
HAL Id: hal-03268260
https://hal.science/hal-03268260v1

Submitted on 23 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stripped halfedge data structure for parallel
computation of arrangements of segments
Guillaume Damiand, David Coeurjolly, Pierre Bourquat

To cite this version:
Guillaume Damiand, David Coeurjolly, Pierre Bourquat. Stripped halfedge data structure for par-
allel computation of arrangements of segments. The Visual Computer, 2021, 37 (9), pp.2461-2472.
�10.1007/s00371-021-02185-4�. �hal-03268260�

https://hal.science/hal-03268260v1
https://hal.archives-ouvertes.fr

CGI2021 manuscript No.
(will be inserted by the editor)

Stripped halfedge data structure for parallel computation of
arrangements of segments

Guillaume Damiand · David Coeurjolly · Pierre Bourquat

Abstract Computing an arrangement of segments with

some geometrical and topological guarantees is a crit-

ical step in many geometry processing applications. In

this paper, we propose a method to efficiently com-

pute arrangements of segments using a strip based data

structure. Thanks to this new data structure, the ar-

rangement computation algorithm can easily be paral-

lelized as the per strip computations are independent.

Another interest of our approach is that we can pro-

pose an out-of-core and streamed construction for large

datasets, while keeping a low memory footprint. We

prove the correctness of our structure and provide a

complete comparative evaluation with respect to state-

of-the-art demonstrating the interest of our construc-

tion for the computation of an exact arrangement.

Keywords Arrangement of segments · Parallel

algorithm · Out-of-core construction · Halfedge data

structure

1 Introduction

Given a set of segments in the plane, the arrangement

of these segments is a combinatorial structure that de-

scribes all vertices, edges and faces induced by the seg-

ments. It thus encodes all the topological information

defined by the segments while providing operators to

navigate through the planar partition. Computing such

planar data structure is a classical problem in computa-

tional geometry with applications in many areas such as

computer graphics (e.g. Boolean set operations between

two objects in the plane, object clipping, shape offset,

Université de Lyon, UCBL, INSALyon, CNRS, LIRIS,
UMR5205, F-69622, Lyon, France
Corresponding author: Guillaume Damiand E-mail: guil-
laume.damiand@liris.cnrs.fr

swept volumes. . .), robotics (e.g. the translational mo-

tion planning of a robot in a room cluttered with ob-

stacles, fabrication (e.g. slicing 3d models for additive

layering), or Geographic Information Systems (e.g. pla-

nar map representation of countries). The computation

of combinatorial arrangements of geometrical objects

have been intensively studied for several decades with

books [21,1,18] or book chapters entirely dedicated to

arrangements and their applications [17,11,10,8].

In this work, we focus on the specific case of the

computation of the arrangement of straight line seg-

ments in the plane. Computing such an arrangement

requires to be able to efficiently compute pairwise in-

tersections between such segments, to numerically rep-

resent such intersections with exact arithmetic, and to

build a combinatorial data structure to encode the ad-

jacency relationships and topological information of the

planar structure. Challenges in this context consist in

certifying the computation (both geometrically and topo-

logically), and to be able to handle large datasets that

is required in Geographical Information Systems (GIS)

applications for instance.

Related Works.

To compute an arrangement, we are facing an algorith-

mic problem to efficiently perform intersections of pairs

of segments, an arithmetic issue to reliably decide if two

segments intersect and compute the intersections, and

finally we need a planar map data structure to represent

the topology of the arrangement.

Line segments arrangements. First we need to effi-

ciently compute intersections between segments. A naive

algorithm would consider each pair of segments inter-

sects and check their intersection. This would lead to

2 Guillaume Damiand et al.

a quadratic complexity that does not scale up for large

datasets. Several improvements have been proposed.

The method given in [7] is often considered as the state-

of-the art with a computational cost in O((n+k) log n),

where n is the number of segments, and k is the total

number of intersection points. The main idea of [7] is to

sweep a line through the segments, from left to right,

keeping updated a list of active segments (i.e. segments

that intersect the line). Thanks to this principle, inter-

sections are only tested between consecutive segments

in the sweep line. One drawback of this method is to

require to process all segments in a total order, prevent-

ing from computing the arrangement in parallel. Some

other works have better theoretical complexity [14,5]

but the algorithms are more complex to implement.

Parallel segment intersections. Using the above-

mentioned plane sweep approach on a strip-based de-

composition of the domain, [27] and [26] proposed a par-

allel method to compute all intersections between a set

of segments. In our context, these techniques suffer from

critical drawbacks. First, the output is not the com-

plete line segment arrangements, but just the segment-

segment intersections. Furthermore, the geometry com-

putations are achieved with floating point arithmetic,

leading to numerical errors and inconsistency in the re-

ported intersections. Lastly, strip positions cannot con-

tain a vertex of the planar arrangement.

Parallel arrangements. To achieve best performances

on multicore systems, or to handle large datasets in an

out-of-core setting, parallel design of arrangement al-

gorithms has been a challenging task in computational

geometry [2]. More precisely, plane sweeping techniques

[4,20], or arrangement computation algorithms [19,3]

have gained some theoretical attention on very specific

parallel models (e.g. massively parallel schemes). How-

ever, these theoretical algorithms do not apply for more

real case scenarios, or on recent multicore models.

Robust computations. To decide whether two seg-

ments intersect or not, we need a robust predicate in or-

der to avoid numerical errors coming from floating point

calculations that would imply inconsistent information

between the topological representation and the geomet-

rical one (leading to errors, infinite loops or crashes

when implementing geometrical algorithms) [24]. One

solution is to use robust predicates (for example [31]).

But a question remains: how to compute and store the

intersection points in order to represent the arrange-

ment? One solution would be to use a snap rounding

technique [23] to produce a valid planar map partition

with floating point coordinates. But the obtained rep-

resentation is only a simplified representation of the ar-

rangement at a certain level of precision, and does not

correspond to the exact result. To represent the exact

result of the arrangement without numerical errors, we

need an exact representation of the geometrical objects.

Planar map representation. Beside resolving nu-

merical intersection issues between segments, we need

a data structure to describe the planar partition it-

self. This data structure should allow insertions of new

segments, and modifications of existing segments when

they are split. In the literature, many data structures

have been proposed to represent such planar partitions:

Winged edges [6], Halfedge data structure [34], Com-

binatorial Maps [25], Corner Table [30], Doubly Con-

nected Edge List [28], Surface Mesh [32]. . . . The differ-

ent solutions are close and vary in their storage cost,

in the type of operators that they support, and in the

type of objects they can describe (please refer to [12]

and [15] for a more complete comparison).

Contributions.

