

∣∣∣∣
∫

X1∪X=

(
A(px)− 1

)
g0(x) dµ(x) +

∫

X0

A(px) g0(x) dµ(x)

∣∣∣∣

+

∣∣∣∣
∫

X1∪X=

(
A(px)− 1

)
g1(x) dµ(x) +

∫

X0

A(px) g1(x) dµ(x)

∣∣∣∣

=

∣∣∣∣
∫

X
A(px) g0(x) dµ(x) −

∫

X1∪X=

g0(x) dµ(x)

∣∣∣∣

+

∣∣∣∣
∫

X
A(px) g1(x) dµ(x) −

∫

X1∪X=

g1(x) dµ(x)

∣∣∣∣ ,

>

∣∣∣∣∣

∫

X1∪X=

(
g1(x) − g0(x)

)
dµ(x)

︸ ︷︷ ︸
=t∗

−
∫

X1∪X=

A(px)
(
g1(x) − g0(x)

)
dµ(x)

︸ ︷︷ ︸
absolute value equals DP

∣∣∣∣∣ > t∗ − DP .

where all the inequalities follows from the triangle inequality. Eq. (24) entails ε⋆(δτ ) > (1 − τ)t∗,
as claimed.
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To derive an upper bound on ε⋆(δτ ), we consider, for each (qx)x∈X and each x ∈ X ,

p
τ,x = (1− τ) · dirac

(
ΠA(Q)

)
+ τ · dirac

(
ΠA
(
q
x(1)

))

where Q =

∫

X
q
u(1) g0(u) dµ(u) . (26)

Note that for this strategy of the Player, DP 6 τt∗; indeed, A(pτ,x) = (1 − τ) · ΠA(Q) + τ ·
ΠA
(
q
x(1)

)
, so that

DP =

∣∣∣∣∣

∫

X
A(pτ,x) dQ0(x)−

∫

X
A(pτ,x) dQ1(x)

∣∣∣∣∣

= τ ·
∣∣∣∣∣

∫

X
ΠA
(
q
x(1)

)
dQ0(x)−

∫

X
ΠA
(
q
x(1)

)
dQ1(x)

∣∣∣∣∣ 6 τ · TV(Q0,Q1) ,

where we applied Lemma 3 for the final inequality. Moreover, the choice of Eq. (26) ensures that
GC 6 (1 − τ)t∗ + 1/N , as we will prove below. This will lead to ε⋆(δτ ) 6 (1 − τ)t∗ + 1/N and
will conclude the proof. Indeed,

GC =

N∑

k=1

∣∣∣∣
∫

X
p
τ,x(k)

(
a(k) − q

x(1)
)
g0(x) dµ(x)

∣∣∣∣ +
N∑

k=1

∣∣∣∣
∫

X
p
τ,x(k)

(
a(k) − q

x(1)
)
g1(x) dµ(x)

∣∣∣∣

= (1− τ)

∣∣∣∣
∫

X

(
ΠA(Q)− q

x(1)
)
g0(x) dµ(x)

∣∣∣∣ + (1 − τ)

∣∣∣∣
∫

X

(
ΠA(Q)− q

x(1)
)
g1(x) dµ(x)

∣∣∣∣

+ τ

∣∣∣∣
∫

X

(
ΠA
(
q
x(1)

)
− q

x(1)︸ ︷︷ ︸
61/(2N)

)
g0(x) dµ(x)

∣∣∣∣ + τ

∣∣∣∣
∫

X

(
ΠA
(
q
x(1)

)
− q

x(1)︸ ︷︷ ︸
61/(2N)

)
g1(x) dµ(x)

∣∣∣∣ .

Taking into account the rounding errors, i.e., replacing the two occurrences of ΠA(Q) by Q by
adding twice a (1− τ)/(2N) term, we get

GC 6 (1− τ)

∣∣∣∣
∫

X

(
Q− q

x(1)
)
g0(x) dµ(x)

∣∣∣∣ + (1− τ)

∣∣∣∣
∫

X

(
Q− q

x(1)
)
g1(x) dµ(x)

∣∣∣∣ +
1

N

= (1− τ)

∣∣∣∣Q−
∫

X
q
x(1) g0(x) dµ(x)

︸ ︷︷ ︸
=0

∣∣∣∣+ (1− τ)

∣∣∣∣Q−
∫

X
q
x(1) g1(x) dµ(x)

∣∣∣∣ +
1

N

= (1− τ)

∣∣∣∣
∫

X
q
x(1) g0(x) dµ(x) −

∫

X
q
x(1) g1(x) dµ(x)

∣∣∣∣ +
1

N
6 (1 − τ)t∗ + 1/N ,

where the last equality holds by definition of Q as an integral and we applied Lemma 3 for the final
inequality.
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D Proofs for Section 6

In this section, we go over the results alluded at in Section 6. We first illustrate that Assumption 3
(which indicates that the target set C should be estimated in some way) is realistic. We do so in
Section D.1 by dealing with the most involved situation discussed in this article, namely, the example
discussed at the beginning of Section 6. We then provide in Section D.2 a more complete statement
of Theorem 2, with convergence rates, and prove it.

D.1 Assumption 3 is realistic

The beginning of Section 6 explained why and how performing an optimal trade-off between ac-
curacy in group-calibration and unfairness in terms of demographic parity amounts to studying the

(m̃gr-cal, m̃DP)–approachability of C = C̃ε
gr-cal × C̃δ

DP, where (m̃gr-cal, m̃DP) is a known vector payoff

function and where C := C̃ε
gr-cal × C̃δ

DP is unknown:

C̃ε
gr-cal =

{
(v0,v1) ∈ R

2N : ‖v0‖1

γ0
+‖v1‖1

γ1
6 ε
}
, C̃δ

DP =
{
(u, v) ∈ R

2 :
∣∣ u
γ0

− v
γ1

∣∣ 6 δ
}
,

with ε = (1− τ) ·TV(Q0,Q1) and δ = τ ·TV(Q0,Q1) for some known τ ∈ [0, 1] but an unknown
TV(Q0,Q1), and with unknown probabilities γ0, γ1. The parameter τ controls the desired trade-
off between the calibration error and the discrepancy in demographic parity and thus is left as a
parameter of user’s choice.

