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NUMERICALLY NONSPECIAL VARIETIES

JORGE VITÓRIO PEREIRA, ERWAN ROUSSEAU, AND FRÉDÉRIC TOUZET

Abstract. Campana introduced the class of special varieties as the varieties
admitting no Bogomolov sheaves i.e. rank one coherent subsheaves of maximal
Kodaira dimension in some exterior power of the cotangent bundle. Campana
raised the question if one can replace the Kodaira dimension by the numerical
dimension in this characterization. We answer partially this question showing
that a projective manifold admitting a rank one coherent subsheaf of the cotan-
gent bundle with numerical dimension 1 is not special. We also establish the
analytic characterization with the non-existence of Zariski dense entire curve
and the arithmetic version with non-potential density in the (split) function
field setting. Finally, we conclude with a few comments for higher codimen-
sional foliations which may provide some evidence towards a generalization of
the aforementioned results.
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1. Introduction

In [Cam04], Campana introduced the class of special varieties as the compact
Kähler varieties admitting no maps onto an orbifold of general type. Campana also
establishes that a complex projective manifold X is special if and only if it has no
Bogomolov sheaf, which are rank one coherent subsheaves of Ωp

X having Kodaira
dimension p for some p > 0. Campana conjectures that special varieties should
have properties related to Lang’s conjectures on the distribution of entire curves or
rational points on projective manifolds. More precisely he formulates the following
conjecture.

Conjecture 1 (Campana [Cam04]). A compact Kähler manifold X is special if
and only if it contains a Zariski dense entire curve f : C → X, i.e., the image of
X is not contained in any proper subvariety of X. Moreover, if X is projective and

This work was supported by the ANR project “FOLIAGE”, ANR-16-CE40-0008 and CAPES-
COFECUB Ma 932/19 project. The first author was supported by Cnpq and FAPERJ..

1



2 PEREIRA, ROUSSEAU, AND TOUZET

defined over a number field k, then X is special if and only if X(k) is potentially
dense, i.e., X(k′) is Zariski dense in X for some finite extension k′ ⊃ k.

Recently, Wu [Wu20] introduced the notion of numerical Bogomolov sheaves as
rank one coherent subsheaves L of Ωp

X having numerical dimension p for some
p > 0, and a complex projective (or more generally compact Kähler) manifold X is
said to be numerically special if it has no numerical Bogomolov sheaves. Campana
([Cam20, Remark 7.3]) raises the question of whether specialness is equivalent to
numerical specialness.

It is worth noticing that the existence of L like above determines a distribution,
namely Ker L of codimension ≥ p, where equality holds if p = 1, and that this
distribution is actually integrable, according to a Theorem of Demailly [Dem02].
This explain why foliations enter into the picture in the sequel (see in particular
Theorem D and Section 7).

In this note, we address this problem for subsheaves of Ω1
X , proving the following

result.

Theorem A. Let X be a compact Kähler manifold admitting a rank one coherent
subsheaf L ⊂ Ω1

X of numerical dimension 1. Then X is not special i.e., it admits a
rank one coherent subsheaf of maximal Kodaira dimension p in Ωp

X for some p > 0.

We also study the conjectural characterization of special manifolds following the
above Conjecture 1. Concerning the analytic characterization using entire curves,
we prove the following.

Theorem B. Let X be a compact Kähler manifold admitting a rank one coherent
subsheaf L ⊂ Ω1

X of numerical dimension 1. Then X has no Zariski dense entire
curves f : C → X.

On the arithmetic side, we are not able to deal with rational points but rather
we study a function field version of Campana’s conjecture recently introduced in
[JR20]. In this setting, the analogue of potential density is given by geometric
specialness as follows.

Definition 1.1 (Geometrically special varieties). A complex projective variety X is
geometrically-special if, for every dense open subset U ⊂ X, there exists a smooth
projective connected curve C, a point c in C, a point u in U , and a sequence of
morphisms fi : C → X with fi(c) = u for i = 1, 2, . . . such that C×X is covered by
the graphs Γfi ⊂ C ×X of these maps, i.e., the closure of ∪∞

i=1Γfi equals C ×X.

Then the analogue of Campana’s conjecture on potential density is formulated
as follows.

Conjecture 2 ([JR20]). A complex projective variety X is special if and only if it
is geometrically special.

In this setting, we prove the following.

Theorem C. Let X be a complex projective manifold admitting a rank one coherent
subsheaf L ⊂ Ω1

X of numerical dimension 1. Then X is not geometrically special.

One of the main ingredient in the proof of the previous results is the follow-
ing statement of independent interest which adapts to compact Kähler manifolds
previous work of the third author on projective manifolds [Tou16].
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Theorem D. Let (X,F) a foliated Kähler manifold such that F is a holomor-
phic codimension one transversely hyperbolic foliation with quotient singularities.
Assume that F is not algebraically integrable. Then, up to replacing X by a non
singular Kähler modification, there exists a morphism Ψ : X → DN/Γ whose image
has dimension p ≥ 2 such that F = Ψ∗G where G is one of the tautological foliation
on DN/Γ. Moreover, the hyperbolic transverse structure of F agrees with the one
obtained from pull-back.

Towards a generalization of the preceding results to foliations with higher codi-
mensions, we prove the following statement.

Theorem E. Let X be a compact Kähler manifold and F be a smooth foliation of
codimension p. If c1(N

∗
F) is represented by a semi-positive (1, 1)-form η of constant

rank = p, then X is not special.

The paper is organized as follows: in Section 2 we collect some preliminary
definitions and properties of transversely hyperbolic foliations. In Section 3 we state
the main properties of the conormal bundle of tautological foliations on irreducible
polydisc quotients. In Section 4, we prove Theorem D and derive Theorem A from
it. In Section 5, we prove Theorem B on entire curves. In Section 6, we prove
Theorem C on non-potential density in the (split) function field setting. Finally in
Section 7, we prove Theorem E.

2. Transversely hyperbolic foliations

In this section, we collect useful information about transversely hyperbolic foli-
ations on complex manifolds. We follow the terminology of [LPRT20, Sections 3
and 5].

2.1. Transversely hyperbolic foliations. Let F be a codimension one foliation
on a complex manifold X . The foliation F is transversely hyperbolic if the sheaf
of holomorphic first integrals OX/F admits a locally constant subsheaf of sets I
(called the sheaf of distinguished first integrals) such that

(1) every f ∈ I is non-constant and has image contained in the unit disk D;
(2) for every non-empty, connected, and simply-connected open subset U , I(U)

is non-empty and equal to Aut(D) · f for any f ∈ I(U);
(3) if f ∈ I(U), g ∈ I(V ), and U ∩ V is a connected open set then there exists

ϕ ∈ Aut(D) such that ϕ ◦ f = g.

