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APPROXIMATION OF NULL CONTROLS FOR SEMILINEAR HEAT

EQUATIONS USING A LEAST-SQUARES APPROACH

Jérôme Lemoine1, Irene Maŕın-Gayte2 and Arnaud Münch3,*

Abstract. The null distributed controllability of the semilinear heat equation ∂ty − ∆y + g(y) = f 1ω 

assuming that g ∈ C1(R) satisfies the growth condition lim sup|r|→∞ g(r)/(|r| ln3/2 |r|) = 0 has been
obtained by Fernández-Cara and Zuazua (2000). The proof based on a non constructive fixed point 
theorem makes use of precise estimates of the observability constant for a linearized heat equation.

Assuming that g′ is bounded and uniformly Hölder continuous on R with exponent p ∈ (0, 1], we
design a constructive proof yielding an explicit sequence converging strongly to a controlled solution
for the semilinear equation, at least with order 1 + p after a finite number of iterations. The method is
based on a least-squares approach and coincides with a globally convergent damped Newton method:
it guarantees the convergence whatever be the initial element of the sequence. Numerical experiments
in the one dimensional setting illustrate our analysis.
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1. Introduction

Let Ω ⊂ Rd, 1 ≤ d ≤ 3, be a bounded connected open set whose boundary ∂Ω is Lipschitz and let ω ⊂⊂ Ω be 
any non-empty open set. Let T > 0 and QT := Ω × (0, T ), qT := ω × (0, T ) and ΣT := ∂Ω × (0, T ). We consider 
the semilinear heat equation

{
∂ty −∆y + g(y) = f1ω in QT ,

y = 0 on ΣT , y(·, 0) = u0 in Ω,
(1.1)
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where u0 ∈ L2(Ω) is the initial state of y and f ∈ L2(qT ) is a control function. Here and throughout the paper,
we assume that g : R 7→ R is, at least, locally Lipschitz-continuous and following [16] that g satisfies

|g′(r)| ≤ C(1 + |r|m) a.e. with 1 ≤ m ≤ 1 + 4/d (1.2)

which implies that (1.1) possesses exactly one local in time solution. We recall that under the additional growth
condition

|g(r)| ≤ C(1 + |r| log(1 + |r|)) ∀r ∈ R, (1.3)

(1.1) has a unique globally weak solution defined in [0, T ] and one has

y ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), (1.4)

see [6]. Without a growth condition of the kind (1.3), the solutions to (1.1) can blow up before t = T ; in general,
the blow-up time depends on g and the size of ‖u0‖L2(Ω).

The system (1.1) is said to be controllable at time T if, for any u0 ∈ L2(Ω) and any globally defined bounded
trajectory y? ∈ C0([0, T ];L2(Ω)) (corresponding to the data u?0 ∈ L2(Ω) and f? ∈ L2(qT )), there exist controls
f ∈ L2(qT ) and associated states y that are again globally defined in [0, T ] and satisfy (1.4) and

y(x, T ) = y?(x, T ), x ∈ Ω. (1.5)

We refer to [8] for an overview of control problems in nonlinear situations. The uniform controllability strongly
depends on the nonlinearity g. Fernández-Cara and Zuazua proved in [16] that if g is too “super-linear” at
infinity, then, for some initial data, the control cannot compensate the blow-up phenomenon occurring in Ω\ω.

Theorem 1.1 ([16]). There exist locally Lipschitz-continuous functions g with g(0) = 0 and

|g(r)| ∼ |r| logp(1 + |r|) as |r| → ∞, p > 2,

such that (1.1) fails to be controllable for all T > 0.

On the other hand, Fernández-Cara and Zuazua also proved that if p is small enough, then the controllability
holds true uniformly.

Theorem 1.2 ([16]). Let T > 0 be given. Assume that (1.1) admits at least one solution y?, globally defined in
[0, T ] and bounded in QT . Assume that g : R 7→ R is locally Lipschitz-continuous and satisfies (1.2). If g satisfies

g(r)

|r| ln3/2(1 + |r|)
→ 0 as |r| → ∞. (1.6)

Then (1.1) is controllable at time T .

Therefore, if |g(r)| does not grow at infinity faster than |r| lnp(1 + |r|) for any p < 3/2, then (1.1) is con-
trollable. We also mention [1] which gives the same result assuming additional sign condition on g, namely
g(r)r ≥ −C(1 + r2) for every r ∈ R and some C > 0. The problem remains open when g behaves at infinity
like |r| lnp(1 + |r|) with 3/2 ≤ p ≤ 2. We mention however the recent work of Le Balc’h [20] where uniform
controllability results are obtained for p ≤ 2 assuming additional sign conditions on g, notably that g(r) > 0 for
r > 0 or g(r) < 0 for r < 0 and T large enough. This condition is not satisfied for g(r) = −r lnp(1 + |r|). Let us
also mention [9] in the context of Theorem 1.1 where a positive boundary controllability result is proved for a
specific class of initial and final data and T large enough.
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In the sequel, for simplicity, we shall assume that g(0) = 0, f? ≡ 0, u?0 ≡ 0 so that y? is the null trajectory.
The proof given in [16] is based on a fixed point argument that reduced the controllability problem to the
obtention of a suitable a priori estimate for the linearized heat equation with a potential. More precisely, it is
shown that the operator Λ : L∞(QT ) → L∞(QT ), where yz := Λ(z) is a null controlled solution through the
control function fz of the linear boundary value problem

{
∂tyz −∆yz + yz g̃(z) = fz1ω in QT

yz = 0 on ΣT , yz(·, 0) = u0 in Ω
, g̃(r) :=


g(r)

r
r 6= 0,

g′(0) r = 0,
(1.7)

maps a closed ball B(0,M) ⊂ L∞(QT ) into itself, for some M > 0. Under the condition (1.6), the Kakutani’s
theorem provides the existence of at least one fixed point for the operator Λ, which is also a controlled solution
for (1.1).

The main goal of this work is to determine an approximation of the controllability problem associated to (1.1),
that is to construct an explicit sequence (fk)k∈N converging strongly towards a null control for (1.1). A natural
strategy is to take advantage of the method used in [16, 20] and consider, for any element y0 ∈ L∞(QT ), the
Picard iterations (yk)k∈N defined by yk+1 := Λ(yk), k ≥ 0 associated with the operator Λ. The resulting sequence
of controls (fk)k∈N is then so that fk+1 ∈ L2(qT ) is a null control for yk+1 solution of{

∂tyk −∆yk + yk g̃(yk−1) = fk1ω in QT ,

yk = 0 on ΣT , yk(·, 0) = u0 in Ω.
(1.8)

Numerical experiments for the one dimensional case reported in [13] exhibit the non convergence of the
sequences (yk)k∈N and (fk)k∈N for some initial conditions large enough. This phenomenon is related to the
fact that the operator Λ is in general not contracting, even if g̃ is globally Lipschitz (we refer to Rem. 3.17).
We also mention [3, 4] where this strategy is implemented. Still in the one dimensional case, a least-squares
type approach, based on the minimization over L2(QT ) of the functional R : L2(QT )→ R+ defined by R(z) :=
‖z − Λ(z)‖2L2(QT ) has been introduced and analyzed in [13]. Assuming that g̃ ∈ C1(R) and g′ ∈ L∞(R), it is

proved that R ∈ C1(L2(QT );R+) and that, for some constant C > 0

‖R′(z)‖L2(QT ) ≥ (1− C‖g′‖∞‖u0‖∞)
√

2R(z), ∀z ∈ L2(QT )

implying that if ‖g′‖∞‖u0‖∞ is small enough, then any critical point for R is a fixed point for Λ (see [13],
Prop. 3.2). Under this smallness assumption on the data, numerical experiments reported in [13] display the
convergence of gradient based minimizing sequences for R and a better behavior than the Picard iterates
associated to Λ. The analysis of convergence is however not performed. As is usual for nonlinear problems and
also considered in [13], we may employ a Newton type method to find a zero of the mapping F̃ : Y 7→W defined
by

F̃ (y, f) = (∂ty −∆y + g(y)− f1ω, y(· , 0)− u0) ∀(y, f) ∈ Y (1.9)

where the Hilbert space Y and W are defined as follows

Y :=

{
(y, f) : ρy ∈ L2(QT ), ρ1∇y ∈ L2(QT )d, ρ0(∂ty −∆y) ∈ L2(QT ), y = 0 on ΣT , ρ0f ∈ L2(qT )

}
and W := L2(ρ0;QT )×L2(Ω) for some appropriates weights ρ, ρ0 and ρ1. Here L2(ρ0;QT ) stands for {z : ρ0z ∈
L2(QT )}. It is shown for d = 1 in [13] that, if g ∈ C1(R) and g′ ∈ L∞(R), then F̃ ∈ C1(Y ;W ) allowing to derive
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the Newton iterative sequence: given (y0, f0) in Y , define the sequence (yk, fk)k∈N in Y N iteratively as follows
(yk+1, fk+1) = (yk, fk)− (Yk, Fk) where Fk is a control for Yk solution of

{
∂tYk −∆Yk + g′(yk)Yk = Fk 1ω + ∂tyk −∆yk + g(yk)− fk1ω in QT ,

Yk = 0 on ΣT , Yk(·, 0) = u0 − yk(·, 0) in Ω.
(1.10)

Once again, numerical experiments for d = 1 in [13] exhibits the lack of convergence of the Newton method
for large enough initial condition, for which the solution y is not close enough to the zero trajectory.

The controllability of nonlinear partial differential equations has attracted a large number of works in the
last decades (see the monography [8] and references therein). However, as far as we know, few are concerned
with the approximation of exact controls for nonlinear partial differential equations, and the construction of
convergent control approximations for controllable nonlinear equations remains a challenge.

Assuming that g′ ∈ L∞(R) and in addition that there exists one p in (0, 1] for which g′ is uniformly Hölder
continuous on R with exponent p ∈ (0, 1], we construct, for any initial data u0 ∈ L2(Ω), a strongly convergent
sequence (fk)k∈N towards a control for (1.1). Moreover, after a finite number of iterates related to the norm
‖g′‖L∞(R), the convergence is super linear with a rate equal to 1 + p. This is done (following and improving [26]
devoted to a linear case) by introducing a quadratic functional which measures how a pair (y, f) ∈ Y is close to a
controlled solution for (1.1) and then by determining a particular minimizing sequence enjoying the announced

property. A natural example of so-called error (or least-squares) functional is given by Ẽ(y, f) := 1
2‖F̃ (y, f)‖2W

to be minimized over Y . In view of controllability results for (1.1), the non-negative functional Ẽ achieves its
global minimum equal to zero for any control pair (y, f) ∈ Y of (1.1).

The paper is organized as follows. In Section 2, we derive a controllability result for a linearized heat equation
with potential in L∞(QT ) and source term in L2(0, T ;H−1(Ω)). Then, in Section 3, we define the least-squares
functional E and the corresponding (nonconvex) optimization problem (3.2) over the Hilbert space A defined
in (3.1). We show that E is Gateaux-differentiable over A and that any critical point (y, f) for E for which
g′(y) belongs to L∞(QT ) is also a zero of E (see Prop. 3.4). This is done by introducing a descent direction
(Y 1, F 1) for E(y, f) for which E′(y, f) · (Y 1, F 1) is proportional to

√
E(y, f). Then, assuming that the function

g′ is uniformly Hölder continuous on R with exponent p for some p ∈ [0, 1], we determine a minimizing sequence
based on (Y 1, F 1) converging strongly to a controlled pair for the semilinear heat equation (1.1). Moreover,
we prove that after a finite number of iterates, the convergence enjoys a rate equal to 1 + p (see Thm. 3.10
for p = 1 and Thm. 3.12 for p ∈ (0, 1)). We also emphasize that this least-squares approach coincides with

the damped Newton method one may use to find a zero of a mapping similar to F̃ mentioned above; we refer
to Remark 3.15. This explains the convergence of our approach with a super-linear rate. Section 4 gives some
numerical illustrations of our result in the one dimensional case and a nonlinear function g uniformly continuous
on R with exponent p = 1. We conclude in Section 5 with some perspectives.