We recall that the strategy of the Player proceeds in phases: at each time Tr := 2r for r > 1, the

Player updates the estimate Ĉr of C. The focus of this section is to provide a sequence of estimates Ĉr
of C fulfilling Assumption 3. The latter is a key requirement for the existence of an approachability
strategy stated in Theorem 2. We must therefore prove that it is a realistic assumption.

The four requirements of Assumption 3. For the convenience of the reader, we restate the various
requirements of Assumption 3, giving them nicknames, to be able to refer to them easily in the

sequel: for all r > 0, the sets Ĉr

(CC) are convex closed;

(Proj-dist) satisfy ‖v − ProjĈr
(v)‖ 6 B, for all v ∈ m(A,B,X , {0, 1});

(Super-set) satisfy P
(
C ⊂ Ĉr

)
> 1− 1/(2Tr);

(L2-Hausdorff) satisfy max
{
E
[
d(Ĉr, C)2

]
, E
[
d(C, Ĉr)2

]}
6 β2

r .

The constant B < +∞ is independent of r and the sequence (βr)r>0 is summable and non-
increasing. The vector payoff function m above refers to (m̃gr-cal, m̃DP).

(Proj-dist) requires that the distance of a possible vector payoff to sets Ĉr are uniformly controlled.

(Super-set) requires that the Ĉr are, with high probability, super-sets of C. Finally, (L2-Hausdorff)
requires that some L2 criterion of Hausdorff distance between sets is controlled. We will go over
each of these requirements but first deepen our reduction scheme.

In the sequel, and as in the main body of the paper, we focus on the case where γ0 > 0 and γ1 > 0,
i.e., there are two effective values for the sensitive contexts.

But first, a further reduction. Recall that the average vector payoff, described in Section 6, is
equal to

1

T

T∑

t=1

(
m̃gr-cal(at, bt, xt, st), m̃DP(at, bt, xt, st)

)
,

where the first 2N components always lie in the interval [−1, 1], while the last two ones lie in the

interval [0, 1]. Therefore, in the definition of C̃δ
DP, we may restrict our attention to (u, v) ∈ [0, 1]2

and use rather the alternative definition

C̃δ
DP

:=
{
(u, v) ∈ [0, 1]2 :

∣∣ u
γ0

− v
γ1

∣∣ 6 δ
}
=
{
(u, v) ∈ [0, 1]2 : |γ1u− γ0v| 6 γ0γ1δ

}
.
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As for C̃ε
gr-cal, given we are studying a calibration problem, we note that the ε of interest lie in [0, 1]

(with 0 included). Vectors (v0,v1) of C̃ε
gr-cal satisfy in particular that ‖v0‖1 + ‖v1‖1 6 ε, which

shows that C̃ε
gr-cal ⊆ Bℓ1

R2N , where Bℓ1
R2N =

{
v ∈ R

2N : ‖v‖1 6 1
}

is the unit ℓ1 ball in R
2N . There-

fore,

C̃ε
gr-cal =

{
(v0,v1) ∈ Bℓ1

R2N : ‖v0‖1

γ0
+‖v1‖1

γ1
6 ε
}

=
{
(v0,v1) ∈ Bℓ1

R2N : γ1‖v0‖1 + γ0‖v1‖1 6 γ0γ1ε
}
.

Plug-in estimation of C. We consider estimators γ̂0,t, γ̂1,t ∈ [0, 1] of γ0, γ1 and an estimator

M̂t ∈ [0, 1] of TV(Q0,Q1), based on the first t i.i.d. samples from Q, see the end of the section for
examples. We substitute them in the definitions of the target sets. We actually perform a careful such
substitution by considering possibly data-dependent parameters α1(t) ∈ (0, 1] and α2(t) ∈ (0, 1],
to be specified by the analysis, that will provide the needed upper confidence bounds (i.e., super-set

condition). More precisely, we define estimators of C̃ε
gr-cal and C̃δ

DP by

Ĉε
gr-cal(t) =

{
(v0,v1) ∈ Bℓ1

R2N : γ̂1,t‖v0‖1+γ̂0,t‖v1‖1 6 γ̂0,tγ̂1,tε̂t + α1(t) + 4α2(t)
}
,

Ĉδ
DP(t) =

{
(u, v) ∈ [0, 1] :

∣∣γ̂1,tu− γ̂0,tv
∣∣ 6 γ̂0,tγ̂1,tδ̂t + α1(t) + 4α2(t)

}
,

where ε̂t = (1− τ)M̂t and δ̂t = τM̂t. We then set Ĉr := Ĉε
gr-cal(Tr)× Ĉδ

DP(Tr).

Requirements (CC) and (Proj-dist) hold. We observe that both Ĉε
gr-cal(t) and Ĉδ

DP(t) are convex,

closed, and bounded. The boundedness of these sets and the fact that m = (m̃gr-cal, m̃DP) is bounded
as well ensure the (Proj-dist) property.

Choice of α1(Tr) and α2(Tr), part 1. We introduce the following sets, indicating that some
confidence bounds around the introduced estimators hold, of widths smaller than the introduced
parameters α1(Tr) and α2(Tr). These sets need only to be considered at times Tr, where r > 1:

Ωα1,α2

Tr
:=
{∣∣∣M̂Tr

− TV(Q0,Q1)
∣∣∣ 6 α1(Tr) and ∀s ∈ {0, 1}, |γ̂s,Tr

− γs| 6 α2(Tr)
}
.

We assume in the sequel that we could pick all α1(Tr) and α2(Tr) such that for all r > 1,

P
(
Ωα1,α2

Tr

)
> 1− 1

2Tr
, (27)

and explain, in the final part of this section, how this can be ensured.

Requirement (Super-set) holds. It follows from the assumption above on the probability of
Ωα1,α2

Tr
and from the following lemma.

Lemma 4. On the event Ωα1,α2

Tr
defined above, it holds that C̃ε

gr-cal ⊆ Ĉε
gr-cal(Tr) and C̃δ

DP ⊆ Ĉδ
DP(Tr),

thus

C =
(
C̃ε

gr-cal × C̃δ
DP

)
⊆ Ĉr =

(
Ĉε

gr-cal(Tr)× Ĉδ
DP(Tr)

)
.

Proof. For brevity, we drop the dependencies in Tr in the notation.