In this article, we propose (1) the definition of a stripped

halfedge data structure ensuring a global topological

consistency of the overeall planar map; (2) a fast par-

allel arrangement construction based on this stripped

representation, restricting the global arrangement com-

putation to local ones, which can be performed using

[7] for instance; (3) an out-of-core streamed construc-

tion that allows constructing an arrangement of a huge

number of segments with a low memory footprint. Our

approach is exact and outputs a valid planar map en-

coding whatever the input.

Our method answers the limitations of the related

works: (1) we define a parallel algorithm that can be im-

plemented on a multi-core model; (2) we represent the

full topology of the arrangement through the stripped

halfedge data structure; (3) our approach is robust,

based on exact arithmetic construction and exact geo-

metrical predicates provided by Cgal [33], a computa-

tional geometry algorithm library; (4) we have no con-

straint on the location of the strips.

2 Preliminaries

A planar partition is a subdivision of a 2D domain into

open topological cells: vertices (0D cells), edges (1D

cells) and faces (2D cells). Cells are equipped with some

neighborhood relationships. Two cells are incident if

one belongs to the boundary of the other. Two cells are

adjacent if they have the same dimension and if they

share a common cell incident to both. An oriented edge

can be denoted by its two vertices [AB], A being the

source endpoint of the edge and B its target endpoint.

Stripped halfedge data structure for parallel computation of arrangements of segments 3

In this work, we use the well-known halfedge data

structure, denoted HDS (see [34] for all precise defi-

nitions). Each oriented edge [AB] of the planar par-

tition is represented by two halfedges in the HDS,

linked by an opposite relation, thus for each halfedge

h, opposite(h) gives the other halfedge describing

the same edge. Four other relations exist between

halfedges: next(h) is the next halfedge around the

face of h (in clockwise order), prev(h) is the previ-

ous halfedge around the face of h, nextv(h) is the next

halfedge around the vertex of h (in clockwise order) and

prevv(h) is the previous halfedge around the vertex of

h. Lastly, vertex(h) = a gives the vertex at the source

of h, and face(h) the face bounded by h.

Relations exist between operators

around faces and operators around ver-

tices: next(h) = prevv(opposite(h)), and

prev(h) = opposite(nextv(h)) (and recip-

rocally nextv(h) = opposite(prev(h)) and

prevv(h) = next(opposite(h))). Thus it is enough

to store relations around vertices or relations around

faces. Note that we use here clockwise order for next,

some papers use counter-clockwise, both conventions

are possible. These halfedges and operators describe all

the cells of the planar partition, and all the incidence

and adjacency relations. For example, starting from

a halfedge, and iterating on next, we traverse all

the halfedges of a boundary of a face. Each face is

characterized by one outer boundary and possibly some

inner boundaries (one per hole). Another example is

the test if two edges e and e′ are adjacent that can be

done by testing if there exists two halfedges h and h′

describing e and e′ so that vertex(h) = vertex(h′). A

complete example is given in Fig. 1.

An HDS can be constructed incrementally during

the sweep-line algorithm of [7] for arrangement com-

putations. In this algorithm, the sweep line stores the

ordered list of active segments from bottom to top. Seg-

ments in the line are updated locally depending on the

configurations (begin and end of a segment, and new

intersection). When the sweep line is moved to a vertex

v, we can create, in the HDS, the pairs of halfedges de-

scribing all segments incident to v. Moreover, segments

in the active line being ordered, prevv and nextv can be

directly defined without an additional sort. This gives

an algorithm that builds the HDS describing the ar-

rangement of segments having the same complexity as

the algorithm of [7]: O((n + k) log n), where n is the

number of segments, and k is the total number of in-

tersection points (see for example [18]).

f4

f3

f1
f2

f5

a

b

e

f

h

i
j k

m

l

n

o

p q
r

s t

u

v

w

x

c

d

D

A

B g
M

C

E

F

G

H

I

J

K

L

N

O

P

Q

R

S

T

U

1

4

56

8 3

2

7

10

9

12

11

1413

Fig. 1: Example of planar partition and HDS.

(Left) An object with 4 bounded faces (f1, f2, f3

and f4) plus an unbounded face (f5), 24 edges and

21 vertices. Faces f1 and f2 are adjacent since they

share edge a; edges a and f are adjacent through ver-

tex H. Edge s is dangling, i.e. attached to the bor-

der of its face by only one of its incident vertex (K).

(Right) The HDS representing this planar partition

with 48 halfedges (some being numbered). next(8) =

11, prev(8) = 1, nextv(8) = 2, prevv(8) = 6,

opposite(8) = 7 and vertex(8) = H. The sequence

of halfedges (1,8,11,12,13,14) is the ordered halfedges

around face f1, and the sequence (2,4,6,8) the ordered

halfedges around vertex H. Edges a and f are adja-

cent because halfedge 2 describes edge a, halfedge 8 de-

scribes edge f and vertex(2) = vertex(8). Since edge

s is dangling, nextv(10) = prev(10) = 10.

3 Stripped HDS

In this section we define our stripped version of the

halfedge data structure.

3.1 Definitions

Strips are defined by vertical lines obtained by the de-

composition of the real line into s (s ≥ 1) disjoint in-

tervals (−∞, x1[∪[x2, x3[∪ . . .∪[xs−1,+∞), with xi <

xi+1 ∈ R). Each interval defines a strip Si :=

[xi−1, xi[×R (with two special cases S1 := (−∞,x1[×R
and Ss := [xs−1,∞) × R). The union of all strips is a

partition of the plane.

Let us consider now a 2D planar partition P =

(V,E,F) with V its vertices, E its edges, and F its

faces. Each vertex v ∈ V belongs exactly to one strip.

Note that contrary to [27], strip boundaries may con-

tain some vertices. An edge e belongs to strip Si if

e ∩ Si 6= ∅. Each edge e ∈ E belongs to at least one

strip, and at most to all strips. Edge e is a critical edge

if it belongs to more than one strip. Each critical edge e

is labeled with an unique id id(e). Note that a critical

edge cannot be vertical (indeed a vertical edge belongs

necessarily to only one strip).

We define a stripped halfedge data structure as a

sequence of independent local partial HDSs {Hi}, one

4 Guillaume Damiand et al.

per strip, with unique identifiers associated with some

halfedges allowing the retrieval of topological informa-

tion between different strips. A partial HDS is an HDS

in which we may have some undefined –null– links for

some of its operators.

Definition 1 Given a 2D planar partition P = (V,E,F)

and s strips {Si}, a stripped halfedge data structure

encoding P , denoted s-HDS, is a set of partial HDS

{H1, . . . ,Hs} and a set of faces F . Hi describes the re-

striction of P to strip Si ∀i, 1 ≤ i ≤ s. More precisely:

– Hi contains all vertices that belong to Si;

– each edge that belongs to strip Si is described in Hi

by two halfedges linked by oppositei;

– for each halfedge h ∈ Hi describing the edge [AB],

we define vertexi(h) := A if A ∈ Si, otherwise

vertexi(h) := null. In this case, h is called an ex-

ternal halfedge.