The pull-back of the Poincaré metric on the unit disk by any local distinguished
first integral f ∈ I is a closed semipositive smooth (1, 1)-form

η = f∗

(
i

π

du ∧ du
(1− |u|2)2

)

= − i

π
∂∂̄
(

log(1− |f |2)
)

that does not depend on the choice of f . If ω is a local generator of N∗
F then the

(1, 1) form

η =
i

π
exp(2ψ)ω ∧ ω

defines by duality a (singular) metric on the conormal bundle N∗
F with a plurisub-

harmonic continuous local weight ψ = − log(1 − |f |2) + log(|g|) where g is a holo-
morphic function such that df = gω. Therefore, the curvature form of the induced
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metric on N∗
F is (in the sense of currents)

(2.1) T =
i

π
∂∂ψ =

∑

D∈P

mD[D] + η,

the (locally finite) sum being taken over the set P of prime divisors. Here, mD ≥ 0
denotes the ramification order of the local distinguished first integrals along D.
In other words, a distinguished first integral at a neighborhood of a general point
of D is of the form z1+mD where {z = 0} is a suitable local defining equation

of D. In particular, T = η if, and only if, the developing map ϕ̃ : X̃ → D is
a submersion in codimension one. The divisor

∑

D∈P mDD is the ramification
divisor of the transversely hyperbolic foliation F . Note in particular that D is
F -invariant whenever mD > 0. Note also that T is a closed positive (1, 1)-current,
whence the

Proposition 2.1. If X is a complex compact manifold and F is a transversely
hyperbolic foliation on X then c1(N

∗
F) is pseudo-effective.

2.2. Pull-back of transversely hyperbolic structure. Let f : X → Y a holo-
morphic map between complex manifold and let F be a transversely hyperbolic
foliation on Y . One can define the pull-back foliation f∗F provided that the image
of the differential df is not tangent to F . In this case, if F carries a transverse
hyperbolic structure with sheaf of distinguished first integrals I then f∗F carries a
transverse hyperbolic structure defined by the sheaf of distinguished first integrals
f∗I.

2.3. Transversely hyperbolic foliations with quotient singularities. We will
say that a codimension one foliation F is a transversely hyperbolic foliation with
poles if there exists a hypersurface H such that F

∣
∣
X−H

is a transversely hyperbolic

foliation as defined in Subsection 2.1.
According to [LPRT20, Corollary 5.3], any transversely hyperbolic foliation de-

fined on X − H where H is an hypersurface, extends through H as a foliation.
Moreover, [LPRT20, Theorem 5.2] describes the degeneracies of the transverse hy-
perbolic structure along H .

In this work, we are interested in the following subclass of the class of transversely
hyperbolic foliations with poles.

Definition 2.2. A transversely hyperbolic foliation with quotient singularities on
a complex compact manifold X consists of a reduced divisor H =

∑
Hi (the divisor

of poles of the transverse structure) and a transversely hyperbolic foliation F on
X−H such that for any x ∈ H, there exists a neighborhood Ux ⊂ X of x, such that
the local monodromy of the transverse hyperbolic structure π1(Ux −H) → Aut(D)
is non-trivial and has finite image.

Let Ux be as above. Every finite subgroup of Aut(D) is cyclic and generated
by an elliptic transformation. Therefore, there is no loss of generality in assuming
that the image of the local monodromy representation takes values in S1. Let f be
the corresponding multivalued distinguished first integral. Then fn : Ux −H → D

is well defined and extends through H by boundedness as a holomorphic function
g : Ux → D. This implies that, on Ux, f takes the form

(2.2) f = fxf
ν1
1 · · · fνr

r
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where the ν1, . . . , νr are positive non integral rational numbers, f1 · · · fr = 0 is a
local defining equation of H and fx is a holomorphic function. One can moreover
assume, up to adding a non negative integer exponents to the νi’s that fx is not
identically zero on each branch Hi ∩ Ux. Remark also that H is necessarily F -
invariant.

The local expression for f makes clear that the pull-back of the Poincaré metric
on D by any multivalued distinguished first integral for F

∣
∣
Ux−H

extends through

H as the closed positive current

ηx = − i

π
∂∂̄
(

log(1− |f |2)
)

If one consider the well (locally) defined logarithmic form

ξ =
df

f
=
∑

i νi
dfi
fi

+
dfx
fx

, one can rewrite

ηx =
i

π

(

|f |2

(1− |f |2)2

)

ξ ∧ ξ̄

Set g = fx
∏

i fi. The holomorphic form ω = gξ has no zeroes in codimension one
(see proof of Proposition 2.6 ), hence is is a local generator of N∗

F in a neighborhood
of x. One can then readily check that

ηx =
i

π
exp(2ψ)ω ∧ ω

with

ψ = − log(1 − |f |2) +
r∑

i=1

(νi − 1) log(|fi|) +
s∑

j=1

(mj − 1) log(|fx,j)

and where fx =
∏s

j=1 f
mj

x,j is the writing of fx as a product of irreducible factors.

By construction these local (1, 1)-forms glue together with that defined on X −H
by (2.1) and then give rise by duality to a global singular metric N∗

F with local
weight ψ. Observe that η, considered as a closed positive current, has as a (1, 1)

continuous plurisubharmonic potential of the form ϕ = − log(1 − |f |2) so that
its Lelong numbers ν(η, x) = 0 at any x ∈ X . When X is compact, Demailly’s
approximation Theorem [Dem92, Theorem 4.1] implies that η represents a nef class

in H1,1

∂∂̄
(X,R). Observe also that η is nothing but the unique positive current giving

no mass to H and extending the semipositive form η|X−H . In particular, η coincides
with its absolute continuous part with respect to the Lebesgue measure.

Let us explicitize the curvature current T of the singular metric defined by η on
N∗

F in restriction to Ux. A straightforward calculation yields:

T|Ux
=

i

π
∂∂ψ = η +

r∑

i=1

(νi − 1)[Hi]|Ux
+ [Dx] ,

where Dx is an integral effective divisor whose support lies in the polar locus of the
logarithmic derivative dfx

fx
. More precisely, if D = D1 + . . . +Ds is the divisor of

poles of dfx
fx

with corresponding residues m1, . . . ,ms then Dx =
∑s

i=1(mi − 1)Di.

The discussion above is summarized in the following result.

Proposition 2.3. Let X be a complex manifold and let F be a transversely hy-
perbolic foliation with quotient singularities on X. Let H be the divisor of poles
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of the transverse structure. Consider the (singular) metric on N∗
F defined by η,

the trivial extension through H of the pull-back of the Poincaré metric by local dis-
tinguished first integrals. Let T its curvature current (in particular T represents

c1(N
∗
F) ∈ H1,1

∂∂̄
(X,R)), then

(2.3) T =
∑

D∈P

rD[D] + η

where D ranges over the set P of prime divisors, rD ∈ Q>−1 and the sum is locally
finite. Moreover,

(1) the current η is a smooth semi-positive (1, 1)-form in restriction to X −H

and when X is compact, represents a nef class in H1,1

∂∂̄
(X,R); and

(2) if rD 6= 0, F admits, at a general point of D, a distinguished (maybe mul-
tivalued) first integral of the form zrD+1 where z = 0 is a local defining
equation of D; and

(3) the set {D ∈ P|rD /∈ Z} coincides with the set {Hi, i ∈ I}.

Definition 2.4. The divisor
∑

D∈P rDD will be called the divisorial part of F
(with respect to the given transversely hyperbolic structure).

Remark 2.5. The decomposition presented in Equation (2.3) is compatible with
restriction to open subsets U (where the tranverse hyperbolic structure of F

∣
∣
U

is

given by restriction of the sheaf I). In particular, the divisorial part of the restricted
transverse structure is just

∑

D∈P rDD
∣
∣
U

.