Part I: C̃ε
gr-cal ⊂ Ĉε

gr-cal. We fix some (v0,v1) ∈ C̃ε
gr-cal. By assumption,

γ1‖v0‖1 + γ0‖v1‖1 6 (1 − τ) γ0γ1 · TV(Q0,Q1) . (28)

Furthermore, since ‖v0‖1 + ‖v1‖1 6 1, it holds on Ωα1,α2 that

γ1‖v0‖1 + γ0‖v1‖1 > γ̂1‖v0‖1 + γ̂0‖v1‖1 − 2α2 ,

γ0γ1 · TV(Q0,Q1) 6 γ̂0γ1 · TV(Q0,Q1) + α2 6 . . . 6 γ̂0γ̂1 · M̂ + α1 + 2α2 .
(29)

Thus, in view of Eq. (28) and the definition of Ĉε
gr-cal, it holds that (v0,v1) ∈ Ĉε

gr-cal.
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Part II: C̃δ
DP ⊂ Ĉδ

DP. We fix some (u, v) ∈ C̃δ
DP. By assumption, u, v ∈ [0, 1] and

|γ1u− γ0v| 6 τ γ0γ1 · TV(Q0,Q1) . (30)

Furthermore, on Ωα1,α2 ,

|γ1u− γ0v| = |γ̂1u− γ̂0v + (γ1 − γ̂1)u− (γ0 − γ̂0)v| > |γ̂1u− γ̂0v| − 2α2 .

In view of Eq. (30) and the second bound of Eq. (29), we conclude that (u, v) ∈ Ĉδ
DP on Ωα1,α2 .

Requirement (L2-Hausdorff) holds. We bound separately the two expectations appearing in (L2-
Hausdorff). As in the proof above, we omit the dependencies in Tr in the notation.

Part I: bound on E
[
d(C, Ĉr)2

]
. By definition of d, given that we are dealing with Euclidean projec-

tions onto a product set and are bounding square Euclidean distances, we have the decomposition:

E

[
d(C, Ĉr)2

]
= E

[
sup
x∈C

d(x, Ĉr)2
]
= E

[
sup

x∈C̃ε
gr-cal

×C̃δ
DP

d(x, Ĉε
gr-cal × Ĉδ

DP)
2

]

= E

[
sup

v∈C̃ε
gr-cal

d(v, Ĉε
gr-cal)

2

]
+ E

[
sup

(u,v)∈C̃δ
DP

d
(
(u, v), Ĉδ

DP

)2
]
.

(31)

We start with the first term in the right-hand side of (31). As Ĉε
gr-cal always contains the null vector

and C̃ε
gr-cal ⊆ Bℓ1

R2N ,

sup
v∈C̃ε

gr-cal

d(v, Ĉε
gr-cal)

2
6 sup

v∈C̃ε
gr-cal

‖v‖2 6 sup
v∈C̃ε

gr-cal

‖v‖1 6 1 . (32)

In addition, Lemma 4 ensures that on Ωα1,α2 we have C̃ε
gr-cal ⊂ Ĉε

gr-cal, and hence d(C̃ε
gr-cal, Ĉε

gr-cal) = 0,
on Ωα1,α2 . Thus, we can write

E


 sup
v∈C̃ε

gr-cal

d(v, Ĉε
gr-cal)

2


 = E


(I{Ωα1,α2}+ (1− I{Ωα1,α2})

)
sup

v∈C̃ε
gr-cal

d(v, Ĉε
gr-cal)

2




6 0 + 1− P(Ωα1,α2) 6
1

2Tr
,

where the inequality comes from the assumption made in Eq. (27) combined with Eq. (32).

A bound 1/Tr on the second term of Eq. (31) follows similarly, using that

sup
(u,v)∈C̃δ

DP

d
(
(u, v), Ĉδ

DP

)2
6 sup

(u,v)∈C̃δ
DP

u2 + v2 6 2 .

Hence, E
[
d(C, Ĉr)2

]
6 3/(2Tr).

Part II: bound on E
[
d(Ĉr, C)2

]
. We start in a similar manner:

E

[
d(Ĉr, C)2

]
= E

[
sup
x∈Ĉr

d(x, C)2
]
= E

[
sup

x∈Ĉε
gr-cal

×Ĉδ
DP

d(x, C̃ε
gr-cal × C̃δ

DP)
2

]

= E

[
sup

v∈Ĉε
gr-cal

d(v, C̃ε
gr-cal)

2

︸ ︷︷ ︸
61 a.s.

]
+ E

[
sup

(u,v)∈Ĉδ
DP

d
(
(u, v), C̃δ

DP

)2

︸ ︷︷ ︸
62 a.s.

]
.

(33)
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As in Part I, we start with the first term in the right-side of (33) and we split the expectation into two
parts

E

[
sup

v∈Ĉε
gr-cal

d(v, C̃ε
gr-cal)

2

]
6 E

[
I{Ωα1,α2} sup

v∈Ĉε
gr-cal

d(v, C̃ε
gr-cal)

2

]
+

1

2Tr
. (34)

Let us upper-bound the right-hand side expectation. We introduce some local short-hand notation.
Given two real numbers a, b, we denote by a ∨ b and a ∧ b the maximum and minimum between a
and b, respectively. We set α := α1 ∨ α2 and now show that

on Ωα1,α2 , sup
v∈Ĉε

gr-cal

d(v, C̃ε
gr-cal)

2
6 α2/3

(
81

(γ0γ1)2
∨ 10

γ0 ∧ γ1

)
. (35)

We fix some v = (v0,v1) ∈ Ĉε
gr-cal and set v′ = (v′

0,v
′
1) := λv with

λ := 1 ∧
((

γ0γ1ε

γ0γ1ε+ 8α

)(
γ̂1
γ1

∧ γ̂0
γ0

))
.

The fact that v ∈ Ĉε
gr-cal entails that on Ωα1,α2 ,

γ̂1‖v0‖1+γ̂0‖v1‖1 6 γ̂0γ̂1ε̂+5α 6
(
(γ0+α)∧1

)(
(γ1+α)∧1)

(
(ε+α)∧1

)
+5α 6 γ0γ1ε+8α .