As far as we know, the analysis of convergence presented in this work, though some restrictive hypotheses
on the nonlinear function g, is the first one in the context of controllability for partial differential equations.

Along the text, we shall denote by ‖ · ‖∞ the usual norm in L∞(R), (·, ·)X the scalar product of X (if X is
a Hilbert space) and by 〈·, ·〉X,Y the duality product between the spaces X and Y .

2. A controllability result for a linearized heat equation with
L2(H−1) right hand side

We give in this section a controllability result for a linear heat equation with potential in L∞(QT ) and right
hand side in L2(0, T ;H−1(Ω)). As this work concerns the null controllability of parabolic equations, we shall
make use of Carleman type weights introduced in this context notably in [17] (we also refer to [12] for a review).
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Here, we assume that such weights ρ, ρ0, ρ1 and ρ2 blow up as t→ T− and satisfy:{
ρ = ρ(x, t), ρ0 = ρ0(x, t), ρ1 = ρ1(x, t) and ρ2 = ρ2(x, t) are continuous and ≥ ρ∗ > 0 inQT

ρ, ρ0, ρ1, ρ2 ∈ L∞(QT−δ) ∀δ > 0.
(2.1)

Precisely, we will take ρ0 = (T − t)3/2ρ, ρ1 = (T − t)ρ, ρ2 = (T − t)1/2ρ and ρ3 = (T − t)−1/2ρ where ρ is
defined as follow

ρ(x, t) = exp
(sβ(x)

`(t)

)
, s ≥ C(Ω, ω, T, ‖g′‖∞) (2.2)

with

`(t) =

{
3T 2/16 if 0 ≤ t < T/4

t(T − t) if T/4 ≤ t ≤ T.

Here β(x) = exp(2λm‖η0‖∞)− exp(λ(m‖η0‖∞ + η0(x))), m > 1, η0 ∈ C(Ω) satisfies η0 > 0 in Ω, η0 = 0 on ∂Ω
and |∇η0| > 0 in Ω\ω (see [12], Lem. 1.2, p. 1401).

In the next section, we shall make use of the following controllability result where L2(ρ,A) := {f : ρf ∈
L2(A)} for any set A ⊂ QT and function ρ.

Proposition 2.1. Assume A ∈ L∞(QT ), ρ2B ∈ L2(0, T ;H−1(Ω)) and z0 ∈ L2(Ω). Then there exists a control
v ∈ L2(ρ0, qT ) such that the weak solution z of{

∂tz −∆z +Az = v1ω +B in QT ,

z = 0 on ΣT , z(·, 0) = z0 in Ω
(2.3)

satisfies

z(·, T ) = 0 in Ω. (2.4)

Moreover, the unique control u which minimizes together with the corresponding solution z the functional J :
L2(ρ,QT )× L2(ρ0, qT )→ R+ defined by J(z, v) := 1

2‖ρ z‖
2
L2(QT ) + 1

2‖ρ0 v‖2L2(qT ) satisfy the following estimate

‖ρ z‖L2(QT ) + ‖ρ0 v‖L2(qT ) ≤ C
(
‖ρ2B‖L2(0,T ;H−1(Ω)) + ‖z0‖L2(Ω)

)
(2.5)

for some constant C = C(s,Ω, ω, T, ‖A‖∞).
The controlled solution also satisfies, for some constant C = C(s,Ω, ω, T, ‖A‖∞), the estimate

‖ρ1z‖L∞(0,T ;L2(Ω)) + ‖ρ1∇z‖L2(QT )d ≤ C
(
‖ρ2B‖L2(0,T ;H−1(Ω)) + ‖z0‖L2(Ω)

)
. (2.6)

Proposition 2.1 follows from several lemmas. Let us first set P0 := {q ∈ C2(QT ) : q = 0 on ΣT }. The bilinear
form

(p, q)P :=

∫
QT

ρ−2L?ApL
?
Aq +

∫
qT

ρ−2
0 p q
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where L?Aq := −∂tq−∆q +Aq, is a scalar product on P0 (see [14]). The completion P of P0 for the norm ‖ · ‖P
associated to this scalar product is a Hilbert space and the following result proved in [17] holds.

Lemma 2.2. There exists C = C(s,Ω, ω, T, ‖A‖∞) > 0 such that one has the following Carleman estimate:∫
QT

(
ρ−1

3 |pt|2 + ρ−2
2 |∇p|2 + ρ−2

0 |p|2
)
≤ C‖p‖2P , ∀p ∈ P. (2.7)

Remark 2.3. We denote by P (instead of PA) the completion of P0 for the norm ‖ · ‖P since P does not depend
on A (see [13], Lem. 3.1).

Lemma 2.4. There exists C = C(s,Ω, ω, T, ‖A‖∞) > 0 such that one has the following observability inequality:

‖p(·, 0)‖L2(Ω) ≤ C‖p‖P , ∀p ∈ P. (2.8)

Proof. From the definition of ρ0, ρ1 and ρ2, P ↪−→ H1(0, T2 ;L2(Ω)) ↪−→ C([0, T2 ];L2(Ω)) where each embedding is
continuous. The result follows from Lemma 2.2.

Lemma 2.5. There exists p ∈ P unique solution of

(p, q)P =

∫
Ω

z0q(0) +

∫ T

0

〈ρ2B, ρ
−1
2 q〉H−1(Ω)×H1

0 (Ω), ∀q ∈ P. (2.9)

This solution satisfies the following estimate:

‖p‖P ≤ C
(
‖ρ2B‖L2(0,T ;H−1(Ω)) + ‖z0‖L2(Ω)

)
where C = C(s,Ω, ω, T, ‖A‖∞) > 0.

Proof. The linear map L1 : P → R, q 7→
∫ T

0
〈ρ2B, ρ

−1
2 q〉H−1(Ω)×H1

0 (Ω) is continuous. Indeed, for all q ∈ P

∣∣∣ ∫ T

0

〈ρ2B, ρ
−1
2 q〉H−1(Ω)×H1

0 (Ω)

∣∣∣ ≤ (∫ T

0

‖ρ2B‖2H−1(Ω)

)1/2(∫ T

0

‖ρ−1
2 q‖2H1

0 (Ω)

)1/2

and a.e. in (0, T ) ‖ρ−1
2 q‖2

H1
0 (Ω)

= ‖ρ−1
2 q‖2L2(Ω) + ‖∇(ρ−1

2 q)‖2L2(Ω)d . But since ρ0 ≤ Tρ2 a.e. t in (0, T )

‖ρ−1
2 q‖2L2(Ω) ≤

1

T 2
‖ρ−1

0 q‖2L2(Ω), a.e. t ∈ (0, T ).

Moreover

∇(ρ−1
2 q) = ∇(ρ−1

2 )q + ρ−1
2 ∇q = − s∇β(x)

`(t)(T − t)1/2
ρ−1q + ρ−1

2 ∇q

and thus, since ρ1 ≤ T 1/2ρ2 a.e. t in (0, T ):

‖∇(ρ−1
2 q)‖2L2(Ω)d ≤

∥∥∥∥ s∇β(x)

`(t)(T − t)1/2
ρ−1q

∥∥∥∥2

L2(Ω)d
+‖ρ−1

2 ∇q‖2L2(Ω)d

≤ C(s,Ω, ω, T, ‖A‖∞)
(
‖ρ−1

0 q‖2L2(Ω) + ‖ρ−1
2 ∇q‖2L2(Ω)d

)
.
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We then deduce that, a.e. in (0, T )

‖ρ−1
2 q‖2H1

0 (Ω) ≤ C(s,Ω, ω, T, ‖A‖∞)
(
‖ρ−1

0 q‖2L2(Ω) + ‖ρ−1
1 ∇q‖2L2(Ω)d

)
and from the Carleman estimate (2.7) that

(∫ T

0

‖ρ−1
2 q‖2H1

0 (Ω)

)1/2

≤ C(s,Ω, ω, T, ‖A‖∞)‖q‖P

and therefore

∣∣∣ ∫ T

0

〈ρ2B, ρ
−1
2 q〉H−1(Ω)×H1

0 (Ω)

∣∣∣ ≤ C(s,Ω, ω, T, ‖A‖∞)
(∫ T

0

‖ρ2B‖2H−1(Ω)

)1/2

‖q‖P .

Thus L1 is continuous.
From (2.8) we easily deduce that the linear map L2 : P → R, q 7→

∫
Ω
z0q(0) is continuous. Using Riesz’s

theorem, we conclude that there exists exactly one solution p ∈ P of (2.9).

Let us now introduce the convex set

C(z0, T ) =
{

(z, v) : ρz ∈ L2(QT ), ρ0v ∈ L2(qT ), (z, v) solves (2.3)−(2.4) in the transposition sense
}

that is (z, v) is solution of

∫
QT

zL?Aq =

∫
qT

vq +

∫
Ω

z0q(0) +

∫ T

0

〈B, q〉H−1(Ω)×H1
0 (Ω), ∀q ∈ P.

Let us remark that if (z, v) ∈ C(z0, T ), then since z0 ∈ L2(Ω), v ∈ L2(qT ) and B ∈ L2(0, T ;H−1(Ω)), z must
coincide with the unique weak solution of (2.3) associated with v.

We can now claim that C(z0, T ) is a non empty. Indeed we have:

Lemma 2.6. Let p ∈ P defined in Lemma 2.5 and (z, v) defined by

z = ρ−2L?Ap and v = −ρ−2
0 p|qT . (2.10)

Then (z, v) ∈ C(z0, T ) and satisfies the following estimate

‖ρ z‖L2(QT ) + ‖ρ0 v‖L2(qT ) ≤ C
(
‖ρ2B‖L2(0,T ;H−1(Ω)) + ‖z0‖L2(Ω)

)
(2.11)

where C = C(s,Ω, ω, T, ‖A‖∞) > 0.

Proof. Let us prove that (z, v) belongs to C(z0, T ). From the definition of P , ρz ∈ L2(QT ) and ρ0v ∈ L2(qT )
and from the definition of ρ, ρ0, ρ2, z ∈ L2(QT ) and v ∈ L2(qT ). In view of (2.9), (z, v) is solution of

∫
QT

zL?Aq =

∫
qT

v q +

∫
Ω

z0q(0) +

∫ T

0

〈ρ2B, ρ
−1
2 q〉H−1(Ω)×H1

0 (Ω), ∀q ∈ P
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that is, since from the definition of ρ2, B ∈ L2(0, T ;H−1(Ω)) and∫ T

0

〈ρ2B, ρ
−1
2 q〉H−1(Ω)×H1

0 (Ω) =

∫ T

0

〈B, q〉H−1(Ω)×H1
0 (Ω),

z is the solution of (2.3) associated with v in the transposition sense. Thus C(z0, T ) 6= ∅.