2.4. Divisorial part along invariant hypersurfaces. Let F be a transversely
hyperbolic foliation with quotient singularities on a complex manifold X . Let H =
∑
Hi be its divisor of poles. Let us denote by Id log the sheaf defined on X − H

by the collections of logarithmic differential df/f where f ∈ I, see also [Tou13,
Définition 5.3].

Proposition 2.6. Let K a hypersurface of X. Assume there exist a neighborhood
U of K and a section of Id log on U −K which extends through K as a logarithmic
one form ω such that K ⊂ (ω)∞. The following assertions hold true.

(1) The irreducible components of the hypersurface K are F-invariant.
(2) The germ of ω along K is unique.
(3) If D is a prime divisor of U , then the residue λD of ω along D belongs to

Q≥0.
(4) Up to shrinking U , ω has no zeroes in codimension one and the divisorial

part of F|U is
∑

D∈P rDD where rD = 0 if λD = 0, and rD = λD − 1
otherwise.

Proof. Item (1) is obvious. Indeed, K is a component of the polar locus of a closed
meromorphic form defining the foliation on U .

Let x ∈ K. If x /∈ H , then there exists in the neighborhood Ux of x and a
section f of I over Ux−K such that ω = df

f . As noticed before, f extends through

K as a section of I over U . As K ⊂ (ω)∞, one necessarily has f(x) = 0. Hence,
this section is unique modulo multiplication by a complex number of modulus one.
Consequently, ω is unique in restriction to U −H .

If x ∈ H∩K, there exists a neighborhood Ux of x and a multivalued distinguished
first integral f on Ux − K with finite and non trivial multiplicative monodromy
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taking values in S1. The uniqueness of ω = df
f follows from the observations

already made in Subsection 2.3. This establishes the uniqueness stated in Item (2).
Let F = f1 · · · fr · fr+1 · · · fp = 0 be a local reduced equation for the polar locus

of ω in a small neighborhood Ux of x ∈ K, where f1 · · · fr = 0 is a local equation
for H . By construction, there exists ν1, . . . , νr ∈ Q>0, mr+1, . . . ,mp ∈ N>0, such
that

ω|Ux
=

r∑

i=1

νi
dfi
fi

+

p
∑

i=r+1

mi
dfi
fi

+ ω0

where ω0 is some holomorphic one form. In particular, the property mentioned in
Item 3 is satisfied.

Equivalently, F admits on Ux a multivalued distinguished first integral of the
form e

∫
ω = f = ufν1

1 · · · fνr
r f

mr+1

r+1 · · · fmp

p where u is a unit. As before, this enables

to compute the divisorial part of F
∣
∣
Ux

, namely
∑r

i=1(νi−1)Di+
∑p

i=r+1(mi−1)Di

where Di = {fi = 0}. This proves the second assertion of Item (4).
By considering the well defined real first integral g = |f |, one remark that there

is no invariant hypersurface passing through x except the poles Di. In particular
the germ of ω along K has no zeroes in codimension one. This establishes the first
point of Item (4). �

2.5. Behavior under pull-back by a surjective morphism. If ϕ : X → Y is
a surjective morphism between complex compact manifolds and F is a tranversely
hyperbolic foliation with quotient singularities on Y , the pull-back foliation ϕ∗F
carries also a transversely hyperbolic structure with quotient singularities directly
inherited from that of F , that is induced on X − ϕ−1(H) by the sheaf ϕ∗I. From
Proposition 2.3, one obtains a decomposition of N∗

F which reads (in Pic(Y )⊗Q) as

N∗
F = L+D

whereD is the divisorial part of F (see Definition 2.4), L is a nef Q line bundle whose
Chern class is represented by η. A similar decomposition holds for the conormal
sheaf of ϕ∗F . Both decompositions are indeed naturally related as shown by the
next result.

Proposition 2.7. With assumptions and notations as above,

N∗
ϕ∗F = ϕ∗(L) +D′

where D′ is the divisorial part of ϕ∗F .

Proof. Let G = ϕ∗F . On X , we have a G invariant divisor I which, roughly
speaking, is the locus where ϕ ramifies over the direction tranverse to F . More
precisely, if ω is a generator of N∗

F on an open subset U , the restriction of I to
ϕ−1(U) is the zeroes divisor of ϕ∗ω. The line bundles ϕ∗N∗

F and N∗
G are related by

the equality N∗
G = ϕ∗N∗

F + I.
Then, we have just to verify that D′ = ϕ∗D+ I. It suffices to show that equality

(2.4) D′
|ϕ−1(U) = ϕ∗D|U + I|ϕ−1(U)

holds for every member U of an open cover (U)U∈U of Y . First, let x ∈ Y −Supp(D).
In some neighborhood U of x, N∗

F is generated by df where f ∈ I(U) and Equation
(2.4) is obviously true.

If x ∈ Supp(D), let D1, . . . , Dq be the components of Supp(D) such that x ∈
Di, i = 1, . . . , q are ordered such that rDi

/∈ N for i = 1, . . . , p, rDi
∈ N>0 for i =
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p+1, . . . , q. According to Subsection 2.3, F is defined in some small neighborhood U
of x by a closed logarithmic form ξ =

∑q
i=1(rDi

+ 1)dfifi
+
∑s

i=q+1
dfi
fi

where fi = 0

is a local reduced equation of Di and hi = 0 are additional poles with residues
equal to one. Moreover ξ

∣
∣
Ux−

⋃p

i=1
Di

is a section of Id log. Set Di = {fi = 0} for

i > q. Note that ω = ϕ∗ξ is a closed logarithmic form on ϕ−1(Ux) fulfilling the
hypothesis of Proposition 2.6, withK = ϕ−1(

⋃
Di) (in restriction to ϕ−1(U)). Item

(4) of Proposition 2.6 determines the divisorial part of G
∣
∣
ϕ−1(U)

. An elementary

calculation yields

D′
|ϕ−1(U) =

(
q
∑

i=1

rDi
ϕ∗(Di) +

s∑

i=1

(ϕ∗(Di)− ϕ∗(Di)red)

) ∣
∣
∣
∣
∣
ϕ−1(U)

.

On the other hand, according to the first part of Item (4) of Proposition 2.6, fω
is a local generator of F on U , where f =

∏

i fi. This implies that

I
∣
∣
ϕ−1(U)

=

s∑

i=1

((ϕ∗(Di)− ϕ∗(Di)red))
∣
∣
ϕ−1(U)

,

thus proving the Equality (2.4). �

We also state the following two lemmas for further use.

Lemma 2.8. Let ϕ : X → Y be a surjective morphism with connected fibers be-
tween compact complex manifolds. Let G a transversely hyperbolic foliation on X
with quotient singularities. Assume that there exists on Y a codimension one holo-
morphic foliation F such that G = ϕ∗F . Then F carries a transversely hyperbolic
with quotient singularities structure. Moreover the pull-back of this structure via ϕ
coincides with that of G wherever defined.