– for each non-external halfedge h ∈ Hi, previv(h) is

the previous halfedge around its vertex (and nextiv(h)

the next one);

– for each external halfedge h ∈ Hi, previv(h) and

nextiv(h) are set to null;

– for each halfedge h ∈ Hi describing a critical edge e,

we extend the identifier map using id(h) := id(e) if

h is oriented from left to right, and id(h) := −id(e)

otherwise (i.e. h is from right to left);

– for each halfedge h ∈ Hi, facei(h) is the face bounded

by h. Contrary to vertices, a face may be shared by

multiple strips, leading to a global index of faces.

The partial HDS {Hi} are independent data struc-

tures which are made globally consistent using the

unique identifier labeling. These links are implicit

through the global labeling id of halfedges describ-

ing critical edges. Having no explicit links between

halfedges of two different strips is of great interest to

simplify the local computations on each strip, as illus-

trated in this paper for parallel and streamed arrange-

ments. From the definition, we can remark the following

important properties on a s-HDS:

1. for each halfedge h ∈ Hi, its opposite oppositei(h)

belongs, by definition, to the same Hi;

2. for each non-external halfedge h ∈ Hi, previv(h) and

nextiv(h) are also non-external halfedges in the same

Hi. Indeed by definition there are two halfedges as-

sociated with the same vertex in the strip Si, and

thus they are non-external;

3. each edge of the planar partition is described by ex-

actly two non-external halfedges, and possibly any

even number of external halfedges.

An external halfedge is called left-external (resp.

right-external) if it is external, and oriented from left to

right (resp. from right to left). A left-external halfedge

(resp. right-external) traverses the left border of the

strip (resp. right border). Note that, as critical edges,

external halfedges cannot be vertical.

In the previous section, we have seen that

next(h) = prevv(opposite(h)), and prev(h) =

opposite(nextv(h)). In an s-HDS, links between

halfedges are stored using previv and nextiv because

these relations always stay inside one strip (contrary

to nexti and previ). All these notions are illustrated in

Figures 2 and 3.

3.2 Global Topological Operators from an s-HDS

From the s-HDS definition, we can define global topo-

logical operators through the local links in each Hi and

the id of the halfedges describing critical edges.

Definition 2 Let SH be an s-HDS and h a halfedge.

We denote by ne(h) the non-external halfedge describ-

ing edge id(h) and having the same orientation as h.

Algorithm 1: Non-external halfedge.

Input: HS = {H1, . . . ,Hs}: An s-HDS;
(h,i): A halfedge in Hi.

Output: ne(h).
1 while h is external do
2 if h is left-external then i← i− 1 ;
3 else i← i+ 1 ;
4 h← halfedge in Hi having id(h) as id;

As seen in the previous section, a critical edge is de-

scribed by exactly two non-external halfedges having

opposite orientations, and some external halfedges. A

non-critical edge is described by only two non-external

halfedges with opposite orientations (and thus no ex-

ternal halfedges). This means that for any halfedge h,

ne(h) is unique. But two different halfedges h and h′ can

have equal ne, ne is a surjective function. Note that if

h is non-external, ne(h) = h.

Algorithm 1 allows computing ne(h), by iteratively

traversing the adjacent strips, identifying the halfedges

thanks to their id. Given a left-external halfedge, find-

ing the corresponding halfedge in the left strip is done

directly by using the id associated with halfedges

through an associative array giving for each id its cor-

responding halfedge. The complexity of Algorithm 1 is

linear in number of strips traversed, when using an asso-

ciative container with constant time access in average,

such as hash maps.

We can combine oppositei, nextiv, previv, the local

relationships between halfedges within strips, and ne to

Stripped halfedge data structure for parallel computation of arrangements of segments 5

S
1

S
2 S

3

a

b

e

f

h

i
j k

m

l

n

o

p q
r

s t

u

v

w

x

c

d

D

A

B g
M

C

E

F

G

J

K

L

N

O

Q

R

S

T

U

H
P

I
1

2

3

4

5

6

7

8

15

16

14

13

12

11

10

9 17

18

22

19

20

21

23

24

25

26

27

28

3029

31

32

1

H
2

H
3

H

Fig. 2: Example of s-HDS. (Left) The same 2D object as in Fig. 1, but here cut in three strips. S1

contains vertices {A,B,C,D,E,F,G} and edges {b,c,d,e,f,o,p,q,s}; S2 has vertices {H,I,J,K,L,M,N,O} and

edges {a,b,f,g,h,i,j,q,r,s,t,u,v,w}; and S3 contains vertices {P,Q,R,S,T,U} and edges {j,h,k,l,m,n,w,x}. Edges

{b,f,h,j,q,s,w} are critical (drawn in blue), each one belongs to two strips. Vertex P belongs to the left border of

strip S3 and thus edge j is critical since it intersects both strips S2 and S3. Edge k is not critical since strip S2

does not contain vertex P , thus intersection of k and strip S2 is empty. (Right) The stripped HDS representing

this 2D object, with three HDS {H1,H2,H3}. H1 has four external halfedges {1,3,5,7} (drawn in blue), H2 has

seven external halfedges {10,12,14,16,17,19,21} and H3 has three {24,26,28}. halfedge 10 is left-external and 17 is

right-external. Let us consider that edges are labeled with the id given in the left part of the figure. We have for

example id(2) = b = id(10) and id(1) = −b = id(9). Critical edge b is described by 4 halfedges in the s-HDS (two

non-external 2, 9 and two external 1, 10), and non-critical edge a by two non-external halfedges. previv, nextiv
and vertexi are defined in each strip for each non-external halfedges (e.g. 2 in H1), and are null for external ones

(e.g. 1 in H1).

S
2

S
3

S
1

S
4

a

A B

3

4

5

6

7

8

1

2

1

H
4

H
2

H
3

H

Fig. 3: Example of a critical edge that belongs

to more than two strips. (Top) Edge a belongs to

four strips. (Bottom) a is represented by four pairs of

halfedges in the corresponding s-HDS, one pair in each

Hi. Among these 8 halfedges, two are non-external (2

and 7, having the two extremities of the edge as vertex),

the six others are external. Halfedges in strips S2 and

S3 traverse the strip without having a vertex in these

strips. id of halfedges 2, 4, 6 and 8 is the same (a).

retrieve directly the operators on a global topological

representation through the different strips.

Definition 3 Let SH = {H1, . . . ,Hs} an s-HDS. The

HDS describing the same planar partition as SH, de-

noted global(SH), is defined by:

1. The set of halfedges of global(SH) is the union of

all non-external halfedges of all Hi;

2. The set of vertices of global(SH) is the union of

all vertices of all Hi;

3. The set of faces of global(SH) is the set of faces of

SH;

4. For each halfedge h of global(SH):

(a) opposite(h) := ne(oppositei(h));

(b) nextv(h) := nextiv(h);

(c) prevv(h) := previv(h);

(d) vertex(h) := vertexi(h).