Let us now consider the following extremal problem, introduced by Fursikov and Imanuvilov [17] Minimize J(z, v) =
1

2
‖(z, v)‖2L2(ρ,QT )×L2(ρ0,qT ) =

1

2

∫
QT

ρ2|z|2 +
1

2

∫
qT

ρ2
0|v|2

subject to (z, v) ∈ C(z0, T ).

(2.12)

Then (z, v) 7→ J(z, v) is clearly strictly convex and continuous on L2(ρ,QT ) × L2(ρ0, qT ). Therefore (2.12)
possesses at most a unique solution in C(z0, T ). More precisely we have:

Proposition 2.7. (z, v) ∈ C(z0, T ) defined in Lemma 2.6 is the unique solution of (2.12).

Proof. Let (y, w) ∈ C(z0, T ). Since J is convex and differentiable on L2(ρ,QT )× L2(ρ0, qT ) we have:

J(y, w) ≥ J(z, v) +

∫
QT

ρ2z(y − z) +

∫
qT

ρ2
0v(w − v)

= J(z, v) +

∫
QT

L?p(y − z)−
∫
qT

p(w − v) = J(z, v)

y being the solution of (2.3) associated with w in the transposition sense. Hence (z, v) solves (2.12).

Proof. (of Prop. 2.1) It suffices to prove that (z, v) satisfies the estimate (2.6). Since z is a weak solution of (2.3)
associated with v, z ∈ L2(0, T ;H1

0 (Ω)) and zt ∈ L2(0, T ;H−1(Ω)). Multiplying (2.3) by ρ2
1z and integrating by

part we obtain, a.e. t in (0, T )

1

2
∂t

∫
Ω

|z|2ρ2
1 −

∫
Ω

|z|2ρ1∂tρ1 +

∫
Ω

ρ2
1|∇z|2 + 2

∫
Ω

ρ1z∇ρ1 · ∇z +

∫
Ω

ρ2
1Azz

=

∫
ω

vρ2
1z + 〈B, ρ2

1z〉H−1(Ω)×H1
0 (Ω).

But ∂tρ1 = −ρ− (T − t) sβ`
′(t)

`(t)2 ρ, so that

∣∣∣ ∫
Ω

|z|2ρ1∂tρ1

∣∣∣ ≤ C(s,Ω, ω, T, ‖A‖∞)

∫
Ω

|ρz|2.

Since ∇ρ1 = (T − t)∇ρ = (T − t) s∇β`(t) ρ and T−t
l(t) ≤ C(T ), we have

∣∣∣ ∫
Ω

ρ1z∇ρ1 · ∇z
∣∣∣ ≤ C(s,Ω, ω, T, ‖A‖∞)

(∫
Ω

|ρ1∇z|2
)1/2(∫

Ω

|ρz|2
)1/2

.

The following estimates also hold ∣∣∣ ∫
Ω

ρ2
1Azz

∣∣∣ ≤ C(T, ‖A‖∞)

∫
Ω

|ρz|2,
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∣∣∣ ∫
ω

vρ2
1z
∣∣∣ ≤ T 1/2

∣∣∣ ∫
ω

ρ0vρz
∣∣∣ ≤ T 1/2

(∫
ω

|ρ0v|2
)1/2(∫

Ω

|ρz|2
)1/2

and

|〈B, ρ2
1z〉H−1(Ω)×H1

0 (Ω)| = |〈ρ1B, ρ1z〉H−1(Ω)×H1
0 (Ω)| ≤ ‖ρ1B‖H−1(Ω)‖ρ1z‖H1

0 (Ω)

≤ C(s,Ω, ω, T, ‖A‖∞)‖ρ2B‖H−1(Ω)

(
‖ρz‖L2(Ω) + ‖ρ1∇z‖L2(Ω)d

)
.

Thus we easily obtain that

∂t

∫
Ω

ρ2
1|z|2 +

∫
Ω

ρ2
1|∇z|2 ≤ C(s,Ω, ω, T, ‖A‖∞)

(
‖ρ2B‖2H−1(Ω) +

∫
Ω

ρ2|z|2 +

∫
ω

|ρ0v|2
)

and therefore, using (2.11), for all t ∈ [0, T ]:

(∫
Ω

ρ2
1|z|2

)
(t) +

∫
Qt

ρ2
1|∇z|2 ≤ C(s,Ω, ω, T, ‖A‖∞)

(
‖ρ2B‖2L2(0,T ;H−1(Ω)) + ‖z0‖2L2(Ω)

)
which gives (2.6) and concludes the proof of Proposition 2.1.

3. The least-squares method and its analysis

For any p ∈ [0, 1], we define the space

Wp =

{
g ∈ C(R), g(0) = 0, g′ ∈ L∞(R), [g′]p := sup

a,b∈R,a6=b

|g′(a)− g′(b)|
|a− b|p

<∞
}
.

The case p = 0 reduces to W0 = {g ∈ C(R), g(0) = 0, g′ ∈ L∞(R)} with [g′]0 = 2‖g′‖∞. The case p = 1
corresponds to W1 = {g ∈ C(R), g(0) = 0, g′ ∈ L∞(R), g′′ ∈ L∞(R)} with [g′]1 = ‖g′′‖∞. The property [g′]p <
∞ means that g′ is uniformly Hölder continuous with exponent p.

In the sequel, we shall assume that there exists some p ∈ (0, 1] for which the nonlinear function g belongs
to Wp. Remark that g ∈ Wp for some p ∈ [0, 1] satisfies hypotheses (1.2) and (1.6). We shall also assume that
u0 ∈ L2(Ω).

3.1. The least-squares method

We introduce the vectorial space A0 as follows

A0 =

{
(y, f) : ρ y ∈ L2(QT ), ρ1∇y ∈ L2(QT )d, ρ0f ∈ L2(qT ),

ρ2(∂ty −∆y − f 1ω) ∈ L2(0, T ;H−1(Ω)), y(·, 0) = 0 in Ω, y = 0 on ΣT

}
where ρ, ρ2, ρ1 and ρ0 are defined in (2.2). Since L2(0, T ;H−1(Ω)) is also a Hilbert space, A0 endowed with the
following scalar product(

(y, f), (y, f)
)
A0

=
(
ρy, ρy

)
2

+
(
ρ1∇y, ρ1∇y

)
2

+
(
ρ0f, ρ0f

)
2

+
(
ρ2(∂ty −∆y − f 1ω), ρ2(∂ty −∆y − f 1ω)

)
L2(0,T ;H−1(Ω))
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is a Hilbert space. The corresponding norm is ‖(y, f)‖A0
=
√

((y, f), (y, f))A0
. We also consider the convex

space

A =

{
(y, f) : ρ y ∈ L2(QT ), ρ1∇y ∈ L2(QT )d, ρ0f ∈ L2(qT ),

ρ2(∂ty −∆y − f 1ω) ∈ L2(0, T ;H−1(Ω)), y(·, 0) = u0 in Ω, y = 0 on ΣT

} (3.1)

so that we can write A = (y, f) +A0 for any element (y, f) ∈ A. We endow A with the same norm. Clearly,
if (y, f) ∈ A, then y ∈ C([0, T ];L2(Ω)) and since ρ y ∈ L2(QT ), then y(·, T ) = 0. The null controllability
requirement is therefore incorporated in the spaces A0 and A.

For any fixed (y, f) ∈ A, we can now consider the following non convex extremal problem:

inf
(y,f)∈A0

E(y + y, f + f) (3.2)

where E : A → R is defined as follows

E(y, f) :=
1

2

∥∥∥∥ρ2

(
∂ty −∆y + g(y)− f 1ω

)∥∥∥∥2

L2(0,T ;H−1(Ω))

justifying the least-squares terminology we have used.
Let us remark that, if g ∈Wp for one p ≥ 0, then g is Lipschitz and thus, since g(0) = 0, there exists K > 0

such that |g(ξ)| ≤ K|ξ| for all ξ ∈ R. Consequently, ρ2g(y) ∈ L2(QT ) (and then ρ2g(y) ∈ L2(0, T ;H−1(Ω)))
since

‖ρ2g(y)‖L2(QT ) = ‖(ρ2ρ
−1)ρg(y)‖L2(QT ) = ‖(T − t)1/2ρg(y)‖L2(QT ) ≤ T 1/2K‖ρy‖L2(QT ).

Any pair (y, f) ∈ A for which E(y, f) vanishes is a controlled pair of (1.1), and conversely. In this sense, the
functional E is a so-called error functional which measures the deviation of (y, f) from being a solution of the
underlying nonlinear equation. Although any g ∈ Wp for some p ≥ 0 satisfies hypotheses (1.2) and (1.6), the
controllability result of Theorem 1.2 given in [16] does not imply the existence of zero of E in A, since controls
of minimal L∞(qT ) norm are considered there. Our constructive approach will show that the extremal problem
(3.2) admits solutions.

We also emphasize that the L2(0, T ;H−1(Ω)) norm in E indicates that we are looking for weak solutions
of the parabolic equation (1.1). We refer to [22, 23] where a similar so-called weak least-squares method is
employed to approximate the solutions of the unsteady Navier-Stokes equation.

A practical way of taking a functional to its minimum is through some clever use of descent directions, i.e
the use of its derivative. In doing so, the presence of local minima is always something that may dramatically
spoil the whole scheme. The unique structural property that discards this possibility is the strict convexity of
the functional E. However, for nonlinear equation like (1.1), one cannot expect this property to hold for the
functional E. Nevertheless, we insist in that one may construct a particular minimizing sequence which cannot
converge except to a global minimizer leading E down to zero.

In order to construct such minimizing sequence, we look, for any (y, f) ∈ A, for a pair (Y 1, F 1) ∈ A0 solution
of the following formulation{

∂tY
1 −∆Y 1 + g′(y)Y 1 = F 11ω + ∂ty −∆y + g(y)− f 1ω in QT ,

Y 1 = 0 on ΣT , Y 1(·, 0) = 0 in Ω.
(3.3)
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Since (Y 1, F 1) ∈ A0, F 1 is a null control for Y 1. We have the following property.

Proposition 3.1. Let any (y, f) ∈ A. There exists a pair (Y 1, F 1) ∈ A0 solution of (3.3) which satisfies the
following estimate:

‖(Y 1, F 1)‖A0
≤ C

√
E(y, f) (3.4)

for some C = C(s,Ω, ω, T, ‖g′‖∞) > 0.

Proof. For all (y, f) ∈ A we have ρ2(∂ty −∆y + g(y)− f1ω) ∈ L2(0, T ;H−1(Ω)). The existence of a null con-
trol F 1 is therefore given by Proposition 2.1. Choosing the control F 1 which minimizes together with the
corresponding solution Y 1 the functional J defined in Proposition 2.1, we get the following estimate (since
Y 1(·, 0) = 0)

‖ρ Y 1‖L2(QT ) + ‖ρ0F
1‖L2(qT ) ≤ C‖ρ2(∂ty −∆y + g(y)− f1ω)‖L2(0,T ;H−1(Ω))

≤ C
√
E(y, f)

(3.5)

and

‖ρ1 Y
1‖L∞(0,T ;L2(Ω)) + ‖ρ1∇Y 1‖L2(QT )d ≤ C‖ρ2(∂ty −∆y + g(y)− f1ω)‖L2(0,T ;H−1(Ω))

≤ C
√
E(y, f)

(3.6)

for some C = C(s,Ω, ω, T, ‖g‖∞) independent of Y 1, F 1 and y. Eventually, from the equation solved by Y 1,

‖ρ2(∂tY
1 −∆Y 1 − F 1 1ω)‖L2(0,T ;H−1(Ω)) ≤ ‖ρ2g

′(y)Y 1‖L2(QT ) + ‖ρ2(∂ty −∆y + g(y)− f 1ω)‖L2(0,T ;H−1(Ω))

≤ ‖(T − t)1/2g′(y)‖∞‖ρY 1‖L2(QT ) +
√

2E(y, f)

≤ max
(
1, ‖(T − t)1/2g′‖∞

)
C
√
E(y, f)

(3.7)
which proves that (Y 1, F 1) belongs to A0.