Proof. Let H be the divisor of poles of G. As H is necessarily G invariant, the
restriction of ϕ to H is not surjective. Therefore, there exists a non-empty open
Zariski subset U of Y such that G is transversely hyperbolic (without poles) in
restriction to V := ϕ−1(U). In addition, one can suppose that f

∣
∣
V

is a smooth

morphism onto U . Let (W ) be a covering of U by open subsets (in the euclidean
topology) such that the sheaf I of distinguished first integrals of G is constant on
ϕ−1(W ). The fibers being compact submanifolds, every global section of Iϕ−1(W )

descends to W . Consequently, F admits on U a transversely hyperbolic structure
defined by the locally constant sheaf J such that I = ϕ∗J . Consider the analytic
subset of Y defined by Z = Y −U . The transverse hyperbolic structure defined by
J extends through Z −K where K is the union of codimension one components of
Z around which the local monodromy is non trivial. Let Z0 be a component of Z.
Pick a general point p of Z0 and let γ be a loop around Z0 in some neighborhood
Vp of p. Let q ∈ ϕ−1(p). Let Dq be a small disk centered at q such that Dq − {q}
is transverse to G and ϕ(Dq) − {p} is transverse to F . Let ε : [0, 1] → Dq − {q}
a small loop of index one around q. Obviously, ϕ(ε) is a loop freely homotopic to
a non zero multiple of γ in Vp − Z0. Because G has quotients singularities, this
implies that the local monodromy representation along γ has finite image, whence
the result. �

Lemma 2.9. Let ϕ : X → Y be a surjective morphism with connected fibers be-
tween compact complex manifolds. Let G a transversely hyperbolic foliation on X.
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Denote by ρ its monodromy representation. Assume that there exists a representa-
tion ρ′ : π1(Y ) → Aut(D) such that ρ = ϕ∗ρ′. Then there exists on Y a transversely
hyperbolic foliation F such that G = ϕ∗F and whose monodromy representation is
ρ′.

Proof. Let U ⊂ Y a non-empty open Zariski subset such that ϕ restricts to a
smooth morphism on ϕ−1(U). By assumption on the representation ρ, the sheaf
I of distinguished first integrals of G is globally constant over W , where W is
any simply connected open subset of U . Like before, this implies that any section
s ∈ I(ϕ−1(U)) is constant on the fibers of ϕ. Consequently, there exists on U
transversely hyperbolic foliation F

∣
∣
U

, which then extends as a foliation F on the

whole Y (as recalled in Subsection 2.3) and whose monodromy representation is
given by the composition morphism:

π1(U) → π1(Y )
ρ′

−→ Aut(D) .

Since the first arrow is surjective, the result follows. �

Remark 2.10. Let F be a tranversely hyperbolic foliation with quotient singularities
on a compact complex manifold X . Then there exists a smooth modification π :
X̂ → X obtained by a sequence of successive blows-up with smooth center such that
the divisorial part of π∗F is supported on an invariant normal crossing divisor D =
D1+ . . .+Dr . In particular there exists a r uple of rational number (λ1, . . . , λr) ∈
Qr

<1 such that E := Nπ∗F+
∑

i λiDi is a pseudoeffective Q line bundle whose Chern
class is represented by a non trivial positive (1, 1)-form η with L1

loc coefficient (and
actually smooth on a Zariski dense open subset). When X is compact Kähler, π∗F
is a particular case of a KLT foliation in the terminology of [Tou16, Section 8.1].
Note also that the existence of η guarantees that the positive part of L in its Zariski
decomposition is non trivial.

2.6. Uniqueness of the transverse structure. The following result is estab-
lished in [LPRT20, Corollary 5.6].

Proposition 2.11. Let F a transversely hyperbolic foliation (with quotient singu-
larities) on a projective manifold. Assume that F is not algebraically integrable.
Then, the hyperbolic transverse structure is unique, i.e., any transverse hyperbolic
structure for F on a dense Zariski subset is defined by the same sheaf of distin-
guished first integrals.

2.7. Relationship with numerical properties of the conormal bundle. The
Theorem below is essentially proved in [Tou13] and describes the interplay be-
tween the existence of a transverse hyperbolic structure and positivity properties of
the conormal bundle of a foliation. The following is essentially a reformulation of
[Tou13, Théorème 1 and Proposition 5.1], see also [Tou16, Section 3.2], where it is
recalled that the coefficients rD appearing in Equation (2.3) coincide with the co-
efficients of the divisorial Zariski decomposition of c1(N

∗
F) and must be, therefore,

non-negative.

Theorem 2.12. Let F a codimension one foliation on a compact Kähler mani-
fold X equipped with a Kähler form Θ. Assume that N∗

F is pseudo-effective with
numerical dimension one. Let N =

∑r
i=1 λiNi be the negative part in the Zariski

decomposition of c1(N
∗
F). Then
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(1) The coefficients λi are positive rational numbers.
(2) The intersection matrix mij = Ni ·Nj ·Θn−2 is negative definite.
(3) F admits a transverse hyperbolic structure with quotient singularities on X

such that
(a) the divisor of poles is H =

∑
βiNi, where βi = 0 if λi ∈ N, βi = 1

otherwise; and
(b) the divisorial part of F with respect to the given transversely hyperbolic

structure is N .

Proof. Everything has already been established in [Tou13, Tou16] except the ra-
tionality of the coefficients λi’s when the ambient manifold is Kähler but non pro-
jective. Let us justify this property. According to [Tou13, Proposition 5.1], there
exists in a small neighborhood U of Supp(N) a closed logarithmic form ω defining
the foliation on U (which restricts to a section of Id log) on U − Supp(N)) with the
following additional properties:

(1) The divisor of poles of ω has the following form:

(ω)∞ =
∑

Ni +A

where A is a hypersurface of U intersecting Supp(N) along a codimension
two subset.

(2) ResNi
ω = λi + 1, ResAω = 1

(3) ω has no zeroes in codimension one.

As an immediate consequence, the real Chern classes class of N∗
F and of N coincide

in H2(U,R). On the other hand, the class of N∗
F lies in H2(U,Q) ⊂ H2(U,R) as

the class of any line bundle.
Suppose by contradiction that at least one of the coefficients λi lies in R−Q. By

rationality of c1(Ni), one promptly deduces that there exists (ν1, . . . , νr) ∈ Rr−{0}
such that

∑

i νic1(Ni) = 0 in H2(U,R). Now, by de Rham’s isomorphism, c1(Ni)
can be represented on U by a real closed two form θi and the linear dependance
relation above is equivalent to the fact that θ :=

∑
νiθi is exact on U . Let us evalu-

ate the intersection product I = (
∑
νic1 (Ni))

2
Θn−2. By Item (2) of the Theorem,

it is a negative real number but one can alternatively compute this intersection as
I =

∑
νi
∫

Ni
θ ∧Θn−2 = 0 by exactness of θ, whence the contradiction. �

3. Pull-backs of tautological foliations on irreducible polydisc

quotients

3.1. Irreducible polydisc quotients. Let N ≥ 2 be an integer. A discrete
subgroup Γ ⊂ Aut(D)N is a lattice if the quotient DN/Γ has finite volume. A
lattice Γ ⊂ Aut(D)N is irreducible if it is not commensurable to a product of
Γ1 × Γ2 ⊂ Aut(D)N1 ×Aut(D)N2 with N1, N2 ≥ 1, N1 +N2 = N .