(36)
Here, and in what follows, we repeatedly use that γ0, γ1, ε and their estimates all lie in [0, 1]. Fur-
thermore, for the above-defined v

′, we can write on Ωα1,α2 , by definition of λ,

γ1‖v′
0‖1 + γ0‖v′

1‖1 6 λ

(
γ1
γ̂1

∨ γ0
γ̂0

)
(γ̂1‖v0‖1 + γ̂0‖v1‖1)︸ ︷︷ ︸

6γ0γ1ε+8α

6 γ0γ1ε ,

implying that v′ ∈ C̃ε
gr-cal. Thus, d(v, C̃ε

gr-cal) 6 ‖v − v
′‖ = (1− λ)‖v‖ on Ωα1,α2 . Since ‖v‖1 6 1,

we have ‖v‖ 6
√
‖v‖1 6 1. All in all, we obtained the following upper bound on Ωα1,α2 :

d(v, C̃ε
gr-cal)

2
6 ‖v − v

′‖2 6 (1 − λ)2 ∧ ‖v‖1 .
We now bound separately each term to obtain the bound (35). First, on Ωα1,α2 , we have

1 > λ >

(
γ0γ1ε

γ0γ1ε+ 8α

)(
γ1 − α

γ1
∧ γ0 − α

γ0

)

>
γ0γ1ε− αε(γ0 ∨ γ1)

γ0γ1ε+ 8α
> 1− 9α

γ0γ1ε+ 8α
> 1− 9α

γ0γ1ε
,

and thus,

(1− λ)2 6
81α2

(γ0γ1ε)2
.

Second, for ‖v‖1, we start from (36) and write
(
γ1 ∧ γ0 − α

)
‖v‖1 6

(
γ̂1 ∧ γ̂0

)
‖v‖1 6 γ̂1‖v0‖1+γ̂0‖v1‖1 6 γ0γ1ε+ 8α ,

from which we get (γ1 ∧ γ0)‖v‖1 6 γ0γ1ε+ 9α, which in turn yields

‖v‖1 6 ε+
9α

γ0 ∧ γ1
.

The bound (1 − λ)2 is convenient to use when ε > α2/3, while the bound on ‖v‖1 will be used

when ε 6 α2/3. When combining them by distinguishing these two cases, the ∧ symbol needs to be
replaced by a ∨ symbol, so, on Ωα1,α2

d(v, C̃ε
gr-cal)

2
6 (1 − λ)2 ∧ ‖v‖1 6

81α2

(γ0γ1ε)2
∧
(
ε+

9α

γ0 ∧ γ1

)

6
81α2/3

(γ0γ1)2
∨
(
α2/3 +

9α

γ0 ∧ γ1

)
,
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which entails the claimed bound (35), via α 6 α2/3 6 1. From (34) and (35), we get

E

[
sup

v∈Ĉε
gr-cal

d(v, C̃ε
gr-cal)

2

]
6

1

2Tr
+ Cgr-cal

γ0,γ1
E[α2/3] ,

for some constant Cgr-cal
γ0,γ1 only depending on γ0 and γ1.

The second term of the decomposition (33) of E
[
d(Ĉr, C)2

]
can be handled similarly, leading to the

existence of a constant Cγ0,γ1 , only depending on γ0 and γ1, such that

E

[
d(Ĉr, C)2

]
6

3

2Tr
+ Cγ0,γ1E[α

2/3] ,

where the expectation in the right-hand side is due to the fact that α1, α2 might be data-dependent.

Combining Part I and Part II. The bound of Part II contains an additional term compared to the one

of Part I. We have thus have proved so far (writing again the dependencies on Tr):

max
{
E
[
d(Ĉr, C)2

]
, E
[
d(C, Ĉr)2

]}
6

3

2Tr
+ Cγ0,γ1E[α(Tr)

2/3] . (37)

To get the desired property (L2-Hausdorff), we only need to make sure that the right hand side of
(37) can be upper bounded by β2

r where (βr) is non-increasing and summable. Recall that our proof
also relied on the assumption (27). We now illustrate that indeed, α1(Tr) 6 1 and α2(Tr) 6 1 may
be set in a way such that all these facts hold. For the sake of simplicity, we provide the illustration
for the case of finite set X .

Choice of α1(Tr) and α2(Tr), part 2: illustration for finite sets X . Based on the T –sample
(xt, st)16t6T with distribution Q, we denote by

Ns,T =

T∑

t=1

I{st = s}

the number of occurrences of the value s ∈ {0, 1} of the sensitive context, and consider the empirical
frequencies γ̂0,T = N0,T/T and γ̂1,T = N1,T /T to estimate the frequencies γ0 and γ1 of the
sensitive contexts.

The choice of M̂T , and hence, the one of α1(T ), depend heavily on the possibly additional assump-
tions on the marginal distributions Q0 and Q1. We illustrate such a choice for the case where X is a

finite set. In that case, we may consider the empirical distributions Q̂0
T and Q̂1

T for these marginals:

for each s ∈ {0, 1}, Q̂s
T is some arbitrary distribution over X (say, the uniform distribution) when

Ns,T = 0, and otherwise, for each x ∈ X ,

Q̂s
T (x) =

1

Ns,T

T∑

t=1

I{xt = x, st = s} .

Then, we consider the plug-in estimate M̂T := TV(Q̂0
T , Q̂

1
T ) of TV(Q0,Q1).

Proof of (27), part I. We set

α2(T ) = 1 ∧
√

log(8T )

2T
and note that by Hoeffding’s inequality (and the fact that we only have two classes and that proba-
bilities sum up to 1), for those T for which α2(T ) < 1,

P

(
∀s ∈ {0, 1}, |γ̂s,T − γs| > α2(T )

)
= P

(
|γ̂0,T − γ0| > α2(T )

)

6 2 exp
(
−2T α2(T )

2
)
=

1

4T
. (38)

For T such that α2(T ) = 1, the probability above is null, as |γ̂s,T − γs| 6 1 a.s., and therefore, the
final 1/(4T ) bound holds in particular.
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Proof of (27), part II. We set θ(0) = 1 and θ(n) :=

√
|X |+ log(8T )

2n
for n > 1, and define

α1(T ) := 1 ∧
(
θ(N0,T ) + θ(N1,T )

)
.

We now prove that

P

(∣∣M̂T − TV(Q0,Q1)
∣∣ > α1(T )

)
6

1

4T
. (39)

The property (27) then follows from the bounds (38) and (39) at T = Tr.