Remark 3.2. From (3.3), we check that z = y − Y 1 is a null controlled solution satisfying{
∂tz −∆z + g′(y)z = (f − F 1)1ω + g′(y)y − g(y) in QT ,

z = 0 on ΣT , z(·, 0) = u0 in Ω
(3.8)

by the control (f − F 1) ∈ L2(ρ0, qT ).

Remark 3.3. We emphasize that the presence of a right hand side in (3.3), namely yt −∆y + g(y) − f 1ω,
forces us to introduce the weights ρ0, ρ1, ρ2 and ρ in the spaces A0 and A. This can be seen from the equality
(2.9): since ρ−1

2 q belongs to L2(0, T ;H1(Ω)) for all q ∈ P , we need to impose that ρ2B ∈ L2(0, T ;H−1(Ω))
with here B = ∂ty −∆y + g(y) − f 1ω. Working with the linearized equation (1.7) (introduced in [16]) which
does not make appear an additional right hand side, we may avoid the introduction of Carleman type weights.
Actually, the authors in [16] consider controls of minimal L∞(qT ) norm. Introduction of weights allows however
the characterization (2.9), which is very convenient at the practical level. We refer to [14] where this is discussed
at length.

The interest of the pair (Y 1, F 1) ∈ A0 lies in the following result.
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Proposition 3.4. Let (y, f) ∈ A and let (Y 1, F 1) ∈ A0 be a solution of (3.3). Then the derivative of E at the

point (y, f) ∈ A along the direction (Y 1, F 1) given by E′(y, f) · (Y 1, F 1) := limη→0,η 6=0
E((y,f)+η(Y 1,F 1))−E(y,f)

η
satisfies

E′(y, f) · (Y 1, F 1) = 2E(y, f). (3.9)

Proof. We preliminary check that for all (Y, F ) ∈ A0, E is differentiable at the point (y, f) ∈ A along the
direction (Y, F ) ∈ A0. For all λ ∈ R, simple computations lead to the equality

E(y + λY, f + λF ) = E(y, f) + λE′(y, f) · (Y, F ) + h((y, f), λ(Y, F ))

with

E′(y, f) · (Y, F ) :=

(
ρ2(∂ty −∆y + g(y)− f 1ω), ρ2(∂tY −∆Y + g′(y)Y − F 1ω)

)
L2(0,T ;H−1(Ω))

(3.10)

and

h((y, f), λ(Y, F )) =λ

(
ρ2(∂tY −∆Y + g′(y)Y − F 1ω), ρ2l(y, λY )

)
L2(0,T ;H−1(Ω))

+
λ2

2
‖ρ2(∂tY −∆Y + g′(y)Y − F 1ω)‖2L2(0,T ;H−1(Ω))

+

(
ρ2(∂ty −∆y + g(y)− f 1ω), ρ2l(y, λY )

)
L2(0,T ;H−1(Ω))

+
1

2
‖ρ2l(y, λY )‖2L2(0,T ;H−1(Ω))

where l(y, λY ) = g(y + λY )− g(y)− λg′(y)Y .
The application (Y, F )→ E′(y, f) · (Y, F ) is linear and continuous from A0 to R as it satisfies

|E′(y, f) · (Y, F )|
≤ ‖ρ2(∂ty −∆y + g(y)− f 1ω)‖L2(0,T ;H−1(Ω))‖ρ2(∂tY −∆Y + g′(y)Y − F 1ω)‖L2(0,T ;H−1(Ω))

≤
√

2E(y, f)

(
‖ρ2(∂tY −∆Y − F 1ω)‖L2(0,T ;H−1(Ω)) + ‖ρ2g

′(y)Y ‖L2(QT )

)
≤
√

2E(y, f)

(
‖ρ2(∂tY −∆Y − F 1ω)‖L2(0,T ;H−1(Ω)) + ‖(T − t)1/2g′(y)‖L∞(QT )‖ρY ‖L2(QT )

)
≤
√

2E(y, f) max

(
1, ‖(T − t)1/2g′‖∞

)
‖(Y, F )‖A0

.

Similarly, for all λ ∈ R?∣∣∣∣ 1λh((y, f), λ(Y, F ))

∣∣∣∣ ≤(λ‖ρ2(∂tY −∆Y + g′(y)Y − F 1ω)‖L2(0,T ;H−1(Ω)) +
√

2E(y, f)

+
1

2
‖ρ2l(y, λY )‖L2(0,T ;H−1(Ω))

)
1

λ
‖ρ2l(y, λY )‖L2(0,T ;H−1(Ω))

+
λ

2
‖ρ2(∂tY −∆Y + g′(y)Y − F 1ω)‖2L2(0,T ;H−1(Ω)).
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Since g′ ∈ L∞(R) we have for a.e. (x, t) ∈ QT :

ρ2

∣∣∣∣ 1λl(y, λY )

∣∣∣∣ = ρ2

∣∣∣g(y + λY )− g(y)

λ
− g′(y)Y

∣∣∣ ≤ 2‖g′‖∞|ρ2Y |

and ρ2Y ∈ L2(QT ). Moreover, for a.e. (x, t) ∈ QT , ρ2| 1λ l(y, λY )| = ρ2| g(y+λY )−g(y)
λ − g′(y)Y | → 0 as λ→ 0; it

follows from the Lebesgue’s dominated convergence theorem that 1
λ‖ρ2l(y, λY )‖L2(QT ) → 0 as λ→ 0. It is now

easy to see that h((y, f), λ(Y, F )) = o(λ) and that the functional E is differentiable at the point (y, f) ∈ A along
the direction (Y, F ) ∈ A0. Eventually, the equality (3.9) follows from the definition of the pair (Y 1, F 1) given
in (3.3).

Remark that from the equality (3.10), the derivative E′(y, f) is independent of (Y, F ). We can then define

the norm ‖E′(y, f)‖(A0)′ := sup(Y,F )∈A0\{0}
E′(y,f)·(Y,F )
‖(Y,F )‖A0

associated with A′0, the topological dual of A0.

Combining the equality (3.9) and the inequality (3.4), we deduce the following estimates of E(y, f) in term
of the norm of E′(y, f).

Proposition 3.5. For any (y, f) ∈ A, the inequalities hold true

C1(s,Ω, ω, T, ‖g′‖∞)‖E′(y, f)‖A′0 ≤
√
E(y, f) ≤ C2(s,Ω, ω, T, ‖g′‖∞)‖E′(y, f)‖A′0

for some constants C1, C2 > 0.

Proof. (3.9) rewrites E(y, f) = 1
2E
′(y, f) · (Y 1, F 1) where (Y 1, F 1) ∈ A0 is solution of (3.3) and therefore, with

(3.4)

E(y, f) ≤ 1

2
‖E′(y, f)‖A′0‖(Y

1, F 1)‖A0 ≤ C(s,Ω, ω, T, ‖g′‖∞)‖E′(y, f)‖A′0
√
E(y, f).

On the other hand, for all (Y, F ) ∈ A0 (see the proof of Prop. 3.4):

|E′(y, f) · (Y, F )| ≤
√

2E(y, f) max

(
1, ‖(T − t)1/2g′‖∞

)
‖(Y, F )‖A0

and thus C1(s,Ω, ω, T, ‖g′‖∞)‖E′(y, f)‖A′0 ≤
√
E(y, f).

In particular, any critical point (y, f) ∈ A for E (i.e. for which E′(y, f) vanishes) is a zero for E, a pair
solution of the controllability problem. In other words, any sequence (yk, fk)k>0 satisfying ‖E′(yk, fk)‖A′0 → 0
as k →∞ is such that E(yk, fk)→ 0 as k →∞. We insist that this property does not imply the convexity of
the functional E (and a fortiori the strict convexity of E, which actually does not hold here in view of the
multiple zeros for E) but show that a minimizing sequence for E can not be stuck in a local minimum. Far from
the zeros of E, in particular, when ‖(y, f)‖A →∞, the right hand side inequality indicates that E tends to be
convex. On the other hand, the left inequality indicates that the functional E is flat around its zero set. As a
consequence, gradient based minimizing sequences may achieve a very low rate of convergence (we refer to [26]
and also [24] devoted to the Navier-Stokes equation where this phenomenon is observed).

3.2. A strongly converging minimizing sequence for E

We now examine the convergence of an appropriate sequence (yk, fk)k∈N ∈ A. In this respect, we observe that
the equality (3.9) shows that −(Y 1, F 1) given by the solution of (3.3) is a descent direction for the functional
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E. Therefore, we can define at least formally, for any m ≥ 1, a minimizing sequence (yk, fk)k∈N as follows:


(y0, f0) ∈ A,
(yk+1, fk+1) = (yk, fk)− λk(Y 1

k , F
1
k ), k ≥ 0,

λk = argminλ∈[0,m]E
(
(yk, fk)− λ(Y 1

k , F
1
k )
) (3.11)

where (Y 1
k , F

1
k ) ∈ A0 is such that F 1

k is a null control for Y 1
k , solution of

{
∂tY

1
k −∆Y 1

k + g′(yk)Y 1
k = F 1

k 1ω + (∂tyk −∆yk + g(yk)− fk1ω) in QT ,

Y 1
k = 0 on ΣT , Y 1

k (·, 0) = 0 in Ω
(3.12)

and minimizes the functional J defined in Proposition 2.1. The direction Y 1
k vanishes when E vanishes. The

real number m ≥ 1 is arbitrarily fixed. It is used in the proof of convergence to bound the sequence of optimal
descent steps λk.

We first perform the analysis assuming the non linear function g in W1, notably that g′′ ∈ L∞(R) (the
derivatives here are in the sense of distribution). We first prove the following lemma.

Lemma 3.6. Assume g ∈ W1. Let (y, f) ∈ A and (Y 1, F 1) ∈ A0 defined by (3.3). For any λ ∈ R and k ∈ N,
the following estimate holds

√
E
(
(y, f)− λ(Y 1, F 1)

)
≤
√
E(y, f)

(
|1− λ|+ λ2C(s,Ω, ω, T, ‖g′‖∞)‖g′′‖∞

√
E(y, f)

)
. (3.13)

Proof. With g ∈W1, we write that

|l(y,−λY 1)| = |g(y − λY 1)− g(y) + λg′(y)Y 1| ≤ λ2

2
‖g′′‖∞(Y 1)2 (3.14)

and obtain that

2E
(
(y, f)− λ(Y 1, F 1)

)
=

∥∥∥∥ρ2

(
∂ty −∆y + g(y)− f 1ω

)
− λρ2

(
∂tY

1 −∆Y 1 + g′(y)Y 1 − F 1ω
)

+ ρ2l(y,−λY 1)

∥∥∥∥2

L2(0,T ;H−1(Ω))

=

∥∥∥∥ρ2(1− λ)
(
∂ty −∆y + g(y)− f 1ω

)
+ ρ2l(y,−λY 1)

∥∥∥∥2

L2(0,T ;H−1(Ω))

≤
(∥∥ρ2(1− λ)

(
∂ty −∆y + g(y)− f 1ω

)∥∥
L2(0,T ;H−1(Ω))

+
∥∥ρ2l(y,−λY 1)

∥∥
L2(0,T ;H−1(Ω))

)2

≤ 2

(
|1− λ|

√
E(y, f) +

λ2

2
√

2
‖g′′‖∞‖ρ2(Y 1)2‖L2(0,T ;H−1(Ω))

)2

.