If Γ ⊂ Aut(D)N is an irreducible lattice then the quotient DN/Γ is a singular
variety with finitely many cyclic quotient singularities according to [Shi63, Theorem
2].

The quotient DN/Γ carries N distinct codimension one tautological foliations
G1, . . . ,GN , defined on DN by one the natural projections to D. The foliations Gi

are transversely hyperbolic foliations on the complement of the singular points of
DN/Γ.
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3.2. Morphisms to irreducible polydisc quotients. Let Γ ⊂ Aut(D)N be
an irreducible lattice and let X be a complex compact manifold. Assume there
exists a morphism ρ : X → DN/Γ with image of postive dimension p. Let
F1 = ρ∗G1, . . . ,Fp = ρ∗Gp be the pull-back to X of p among the N tautologi-
cal foliations on DN/Γ such that the foliations are in general position. i.e if ωp is a
local generator of N∗

Fi
, i = 1, . . . , p, then ω1 ∧ · · · ∧ ωp does not vanish identically.

The foliations Fi are all transversely hyperbolic foliations with finite quotient
singularities. The transverse hyperbolic structure is not necessarily defined over
codimension one components of the fibers of ρ over sing(DN/Γ).

Let Dj be the divisorial part of the foliation Fj and let H1, . . . , Hk some pairwise

distinct prime divisors such that Dj =
∑k

i=1 rijHi where rij ∈ Q>−1. Let Lj be
the nef Q line bundle such that

N∗
Fj

= Lj +Dj = Lj +

k∑

i=1

rijHi

Lemma 3.1. The following assertions hold true:

(1) for any j ∈ {1, . . . , p}

N∗
Fj

= Lj +

k∑

i=1

rijHi

where Lj is a nef Q line bundle with ν(Lj) ≥ 1;
(2) the hypersurface Hi is Fj invariant whenever rij 6= 0;
(3) the monodromies of the transversely hyperbolic structures of F1, . . . ,Fp

around Hi have all the same order ni = Min{m ∈ N>0|mrij ∈ Z}. In
particular, rij ∈ Z for some j ∈ {1, . . . , p} if, and only if rij ∈ Z for all
j ∈ {1, . . . , p}.

Proof. Each of the foliations Fj is transversely hyperbolic outside its polar locusHj .
Fix some j. From [Shi63, Theorem 2], the local monodromies of the transversely
hyperbolic structures of F1, . . . ,Fp around Hj have all the same order, which is
non trivial. It follows that the n foliations F1, . . . ,Fp share the same polar locus.
Once we have made this observation, the Lemma directly follows from Proposition
2.3. �

3.3. A big divisor. In our next statement, we keep the notation used in Lemma
3.1.

Lemma 3.2. Assume that X is a projective manifold such that the morphism ρ is
generically finite (i.e p = dim X). Then, the divisor L =

∑p
j=1 Lj is big.

Proof. The nef Q divisor Lj have Chern-Hodge classes in H1(X,Ω1
X) represented

by semi-positive (1, 1)-form ηj obtained by pull-back of the Poincaré metric under
distinguished first integrals. Recall that the (1, 1)-forms ηi are smooth outside the
(common) polar locus of the tranverse strucures , and have L1

loc coefficients on X .
Consequently, the Chern class of Q line bundle L =

∑n
j=1 Lj is represented by

a semi-positive (1, 1)-form

η =

p
∑

i=1

ηi
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with the same type of regularity and we can take its p-th power ηp which is meant
pointwise.

Recall that on a p dimensional complex compact manifold, the volume of a line
bundle E is defined as

v(E) = lim sup
k→∞

p!

kn
h0(X, kE) .

The line bundle is big, i.e has maximal Kodaira-Itaka dimension κ(E) = p exactly
when v(E) > 0 and in that case, the lim sup is actually a true limit. More generally,
one can define the volume of a Q line bundle E as v(L) := l−pv(lE) where l is a
positive integer such that lE is a line bundle. it is easily seen that this definition
of volume does not depend of the choice of E.

According to [Bou02, Theorem 1.2], v(L) ≥
∫

X
ηp. One concludes by noticing

that the right hand side is positive. Indeed, ηp restricts on X −H to the smooth
and non trivial semi-positive form (p!)η1 ∧ · · · ∧ ηp. �

4. Numerical specialness for rank one subsheaves of Ω1

Proposition 4.1. Let Γ ⊂ Aut(D)N be an irreducible lattice and let X be a compact
complex manifold. Assume that there exists a morphism Ψ : X → DN/Γ with image
of positive dimension p such that the pull-back F = Ψ∗G of one of the tautological
foliation G, equipped with the pull-back transverse hyperbolic structure, has a Q

effective divisorial part. Then there exists an invertible subsheaf L ⊂ Ωp
X whose

Kodaira dimension satisfies κ(L) ≥ p

Proof. Let V be a smooth projective model of the image of Ψ determined by some
birational morphism ρ : V → Im Ψ ⊂ DN/Γ. Retaining the notations of Subsection
3.2, we have on V , p = dim V foliations in general position: Hj = ρ∗Gj . One can
moreover assume that G1 = G.

The conormal of each of these foliations splits as

N∗
Hj

= L′
j +D′

j

such that D′
j is the divisorial part of Hj . We also have from Lemma 3.2 that

∑
L′
j

is a big Q divisor.
Note also, using for instance Proposition 2.7, that the divisorial part of F under

pull-back by any birational morphism remains effective. Then, up to performing
some blows up on X , one can suppose that ρ factors through a dominant morphism
ϕ : X → V .

Set Fj = ϕ∗Hj , j = 1, . . . , p = dim V , so that F = F1. Consider the decompo-
sition

N∗
Fj

= Lj +Dj = Lj +

k∑

i=1

rijHi

as given in Subsection 3.2.
After renumbering the hypersurfaces Hi, one can assume by Lemma 3.1, we can

assume existence of a integer k′ ≤ k such that rij ∈ Q− Z for any j ∈ {1, . . . , p} if
and only if i ≤ k′. We can thus write, for any j,

k∑

i=1

rijHi =

k′

∑

i=1

rijHi +Rj
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where Rj is an effective divisor. By assumption on the divisorial part of F , we have
that ri1 > 0 for every i ∈ {1, . . . , k}. Therefore we can write

(4.1)

k′

∑

i=1



p− 1 +

p
∑

j=1

rij



Hi =

k′

∑

i=1



ri1 +

p
∑

j=2

(1 + rij)



Hi ≥ 0

thanks to 3.2.
Consider the morphism

σ : N∗
F1

⊗ · · · ⊗N∗
Fp

−→ Ωp
X

ω1 ⊗ · · · ⊗ ωn 7→ ω1 ∧ · · · ∧ ωp.