(e) face(h) := facei(h).

Thanks to this definition, we can use an s-HDS to

traverse the implicit corresponding global HDS. It is

enough to consider only non-external halfedges, and

to use the global operators defined above. Using these
global operators, we can retrieve the global operators

next and prev using the formula from Section 2.

In the s-HDS shown in Fig. 2, we can ver-

ify that ne(2) = ne(10) = 2. opposite(9) =

ne(opposite1(9)) = ne(10) = 2, nextv(9) =

next1v(9) = 31 and prevv(9) = prev1v(9) = 29.

next(2) = prevv(opposite(2)) = prevv(9) = 29 and

prev(32) = opposite(nextv(32)) = opposite(18) =

17.

3.3 Topological Equivalence Between the Different

Structures

We now show that given a 2D planar partition P , the

HDS representing P is isomorphic to global(SH), SH

being a stripped HDS representing P .

Theorem 1 Let P = (V,E,F) a 2D planar partition,

H the HDS representing P , and SH an s-HDS repre-

senting P . H and global(SH) are isomorphic.

6 Guillaume Damiand et al.

For the proof, we use the definition of HDS (Section 2),

the definition of s-HDS (Def. 1) and the definition of

global(SH) (Def. 3).

1. The vertices and the faces are the same in H, SH

and global(SH);

2. Each edge of E is described by two halfedges in H

and two non-external halfedges in SH (plus possi-

bly some external halfedges). The set of halfedges

of global(SH) being the union of all non-external

halfedges of SH, there is a one-to-one mapping m

between halfedges ofH and halfedges of global(SH)

that preserves sources and targets of halfedges in H

and halfedges in SH;

3. For each halfedge h ∈ H, hn := nextv(h) is the

next halfedge around the source of h. If h′ := m(h)

belongs to Hi in SH, then h′n := nextiv(h′) in SH

is the next halfedge around the source of h′. Since

h′n = nextv(h′) is in global(SH) (Def. 3-4b), we

conclude that h′n = m(hn), and thus nextv(m(h)) =

m(nextv(h)) (a similar proof holds for prevv using

Def. 3-4c);

4. For each halfedge h ∈ H, ho := opposite(h) is

the other halfedge describing the same edge e as

the edge of h but with reverse orientation. Edge e

is described in SH by two non-external halfedges

h′ := m(h) and h′′ := m(ho), with opposite ori-

entations, and possibly some external halfedges.

By Def. 3-4a, opposite(h′) = ne(oppositei(h′)).

Edge oppositei(h′) gives a halfedge with other

orientation than h′. ne preserves the orientation.

Thus opposite(h′) gives the non-external halfedge

with other orientation than h′: this is h′′. Thus we

can conclude that opposite(h′) = h′′, and thus

opposite(m(h)) = m(opposite(h)).

There is a one-to-one mapping between H and

global(SH) that preserves the operators nextv, prevv,

opposite, vertex, face (and thus next and prev):

this proves that H and global(SH) are isomorphic

and thus that they represent the same planar partition.

Note that this is true whatever the number of strips

of SH. As a corollary of this theorem, global(SH) is

a valid HDS structure as described in Section 2. This

shows that an s-HDS can represent all the specific con-

figurations of planar subdivision, like HDS can (such as

loops, degeneracies, isolated points, . . .).

3.4 Transformations Between HDS and s-HDS

We have just proven that an HDS and its stripped ver-

sion are equivalent. In this section we give the transfor-

mation algorithms allowing to convert an HDS into an

s-HDS, and conversely.

Given an HDS H and s strips S1, . . . , Ss, we can

build the s-HDS SH := {H1, . . . ,Hs} describing the

same planar partition as H, but within s independant

strips, by using Algorithm 2. Its complexity is O(sn),

n being the number of halfedges of H (if we use an

associative container with constant time access in av-

erage, such as hash maps). Reciprocally, we can build

a global HDS from a stripped representation using the

definition of global operators given in Section 3.2 (Al-

gorithm 3 with the same complexity as Algorithm 2).

Algorithm 2: HDS to s-HDS.

Input: H: An HDS;
S1, . . . , Ss: s strips.

Output: SH = {H1, . . . ,Hs}: The s-HDS describing
the same planar partition than H on strips
Si.

1 n← 1;
2 foreach non-vertical halfedge e of H oriented from

left to right do
3 id(h)← n; id(opposite(h))← −n; n← n+ 1;

4 for i← 1 to s do
5 foreach vertex v in H that belongs to Si do
6 mi

v(v)← a new vertex in Hi;

7 foreach halfedge h in H that intersects strip Si

do
8 mi(h)← a new halfedge in Hi;

id(mi(h))← id(h);
9 if vertex(h) belongs to Si then

10 vertexi(mi(h))← mi
v(vertex(h));

11 foreach halfedge h in H that intersects strip Si

do
12 if vertexi(h) 6= null then
13 previv(mi(h))← mi(prevv(h));
14 nextiv(mi(h))← mi(nextv(h));

15 oppositei(mi(h))← mi(opposite(h));

Algorithm 3: s-HDS to HDS.

Input: SH = {H1, . . . ,Hs}: An s-HDS.
Output: H: The HDS describing the same planar

partition than SH.
1 for i← 1 to s do
2 foreach vertex v in Hi do
3 mv(v)← a new vertex in H;

4 foreach non-external halfedge h in Hi do
5 m(h)← a new halfedge in H;
6 vertex(m(h))← mv(vertexi(h));

7 for i← 1 to s do
8 foreach non-external halfedge h in Hi do
9 opposite(m(h))← m(ne(oppositei(h)));

10 nextv(m(h))← m(nextiv(h));
11 prevv(m(h))← m(previv(h));

Stripped halfedge data structure for parallel computation of arrangements of segments 7

4 Parallel Computation of Arrangement of

Segments

In this section, we use the s-HDS data structure to de-

sign a fast parallel algorithm to compute the arrange-

ment of segments. Let us consider a set of segments

Σ := {σ1, . . . , σn}, and s vertical strips S1, . . . , Ss. A

segment σj is concerned by strip Si if σj ∩Si 6= ∅. Note

that a segment can be concerned by several/all strips,

and each segment is concerned by at least one strip.

The main principle of our parallel method (cf. Algo-

rithm 4) is to label each segment with a unique global

id, then to extract in parallel each local HDS, one per

strip, using the classical sweep-line algorithm (line 4),

e.g. using [7]. Since these local HDS are fully indepen-

dent, there is no critical section, nor any step after the

parallel computation to gather the different parts.

Algorithm 4: Computation of Arrangement

of Segments in Parallel.

Input: Σ: A set of segments;
S1,. . . ,Ss: s strips.

Output: HS: The s-HDS representing the
arrangement of Σ.