Using that |M̂T − TV(Q0,Q1)| 6 1 a.s. (for the first inequality in the display below) and the
triangle inequality ∣∣M̂T − TV(Q0,Q1)

∣∣ 6 TV(Q0, Q̂0
T ) + TV(Q1, Q̂1

T )

(for the second inequality in the display below), we have

P

(∣∣M̂T − TV(Q0,Q1)
∣∣ > α1(T )

)
= P

(∣∣M̂T − TV(Q0,Q1)
∣∣ > θ(N0,T ) + θ(N1,T )

)

6 P

(
TV(Q0, Q̂0

T ) + TV(Q1, Q̂1
T ) > θ(N0,T ) + θ(N1,T )

)

6
∑

s∈{0,1}
P

(
TV(Qs, Q̂s

T ) > θ(Ns,T )
)
.

(40)
The conclusion (39) follows from showing that for each s ∈ {0, 1},

P

(
TV(Qs, Q̂s

T ) > θ(Ns,T )
)
6

1

8T
.

A useful auxiliary result to that end is the following. Denote by P̂n the empirical frequencies of
some probability distribution P on X based on a sample of deterministic size n > 1. Hoeffding’s

inequality and a union bound over the 6 2|X | subsets of X ensure that for all θ > 0,

P
(
TV(P, P̂n) > θ

)
= P

(
max
A⊂X

(
P(A)− P̂n(A)

)
> θ
)
6 2|X | exp(−2nθ2) . (41)

In our case, note however that the estimators Q̂s
T at time T are built on a random number Ns,T of

samples. We therefore decompose the probability of interest according to the values of Ns,T : for
each s ∈ {0, 1},

P

(
TV(Qs, Q̂s

T ) > θ(Ns,T )
)
=

T∑

n=0

P

(
Ns,T = n and TV(Qs, Q̂s

T ) > θ(n)
)

=

T∑

n=1

P

(
Ns,T = n and TV(Qs, Q̂s

T ) > θ(n)
)

=

T∑

n=1

P(Ns,T = n) P
(
TV(Qs, Q̂s,n) > θ(n)

)
,

where the second equality follows from the choice θ(0) = 1 and the fact that a total variation is

always smaller than 1, and where the third equality follows by conditional independence with Q̂s,n

denoting the empirical distribution based on a Qs–sample of size n. Substituting the bound (41) and
the definition of the θ(n), we get

P

(
TV(Qs, Q̂s

T ) > θ(Ns,T )
)
6 2|X |

T∑

n=1

P(Ns,T = n) exp
(
−2nθ(n)2

)

= 2|X |
T∑

n=1

P(Ns,T = n) exp
(
−|X | − log(8T )

)

6 (2/e)|X |
︸ ︷︷ ︸

61

1

8T

T∑

n=1

P(Ns,T = n)

︸ ︷︷ ︸
61

6
1

8T
,
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which is exactly what remained to be proven.

Control of the right-hand side of (37). It involves E
[
α(Tr)

2/3
]
, where

α(Tr) = α1(Tr) ∨ α2(Tr) = α1(Tr) = 1 ∧
(√

|X |+ log(8T )

2N0,T
+

√
|X |+ log(8T )

2N1,T

)

6
∑

s∈{0,1}
1 ∧

√
|X |+ log(8T )

2Ns,T
.

Now, note that Ns,T follows the binomial distribution with parameters γs and T . Thus, for each
s ∈ {0, 1},

E

[( |X |+ log(8T )

2Ns,T

)1/3
∧ 1

]
6 P(Ns,T 6 Tγs/2) +

( |X |+ log(8T )

γsT

)1/3

6 exp
(
−γ2sT/2

)
+

( |X |+ log(8T )

γsT

)1/3
,

where we applied Hoeffding’s inequality to get the last bound. Therefore, recalling that Tr = 2r,
the bound of Eq. (37) may be further bounded as: for all r > 2,

3

2Tr
+ Cγ0,γ1E

[
α(Tr)

2/3
]
6 C′

γ0,γ1

( r
2r

)1/3
=: β2

r ,

for some constant C′
γ0,γ1

depending only on γ0 and γ1. We observe that βr =
√
C′

γ0,γ1
(r 2−r)1/6

is non-increasing for r > 2 and summable, as required.

We emphasize that, while exact values of α1(Tr) and α2(Tr) are needed for the construction of the

set-estimate Ĉr, the knowledge of βr is not required by the algorithm (its choice is required for the
sake of the theoretical analysis only).

D.2 Proof of Theorem 2

We actually prove a more complete and more precise version of Theorem 2.

Theorem 3 (contains Theorem 2). Under Assumption 3 and the assumptions of Theorem 1, a convex
closed set C, unknown to the Player, is m–approachable if and only if Blackwell’s condition in
Eq. (2) is satisfied. In this case, the strategy of Eq. (7) is an approachability strategy. It achieves the
following rates for L2 convergence: for all r > 1 and all t ∈ [Tr, Tr+1 − 1],

√
E[d2t ] 6

√
6B2 + 8B‖m‖∞,2

(
√
2− 1)

√
t

+
4‖m‖∞,2

t

t−1∑

t′=1

√
E[TV2(Q, Q̂t′)] +

4

t

r∑

r′=0

Tr′βr′ .

It also achieves the following rates for almost-sure convergence: for all r > 1,

P

(
sup
t>Tr

dt > 2ε

)
6

Ξr

ε2
+

1

ε2

∑

r′>r

β2
r′ ,

where Ξr is defined in Eq. (60), page 36, and converges to 0.

Comments after Assumption 1 explain why the middle term in theL2 bound vanishes. Assumption 3
indicates that the series (βr)r>1 is summable, hence the following sequence of Cesaro averages built
on it also vanishes:

βr :=
1

Tr+1

r∑

r′=0

Tr′βr′ → 0 . (42)

Finally, the series (β2
r )r>1 is also summable, hence its associated sequence of remainder sums also

vanishes: ∑

r′>r

β2
r′ → 0 .

We now move to the proof. We simply note at this stage that the condition ‖v − ProjĈr
(v)‖ 6 B

for all v ∈ m(A,B,X , {0, 1}) of Assumption 3 also holds, by convexity, for all v in the convex
hull of m(A,B,X , {0, 1}).
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Proof. The proof is required only for the sufficiency, since the necessity was proven in Theorem 1.