The saturation of the image of σ is an invertible subsheaf OX(F ) ⊂ Ωp
X isomorphic

to

N∗
F1

⊗ · · · ⊗N∗
Fp

⊗OX(tang(F1, . . . ,Fp)),

where tang(F1, . . . ,Fp) is the tangency divisor of the foliations F1, . . . ,Fp. Since
the hypersurfaces H1, . . . , Hk′ are invariant by all the foliations Fj, it follows that

tang(F1, . . . ,Fp) ≥ (p− 1)
∑k′

i=1Hi.
Another important point is that Lj = ϕ∗(L′

j) according to Proposition 2.7. From
Lemma 3.2 and because ϕ is dominant, one deduces that the Kodaira dimension of
L =

∑
Lj is at least p. Therefore

F ≥
k′

∑

i=1



n− 1 +

p
∑

j=1

rij



Hi

︸ ︷︷ ︸

Q effective according to Inequality (4.1)

+

p
∑

j=1

Lj ,

︸ ︷︷ ︸

κ(
∑p

j=1
Lj) ≥ p

and F can be written as the sum of a nef Q line bundle L of Kodaira dimension
≥ p and an effective Q divisor. It follows that κ(F ) ≥ p. �

Let X a n dimensional compact Kähler manifold equipped with a codimension
one foliation F whose conormal sheaf N∗

F is pseudo-effective. Denote by ν (resp.
κ) the numerical (resp. Kodaira) dimension of N∗

F . Theorem 2.12 guarantees that
the Zariski decomposition of c1(N

∗
F ) reads as

c1(N
∗
F) = N + Z

where N is a Q effective divisor such the intersection matrix (Ni · Nj · Θn−2) is
negative definite, where the Ni’s are the irreducible components of Supp(N), Z is
a nef class and Θ any Kähler class.

According to [Tou16, Theorem 4], there are three possible cases according to the
value of ν (defined by Zν 6= 0, Zν+1 = 0)

(1) ν = 0 = κ
(2) ν = 1 = κ
(3) ν = 1, κ = −∞ ( the non abundant case )

The two last cases also strongly differ from the dynamical viewpoint (see [Tou16,
loc;cit]): in the first situation 2, F is algebraically integrable, in the second one 3,
the foliation is quasi minimal (all leaves, exceptely finitely many are dense for the
euclidean topology). We are interested in the last situation where abundance does
not hold.
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4.1. Proof of Theorem D. Assume for a while that X is projective. By [Tou16,
Theorem 6] and also taking into account Remark 2.10, there exists a morphism
Ψ : X → DN/Γ whose image has dimension ≥ 2 such that F = Ψ∗G where G is one
of the tautological foliation on DN/Γ. Moreover, the tranverse hyperbolic structure
of F as described in Theorem 2.12 is obtained by pulling-back via Ψ of the natural
transverse hyperbolic structure of G. This is implicitely proven in ([Tou16, Section
6], especially p. 22,23) but one can also invoke the uniqueness property stated in
Proposition 2.11.

Let us now consider the general case of compact Kähler manifolds. Up to renum-
bering the components Ni of the negative part N , one can assume that for some
q ∈ N, λi ∈ Q − N for i = 1, . . . , q, λi ∈ N>0 for i > q. Set N ′ =

∑q
i=1 λiNi.

Let ρ : π1(X − Supp(N ′)) → Aut(D) the monodromy representation of the trans-
verse hyperbolic structure. According to [Tou16, Proposition 4.6], the image of ρ
is Zariski dense (actually dense in the euclidean topology). By Selberg’s Lemma,
there exists a finite index torsion free normal subgroup in the image of ρ. This en-
ables to construct a finite Galoisian cover R : X̂ → X with branch locus Supp(N ′)
such that the pull-back representation R∗ρ is actually well defined as a morphism
π1(X̂) → Aut(D) with torsion free image. According to [V9̂6, Theorem 1], X̂
is a Kählerian analytic space and then, by Hironaka [Hir77] admits a resolution
of singularites which is a compact Kähler manifold Y . We have thus construct
a surjective morphism with generically finite fibers ψ : Y → X between com-
pact Kähler manifolds such the pull-back foliation FY := ψ∗F is transversely hy-
perbolic without poles. The associated monodromy representation is nothing but
ρY := ψ∗ρ : π1(Y ) → Aut(D) with dense and torsion free image. Note that one
can prove than ρY (and equivalently ρ) has Zariski dense image in Aut(D) without

resorting to [Tou16, Proposition 4.6]. Indeed, let Ỹ be the universal covering of Y .

Denote by f : Ỹ → D be the ρ equivariant holomorphic obtained by developping
the transverse hyperbolic structure of FY . Because Y is Kähler, f is also harmonic
and the Zariski density of the image of ρ follows from [Cor88, Lab91] (regarding D

as a symmetric space of the non compact type).
By [Zuo96, CCE15] and up to taking a bimeromorphic smooth model of Y , ρY

factors through ρV : π1(V ) → Aut(D) via a surjective morphism e : Y → V with
connected fibers, where V is a projective manifold of the general type.

In particular e factors through the algebraic reduction map redY : Y → Red(Y )
(here and henceforth, we will assume, up to taking appropriate smooth models,
that all algebraic reduction spaces are projective manifolds and all reduction maps
are morphisms). By Lemma 2.9, there exists on Red(Y ) a transversely hyperbolic
foliation F1 such that FY = red∗Y F1, and such the monodromies representations
factor accordingly.

Observe also that the group of deck transformations of the Galoisian cover X̂ →
X induces on Y a finite group of bimeromorphic transformations G preserving the
foliation FY . Consider the action G×C(Y ) → C(Y ) defined by g · f = f ◦ g−1 and
denote by K the kernel of this action. By the very definition of Red(Y ), G acts
on Y by preserving the fibration of the reduction map and the induces a faithful
action of G1 := G/H on Red(Y ) by birational transformations also preserving the
foliation F1. By construction, observe also that the field of rational functions of

Red(X) is precisely C(X) = C(Y )G. This implies that there exists on Red(X) a
foliation, F2 such that F1 = r∗Y,XF2 where rY,X : Red(Y ) → Red(X) is the rational
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map induced by the inclusion C(X) ⊂ C(Y ) and then makes the following diagram
commute, up to replacing Y , Red(Y ), Red(X), and V by suitable non singular
models.

(Y,FY ) (Red(Y ),F1) V

(X,F) (Red(X),F2)

ψ

redY e′

e

redX

rY,X

In particular, we have that F = red∗XF2. According to Lemma 2.8, F2 admits a
transversely hyperbolic structure with quotient singularities compatible with that
of F . Applying Theorem D in the projective case, one deduces that F is obtained by
pull-back of a tautological foliation on a polydisk quotient also compatible with the
transverse hyperbolic structure (Proposition 2.11). The proof is thus complete. �

Theorem 4.2. Let (X,F) a foliated compact Kähler manifold with codim(F) = 1.
Assume that N∗

F is pseudo-effective and not abundant in the sense defined above.
Then there exists an invertible subsheaf L ⊂ Ωp

X for some p ≥ 2 such that κ(L) = p.

Proof. The decomposition provided by Proposition 2.3 takes the form

(4.2) N∗
F = L+D

where the divisorial part is effective. This property is clealy invariant under pull-
back by bimeromorphic morphisms, so that one can apply Theorem D. From Propo-
sition 4.1, one derives the existence of an invertible subsheaf L ⊂ Ωp

X for some p ≥ 2
such that κ(L) ≥ p hence = p by Bogomolov’s upper bound. �

Remark 4.3. In general, one cannot deduce non-specialness of X just from the
existence of a proper morphism to an irreducible quotient of a polydisc. Indeed
in [Gra02, Theorem 12.1] Granath produces examples of rational and K3-surfaces
obtained as minimal resolutions of singular compact quotients D2/Γ.