1 Let HS be an empty s-HDS having with S1,. . . ,Ss

strips;
2 Label each segment in Σ with a unique identifier;
3 parallel for each strip Si do
4 Compute in Hi, the arrangement of segments

concerned by strip Si;
5 Remove vertices and halfedges of Hi with no

intersection with Si;

6 Compute faces;
7 return HS

When computing the local arrangement Hi of seg-

ments concerned by strip Si, it is possible to obtain

vertices or halfedges outside the strip that need to be

pruned (line 5). Indeed, let us consider for example two

long edges that are concerned by strip Si, but that in-

tersect before its left border. The intersection point,

and the two segments on its left are outside the strip,

and thus will not be described in Hi.

When a vertex is outside the strip, it is not described

inHi, and thus the halfedge having this vertex as source

has vertex equal to null, which means that the halfedge

is external. The ids of the halfedges are set during the

algorithm using the global ids of the edges, ensuring

a consistent labeling of the different strips. Faces are

computed after all local HDS have been obtained, iter-

ating through all the halfedges and finding connected

components and their inclusion.

After the computation of the s-HDS, we can use

Algorithm 3 if we want to construct a global represen-

tation of the entire arrangement. Note that for traversal

purposes for instance, we can directly rely on the s-HDS

SH without constructing global(SH).

The complexity of our parallel algorithm is O(s(n+

k) log n), n being the total number of segments, k the

total number of intersection points and s the number of

strips. Indeed, in the worst case, each segment belongs

to all strips. To improve the worst case, it is possible to

crop segments before to add them in the local arrange-

ment. This cropping avoid to compute intersections out-

side the current strip in the sweep line algorithm.

5 Out-of-core Streamed Construction of

Arrangement of Segments

Algorithm 5: Streamed Computation of Ar-

rangement of Segments.

Input: Σ: A stream containing an ordered sequence
of segments;
q: Number of segments in a chunk.

Result: HS: The s-HDS representing the
arrangement of segments stored to disk.

1 Let HS be an empty s-HDS;
2 Let ActiveSegments be a list of segments;
3 i← 1; j ← 1; xmin ← −∞;
4 while Σ is not empty do
5 n← 1;
6 while n ≤ q and Σ is not empty do
7 Read next segment σj in S, label it j, and

add σj at the end of ActiveSegments;
8 n← n+ 1; j ← j + 1;

9 if S is empty then
10 xmax ←∞; // last strip

11 else
12 xmax ← maximum x-coordinates of source

vertices in ActiveSegments;

13 Compute in Hi, the arrangement of segments in
ActiveSegments;

14 Remove vertices and halfedges of Hi with no
intersection with Si;

15 Swap Hi to disk;
16 i← i+ 1; xmin ← xmax;
17 Remove from ActiveSegments all segments

smaller than xmin;

We can use an s-HDS to build an arrangement of

segments in an out-of-core streamed algorithm when

segments are given in an ordered way for their source

vertices. The main principle of Algorithm 5 is to load

from the disk a first chunk of segments, compute its

local HDS, and swap it to disk before to load a second

chunk. The size of the chunks (i.e. the number of seg-

ments read from the disk) is the parameter q given by

users. Thanks to the s-HDS definition, links between

8 Guillaume Damiand et al.

the different HDS are done only through the global la-

beling, simplifying the swap to disk and the global con-

sistency.

Before loading from disk the next set of segments,

we remove from the list of active segments all segments

that are entirely to the left of the beginning of the next

strip. Segments having their target after the beginning

of the next strip are kept. Edges, and its halfedges, are

labeled with unique global id, ensuring the topological

validity of the s-HDS. In this context, the computation

of faces is performed as a post-process, from the result-

ing s-HDS (merging the local faces obtained per strip).

Note that having the segments sorted is not an issue at

all in our streamed and out-of-core approach. Segments

can be already defined sorted for some specific applica-

tions, or sorting them, even in out-of-core scenarios, is a

very small preliminary step in the overall arrangement

computation problem.

6 Experiments

We have implemented our new method to compute

arrangement of segments, both the parallel and the

streamed versions. Our code uses exact arithmetic com-

putations with real numbers provided by the Cgal

kernel Exact predicates exact constructions kernel [13].

In this kernel, several mechanisms were developed to

speedup evaluations and computations: efficient lazy

evaluations based on interval arithmetic [29] and al-

gebraic methods and arithmetic filtering to define ex-

act predicates [16]. We compared our solution with the

sweep line arrangement method provided in Cgal1 [35].

To our knowledge, this is the only method publicly

available that provides fully exact numerical calcula-

tions and thus guarantees no error during intersection

computations. Note that we also rely on this implemen-

tation for the independent, per strip, local arrangement

computations (Algorithm 4-line 4).

All experiments2 were run on an AMD®Ryzen

3970X 32-Core processor with 126 GB RAM. Each com-

putation time is the average of 5 runs on the same input

(we do not count the I/O of segment loading).

6.1 Datasets

We have conduced our experiments using synthetic ran-

dom data, input segments from a sketch and GIS data

of countries. More precisely, we have considered:

1 Thanks to the GeometryFactory company for its help to
compare our method with the one in Cgal.
2 The link to the code and the scripts used in this paper is

https://gitlab.liris.cnrs.fr/gdamiand/stripped-hds.

(a) (b) (c)

(d)

Fig. 4: Input random segments and sketch.

(a) Random. 20000 segments, uniformly randomly

drawn within the domain with random directions. Seg-

ment sizes follow Gaussian distribution (µ = 800,

σ = 80 for Rand-short and µ = 1600, σ = 160 for

Rand-long). (b) Best-32: best-case with 32 chunks of

50000 independent random segments (random size be-

tween 0 and 1600, making sure that each segment re-

mains inside its strip). (c) Worst: all segments go from

the left to the right side of the domain (3500 segments

with random endpoints on the borders). (a−c) Domain

size is [0,10000]2. (d) A large sketch from [22].

1. three kind of random input segments: a pure random

one (the segment size follows a normal distribution

with uniform random orientation and location on a

[0,10000]2 domain, cf. Fig. 4a), a best-case for al-

gorithms based on a stripped decomposition of the

input (independent sets of random segments, each

segment will be in a single strip, cf. Fig. 4b), and

a worst-case in which all random segments are cre-

ated from the left to the right border of the domain,

and thus each one belongs to all strips (cf. Fig. 4c).