(3.15)
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For d = 3 (similar estimates hold for d = 1 and d = 2), using the continuous embedding of L6/5(Ω) into H−1(Ω),
we have:

‖ρ2(Y 1)2‖2L2(0,T ;H−1(Ω)) ≤ C(Ω)‖ρ2(Y 1)2‖2L2(0,T ;L6/5(Ω))

≤ C(Ω)

∫ T

0

‖ρ2Y
1‖2L3(Ω)‖Y

1‖2L2(Ω)

≤ C(Ω)

∫ T

0

‖ρY 1‖L2(Ω)‖ρ1Y
1‖L6(Ω)‖Y 1‖2L2(Ω)

≤ C(Ω)

∫ T

0

‖ρY 1‖L2(Ω)‖∇(ρ1Y
1)‖L2(Ω)d‖Y 1‖2L2(Ω).

From the definition of ρ and ρ1 we have ∇ρ1 = s∇β
`(t)(T−t)ρ1 = s∇β

`(t) ρ and therefore a.e. t in (0, T )

‖∇(ρ1Y
1)‖L2(Ω)d ≤ ‖∇(ρ1)Y 1‖L2(Ω)d + ‖ρ1∇Y 1‖L2(Ω)d

≤ C(s,Ω, ω, T, ‖g′‖∞)‖ρY 1‖L2(Ω) + ‖ρ1∇Y 1‖L2(Ω)d

and thus

‖ρ2(Y 1)2‖2L2(0,T ;H−1(Ω)) ≤ C(s,Ω, ω, T, ‖g′‖∞)‖ρ1Y
1‖2L∞(0,T ;L2(Ω))‖ρY

1‖L2(QT )

×
(
‖ρY 1‖L2(QT ) + ‖ρ1∇Y 1‖L2(QT )d

)
.

Using (3.5) and (3.6), we obtain

‖ρ0(Y 1)2‖2L2(0,T ;H−1(Ω)) ≤ C(s,Ω, ω, T, ‖g′‖∞)E(y, f)2 (3.16)

from which we get (3.13).

Proceeding as in [23], we are now in position to prove the following convergence result for the sequence
(E(yk, fk))(k∈N).

Proposition 3.7. Assume g ∈ W1. Let (yk, fk)k∈N be the sequence defined by (3.11). Then E(yk, fk) → 0 as
k →∞. Moreover, there exists k0 ∈ N such that the sequence (E(yk, fk))k≥k0 decays quadratically.

Proof. We define the function pk as follows

pk(λ) = |1− λ|+ λ2c1
√
E(yk, fk) with c1 := C(s,Ω, ω, T, ‖g′‖∞)‖g′′‖∞.

Lemma 3.6 with (y, f) = (yk, fk) allows to write that

c1
√
E(yk+1, fk+1) ≤ c1

√
E(yk, fk)pk(λ̃k), ∀k ≥ 0 (3.17)

with pk(λ̃k) := minλ∈[0,m] pk(λ).

If c1
√
E(y0, f0) < 1 (and thus c1

√
E(yk, fk) < 1 for all k ∈ N) then

pk(λ̃k) = min
λ∈[0,m]

pk(λ) ≤ pk(1) = c1
√
E(yk, fk)
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and thus

c1
√
E(yk+1, fk+1) ≤

(
c1
√
E(yk, fk)

)2
(3.18)

implying that c1
√
E(yk, fk)→ 0 as k →∞ with a quadratic rate.

If now c1
√
E(y0, f0) ≥ 1, we check that I := {k ∈ N, c1

√
E(yk, fk) ≥ 1} is a finite subset of N. For all k ∈ I,

since c1
√
E(yk, fk) ≥ 1,

min
λ∈[0,m]

pk(λ) = min
λ∈[0,1]

pk(λ) = pk

( 1

2c1
√
E(yk, fk)

)
= 1− 1

4c1
√
E(yk, fk)

and thus, for all k ∈ I,

c1
√
E(yk+1, fk+1) ≤

(
1− 1

4c1
√
E(yk, fk)

)
c1
√
E(yk, fk) = c1

√
E(yk, fk)− 1

4
. (3.19)

This inequality implies that the sequence (c1
√
E(yk, fk))k∈N strictly decreases and then that the sequence

(pk(λ̃k))k∈N decreases as well. Thus the sequence (c1
√
E(yk, fk))k∈N decreases to 0 at least linearly and there

exists k0 ∈ N such that for all k ≥ k0, c1
√
E(yk, fk) < 1, that is I is a finite subset of N. Arguing as in the

first case, it follows that c1
√
E(yk, fk)→ 0 as k →∞. In both cases, remark that pk(λ̃k) decreases with respect

to k.

Remark 3.8. Writing from (3.19) that c1
√
E(yk, fk) ≤ c1

√
E(y0, f0)− k

4 for all k such that c1
√
E(yk, fk) ≥ 1,

we obtain that

k0 ≤
⌊

4
(
c1
√
E(y0, f0)− 1

)
+ 1

⌋

where bxc denotes the integer part of x ∈ R+.

We also have the following convergence of the optimal sequence (λk)k∈N.

Lemma 3.9. The sequence (λk)k∈N defined in (3.11) converges to 1 as k →∞.

Proof. In view of (3.15), we have, as long as E(yk, fk) > 0, since λk ∈ [0,m]

(1− λk)2 =
E(yk+1, fk+1)

E(yk, fk)
− 2(1− λk)

〈ρ2

(
∂tyk + ∆yk + g(yk)− fk 1ω

)
, ρ2l(yk, λkY

1
k )〉L2(0,T ;H−1(Ω))

E(yk, fk)

−

∥∥ρ2l(yk, λkY
1
k )
∥∥2

L2(0,T ;H−1(Ω))

2E(yk)

≤ E(yk+1, fk+1)

E(yk, fk)
− 2(1− λk)

〈ρ2

(
∂tyk + ∆yk + g(yk)− fk 1ω

)
, ρ2l(yk, λkY

1
k )〉L2(0,T ;H−1(Ω))

E(yk, fk)

≤ E(yk+1, fk+1)

E(yk, fk)
+ 2
√

2m

√
E(yk, fk)‖ρ2l(yk, λkY

1
k )‖L2(0,T ;H−1(Ω))

E(yk, fk)

≤ E(yk+1, fk+1)

E(yk, fk)
+ 2
√

2m
‖ρ2l(yk, λkY

1
k )‖L2(0,T ;H−1(Ω))√
E(yk, fk)

.
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But, from (3.14) and (3.16),

‖ρ2l(yk, λkY
1
k )‖L2(0,T ;H−1(Ω)) ≤

λ2
k

2
√

2
‖g′′‖∞‖ρ2(Y 1

k )2‖L2(0,T ;H−1(Ω))

≤ m2‖g′′‖∞C(s, T,Ω, ω, ‖g′‖∞)E(yk, fk)

and thus

(1− λk)2 ≤ E(yk+1, fk+1)

E(yk, fk)
+m2‖g′′‖∞C(s,Ω, ω, T, ‖g′‖∞)

√
E(yk, fk).

Consequently, since E(yk, fk)→ 0 and E(yk+1,fk+1)
E(yk,fk) → 0, we deduce that (1− λk)2 → 0.

We are now in position to prove the following convergence result.

Theorem 3.10. Assume g ∈W1. Let (yk, fk)k∈N be the sequence defined by (3.11). Then, (yk, fk)k∈N → (y, f)
in A where f is a null control for y solution of (1.1). Moreover, the convergence is quadratic after a finite
number of iterates.

Proof. For all k ∈ N, let Fk = −
∑k
n=0 λnF

1
n and Yk =

∑k
n=0 λnY

1
n . Let us prove that (Yk, Fk)k∈N converges in

A0, i.e. that the series
∑
λn(F 1

n , Y
1
n ) converges in A0. Using that ‖(Y 1

k , F
1
k )‖A0 ≤ C

√
E(yk, fk) for all k ∈ N

(see (3.4)), we write

k∑
n=0

λn‖(Y 1
n , F

1
n)‖A0

≤ m
k∑

n=0

‖(Y 1
n , F

1
n)‖A0

≤ C
k∑

n=0

√
E(yn, fn).

But
(√

E(yn, fn)
)
k∈N and

(
pk(λ̃k)

)
k∈N are decreasing sequences so that

√
E(yn, fn) ≤ pn(λ̃n)

√
E(yn−1, fn−1) ≤ p0(λ̃0)

√
E(yn−1, fn−1) ≤ p0(λ̃0)n

√
E(y0, f0).

Since p0(0) = 1 and p′0(0) = −1, we infer that p0(λ̃0) < 1 leading to

k∑
n=0

√
E(yn, fn) ≤

√
E(y0, f0)

1− p0(λ̃0)k+1

1− p0(λ̃0)
≤
√
E(y0, f0)

1− p0(λ̃0)
.

We deduce that the series
∑
n λn(Y 1

n , F
1
n) is normally convergent and so convergent. Consequently, there exists

(Y, F ) ∈ A0 such that (Yk, Fk)k∈N converges to (Y, F ) in A0.
Denoting y = y0 + Y and f = f0 + F , we then have that (yk, fk)k∈N = (y0 + Yk, f0 + Fk)k∈N converges to

(y, f) in A.
It suffices now to verify that the limit (y, f) satisfies E(y, f) = 0. We write that (Y 1

k , F
1
k ) ∈ A0 and (yk, fk) ∈ A

solve {
∂tY

1
k −∆Y 1

k + g′(yk) · Y 1
k = F 1

k 1ω + ∂tyk −∆yk + g(yk)− fk1ω in QT ,

Y 1
k = 0 on ΣT , Y 1

k (·, 0) = 0 in Ω.
(3.20)

Using that (Y 1
k , F

1
k ) goes to zero in A0 as k → ∞, we pass to the limit in (3.20) and get, since g ∈ W1, that

(y, f) ∈ A solves (1.1), that is E(y, f) = 0.
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In particular, along the sequence (yk, fk)k∈N defined by (3.11), we have the following coercivity property for
E, which confirms the strong convergence of the sequence (yk, fk)k∈N.

Proposition 3.11. Let (yk, fk)k∈N defined by (3.11) and (y, f) its limit. Then, there exists a positive constant
C = C(s, T,Ω, ω, ‖g′‖∞) such that

‖(y, f)− (yk, fk)‖A0
≤ C

√
E(yk, fk), ∀k > 0. (3.21)

Proof. We write that

‖(y, f)− (yk, fk)‖A0 =

∥∥∥∥ ∞∑
p=k+1

λp(Y
1
p , F

1
p )

∥∥∥∥
A0

≤ m
∞∑

p=k+1

‖(Y 1
p , F

1
p )‖A0

≤ mC

∞∑
p=k+1

√
E(yp, fp)

≤ mC

∞∑
p=k+1

p0(λ̃0)p−k
√
E(yk, fk)

≤ mC
p0(λ̃0)

1− p0(λ̃0)

√
E(yk, fk).