Remark 4.4. Another way to interpret the preceding proof is the following. Con-
sidering as before V a smooth projective model of the image of Ψ, V is equipped
with a natural divisor ∆ =

∑

i(1 − 1
mi

)Di supported over Sing(DN/Γ). It follows

from [CDG20] that KV +∆ is big. As above, up to performing some blowups on X ,
we have a dominant morphism ϕ : X → V . Then it follows from the proof of Theo-
rem 4.2 that ϕ : X → (V,∆) is an orbifold morphism in the sense of Campana i.e. ϕ
ramifies over Di with multiplicity at least mi. This implies that ϕ∗(KV +∆) ⊂ Ωp

X

is a Bogomolov sheaf where p := dimV .

4.2. Proof of Theorem A. The result is obvious if κ(L) > 0 (hence = 1). Oth-
erwise, this is Theorem 4.2. �

5. Entire curves

First, remark that in the case ν = 1 = κ, we have a Bogomolov sheaf L ⊂ ΩX

which corresponds (see [Cam04]) to a fibration of general type F : X → C onto a
curve. This means that the orbifold base of the fibration (C,∆) is of general type.
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It is now a classical fact [Nev70] that in this setting, for any entire curve f : C → X ,
F ◦ f : C → C has to be constant. Therefore f : C → X cannot be Zariski dense.

So, now we deal with the non-abundant case ν = 1, κ = −∞.

Theorem 5.1. Let (X,F) a foliated compact Kähler manifold with codim(F) = 1.
Assume that N∗

F is pseudo-effective and not abundant. Then any entire curve
f : C → X is algebraically degenerate i.e., f(C) is not Zariski dense.

We shall start with a lemma.

Lemma 5.2. Let (X,F) a foliated compact Kähler manifold with codim(F) = 1.
Assume that N∗

F is pseudo-effective and not abundant. Then any entire curve
f : C → X is tangent to F .

Proof. From [Tou16] Theorem 3.1 (see also Theorem 2.12), we have a singular
transverse metric h with curvature current Θh = −(h + [N ]). It is a smooth
transverse metric of constant curvature −1 on X \ (Sing(F) ∪ SuppN). Suppose
f : C → X is not tangent to F . In particular, f(C) 6⊂ Sing(F) ∪H . Therefore f∗h
induces a non-zero singular metric γ(t) = γ0(t)i dt ∧ dt on C where −Ric γ ≥ γ in
the sense of currents. But the Ahlfors-Schwarz lemma (see [Dem97] Theorem 3.2)
implies that γ ≡ 0, a contradiction. �

5.1. Proof of Theorem B. The subsheaf L determines a foliation F whose conor-
mal bundle N∗

F has numerical dimension ν = 1. According to the above discussion,
it suffices to consider the case κ = κ(N∗

F) = −∞. From the preceding lemma, we
can suppose that f : C → X is tangent to F . By Theorem D (up to replacing
X by a smooth model) there exists a morphism Ψ : X → H := DN/Γ such that
F = Ψ∗G where G is one of the tautological foliation on X . Therefore Ψ(f) : C → H

is tangent to G and is constant thanks to the hyperbolicity of the leaves on by H

[RT18] Proposition 3.1 . This concludes the proof. �

6. Geometric specialness

In this section, we prove Theorem C. We will start by proving in our setting a
particular case of Lang-Vojta’s conjecture.

Conjecture 3 (Lang-Vojta). Let X be a projective variety of general type and L an
ample line bundle. Then there is a proper algebraic subset Z 6⊂ X and a constant
α, such that for every smooth projective connected curve C and every morphism
f : C → X with f(C) 6⊂ Z, one has

deg f∗L ≤ α(2g(C)− 2).

Here, we prove the following particular case.

Proposition 6.1. Let Γ ⊂ Aut(D)N be an irreducible lattice and let X be a complex
projective manifold. If there exists a generically finite morphism Ψ : X → DN/Γ
such that the pull-back of one of the tautological foliation (equipped with the pull-
back transverse hyperbolic structure) has a Q-effective divisorial part, then there
exists a big line bundle L on X, a proper algebraic subset Z 6⊂ X and a constant
α, such that for every smooth projective connected curve C and every morphism
f : C → X with f(C) 6⊂ Z, one has

deg f∗L ≤ α(2g(C)− 2).
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Proof. Using the same notations as in Section 3, we consider the decomposition

N∗
Fj

= Lj +Dj = Lj +

k∑

i=1

rijHi.

The morphism f : C → X induces a morphism f ′ : C → P(TX) which implies
the algebraic tautological inequality

degC(f
′∗(O(1)) ≤ 2g(C)− 2.

From [RT18], we know that if Ψ(f(C)) is not constant then f(C) is not contained
in a leaf of any foliation Fj. We take Z to be the union of the positive dimensional
fibers of Ψ and the Hi and assume that f(C) is not contained in Z.

To the foliation Fi is associated a divisor Zi ⊂ P(TX), linearly equivalent to
O(1) +NFi

. Then the algebraic tautological inequality gives

degC(f
∗(N∗

Fi
)) ≤ degC(f

′∗(Zi)) + degC(f
∗(N∗

Fi
)) ≤ 2g(C)− 2.

The first inequality comes from the non-tangency of the algebraic curve with the
foliation which implies 0 ≤ degC(f

′∗(Zi)). By assumption on the divisorial part of
F1, we have that ri1 > 0 for every i ∈ {1, . . . , k′}. Therefore

deg f∗L1 +

k′

∑

i=1

ri1 deg f
∗Hi ≤ 2g(C)− 2.

Since L1 is nef, we obtain deg f∗Hi ≤ 1
ri1

(2g(C) − 2) for all i ∈ {1, . . . , k′}. Let

L :=
∑

j Lj, then L is big according to Lemma 3.2 and the previous inequalities
give

deg f∗L ≤
∑

j

deg f∗N∗
Fj

−
∑

j

k′

∑

i=1

rij deg f
∗Hi ≤ (2g(C)− 2)(p+

∑

j

k′

∑

i=1

|rij |
ri1

).

�

Corollary 6.2. Under the same assumptions, X is not geometrically special.

Proof. Suppose X is geometrically special. Consider the Zariski open set U :=
X \ Z. Then there exists a smooth projective connected curve C, a point c in
C, a point u in U , and a sequence of morphisms fi : C → X with fi(c) = u
for i = 1, 2, . . . such that C × X is covered by the graphs Γfi ⊂ C × X of these
maps. From the previous Proposition 6.1, all these pointed maps have bounded
degree. Therefore by Bend-and-Break, we obtain a rational curve passing through
u. Such a curve has to be tangent to the foliation F1 by Lemma 5.2. This gives a
contradiction. �

6.1. Proof of Theorem C. As in the proof of B, consider the foliation F asso-
ciated to L. In the case ν = 1 = κ, we have a Bogomolov sheaf L ⊂ ΩX which
corresponds (see [Cam04]) to a fibration of general type F : X → D onto a curve.
This means that the orbifold base of the fibration (D,∆) is of general type. This
implies finiteness of orbifold morphisms f : C → (D,∆) (Theorem 3.8 [Cam05])
and therefore X cannot be geometrically special in this case.