Please refer to Fig. 4 for details on the different pa-

rameters used in the experiments, and Table 1 for

some statistical properties of the segment distribu-

tions;

2. input segments from a sketch from [22]3 (cf. Fig. 4d),

the arrangement computation can be seen as a pre-

liminary step for more complex sketch processing;

3. GIS dataset consists of spatial databases of ten coun-

tries (Australia, Brazil, Canada, China, Germany,

France, United Kingdom, Japan, Russia and USA)

available at http://www.gadm.org/ (cf. France in

Fig. 5). They are in shapefile format, a popular

geospatial vector data format for geographic infor-

mation system (GIS) software. The different amount

of input segments are given in Table 2 for each coun-

try; it is 1,683,488 in average. This table also gives

the number of vertices, edges and faces in the final

3 https://repo-sam.inria.fr/d3/OpenSketch/

https://gitlab.liris.cnrs.fr/gdamiand/stripped-hds
http://www.gadm.org/
https://repo-sam.inria.fr/d3/OpenSketch/

Stripped halfedge data structure for parallel computation of arrangements of segments 9

arrangement computed from the input set of seg-

ments. Usually, GIS data suffers of many geomet-

rical and topological errors, implying problems for

algorithms that try to process these data [9]. When

errors exist, the data must be repaired. This is often

achieved manually implying a long and error-prone

process. Using an arrangement of segments allows

to automatically correct errors, producing a topo-

logically valid planar partition.

For all these test-cases, Table 1, Fig. 5 and Table 2

summarize the size of the input segment sets and some

empirical statistical measures (distribution of segment

lengths, of segment orientation and heat map of the

segment midpoint locations).

6.2 Parallel Computation Evaluation

In this first experiment, we have compared the com-

putation time of the arrangement of segments con-

struction for Cgal method and for our parallel algo-

rithm based on the s-HDS data structure. We have used

the parallel computation algorithm, with a number of

threads equal to the number of strips, for an increasing

number of strips from 1 to 32.

Table 1 presents the results for the stochastic

datasets and the sketch. On the rightmost column, the

first green bar corresponds to the Cgal method tim-

ing. A first observation is that, on a single thread,

our approach is equivalent to the Cgal version (even

slightly better). Furthermore, as we increase the num-

ber of threads, we considerably improve the overall tim-

ing thanks to the independent, strip-based, computa-

tion of the local arrangement of the s-HDS. For our

method, the global part (in green) is the time spent for

the final construction of faces.

For the GIS dataset, we can see in Table 2 that

our method is always faster than Cgal method: on

average, 3.5 times faster with 32 strips (2.83 seconds

against 9.86 seconds). The timings of our method show

that the computation time decreases while the number

of strips, and thus the number of threads, increases.

When the number of threads increases, and so the

number of strips, the speedup factor decreases due to

the number of critical edges which increases. Since these

edges belong to several strips, they are considered by

several threads, explaining an overhead for the compu-

tation time. Note that there are also cache issues and

memory bandwidth when accessing to the shared mem-

ory.

In these experiments, strip positions are regularly

spaced in the bounding box of the input segments. This

strategy has a visible impact on the thread workload

(e.g. in the worst-case scenario with more intersections

to be computed by threads dedicated to the central

part of the domain). Designing a heuristic to balance

the workload is a very challenging task as we need to

have a fast estimate on the number of intersections that

must work all datasets. The heuristics we tried did not

impact significantly the overall timings. We leave this

as an interesting future work.

In these experiments, we use the optional possibil-

ity to crop the critical segments. Indeed, when there

are many long segments, using this option improves the

computation times of our parallel arrangement method.

The number of critical edges, and thus the num-

ber of external halfedges, increases with the number

of strips. This implies an overhead in memory since

halfedges may be duplicated in several strips but such

overhead is negligible. For example, for Rand-long, it

increases from 2.46 GB for 1 strip to 2.96 GB for 32

strips (from 1.96 GB to 2.17 GB for the GIS data). An-

other drawback could be the overhead on computation

times when traversing the s-HDS, for instance to visit

each face of the arrangement. Again, this overhead is

also negligible: for Rand-long, the complete traversal

time increases from 0.52 seconds for 1 strip to 0.57 sec-

onds for 32 strips (from 0.21 to 0.22 seconds for the GIS

data).

6.3 Streamed Arrangement Computation

In a second experiment, we have studied the memory

space consumption during the arrangement computa-

tion (which is one of the key features for streamed ap-

proaches). We have performed a comparison between
Cgal, where all segments are inserted in one batch, our

method with only one strip, and finally the streamed

construction version introduced in Section 5: at each

10,000 new segments, one local HDS is computed then

swapped on disk and thus removed from central mem-

ory.

Memory space consumption is computed using Heap-

track [36], a tool that traces and analyzes all mem-

ory allocations. One result is given in Fig. 6 for Aus-

tralia. These graphs show the memory space consumed

depending on the elapsed time of the software. Note

that the timings observed here are much higher than

the computation times taken by the computation of

the arrangements due to the important overhead taken

by Heaptrack to track memory space allocations/de-

allocations. As expected, the memory space consump-

tion for Cgal and for our method with one strip in-

creases progressively when segments are successively

added in the arrangement. We can remark that our

method occupied slightly less memory than Cgal: for

10 Guillaume Damiand et al.

Size distribution Directions distribution Position of the midpoint Timings
(in degree) (in sec.)

R
a
n
d
-
s
h
o
r
t

500 600 700 800 900 1000 1100
size

0.000

0.001

0.002

0.003

0.004

0.005

fre
qu

en
cy

75 50 25 0 25 50 75
direction [deg]

0.000

0.001

0.002

0.003

0.004

0.005

fre
qu

en
cy

2000 4000 6000 8000
x

2000

4000

6000

8000

y

0.4

0.6

0.8

1.0

1.2

1.4

fre
qu

en
cy

1e 8

cgal 1 2 4 8 16 32
method - threads

0.0

0.5

1.0

1.5

2.0

2.5

du
ra

tio
n

[s
ec

]

local
global
idle

R
a
n
d
-
l
o
n
g

1000 1200 1400 1600 1800 2000 2200
size

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

fre
qu

en
cy

75 50 25 0 25 50 75
direction [deg]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

fre
qu

en
cy

2000 4000 6000 8000
x

2000

4000

6000

8000

y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

fre
qu

en
cy

1e 8

cgal 1 2 4 8 16 32
method - threads

0

2

4

6

8

10

12

du
ra

tio
n

[s
ec

]

local
global
idle

W
o
r
s
t

10000 11000 12000 13000 14000
size

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

fre
qu

en
cy

40 20 0 20 40
direction [deg]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

fre
qu

en
cy

0.4 0.2 0.0 0.2 0.4
x +5e3

2000

4000

6000

8000

y

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

fre
qu

en
cy

cgal 1 2 4 8 16 32
method - threads

0

2

4

6

8

10

du
ra

tio
n

[s
ec

]

local
global
idle

B
e
s
t
-
3
2

0 100 200 300 400 500 600 700 800
size

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

fre
qu

en
cy

75 50 25 0 25 50 75
direction [deg]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

fre
qu

en
cy

2000 4000 6000 8000
x

2000

4000

6000

8000

y

0.85

0.90

0.95

1.00

1.05

1.10

1.15

fre
qu

en
cy

1e 8

cgal 1 2 4 8 16 32
method - threads

0.0

0.5

1.0

1.5

2.0

2.5

du
ra

tio
n

[s
ec

]

local
global
idle

S
k
e
t
c
h

0 20 40 60 80 100 120
size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

fre
qu

en
cy

75 50 25 0 25 50 75
direction [deg]