We emphasize, in view of the non uniqueness of the zeros of E, that an estimate (similar to (3.21)) of the form

‖(y, f) − (y, f)‖A0
≤ C

√
E(y, f) does not hold for all (y, f) ∈ A. We also mention the fact that the sequence

(yk, fk)k>0 and its limits (y, f) are uniquely determined from the initial guess (y0, f0) and from our criterion
of selection of the control F 1. In other words, the solution (y, f) is unique up to the element (y0, f0) and the
functional J defined in Proposition 2.1.

3.3. The case g ∈Wp, 0 ≤ p < 1 and additional remarks

The results of the previous subsection devoted to the case p = 1 still hold if we assume only that g ∈Wp for

some p ∈ (0, 1). For any g ∈ Wp, we recall the notation [g′]p := supa,b∈R,a 6=b
|g′(a)−g′(b)|
|a−b|p . We have the following

result.

Theorem 3.12. Assume that there exists p ∈ (0, 1) such that g ∈ Wp. Let (yk, fk)k∈N be the sequence defined
by (3.11). Then, (yk, fk)k∈N → (y, f) in A where f is a null control for y solution of (1.1). Moreover, after a
finite number of iterates, the rate of convergence is equal to 1 + p.

Proof. We briefly sketch the proof, close to the proof of Theorem 3.10 for the case p = 1.
–We first prove for any (y, f) ∈ A and λ ∈ R the following inequality (similar to the inequality (3.13))

E
(
(y, f)− λ(Y 1, F 1)

)
≤ E(y, f)

(
|1− λ|+ λ1+pc1E(y, f)p/2

)2

(3.22)
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with c1 = C(s, T,Ω, ω, ‖g′‖∞)[g′]p and (Y 1, F 1) ∈ A0 the solution of (3.12) which minimizes J . For any (x, y) ∈
R2 and λ ∈ R, we write g(x+ λy)− g(x) =

∫ λ
0
yg′(x+ ξy)dξ leading to

|g(x+ λy)− g(x)− λg′(x)y| ≤
∫ λ

0

|y||g′(x+ ξy)− g′(x)|dξ

≤
∫ λ

0

|y|1+p|ξ|p |g
′(x+ ξy)− g′(x)|

|ξy|p
dξ

≤ [g′]s|y|1+p λ
1+p

1 + p
.

It follows that

|l(y,−λY 1)| = |g(y − λY 1)− g(y) + λg′(y)Y 1| ≤ [g′]p
λ1+p

1 + p
|Y 1|1+p

and ∥∥ρ2l(y, λY
1)
∥∥
L2(0,T ;H−1(Ω))

≤
∥∥ρ2l(y, λY

1)
∥∥
L2(0,T ;L6/5(Ω))

≤ [g′]p
λ1+p

1 + p

∥∥ρ2|Y 1|1+p
∥∥
L2(0,T ;L6/5(Ω))

.

But

∥∥ρ2|Y 1|1+p
∥∥2

L2(0,T ;L6/5(Ω))
=

∫ T

0

∥∥ρ2|Y 1|1+p
∥∥2

L6/5(Ω)
≤
∫ T

0

∥∥ρ2Y
1
∥∥2

L3(Ω)

∥∥|Y 1|p
∥∥2

L2(Ω)

≤
∫ T

0

∥∥ρY 1
∥∥
L2(Ω)

∥∥ρ1Y
1
∥∥
L6(Ω)

∥∥Y 1
∥∥2p

L2p(Ω)

≤ C(Ω)

∫ T

0

∥∥ρY 1
∥∥
L2(Ω)

∥∥∇(ρ1Y
1)
∥∥
L2(Ω)d

∥∥Y 1
∥∥2p

L2p(Ω)

≤ C(Ω)
∥∥ρY 1

∥∥
L2(QT )

∥∥∇(ρ1Y
1)
∥∥
L2(QT )d

∥∥Y 1
∥∥2p

L∞(0,T ;L2s(Ω))

≤ C(Ω)
∥∥ρY 1

∥∥
L2(QT )

∥∥∇(ρ1Y
1)
∥∥
L2(QT )d

∥∥Y 1
∥∥2p

L∞(0,T ;L2(Ω))
.

Since ‖∇(ρ1Y
1)‖L2(Ω)d ≤ C(s,Ω, ω, T, ‖g′‖∞)‖ρY 1‖L2(Ω) + ‖ρ1∇Y 1‖L2(Ω)d , we finally get

∥∥ρ2|Y 1|1+s
∥∥2

L2(0,T ;L6/5(Ω))
≤ C(s,Ω, ω, T, ‖g′‖∞)‖ρY 1‖L2(QT )

×
(
‖ρY 1‖L2(QT ) + ‖ρ1∇Y 1‖L2(QT )d

)
‖ρ1Y ‖2pL∞(0,T ;L2(Ω)).

The first inequality of (3.15) then leads to (3.22).
– We then check that the sequence (E(yk, fk))k∈N goes to zero as k →∞. We define pk as follows

pk(λ) = |1− λ|+ λ1+pc1E(yk, fk)p/2

so that √
E(yk+1, fk+1) ≤ pk(λ̃k)

√
E(yk, fk), ∀k ≥ 0
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with pk(λ̃k) = minλ∈[0,m] pk(λ). We have pk(λ̃k) := minλ∈[0,m] pk(λ) ≤ pk(1) = c1E(yk, fk)p/2 and thus

c2
√
E(yk+1, fk+1) ≤

(
c2
√
E(yk, fk)

)1+p
, c2 := c

1/p
1 .

If c2
√
E(y0, f0) < 1 (and thus c2

√
E(yk, fk) < 1 for all k ∈ N) then the above inequality implies that

c2
√
E(yk, fk)→ 0 as k →∞. If c2

√
E(y0, f0) ≥ 1 then let I = {k ∈ N, c2

√
E(yk, fk) ≥ 1}. I is a finite subset

of N; for all k ∈ I, since c2
√
E(yk, fk) ≥ 1

min
λ∈[0,m]

pk(λ) = min
λ∈[0,1]

pk(λ) = pk

( 1

(1 + p)1/pc2
√
E(yk, fk)

)
= 1− p

(1 + p)
1
p +1

1

c2
√
E(yk, fk)

and thus, for all k ∈ I,

c2
√
E(yk+1, fk+1) ≤

(
1− p

(1 + p)
1
p +1

1

c2
√
E(yk, fk)

)
c2
√
E(yk, fk) = c2

√
E(yk, fk)− p

(1 + p)
1
p +1

.

This inequality implies that the sequence (c2
√
E(yk, fk))k∈N strictly decreases and then that the sequence

(pk(λ̃k))k∈N decreases as well. Thus the sequence (c2
√
E(yk, fk))k∈N decreases to 0 at least linearly and there

exists k0 ∈ N such that for all k ≥ k0, c2
√
E(yk, fk) < 1, that is I is a finite subset of N. Similarly, the optimal

parameter λk goes to one as k →∞.
– Using that the sequence (E(yk, fk))k∈N goes to zero, we conclude exactly as in the proof of Theorem 3.10.

On the other hand, if we assume only that g belongs to W0, then we can not expect the convergence of the
sequence (yk, fk)k>0 if ‖g′‖∞ is too large.

Remark 3.13. Assume that g ∈W0. Let any (y, f) ∈ A and (Y 1, F 1) the solution of (3.3) which minimizes J .
The following inequality holds:

√
E
(
(y, f)− λ(Y 1, F 1)

)
≤
√
E(y, f)

(
|1− λ|+ λC(s,Ω, ω, T, ‖g′‖∞)‖g′‖∞

)
for all λ ∈ R where C(s,Ω, ω, T, ‖g′‖∞) ≥ 0 increases with ‖g′‖∞. Indeed, this is a consequence of the following
inequality, for all (y, f) ∈ A, (Y, F ) ∈ A0:

2E
(
(y, f)− λ(Y 1, F 1)

)
≤
(∥∥ρ2(1− λ)

(
∂ty −∆y + g(y)− f 1ω

)∥∥
L2(0,T ;H−1(Ω))

+
∥∥ρ2l(y, λY

1)
∥∥
L2(0,T ;H−1(Ω))

)2

≤
(
|1− λ|

√
2E(y, f) + 2λ‖(T − t)1/2g′(y)‖L∞(QT )‖ρY ‖L2(QT )

)2

.

Therefore, the sequence (E(yk, fk))k∈N decreases to 0 if g satisfies

C(s,Ω, ω, T, ‖g′‖∞)‖g′‖∞ < 1.

Remark 3.14. The estimate (3.4) is a key point in the convergence analysis and is independent of the choice of
the functional J defined by J(Y 1, F 1) = 1

2‖ρ0F
1‖2L2(qT ) + 1

2‖ρY ‖
2
L2(QT ) (see Prop. 2.1) in order to select a pair

(Y 1, F 1) in A0. Thus, we may consider other weighted functionals, for instance J(Y 1, F 1) = 1
2‖ρ0F

1‖2L2(qT ) as

discussed in [27].
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Remark 3.15. If we introduce F : A → L2(0, T ;H−1(Ω)) by F (y, f) := ρ2(∂ty−∆y+ g(y)− f 1ω), we get that
E(y, f) = 1

2‖F (y, f)‖2L2(0,T ;H−1(Ω)) and observe that, for λk = 1, the algorithm (3.11) coincides with the Newton
algorithm associated with the mapping F . This explains notably the quadratic convergence of Theorem 3.10 in
the case g ∈ W1 for which we have a control of g′′ in L∞(QT ). The optimization of the parameter λk allows
to get a global convergence of the algorithm and leads to the so-called damped Newton method (for F ). Under
general hypothesis, global convergence for this kind of method is achieved, with a linear rate (for instance, we
refer to [10], Thm. 8.7). As far as we know, the analysis of damped type Newton methods for partial differential
equations has deserved very few attention in the literature. We mention [22, 30] in the context of fluid mechanics.

Remark 3.16. Suppose to simplify that λk equals one (corresponding to the standard Newton method). Then,
for each k, the optimal pair (Y 1

k , F
1
k ) ∈ A0 is such that the element (yk+1, fk+1) minimizes over A the functional

(z, v) → J(z − yk, v − fk). Instead, we may also select the pair (Y 1
k , F

1
k ) such that the element (yk+1, fk+1)

minimizes the functional (z, v)→ J(z, v). This leads to the following sequence (yk, fk)k∈N in A defined by{
∂tyk+1 −∆yk+1 + g′(yk)yk+1 = fk+11ω + g′(yk)yk − g(yk) in QT ,

yk = 0 on ΣT , (yk+1(·, 0), yk+1,t(·, 0)) = (u0, u1) in Ω.
(3.23)

This is actually the formulation used in [13]. This formulation is different and the analysis of convergence (at
least in the framework of our least-squares setting) is less direct because it is necessary to have a control of the
right hand side term g′(yk)yk − g(yk).

Remark 3.17. We emphasize that the explicit construction used here allows to recover the null controllability
property of (1.1) for nonlinearities g in Wp for some p ∈ (0, 1]. We do not use a fixed point argument as in [16].
On the other hand, the conditions we make on g are more restrictives that in [16].

