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Abstract. We propose a numerical formulation for the simulation of frictional contact with interfacial
adhesion between soft bodies. In this work, the adhesive interface behaviour derives from a free surface
energy and a pseudo-potential of the surface dissipation, which describe both the de-bonding process of
the adhesive links due to tangential and normal interface deformation. Subsequently, a complete contact
and friction law with the account for interface adhesion is formulated. Then the local contact nonlin-
ear equations are solved using a Newton-like algorithm within the bi-potential framework. Numerical
examples are performed to demonstrate the capacity of the proposed approach.

1 INTRODUCTION

Dynamic frictional contact involving soft materials and interface adhesion represents a frequent phe-
nomenon of contact. In the area of numerical modelling, although many efforts have been exerted over
the last decade to develop adhesive contact algorithms [1, 10, 12, 18], literature on complete modelling
schemes that can capture the entire bonding and de-bonding process of soft adhesives is still premature
[9]. Such modelling schemes, in general, should involve proper definition of contact laws that reflect be-
haviours of the reversible interface adhesion, and development of robust and stable resolution algorithms,
that can deal with the computational difficulties inherent to the problem non-linearities. Concerning the
adhesive interface laws, a number of models have been developed over the past decades. The most promi-
nent ones include Johnson-Kendall-Roberts (JKR)[8], Maugis-Dugdale (MD)[11], and Greenwood and
Johnson models[5]. These models, proposed as early as the 1970s and became the reference in this area
ever since, provided the theoretical basis for the contact and friction modelling of adhesive interfaces.
Recent advances in this area include [6, 9, 13], which successfully represented reactions of adhesive
interfaces under complex loads with tension and shear.

In this work, in order to simulate complex interface behaviours with adhesion, we adopt the RCC model
[16, 17, 18] which is a cohesive interface model coupling adhesion, friction and unilateral contact. It is
based on a adhesion intensity parameter β presented first in the work of Frémond [4]. Varying between 0
and 1, β characterizes the damage level of the interface adhesive bonds (0 refers to the state of complete
de-bonding, 1 refers to complete bonding). Then the adhesive interface behaviour, evolving with β, de-
rives from a free surface energy and a pseudo-potential of the surface dissipation [2]. A complete contact
and friction law with extended Signorini condition and modified Coulomb friction law, accounting for
adhesion is formulated.
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However, the inherently severe non-linearities due to contact dynamics, and the non-smooth and mul-
tivalued nature of the adhesive interface law give rise to significant difficulties in numerical resolution,
and makes it necessary to adopt robust, and stable algorithms to ensure iteration convergence, solution
accuracy and balanced efficiency. Based on the augmented Lagrangian method, we propse a bipotential
theory which couples the two variational inequalities of the unilateral contact and friction law into one
single displacement based variational principle with one unique inequality. First introduced in the 1990s,
the approach has recently been extended to problems involving elastic-plastic contact and friction [3, 20],
and interface wear [14, 15].

The aim of this work is to propose a numerical formulation for the simulation of contact and friction
between hyperelastic systems with adhesive interface. The article starts with a brief description of the
contact kinematics. Then, we present the complete framework of the adhesive contact law, which is an
extension of Signorini law and Coulomb rules. Then we present its implementation within the bipotential
framework. In Section 3, the complete finite element formulation of the problem, including the resolution
algorithm, is provided. To validate the framework, we present numerical examples in Section 4. In the
end, a few conclucing remarks are drawn in Section 5.

2 Problem setting

2.1 Contact kinematics

We describe in this section the geometric definitions and notations related to the contact kinematics.
Let’s consider two deformable bodies B1 and B2 coming into contact with Nc contact points. Each body
is discretized with finite elements with nodal positions represented by X1 (for B1) and X2 (for B2) defined
in the global coordinate system. Contact points belonging to B1 are denoted by Pα

1 (α = 1,2, ...Nc), and
accordingly Pα

2 .

We consider on each Pα
1 a local orthogonal coordinate system, formed by T1, T2 and N, representing

respectively the tangential, and normal direction vectors defined with respect to the global coordinates.
Therefore, Pα

2 can be seen as the projection point of Pα
1 on B2 following N. We can build the relative

position between Pα
1 and Pα

2 by
Xα = X(Pα

2 )−X(Pα
1 ), (1)

with X(Pα
1 ) and X(Pα

2 ) the position vectors of Pα
1 and Pα

2 in the global coordinates. We can then introduce
xα, the local relative position vector of the contact point α, by prjecting Xα in the system (T1,T2,N) :

xα =


xα

t1 = TT
1 Xα

xα
t2 = TT

2 Xα

xα
t3 = NT Xα

 . (2)

We can thus express the local position vector xα as function of the global vector X :

xα = HαX, (3)

where Hα is the transition matrix obtained by combining Eqs.(1,2). Similar relations can be determined
with respect to contact forces. The local gap vector between two contact points can be derived from the
incremental form of Eq.(3):

xα
i+1 = Hα∆Xi +gα, (4)
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Figure 1: Contact kinematics

with gα = (0,0,gα)T , the initial gap vector on the point α.