0.000

0.005

0.010

0.015

0.020

0.025

fre
qu

en
cy

600 700 800 900 1000 1100 1200 1300 1400
x

400

500

600

700

800

900

1000

1100

y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fre
qu

en
cy

1e 5

cgal 1 2 4 8 16 32
method - threads

0.00

0.02

0.04

0.06

0.08

du
ra

tio
n

[s
ec

]

local
global
idle

Table 1: Input segment distributions and results. For the data described in Fig. 4, we first detail some

empirical statistical measures of the input segments (histograms of size distribution, direction distribution and

position of the segment midpoints). The last column details the timings of our parallel arrangement computation

algorithm for various numbers of threads. Each thread workload is represented by an orange bar, with possible idle

time in red if its processing has been completed (note that threads are illustrated, from left to right, following the

same left-right order of the strips). The first bar on the last column corresponds to the Cgal approach. Results

for stochastic data are averaged on 50 realizations.

Australia, 1.5 GB instead of 2.3 GB. The most in-

teresting result is the memory space consumption for

the streamed construction method. Indeed, the mem-

ory space consumption stays approximately constant,

and very low, showing that it is now possible with this

method to compute an arrangement of a huge number

of segments without any memory problem. For Aus-

tralia, only 15 MB of memory is used as peak, and about

12 MB as average. Similar behaviors are observed for

other data in our dataset.

About the timings, in average for the 10 GIS

files, computing the arrangement of segments with the

streamed method takes 18.6 seconds, against 9.7 sec-

onds for our method (sequential version, one strip). The

overhead is due to the time spent by the writing of the

data to disk. Without this overhead, the streamed ver-

sion takes only 7.1 seconds, which is faster than the se-

quiential one. This could be explained by the memory

access which is much faster due to the small memory

used.

Stripped halfedge data structure for parallel computation of arrangements of segments 11

0.00 0.02 0.04 0.06 0.08 0.10
size

0

20

40

60

80

100

120

fre
qu

en
cy

75 50 25 0 25 50 75
direction [deg]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

fre
qu

en
cy

4 2 0 2 4 6 8
x

42

44

46

48

50

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

fre
qu

en
cy

cgal 1 2 4 8 16 32
method - threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

du
ra

tio
n

[s
ec

]

local
global
idle

Fig. 5: GIS experiments. (Left) One of a GIS model used in the tests (FRA). (Right) Some statistical properties

of the input set of segments as well as some detailed timings for the parallel arrangement computation.

File #segments #vertices #edges #faces Cgal Ours
1 2 4 8 16 32

AUS 1,339,516 1,307,542 1,307,803 4,685 5.05 5.08 3.15 1.98 1.78 1.28 1.14
BRA 1,134,931 898,552 949,550 51,808 8.55 8.52 6.04 5.11 3.30 2.33 2.23
CAN 5,195,304 4,577,948 4,594,771 41,404 23.47 23.89 16.39 9.98 9.23 6.96 6.70
CHN 1,758,983 1,244,209 1,246,654 4,455 16.28 15.59 11.91 8.69 5.40 3.86 4.06
DEU 1,453,505 897,406 973,585 76,573 16.77 16.39 9.16 6.74 4.87 4.75 4.73
FRA 278,021 246,449 246,884 800 1.28 1.32 0.74 0.47 0.33 0.33 0.31
GBR 431,807 423,714 423,905 1,110 1.15 1.17 0.96 0.71 0.48 0.39 0.33
JPN 866,161 712,056 713,879 3,223 5.49 5.47 3.31 2.66 2.22 1.75 1.57
RUS 1,842,592 1,735,465 1,737,761 8,443 7.12 7.45 7.37 4.17 2.65 2.50 2.48
USA 2,534,063 2,290,217 2,293,616 12,034 13.46 13.40 13.22 7.27 6.71 6.78 4.80
Mean 1,683,488 1,433,356 1,448,841 20,454 9.86 9.83 7.23 4.78 3.69 3.09 2.83

Table 2: Number of elements and timings for GIS data. Number of input segments, and number of cells of

the final arrangement, for the ten countries used in our experiments. On the right part of the table, timings in

seconds of Cgal arrangement and our method (for increasing number of threads and strips, from 1 to 32).

(a) (b) (c)

Fig. 6: Memory space comparison for the streamed arrangement computation of Australia. (a) Cgal:

memory increases progressively to about 2.3 GB. (b) Our global method with 1 strip: memory increases progres-

sively to about 1.5 GB, whereas the memory stays constant (around 12MB) in our streamed version (c).

7 Conclusion

In this paper, we have defined the stripped halfedge

data structure, a sequence of independent partial HDS,

to represent a planar partition which it is equivalent to

a global HDS describing the same planar partition.

As the local HDS are fully independent with links

between local and global operations, we have proposed

a parallel algorithm to compute arrangement of seg-

ments, where different threads extract in parallel each

local HDS, one per strip. Since these local HDS are

fully independent, there is no critical section, nor any

step after the parallel computation to gather the differ-

ent parts (only the faces require a fast extra pruning

step). Moreover, extra associated arrays used to store

external halfedges lead to negligible memory and com-

putational overhead. We also defined a method to build

the arrangement in an out-of-core streamed way, allow-

ing computing an arrangement of a huge number of

segments with a limited amount of memory.

12 Guillaume Damiand et al.

In future work, we plan to define topological oper-

ations directly on the s-HDS such as edge removal and

edge contraction, and operations to split a strip in sev-

eral strips, or to merge some adjacent strips in one.

Combining these future operations with the ability of

swapping some strips on disk will provide an entire ro-

bust framework allowing creating, traverse and modify

huge planar partitions.