In the non-abundant case ν = 1, κ = −∞, there exists a morphism Ψ : X →
H := DN/Γ such that F = Ψ∗G where G is one of the tautological foliation on X .
Consider V a smooth projective model of the image of Ψ given by some generically
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finite map V → DN/Γ. Let φ : X → V be the induced dominant morphism (modulo
some blow-ups on X).

Let f : C → X be a morphism. Following the same proof as in Proposition 6.1,
we obtain deg(φ ◦ f)∗L′ = deg f∗L ≤ α(2g − 2). Since L′ is a big line bundle on
V , the same proof as in Corollary 6.2 applied to the sequence φ ◦ fi gives that X is
not geometrically special. �

Remark 6.3. In [JR20], it is proved that if there exists a Zariski-dense represen-
tation ρ : π1(X) → G(C) (G an almost simple algebraic group), then X is not
geometrically special. We cannot apply this result here since the monodromy rep-
resentation ρ : π1(X0) → Aut(D) is a priori defined only on X0 := X \ SuppN
where N is the negative part of c1(N

∗
F).

7. Higher codimensions

As recalled in the introductive part, the existence of a rank one coherent subsheaf
L of Ωp

X having numerical dimension p and such that codim (Ker L) = p on a
compact Kähler manifold X can be translated into the existence of a codimension
p foliation F on X such that det N∗

F (which is somehow the canonical sheaf of
the "space of leaves" X/F) has numerical dimension p. We do not know how to
generalize Theorem A to codimension p > 1, in particular because we do not have
at our disposal sufficiently precise structure results for this category of foliations,
unlike in the case p = 1. However, it remains possible to reach the same conclusion
under strong assumptions on the subsheaf of Ωp

X . For instance, as stated in Theorem
E in the Introduction, this is the case if we assume that the subsheaf of Ωp

X defines a
smooth foliation with conormal bundle having Chern class represented by a smooth
(1, 1)-form with semi-positive curvature of constant rank p.

Proof of Theorem E. We first assert that η is basic for F . More generally, one has
the more general phenomenon, as proved by Demailly [Dem02]: if X is compact
Kähler ω ∈ H0(X,Ωp ⊗ L) such that L is a line bundle whose dual L∗ is pseudo-
effective, then Θ∧ω = 0 where Θ is any closed positive current representing c1(L

∗).
In our situation this implies that η defines a holonomy transverse invariant Kähler

metric for F . Equivalently, the kernel of η is exactly the tangent bundle to F .
One thus inherits another real basic (1, 1)-form, namely the transverse Ricci form
r = −Ricci(η). In some holomorphic coordinates (z1, . . . , zp) parameterizing the
local space of leaves, it reads as

η =
√
−1
∑

i,j

gijdzi ∧ dz̄j

where gij depend only of the transverse variables (z1, . . . , zp) and

r = −
√
−1

π
∂∂̄ log

(

ηp

|dz1 ∧ · · · ∧ dzp|2

)

.

Note that −r also represents c1(N
∗
F ), so that there exists, by the ddc Lemma, a

smooth function f : X → R such that −r = η+ ddcf . Note that ddcf is basic as it
is a sum of two basic forms. This implies that f is pluriharmonic along the leaves of
F . It turns out that f is basic: indeed, let L be a leaf and L its topological closure.
Let x ∈ L such that f

∣
∣
L

reaches its maximum at x and let Lx be the leaf passing
through x. By the maximum principle for pluriharmonic functions f is constant
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on Lx, hence on Lx. On the other hand, the leaves closure form a partition of X ,
a common feature for Riemannian foliations [Mol88, Theorem 5.1]. In particular,
L = Lx. As the original leaf L has been chosen arbitrarily, this enables to conclude
that f is leafwise constant, as wanted. Then, r and η are not only cohomologous in
the ordinary ∂∂̄ cohomology, but also in the basic ∂∂̄ cohomology. By the foliated
version of Yau’s solution to Calabi conjecture, due to El Kacimi [EKA90, Section
3.5], there exists for F an invariant transverse Kähler metric whose Ricci form is
equal to −η.

If the leaves of F are closed, the space of leaves X/F is naturally equipped with
a structure of a Kähler orbifold (in the usual sense). The (1, 1)-form η descends
on X/F as a positive (1, 1)-form representing the Chern class of the (orbifold)
canonical bundle KX/F . The orbifold analogue of Kodaira embedding theorem
[Bai57, Section 7] enables to exhibit a Bogomolov sheaf on X , thus proving that X
is not special.

Otherwise, if the leaves of F are not closed, the strategy consists in producing a
representation π1(X) → G with dense image, whereG is a real semi-simple algebraic
group and apply Zuo’s Theorem [Zuo96] or [CCE15, Theorem 1] to conclude: if

there exists such a representation, up to replacing X by a finite étale cover X̃,
there exists a meromorphic fibration f : X̃ → V where V is a projective manifold
of general type (through which the representation factorizes).

We now explain how to produce such a representation. Under our assumptions, F
is a transversely Kähler foliation F whose leaves are not closed and whose transverse
Ricci curvature is negative, that is η is semi-negative with constant rank equal to p
the complex codimension of F . This corresponds to the monodromy of the so called
commuting sheaf C. This sheaf is a locally constant sheaf of Lie algebras g of basic
Killing vector fields which encodes the dynamic of F and defined in the general
setting of Riemannian foliations (see [Mol88, Section 5.3]). Under our negativity
assumption, one can prove [Tou10, Théorème 1.1], that g is semi-simple. This
implies that the image of representation α : π1(X) → Aut(g) (= real semi-simple
algebraic group) intersects Aut0(g) as a dense subgroup. Indeed, the closure of the
image of α contains the image Ad g of the exponential of the adjoint representation
of g according to [Mol88, E. Salem Appendix, Proposition 3.7]. We can thus apply

Zuo’s Theorem to produce the sought fibration X̃ 7→ V , thus proving that X is not
special. �

Remark 7.1. In [Mok00], Mok considered compact Kähler manifolds X equipped
with a d-closed holomorphic one form twisted by a locally constant bundle of Hilbert
spaces EΦ. This defines on X a foliation which is transversely Riemannian on a
dense open subset of X and whose transverse metric (semi-Kähler structure in the
language of loc.cit) is cooked up from an orthonormal basis on the typical fiber of
EΦ and whose "Ricci curvature" carries some negativity properties. Under some
circumstances, Mok shows the existence of fibration of (an étale cover of) X onto
varieties of general type. It could be tempting to relate the existence of a numerical
Bogomolov sheaf to the existence of a semi-Kähler structure arising from twisted
forms. For instance, in codimension one, transversely hyperbolic foliations can be
regarded as foliations defined by the kernel of a EΦ valued closed holomorphic one
form where EΦ → X is the locally constant bundle of Hilbert spaces arising from a
unitary representation π1(X) → U(H), where H is the space of square integrable
antiholomorphic forms on the disk ([Mok97, Section 4]).
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