Eventually, it is also important to remark that these additional conditions does not imply a priori a con-
traction property of the operator Λ introduced in [16]. If we consider the controlled pair associated with the
weighted functional J , we can show as in [16] (where the control of minimal L∞(QT ) norm is used) that there
exists a real M large enough such that Λ(B∞(0,M)) ⊂ B∞(0,M) (see [21]). Therefore, let zi in L∞(QT ),
i = 1, 2 and assume that g̃′ ∈ L∞(0,M). If (yzi , fzi) = (Λ(zi), fzi), i = 1, 2 are controlled pairs for the system
(1.7) minimizing the functional J , then the following inequality holds:

‖ρ
(
Λ(z1)− Λ(z2)

)
‖L2(QT ) ≤ C(s,Ω, ω, T, ‖g̃‖L∞(0,M))‖g̃′‖L∞(0,M)‖u0‖L2(Ω)‖ρ(z1 − z2)‖L2(QT ) (3.24)

where C(s,Ω, ω, T, ‖g̃‖∞) is the constant appearing in (2.5). In view of Lemma 2.6 the pair (yi, fi) = (Λ(zi), fi),
i = 1, 2 satisfies yi = ρ−2L?g̃(zi)pi and fi = −ρ−2

0 pi|qT for pi ∈ Pg̃(zi) solution of

(pi, q)Pg̃(zi)
=

∫
Ω

u0q(0), ∀q ∈ Pg̃(zi).

i.e. ∫
QT

ρ−2L?g̃(zi)pi L
?
g̃(zi)

q +

∫
qT

ρ−2
0 pi q =

∫
Ω

u0q(0), ∀q ∈ Pg̃(zi)

leading to ∫
QT

ρ−2L?g̃(z2)(p2 − p1)L?g̃(z2)q +

∫
qT

ρ−2
0 (p2 − p1) q

= −
∫
QT

ρ−2

((
L?g̃(z2) − L

?
g̃(z1)

)
p1L

?
g̃(z2)q + L?g̃(z1)p1

(
L?g̃(z2) − L

?
g̃(z1)

)
q

)
∀q ∈ Pg̃(zi).
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Using that (L?g̃(z2) − L
?
g̃(z1))q = (g̃(z2)− g̃(z1))q for all q ∈ Pg̃(zi) and taking q = p2 − p1, we obtain

‖p2 − p1‖2Pg̃(z2)
= ‖ρ−1L?g̃(z2)(p2 − p1)‖2L2(QT ) + ‖ρ−1

0 (p2 − p1)‖2L2(qT )

≤ ‖ρ−1
(
g̃(z2)− g̃(z1)

)
p1‖L2(QT )‖ρ−1L?g̃(z2)(p2 − p1)‖L2(QT )

+ ‖ρ−1L?g̃(z1)p1‖L2(QT )‖ρ−1
(
g̃(z2)− g̃(z1)

)
(p2 − p1)‖L2(QT )

≤ ‖ρ−1
(
g̃(z2)− g̃(z1)

)
p1‖L2(QT )‖p2 − p1‖Pg̃(z2)

+ ‖ρΛ(z1)‖L2(QT )‖ρ−1
(
g̃(z2)− g̃(z1)

)
(p2 − p1)‖L2(QT ).

(3.25)
Moreover, from Lemma 3.2 of [13], there exists C > 0 such that ‖(ξρ)−1q‖L∞(QT ) ≤ C‖q‖Pg̃(zi)

for all q ∈ Pg̃(zi)
and ξ = (T − t)−1/2. It follows that

‖ρ−1
(
g̃(z2)− g̃(z1)

)
p1‖L2(QT ) ≤ ‖ρ

(
g̃(z2)− g̃(z1)

)
‖L2(QT )‖ρ−2p1‖L∞(QT )

≤ ‖g̃′‖L∞(0,M)‖ρ(z1 − z2)‖L2(QT )‖ζρ−1‖L∞(QT )‖(ζρ)−1p1‖L∞(QT )

≤ C‖g̃′‖L∞(0,M)‖ζρ−1‖L∞(QT )‖p1‖Pg̃(zi)
‖ρ(z1 − z2)‖L2(QT )

(3.26)

and

‖ρ−1
(
g̃(z2)− g̃(z1)

)
(p2 − p1)‖L2(QT ) ≤ ‖g̃′‖L∞(0,M)‖ρ(z1 − z2)‖L2(QT )‖ζρ−1‖L∞(QT )‖(ζρ)−1(p2 − p1)‖L∞(QT )

≤ C‖g̃′‖L∞(0,M)‖ζρ−1‖L∞(QT )‖p2 − p1‖Pg̃(z2)
‖ρ(z1 − z2)‖L2(QT ).

Moreover, from (2.5), ‖ρΛ(z1)‖2 ≤ C‖u0‖2 while from Lemma 2.5 ‖p1‖Pg̃(z1)
≤ C‖u0‖2. Inequality (3.25) then

leads to

‖ρ−1L?g̃(z2)(p2 − p1)‖L2(QT ) ≤ C‖g̃′‖L∞loc‖ζρ
−1‖L∞(QT )‖ρ(z1 − z2)‖L2(QT )‖u0‖L2(Ω). (3.27)

Eventually,

‖ρ(Λ(z2)− Λ(z1))‖2 = ‖ρ−1L?g̃(z2)(p2)− ρ−1L?g̃(z1)(p1)‖L2(QT )

= ‖ρ−1L?g̃(z2)(p2 − p1)− ρ−1(L?g̃(z1) − L
?
g̃(z2))(p1)‖L2(QT )

= ‖ρ−1L?g̃(z2)(p2 − p1)− ρ−1(g̃(z1)− g̃(z2))(p1)‖L2(QT )

≤ ‖ρ−1L?g̃(z2)(p2 − p1)‖L2(QT ) + ‖ρ−1(g̃(z1)− g̃(z2))(p1)‖L2(QT ).

Combining (3.26) and (3.27), we finally get the estimate (3.24). It follows that a smallness assumption on
‖g̃′‖L∞(0,M) leads to a contraction property for Λ. We observe that g̃′(r) = (g′(r)r − g(r))/r2, r 6= 0 so that g̃′

belongs to L∞(0,M) if g′′ belongs to L∞(0,M).

4. Numerical illustrations

We illustrate in this section our results of convergence. We provide some practical details of the algorithm
(3.11) then discuss some experiments in the one dimensional case. Approximations of null controls for the heat
equation is a delicate issue: we mention the seminal work [5] dealing with the control of minimal L2-norm which
is very oscillatory near the final time t = T and therefore difficult to construct. We also mention [19, 29] where
this is discussed at length. On the other hand, introduction of very specific weights in the cost functional J
allows to avoid oscillatory phenomena and leads to a robust method and strong convergent approximations with
respect to the discretization parameter. We refer to [14, 15].
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4.1. Approximation – Algorithm

Each iterate of the algorithm (3.11) requires the determination of the null control of F 1
k for Y 1

k solution of{
∂tY

1
k −∆Y 1

k + g′(yk)Y 1
k = F 1

k 1ω +Bk in QT ,

Y 1
k = 0 on ΣT , Y 1

k (·, 0) = 0 in Ω
(4.1)

with Bk := ∂tyk −∆yk + g(yk)− fk1ω. From Lemma 2.6, the pair (F 1
k , Y

1
k ) which minimizes the functional J

is given by Y 1
k = ρ−2L?g′(yk)pk and F 1

k = −ρ−2
0 pk 1qT where pk ∈ P solves the formulation

∫
QT

ρ−1L?g′(yk)pk ρ
−1L?g′(yk)p+

∫
qT

ρ−1
0 pk ρ

−1
0 p =

∫ T

0

< ρ2Bk, ρ
−1
2 p >H−1(Ω),H1

0 (Ω) dt ∀p ∈ P. (4.2)

The numerical approximation of this variational formulation (of second order in time and fourth order in space)
has been discussed at length in [14]. In order, first to avoid numerical instabilities (due to the presence of
exponential functions in the formulation), and second to make appear explicitly the controlled solution, we
introduce the variables mk := ρ−1

0 pk, zk := ρ−1L?g′(yk)pk. Since ρ−1
2 p ∈ L2(0, T ;H1

0 (Ω)), we obtain notably that

ρ−1
2 p = ρ−1

2 ρ0m = (T − t)m ∈ L2(0, T ;H1
0 (Ω)). From (4.2), the pair (mk, zk) ∈ M× L2(QT ) with M := ρ−1

0 P
solves ∫

QT

zk z +

∫
qT

mkm =

∫ T

0

< ρ2Bk, (T − t)m >H−1(Ω),H1
0 (Ω) dt ∀(m, z) ∈M× L2(QT )

subjected to the constraint zk = ρ−1L?g′(yk)(ρ0mk). This constraint leads to the following well-posed mixed

formulation: find (mk, zk, ηk) ∈M× L2(QT )× L2(QT ) solution of

∫
QT

zk z +

∫
qT

mkm+

∫
QT

ηk

(
z − ρ−1L?g′(y)(ρ0m)

)
=

∫ T

0

< ρ2Bk, (T − t)m >H−1(Ω),H1
0 (Ω) dt, ∀(m, z) ∈M× L2(QT ),∫

QT

η

(
zk − ρ−1L?g′(yk)(ρ0m)

)
= 0, ∀η ∈ L2(QT ).

(4.3)

The variable ηk ∈ L2(QT ) acts as a Lagrange multiplier. Moreover, from the unique solution (mk, zk), we get
the explicit form of the controlled pair (Y 1

k , F
1
k ) as follows: Y 1

k = ρ−1zk, F 1
k = −ρ−1

0 mk 1qT .
The algorithm associated with the sequence (yk, fk)k∈N (see (3.11)) may be developed as follows: given ε > 0

and m ≥ 1,

1. We determine the controlled pair (y0, f0) ∈ A which minimizes the functional J associated with the
linear case (for which g ≡ 0 in (1.1)). (y0, f0) is given by (y0, f0) = (ρ−1z0,−ρ−1

0 m0 1qT ) where (m0, z0) ∈
M× L2(QT ) together with η ∈ L2(QT ) solve the formulation:

∫
QT

z z +

∫
qT

mm+

∫
QT

η

(
z − ρ−1L?0(ρ0m)

)
=

∫
Ω

ρ0(·, 0)u0m(·, 0), ∀(m, z) ∈M× L2(QT ),∫
QT

η

(
z − ρ−1L?0(ρ0m)

)
= 0, ∀η ∈ L2(QT ).

In view of Proposition 2.1, we check that (y0, f0) belongs to A.
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2. Assume now that (yk, fk) is computed for some k ≥ 0. We then compute ck ∈ L2(0, T ;H1
0 (Ω)), unique

solution of∫
QT

∇ck · ∇c =

∫ T

0

< ρ2(∂tyk −∆yk + g(yk)− fk 1ω), c >H−1(Ω),H1
0 (Ω), ∀c ∈ L2(0, T ;H1

0 (Ω))

and then E(yk, fk) = 1
2‖ρ2(∂tyk −∆yk + g(yk)− fk 1ω)‖2L2(0,T ;H−1(Ω)) = 1

2‖∇ck‖
2
L2(QT ).

3. If E(yk, fk) < ε, the approximate controlled pair is given by (y, f) = (yk, fk) and the algorithm stops.
Otherwise, we determine the solution (Y 1

k , F
1
k ) = (ρ−1zk,−ρ−1

0 mk 1qT ) where (mk, zk) together with ηk ∈
L2(QT ) solve (4.3).