Recall that, from the perspective of the Player, the game proceeds in phases lasting from Tr := 2r

to Tr+1 − 1 := 2r+1 − 1. For each time t ∈ [Tr, Tr+1 − 1], the Player uses Ĉr as an estimate of the

true target set C, and updates to Ĉr+1 only at t = Tr+1. The initial stage of the proof is split into two
parts: first, we closely follow the proof of Theorem 1 and analyze the game for t ∈ [Tr, Tr+1 − 1];

then, we handle the case of transition from Ĉr to Ĉr+1.

We introduce the following short-hand notation:

d̂t := ‖mt − ĉt‖ and Ωr =
{
C ⊂ Ĉr

}
.

Note that unlike the quantity of interest dt = ‖mt − ct‖, which is equal to the distance from the

average payoff mt along the trajectory to the true target set ct, the distance d̂t is with respect to the

currently used estimate Ĉr. The key insight of the proof is hidden in the fact that, if Ωr occurs, then

the approachability condition, which is met by C, is also met by the super-set estimate Ĉr.

Convergence in L2. Let us start with the following observation, which relates dt to d̂t, based on
Assumption 3. We have for t ∈ [Tr, Tr+1 − 1],

dt = ‖mt − ProjC mt‖ 6 ‖mt − ProjC ProjĈr
mt‖

6 ‖mt − ProjĈr
mt‖+ ‖ProjĈr

mt − ProjC ProjĈr
mt‖

6 d̂t + d(Ĉr, C). (43)

Hence, according to the fourth item of Assumption 3 and the L2-triangular inequality, we have

√
E[d2t ] 6

√
E[d̂2t ] + βr . (44)

Since βr → 0 according to Assumption 3, the latter implies that, if E[d̂2t ] → 0, then E[d2t ] → 0.

As already mentioned, to prove the L2-convergence, we consider two cases. In the first case, we
study the evolution of the game withing one phase, that is for t ∈ [Tt, Tr+1 − 2] – the case where

we project onto Ĉr. The second case is when t = Tr+1 − 1, that is, when in the next round we are

going to update the estimate Ĉr.

Case Tr 6 t 6 Tr+1 − 2: Defining

Zt+1 :=

〈
mt − ĉt,mt+1 −

∫

X×S
m
(
p
x
t+1, q

G(x,s)
t+1 , x, s

)
dQ(x, s)

〉
, (45)

and Bt :=

〈
mt − ĉt,

∫

X×S
m

(
p
x
t+1, q

G(x,s)
t+1 , x, s

)
dQ(x, s)− ĉt

〉
, (46)

we can write

d̂2t+1 6 ‖mt+1 − ĉt‖

6
t2

(t+ 1)2
d̂2t +

1

(t+ 1)2
‖mt+1 − ĉt‖2 +

2t

(t+ 1)2
(Zt+1 +Bt) . (47)

As in the proof of Theorem 1, the main non-standard analysis is connected with the treatment of Bt.
Observe that thanks to Assumption 3, we always have |Bt| 6 B(B + 2‖m‖∞,2), hence

Bt 6 BtI{Ωr}+B(B + 2‖m‖∞,2)I{Ωc
r} . (48)

Furthermore, similarly as for Eq. (14), we have on Ωr

Bt 6 4‖m‖∞,2 d̂t · TV(Q, Q̂t)

+ min
(px)x∈X

max
(qG(x,s))(x,s)∈X×S

〈
mt − ĉt,

∫

X×S
m

(
p
x, qG(x,s), x, s

)
dQ(x, s)− ĉt

〉
. (49)
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Since, by definition of Ωr, we have the inclusion C ⊂ Ĉr on Ωr, Blackwell’s condition (2) implies
that, on Ωr,

∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X s.t.

∫

X×S
m
(
p
x, qG(x,s), x, s

)
dQ(x, s) ∈ C ⊂ Ĉr .

The first item of Assumption 3 requires Ĉr to be closed convex almost surely. Hence, using the
property of Euclidean projection onto a convex closed set, in conjunction with von Neumann’s
minmax theorem, we conclude that, on Ωr, it holds that

min
(px)x∈X

max
(qG(x,s))(x,s)∈X×S

〈
mt − ĉt,

∫

X×S
m
(
p
x, qG(x,s), x, s

)
dQ(x, s)− ĉt

〉
6 0 .

The above inequality, combined with Eqs. (47)–(49), yields

d̂2t+1 6
t2

(t+ 1)2
d̂2t +

1

(t+ 1)2
‖mt+1 − ĉt‖2

+
2t

(t+ 1)2

(
Zt+1 + 4‖m‖∞,2 d̂t · TV(Q, Q̂t)I{Ωr}+B(B + 2‖m‖∞,2)I{Ωc

r}
)
.

(50)
Since (Zt)t>1 is martingale difference (by the same arguments as for the proof of Theorem 1), taking
expectations from both sides of the above inequality, in conjunction with the condition on P(Ωr) of
Assumption 3 and the Cauchy-Schwartz inequality, yields

E[d̂2t+1] 6
t2

(t+ 1)2
E[d̂2t ] +

B2

(t+ 1)2

+
2t

(t+ 1)2

(
4‖m‖∞,2

√
E[d̂2t ] ·

√
E[TV2(Q, Q̂t)] +

B(B + 2‖m‖∞,2)

2Tr

)
.

We deduce from the above that, for all t ∈ [Tr, Tr+1 − 2], since t/(2Tr) 6 1,

E[d̂2t+1] 6
t2

(t+ 1)2
E[d̂2t ] +

3B2 + 4B‖m‖∞,2

(t+ 1)2

+
2t

(t+ 1)2

(
4‖m‖∞,2

√
E[d̂2t ] ·

√
E[TV2(Q, Q̂t)]

)
. (51)

Applying Lemma 1 with t∗ = Tr,K = 3B2+4B‖m‖∞,2, and δt = 4‖m‖∞,2 ·
√
E[TV2(Q, Q̂t)],

we obtain that, for all t ∈ [Tr, Tr+1 − 1],
√
E[d̂2t ] 6

√
(3B2 + 4B‖m‖∞,2)(t− Tr)

t
+

4

t

t−1∑

t′=Tr

‖m‖∞,2 ·
√
E[TV2(Q, Q̂t′)]

+
Tr
t

√
E[d̂2Tr

] .