References

1. Agarwal, P.K., Sharir, M.: Arrangements and their ap-
plications. In: J.R. Sack, J. Urrutia (eds.) Handbook of
Computational Geometry, chap. 2, pp. 49–119. North-
Holland, Amsterdam (2000)

2. Aggarwal, A., Chazelle, B., Guibas, L., Ó’Dúnlaing, C.,
Yap, C.: Parallel computational geometry. Algorithmica
3(1-4), 293–327 (1988)

3. Anderson, R., Beanie, P., Brisson, E.: Parallel algorithms
for arrangements. Algorithmica 15(2), 104–125 (1996)

4. Atallah, M.J., Goodrich, M.T.: Efficient plane sweeping
in parallel. In: Proc. of second annual symposium on
Computational geometry, pp. 216–225 (1986)

5. Balaban, I.J.: An optimal algorithm for finding segments
intersections. In: Proc. of Eleventh Annual Symposium
on Computational Geometry, SCG’95, pp. 211–219. As-
sociation for Computing Machinery, New York, NY, USA
(1995)

6. Baumgart, B.: A polyhedron representation for computer
vision. In: Proc. of AFIPS National Computer Confer-
ence, vol. 44, pp. 589–596 (1975)

7. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting
and counting geometric intersections. IEEE Transactions
on Computers 28(9), 643–647 (1979)

8. de Berg, M., van Kreveld, M., Overmars, M.H., Cheong,
O.: Computational Geometry: Algorithms and Applica-
tions, 3rd edn. Springer-Verlag, Berlin, Germany (2008)

9. Biljecki, F., Ledoux, H., Du, X., Stoter, J., Soon, K.H.,
Khoo, V.H.S.: The most common geometric and semantic
errors in CityGML datasets. ISPRS Ann. Photogramm.
Remote Sens. Spatial Inf. Sci. IV-2/W1, 13–22 (2016)

10. Boissonnat, J.D., Teillaud, M. (eds.): Effective Compu-
tational Geometry for Curves and Surfaces. Springer-
Verlag Berlin Heidelberg (2006)

11. Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry.
Cambridge University Press, Cambridge, UK (1998)

12. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Lévy, B.:
Polygon Mesh Processing. AK Peters (2010)

13. Brönnimann, H., Fabri, A., Giezeman, G.J., Hert, S.,
Hoffmann, M., Kettner, L., Pion, S., Schirra, S.: 2D
and 3D linear geometry kernel. In: CGAL User and
Reference Manual, 5.0.2 edn. CGAL Editorial Board
(2020). URL https://doc.cgal.org/5.0.2/Manual/

packages.html#PkgKernel23
14. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for

intersecting line segments in the plane. J. ACM 39(1),
1–54 (1992)

15. Damiand, G., Lienhardt, P.: Combinatorial Maps: Effi-
cient Data Structures for Computer Graphics and Image
Processing. A K Peters/CRC Press (2014)

16. Devillers, O., Fronville, A., Mourrain, B., Teillaud, M.:
Algebraic methods and arithmetic filtering for exact
predicates on circle arcs. Computational Geometry 22,
119–142 (2002)

17. Edelsbrunner, H.: Algorithms in Combinatorial Geome-
try. Springer-Verlag Berlin Heidelberg, Berlin, Germany
(1987)

18. Fogel, E., Halperin, D., Wein, R.: CGAL Arrangements
and Their Applications - A Step-by-Step Guide., Geom-
etry and computing, vol. 7. Springer (2012)

19. Goodrich, M.T.: Intersecting line segments in parallel
with an output-sensitive number of processors. SIAM
Journal on Computing 20(4), 737–755 (1991)

20. Goodrich, M.T., Ghouse, M.R., Bright, J.: Sweep meth-
ods for parallel computational geometry. Algorithmica
15(2), 126–153 (1996)

21. Grünbaum, B.: Convex Polytopes. New York, NY (1967)
22. Gryaditskaya, Y., Sypesteyn, M., Hoftijzer, J.W., Pont,

S., Durand, F., Bousseau, A.: Opensketch: A richly-
annotated dataset of product design sketches. ACM
Transactions on Graphics (Proc. SIGGRAPH Asia) 38
(2019)

23. Hershberger, J.: Stable snap rounding. In: Proc. of
twenty-seventh annual symposium on Computational ge-
ometry, pp. 197–206 (2011)

24. Hoffmann, C.M.: Geometric and Solid Modeling: An In-
troduction. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1989)

25. Lienhardt, P.: N-Dimensional generalized combinatorial
maps and cellular quasi-manifolds. Inte. J. of Computa-
tional Geometry and Applications 4(3), 275–324 (1994)

26. McKenney, M., Frye, R., Dellamano, M., Anderson, K.,
Harris, J.: Multi-core parallelism for plane sweep algo-
rithms as a foundation for gis operations. GeoInformatica
21, 151–174 (2017)

27. McKenney, M., McGuire, T.: A parallel plane sweep al-
gorithm for multi-core systems. In: Proc. of 17th ACM
SIGSPATIAL international conference on advances in ge-
ographic information systems, pp. 392–395 (2009)

28. Muller, D., Preparata, F.: Finding the intersection of two
convex polyhedra. Theoretical Computer Science 7(2),
217 – 236 (1978)

29. Pion, S., Fabri, A.: A Generic Lazy Evaluation Scheme
for Exact Geometric Computations. Science of Computer
Programming 76(4), 307–323 (2011)

30. Rossignac, J.: 3D compression made simple: Edgebreaker
with zipandwrap on a corner-table. In: Proc. of Interna-
tional Conference on Shape Modeling and Applications,
pp. 278–283 (2001)

31. Shewchuk, J.R.: Robust adaptive floating-point geomet-
ric predicates. In: Proc. of Twelfth Annual Symposium
on Computational Geometry, SCG ’96, p. 141–150. Asso-
ciation for Computing Machinery, New York, NY, USA
(1996)

32. Sieger, D., Botsch, M.: Design, implementation, and
evaluation of the surface mesh data structure. In:
W.R. Quadros (ed.) Proc. of 20th International Mesh-
ing Roundtable, pp. 533–550. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

33. The CGAL Project: CGAL User and Reference Manual,
5.0.1 edn. CGAL Editorial Board (2020). URL https:

//doc.cgal.org/5.0.1/Manual/packages.html
34. Weiler, K.: Edge-based data structures for solid mod-

elling in curved-surface environments. Computer Graph-
ics and Applications 5(1), 21–40 (1985)

35. Wein, R., Berberich, E., Fogel, E., Halperin, D., Hem-
mer, M., Salzman, O., Zukerman, B.: 2D arrangements.
In: CGAL User and Reference Manual, 5.0.1 edn. CGAL
Editorial Board (2020). URL https://doc.cgal.org/5.

0.1/Manual/packages.html#PkgArrangementOnSurface2
36. Wolff, M.: Heaptrack: A heap memory profiler for linux

(2017). URL https://github.com/KDE/heaptrack

https://doc.cgal.org/5.0.2/Manual/packages.html#PkgKernel23
https://doc.cgal.org/5.0.2/Manual/packages.html#PkgKernel23
https://doc.cgal.org/5.0.1/Manual/packages.html
https://doc.cgal.org/5.0.1/Manual/packages.html
https://doc.cgal.org/5.0.1/Manual/packages.html#PkgArrangementOnSurface2
https://doc.cgal.org/5.0.1/Manual/packages.html#PkgArrangementOnSurface2
https://github.com/KDE/heaptrack

	Introduction
	Preliminaries
	Stripped HDS
	Parallel Computation of Arrangement of Segments
	Out-of-core Streamed Construction of Arrangement of Segments
	Experiments
	Conclusion