4. Set (yk+1, fk+1) = (yk, fk) − λk(Y 1
k , F

1
k ) where λk minimizes over [0,m] the scalar functional λ →

E((yk, fk)− λ(Y 1
k , F

1
k )) defined by (see (3.15))

E
(
(yk, fk)− λ(Y 1

k , F
1
k )
)

=
1

2

∥∥∥∥ρ2(1− λ)
(
∂tyk −∆yk + g(yk)− fk 1ω

)
+ ρ2l(yk,−λY 1

k )

∥∥∥∥2

L2(0,T ;H−1(Ω))

with l(yk,−λY 1
k ) = g(yk − λY 1

k )− g(yk) + λg′(yk)Y 1
k . The minimization is performed using a line search

method. Return to step 2.

We use the conformal space-time finite element method described in [14]. We consider a regular family T =
{Th;h > 0} of triangulation of QT such that QT = ∪K∈ThK. The family T is indexed by h = maxK∈Th diam(K).
The variable zk and ηk are approximated with the space Ph = {ph ∈ C(QT ); ph|K ∈ P1(K),∀K ∈ Th} ⊂ L2(QT )
where P1(K) denotes the space of affine functions both in x and t. The variable mk is approximated with the
space Vh = {vh ∈ C1(QT ); vh|K ∈ P(K),∀K ∈ Th} ⊂ M where P(K) denotes the Hsieh-Clough-Tocher C1

element (we refer to [7], p. 356). These conformal approximation leads to a strong convergent approximation of
the controlled pairs (y0, f0), (Y 1

k , F
1
k ) (and then (yk, fk)) for every k ∈ N with respect to the parameter h for

the norm associated with P : precisely

‖ρ0(fk,h − fk)‖L2(qT ) + ‖ρ(yk,h − yk)‖L2(QT ) → 0 as h→ 0+, ∀k ∈ N.

Remark that this strong convergent approximation of the linear control fk together with the convergent result
of Theorem 3.10 allows to get, for k large enough and h small enough, an approximation fk,h of a control f for
the nonlinear equation (1.1), writing that

‖ρ0(f − fk,h)‖L2(qT ) ≤ ‖ρ0(f − fk)‖L2(qT ) + ‖ρ0(fk − fk,h)‖L2(qT ), ∀k ∈ N,∀h > 0.

4.2. Experiments

We present some numerical experiments in the one dimensional setting and Ω = (0, 1). The control is located
on ω = (0.1, 0.3). We consider T = 1/2; moreover, in order to reduce the dissipation of the solution of (1.1)
when g ≡ 0, we replace the term −∆y in (1.1) by −ν∆y with ν = 10−1. We consider the nonlinear even function
g as follows

g(r) =

{
l(r), r ∈ [−a, a],

− |r|α ln3/2(1 + |r|), |r| ≥ a

with a, α ∈ (0, 1). l denotes the (even) polynomial of order two so that g(0) = 0 and g ∈ C1([−a, a]): this requires

l(0) = 0, l(a) = −|a|α ln3/2(1 + |a|) and (−|r|α ln3/2(1 + |r|))′(r = a) = l′(a). We use in the sequel the values
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Table 1. Results for the algorithm (3.11); β = 10.

]iteration k
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2(qT )

‖fk−1‖L2(qT )
‖yk‖L2(QT ) ‖fk‖L2(qT )

√
2E(yk, fk) λk

0 − − 4.528 4.391 5.58× 10−1 0.961
1 1.83× 10−2 1.28× 10−3 4.651 4.402 1.81× 10−3 0.996
2 4.45× 10−4 9.07× 10−5 4.661 4.403 2.72× 10−6 1.
3 1.12× 10−6 3.74× 10−7 4.662 4.404 4.88× 10−8 −

Table 2. Results for the algorithm (3.11); β = 102.

]iteration k
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2(qT )

‖fk−1‖L2(qT )
‖yk‖L2(QT ) ‖fk‖L2(qT )

√
2E(yk, fk) λk

0 − − 45.28 43.91 9.31× 10−1 0.534
1 8.41× 10−1 1.23× 10−2 35.8908 38.76 1.12× 10−1 0.591
2 1.93× 10−1 2.91× 10−3 36.7302 38.92 3.40× 10−2 0.701
3 3.65× 10−2 1.01× 10−3 37.0919 39.12 6.12× 10−3 0.812
4 1.12× 10−2 2.69× 10−4 37.2124 40.01 1.12× 10−3 0.881
5 3.23× 10−4 4.23× 10−5 37.2426 40.04 2.13× 10−4 0.912
6 1.27× 10−5 6.23× 10−6 37.2518 40.05 3.05× 10−5 0.999
7 5.09× 10−6 8.12× 10−7 37.2520 40.05 2.10× 10−6 0.999
8 7.40× 10−8 8.21× 10−9 37.2520 40.05 5.10× 10−9 −

a = 10−1 and α = 0.95. We check that g belongs to W1, in particular g′′ ∈ L∞(R) in the sense of distribution.
Remark as well that g is sublinear.

As for the initial condition to be controlled, we consider simply u0(x) = β sin(πx) parametrized by β > 0.
The experiments are performed with the Freefem++ package developed at the Sorbonne university (see [18]),

very well-adapted to the space-time formulation we employ. The algorithm is stopped when the value E(yk, fk)
is smaller than ε = 10−6. We take the value m = 1 in (3.11), meaning that the optimal steps λk are searched in
the interval [0, 1].

Tables 1–3 collect some norms for the sequence (yk, fk)k∈N defined by the algorithm (3.11), initialized with the
linear controlled solution, for β = 10, β = 102 and β = 103 respectively. We use a structured mesh composed
of 20 000 triangles, 10 201 vertices and for which h ≈ 1.11 × 10−2. For β = 10, we observe the convergence
after 4 iterations. The optimal steps λk are very close to one since maxk |λk − 1| < 0.05; consequently, the
algorithm (3.11) provides similar results than the Newton algorithm (for which λk = 1 for all k). For β = 102,
the convergence remains fast and is reached after 8 iterates. We can observe that some optimal steps differ
from one since maxk |λk − 1| > 0.4. Nevertheless, the Newton algorithm still converges after 17 iterations. More
interestingly, the value β = 103 illustrates the features and robustness of the algorithm: the convergence is
achieved after 19 iterations. Far away from a zero of E, the variations of the error functional k → E(yk, fk) are
first quite slow, then increase to become very fast after 16 iterations, when λk is close to one. In contrast, for
β = 103, the Newton algorithm still initialized with the linear solution diverges (see Tab. 4). As discussed in
[22], in that case, a continuation method with respect to the parameter β may be combined with the Newton
algorithm.

On the contrary, we mention that with these data, the sequences obtained from the algorithm (1.8) based
on the linearization introduced in [16], remain bounded but do not converge, including for the value β = 10.
The convergence is observed notably with a larger size of the domain ω, for instance ω = (0.2, 0.8) (see [13],
Sect. 4.2).
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Table 3. Results for the algorithm (3.11); β = 103.

]iteration k
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2(qT )

‖fk−1‖L2(qT )
‖yk‖L2(QT ) ‖fk‖L2(qT )

√
2E(yk, fk) λk

0 − − 452.80 439.18 9.809× 10−1 0.4215
1 8.21× 10−1 6.00× 10−1 320.12 330.15 8.536× 10−1 0.3919
2 6.19× 10−1 3.29× 10−2 324.02 334.12 8.012× 10−1 0.1566
3 4.18× 10−1 1.37× 10−2 325.65 338.21 7.953× 10−1 0.1767
4 3.11× 10−2 1.34× 10−2 326.11 340.12 7.851× 10−1 0.0937
5 2.98× 10−2 5.85× 10−3 326.35 342.24 7.688× 10−2 0.0491
6 3.37× 10−2 7.00× 10−3 326.91 344.65 7.417× 10−2 0.1296
7 4.17× 10−2 9.69× 10−3 327.23 346.12 6.864× 10−2 0.1077
8 2.89× 10−2 8.09× 10−3 327.42 347.19 6.465× 10−2 0.0859
9 1.09× 10−2 6.40× 10−3 327.49 347.29 6.182× 10−2 0.0968
10 1.02× 10−2 6.72× 10−3 327.92 347.38 5.805× 10−2 0.1184
11 6.32× 10−3 6.91× 10−3 328.13 347.41 5.371× 10−2 0.1730
12 5.53× 10−3 7.41× 10−3 328.16 347.43 4.825× 10−2 0.2579
13 4.32× 10−3 8.22× 10−3 328.19 347.45 4.083× 10−2 0.3817
14 2.13× 10−3 8.14× 10−3 328.21 347.48 3.164× 10−2 0.4946
15 3.57× 10−3 7.34× 10−3 328.22 347.50 2.207× 10−2 0.8294
16 1.01× 10−3 6.68× 10−3 328.25 347.51 1.174× 10−2 0.9845
17 5.68× 10−4 3.84× 10−4 328.26 347.51 2.191× 10−3 0.9999
18 2.14× 10−4 5.85× 10−5 328.26 347.52 4.674× 10−5 1.
19 3.21× 10−6 1.57× 10−7 328.27 347.52 5.843× 10−7 −

Table 4. Results for the algorithm (3.11) with λk = 1 for all k; β = 103.

]iterate k
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2(qT )

‖fk−1‖L2(qT )
‖yk‖L2(QT ) ‖fk‖L2(qT )

√
2E(yk, fk)

0 − − 452.80 439.18 9.809× 10−1

1 9.76× 10−1 1.05 330.21 334.15 9.812× 10−1

2 1.02 1.11 344.37 336.12 1.356
3 1.27 1.13 366.92 338.23 4.319
4 1.18 1.25 406.06 343.12 4.799
5 1.01 1.14 481.53 405.03 13.131

5. Conclusions

We have constructed an explicit sequence of functions (fk)k∈N converging strongly for the L2(qT ) norm
towards a null control for the semilinear heat equation ∂ty−∆y+g(y) = f 1ω. The construction of the sequence is
based on the minimization of a L2(0, T ;H−1(Ω)) least-squares functional. The use of a specific descent direction
allows to achieve a global convergence (uniform with respect to the data and to the initial guess) with a super-
linear rate related to the regularity of the nonlinear function g. Numerical experiments confirm the robustness of
the approach. In this analysis, we have assumed in particular that the derivative of g is uniformly bounded in R.
This allows to get a uniform bound of the observability constant C(s,Ω, ω, T, ‖g′(y)‖∞) appearing in the estimate
(2.5). In order to remove this assumption and be able to consider super-linear function g (as in the seminal
work [16] by Fernández-Cara and Zuazua, assuming that g is locally Lipschitz-continuous and the asymptotic
behavior (1.6)), the analysis needs to be refined in order to keep as explicit as possible the observability constant
C(s,Ω, ω, T, ‖g′(y)‖L∞) in term of the norm ‖g′(y)‖L∞ and the parameter s (which appears in the Carleman
weights). We refer to [11] for precise estimates of the observability constant. In the one dimensional setting, this
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analysis has been recently made in [21] assuming that the asymptotic behavior lim sup|r|→∞
|g′(r)|

ln3/2(1+|r|) ≤ β for

some β > 0 small enough.
We also emphasize that this least-squares approach is very general and may be used to address other PDEs.

We also mention the explicit construction of controls for nonlinear wave equation (initially studied in [31] making
use of a fixed-point argument) recently performed in [2, 28]. Eventually, as a challenge, it would be interesting
to apply the method to approximate controls for the Navier-Stokes system. In this direction, we mention [25]
devoted to the Stokes system and [22, 23] devoted to the direct problem for the Navier-Stokes system in the
incompressible regime.
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