(52)

Case t = Tr+1− 1: In this case, when passing from t to t+1, the Player updates the estimate of the
target set C, which incurs additional price. In particular, the established recursion in Eq (52) does

not hold, since by definition d̂Tr+1 = ‖mTr+1 − ĉTr+1‖, where ĉTr+1 is the projection onto Ĉr+1.
However, note that the argument of the first case still holds if we fix the set onto which we project.

More formally, the inequality (51) still holds at t = Tr+1 − 1, if we replace d̂Tr+1 in the left-hand
side by

d̃Tr+1
:= ‖mTr+1 − ProjĈr

(mTr+1)‖ .

Hence
√
E[d̃2Tr+1

] is smaller than the right-hand side of Eq. (52) with t = Tr+1. Applying the same

argument as in (43), and applying Minkowski’s inequality, we get√
E[d̂2Tr+1

] =
√
E
[
‖mTr+1 − ProjĈr+1

(mTr+1)‖2
]

6

√
E
[
‖mTr+1 − ProjĈr

(mTr+1)‖2
]
+

√
E
[
d(Ĉr, Ĉr+1)2

]

=
√
E[d̃2Tr+1

] +

√
E
[
d(Ĉr, Ĉr+1)2

]
.
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Recalling that the bound in Eq. (52) holds for
√
E[d̃2Tr+1

], and using the above derived relation, we

get for all r > 0

√
E[d̂2Tr+1

] 6

√
(3B2 + 4B‖m‖∞,2)(Tr+1 − Tr)

Tr+1
+

4

Tr+1

Tr+1−1∑

t′=Tr

‖m‖∞,2 ·
√
E[TV2(Q, Q̂t′)]

+
Tr
Tr+1

√
E[d̂2Tr

] +

√
E
[
d(Ĉr, Ĉr+1)2

]
.

(53)
Multiplying Eq. (53) by Tr+1 on both sides and rearranging, we deduce that for all r > 0(

Tr+1

√
E[d̂2Tr+1

]− Tr

√
E[d̂2Tr

]

)
6

√
(3B2 + 4B‖m‖∞,2)(Tr+1 − Tr)

+ 4

Tr+1−1∑

t′=Tr

‖m‖∞,2 ·
√
E[TV2(Q, Q̂t′)]

+ Tr+1

√
E
[
d(Ĉr, Ĉr+1)2

]
.

Summing up the above inequalities over r > 0, and using the fact that, by Assumption 3, d̂1 6 B,
we obtain, with the convention T−1 = 0,
√
E[d̂2Tr

] 6
√
3B2 + 4B‖m‖∞,2

1

Tr

r∑

r′=0

√
Tr′ − Tr′−1

+ 4‖m‖∞,2
1

Tr

Tr−1∑

t′=1

√
E[TV2(Q, Q̂t′)] +

1

Tr

r∑

r′=1

Tr′
√
E
[
d(Ĉr′−1, Ĉr′)2

]
.

(54)

To conclude the convergence in L2, we observe that d(Ĉr′−1, Ĉr′) 6 d(Ĉr′−1, C) + d(C, Ĉr′) and
hence, the triangle inequality for L2-norms and Assumption 3 yield√

E
[
d(Ĉr′−1, Ĉr′)2

]
6

√
E
[
d(Ĉr′−1, C)2

]
+

√
E
[
d(C, Ĉr′)2

]
6 βr′−1 + βr′ 6 2βr′−1. (55)

Substituting the above bound in Eq. (54) (and reindexing, using that Tr′ = 2Tr′−1), we get for all
r > 1
√
E[d̂2Tr

] 6

√
3B2 + 4B‖m‖∞,2

Tr

r∑

r′=0

√
Tr′ − Tr′−1 + 4‖m‖∞,2

1

Tr

Tr−1∑

t′=1

√
E[TV2(Q, Q̂t′)]

+
4

Tr

r−1∑

r′=0

Tr′βr′

6

√
3B2 + 4B‖m‖∞,2

(
√
2− 1)

√
Tr

+ 4‖m‖∞,2
1

Tr

Tr−1∑

t′=1

√
E[TV2(Q, Q̂t′)] +

4

Tr

r−1∑

r′=0

Tr′βr′ .

(56)
The (

√
2 − 1)

√
Tr factor in the denominator of the first term of the final bound was obtained as

follows:
r∑

r′=0

√
Tr′ − Tr′−1 = 1 +

r∑

r′=1

√
2r′−1 = 1 +

√
2r − 1√
2− 1

6

√
2r√

2− 1
=

√
Tr√

2− 1
.

Combining the first inequality of the two inequalities of Eqs. (56) with Eq. (52), we get for all r > 1
and t ∈ [Tr, Tr+1 − 1],
√
E[d̂2t ] 6

√
3B2 + 4B‖m‖∞,2

t

(
√
t− Tr +

r∑

r′=0

√
Tr′ − Tr′−1

)

+
4‖m‖∞,2

t

t−1∑

t′=1

√
E[TV2(Q, Q̂t′)] +

4

t

r−1∑

r′=0

Tr′βr′

6

√
6B2 + 8B‖m‖∞,2

(
√
2− 1)

√
t

+
4‖m‖∞,2

t

t−1∑

t′=1

√
E[TV2(Q, Q̂t′)] +

4

t

r−1∑

r′=0

Tr′βr′ ,

(57)
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where the last inequality follows from

√
t− Tr +

r∑

r′=0

√
Tr′ − Tr′−1 6

r+1∑

r′=0

√
Tr′ − Tr′−1 6

√
Tr+1√
2− 1

=

√
2Tr√
2− 1

.

Combining inequality (57) with (44), i.e., adding βr to the bound above, and using Tr/t 6 1, we
conclude the stated bound for the L2 convergence.

Almost-sure convergence. We observe that, according to (43), by union bounds, Markov’s in-
equality, and the third item of Assumption 3, we have

P

[
sup
t>Tr

dt > 2ε

]
6 P

[
sup
t>Tr

d̂t > ε

]
+ P

[
sup
r′>r

d(Ĉr′ , C) > ε

]

6 P

[
sup
t>Tr

d̂t > ε

]
+

1

ε2

∑

r′>r

β2
r′ .

In what follows, we bound P

[
supt>Tr

d̂t > ε
]

by Ξr/ε
2, where Ξr is defined in Eq. (60).

As in Theorem 1, we introduce a super-martingale St bounding d̂2t and whose expectation vanishes;
however, the analysis is more involved here due to additional difficulties connected to handling the
switches between regimes. More precisely, let us define, for t ∈ [Tr, Tr − 1],

Vt =
B2

(t+ 1)2
+

2t

(t+ 1)2

(
4‖m‖∞,2 d̂t · TV(Q, Q̂t) +B(B + 2‖m‖∞,2) I{Ωc

r}
)

+ 2B d(Ĉr , Ĉr+1) I{t = Tr+1 − 1} .
Using the above defined Vt, we additionally introduce the process

ST = d̂2T +
∑

t>T

E[Vt|HT ] . (58)

We observe that, by Assumption 3 and the triangle inequality,

d̂2Tr+1
− d̃2Tr+1

=
(
d̂Tr+1 − d̃Tr+1

)(
62B︷ ︸︸ ︷

d̂Tr+1 + d̃Tr+1

)

6 2B
(∥∥mTr+1 − ProjĈr+1

(mTr+1)‖ − ‖mTr+1 − ProjĈr
(mTr+1)

∥∥
)

6 2B
(∥∥mTr+1 − ProjĈr+1

(ProjĈr
(mTr+1))‖ − ‖mTr+1 − ProjĈr

(mTr+1)
∥∥
)

6 2B
∥∥ProjĈr

(mTr+1)− ProjĈr+1
(ProjĈr

(mTr+1))
∥∥

6 2B · d(Ĉr , Ĉr+1) .

Thus, in view of Eq. (50), and recalling that the right-hand side of Eq. (50) bounds rather d̃Tr+1 at
t = Tr+1 − 1, the following recursive relation holds for any t ∈ [Tr, Tr+1 − 1]:

d̂2t+1 6 d̂2t + Vt +
2t

(t+ 1)2
Zt+1.

Recalling that E[Zt+1|Ht] = 0, we deduce

E[ST+1|HT ] = E[d̂2T+1|HT ] +
∑

t>T+1

E[Vt|HT ] 6 d̂2T +
∑

t>T

E[Vt|HT ] = ST ,

which means that (ST )T>1 is a super-martingale.

Since, by definition of ST , it holds that d̂2T 6 ST , Doob’s maximal inequality for non-negative
super-martingales (Lemma 2) gives

P

(
sup
t>Tr

d̂t > ε

)
6 P

(
sup
t>Tr

St > ε2
)

6
E[STr

]

ε2
.
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It only remains to bound E[STr
] by Ξr.

Note that by the Cauchy-Schwarz inequality and the bound of Eq. (55),

E
[
d(Ĉr′ , Ĉr′+1)

]
6

√
E
[
d(Ĉr′ , Ĉr′+1)2

]
6 2βr′ .

Thanks to this inequality, to tP(Ωc
r) 6 t/(2Tr) 6 1 for t ∈ [Tr, Tr+1− 1], and other manipulations

that are standard by now, the expectation of the sum appearing in the definition (58) of the super-
martingale ST can be bounded as

∑

t>Tr

E [Vt] 6
∑

t>Tr

3B2 + 4B‖m‖∞,2

(t+ 1)2
+
∑

t>Tr

8t‖m‖∞,2

(t+ 1)2

√
E[d̂2t ]

√
E[TV2(Q, Q̂t)]

+ 2B
∑

r′>r

E
[
d(Ĉr′ , Ĉr′+1)

]

6
3B2 + 4B‖m‖∞,2

Tr
+ 4B

∑

r′>r

βr′ +
∑

t>Tr

8‖m‖∞,2

t

√
E[d̂2t ]

√
E[TV2(Q, Q̂t)].

(59)
To bound the right hand side of the above inequality, we observe that for t > Tr, by Eq. (57), we
have

√
E[d̂2t ] 6

√
6B2 + 8B‖m‖∞,2

(
√
2− 1)

√
t

+ 4‖m‖∞,2

=:∆
∗

Tr︷ ︸︸ ︷

max
t>Tr

1

t

t−1∑

t′=1

√
E[TV2(Q, Q̂t′)]

+ 4max
r′′>r

1

Tr′′

r′′−1∑

r′=0

Tr′βr′

︸ ︷︷ ︸
=:β∗

r

.

Substituting the above bound into Eq. (59), using
∑

t>Tr
t−3/2 6 2/

√
Tr − 1 and TV(Q, Q̂t′) 6 1,

we obtain

∑

t>Tr

E [Vt] 6
3B2 + 4B‖m‖∞,2

Tr
+ 16‖m‖∞,2

√
6B2 + 8B‖m‖∞,2

(
√
2− 1)

√
Tr − 1

+ 4B
∑

r′>r

βr′

+ 32‖m‖∞,2

(
‖m‖∞,2∆

∗
Tr

+ β∗
r

) ∑

t>Tr

1

t

√
E[TV2(Q, Q̂t′)] .

Finally, we take into account the definition of the super martingale ST in Eq. (58) and the upper
bound of Eq. (56), which we square, using that (x + y + z)2 6 2x2 + 2(y + z)2. Doing so, and
performing some crude boundings for the sake of readability, we get the final bound E[STr

] 6 Ξr,
where

Ξr := (1 + 2(
√
2− 1)−2)

3B2 + 4B‖m‖∞,2

Tr
+ 16‖m‖∞,2

√
6B2 + 8B‖m‖∞,2

(
√
2− 1)

√
Tr − 1

+ 4B
∑

r′>r

βr′

+ 32
(
‖m‖∞,2∆

∗
Tr

+ β∗
r

)

‖m‖∞,2∆

∗
Tr

+ β∗
r + ‖m‖∞,2

∑

t>Tr

1

t

√
E[TV2(Q, Q̂t′)]


 .

(60)
As indicated in Eq. (42), the Cesaro averages βr, which are positive, tend to 0; therefore, we also

have β∗
r → 0. For similar reasons, and as already noted for Theorem 1, the term ∆

∗
Tr

also vanishes
under Assumption 1. The latter also implies that the final term in Eq. (60) vanishes. Other terms
clearly vanish or were already discussed for the L2-convergence. All in all, Ξr → 0, as claimed.
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