Then, let’s denote the local and global contact force vectors on point α with respectively rα and Rα. The
relation between contact force vectors expressed in local and global coordinate systems:

Rα = HT
αrα. (5)

Here, due to the presence of adhesion on the contact interface, contact reaction rα is composed of the
cumulative effects due to both dry contact and the interface adhesion, hence

rα = r̄α + r̃α, (6)

in which we use r̄ to denote dry contact reactions, and r̃ contact forces due to interface adhesion.

We now assemble all the Nc equations based on Eqs.(3,4,5), we obtain the following geometric and
kinematic relations: {

x = H∆X+g
R = HT r, . (7)

with

H =

H1
...

HNc

 , x =

 x1

...
xNc

 , r =

 r̄1
n + r̃1

n
...

r̄Nc
n + r̃Nc

n

 , g =

 g1

...
gNc

 . (8)

2.2 RCC model for adhesion

The use in this work the RCC model to describe the effect of adhesion between contact surfaces. First
introduced by Raous, Cangémi and Cocou [18], this model accounts for unilateral contact, friction and
adhesion, based on an energy description of the contact interface, involving a free surface energy Ψ

written as:

Ψ(xt ,xn,β) =
Cn

2
x2

nβ
2 +

Ct

2
x2

t β
2−wβ+ IK(xn)+ IP(β) , (9)

and a pseudo-potential of the surface dissipation Φ:

Φ(ẋt , β̇;χn) = µ(1−β)|rn−Cnxnβ
2||ẋt |+

b
2
|β̇|2 . (10)
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In these expressions, β is a scalar parameter measuring the intensity of adhesion. Introduced by Frémond
[4], it varies within the range [0,1]. Specifically, β = 0 represents no adhesion, β = 1 indicates perfect
adhesion. Therefore, any β∈ (0,1) refers to partial adhesion between contact surfaces. Other parameters
in Eq.(9,10) include: Ct and Cn are parameters characterizing the initial adhesive stiffness when adhesion
is complete. w is decohesion energy threshold. IK and IP represent two indicator functions that assure
unilateral contact (xn > 0), and meaningful values of the degree of adhesion (β∈ [0,1]). The subscripts K
and P indicate K = {θ | θ > 0} and P = {η | 0 6 η 6 1}. µ is coefficient of friction, b is surface viscosity
and rn is contact force.

Deriving the surface free energy Eq.(9), we obtain expression of the normal force of adhesion and the
tangential force of adhesion :

rad
n =Cnxnβ

2 , (11)

rad
t =Ctxtβ

2 . (12)

Both adhesion forces are dependant of the degree of adhesion β. Then deriving energy functions Eq.(9)
and Eq.(10) with respect to β and β̇ yields the incremental expression of β which gives its evolution in
time:


bβ̇≥ 0 with β = 0
bβ̇ = w− (Cnx2

n +Ctx2
t )β with 0 < β < 1

bβ̇≤ w− (Cnx2
n +Ctx2

t ) with β = 1 .

(13)

2.3 Adhesive contact law and friction rule

2.3.1 Modified Signorini law with adhesion

We recall the unilateral contact law, also called Signorini law, which for classical non adhesive contact
is characterized by conditions of non-penetration and non adhesion. By using r̄α

n to denote local normal
contact force on the point α due to dry contact, and xn the contact distance, we have{

xα
n = ∆xα

n +g = 0, r̄α
n > 0

xα
n = ∆xα

n +g > 0, r̄α
n = 0

⇒ xα
n r̄α

n = 0 . (14)

The first relation eliminates geometric penetration between contact surfaces. The second inequality indi-
cates the absence of adhesion forces between dry contact surfaces once they are separated. For adhesive
contact, since contact forces result from both the effects of dry contact and adhesion, the classical condi-
tions of unilateral contact should be modified by considering Eq.(6), hence

{
xα

n = 0, rα
n − r̃α

n > 0
xα

n > 0, rα
n = r̃α

n
⇒ xα

n (r
α
n − r̃α

n ) = 0 . (15)

Here, adhesive forces r̃α
n are zeros with surfaces in contact. They will appear when contact surfaces

start to separate (the second relation), and r̃α
n will tend to maintain the contact surfaces together. By

considering Eq.(11), a modified Signorini condition with account for adhesion writes{
xα

n = 0, rα
n −Cnxα

n β2 > 0
xα

n > 0, rα
n =Cnxα

n β2 ⇒ xα
n (r

α
n −Cnxα

n β
2) = 0 . (16)
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2.3.2 Modified Coulomb friction rule with adhesion

Classically, friction problems are studied using Coulomb friction model which is characterized by a set
of rate-independent slip rules. It describes tangential contact forces as function of normal forces in the
context of dry friction: {

‖r̄α
t ‖6 µr̄α

n ∀ ‖xα
t ‖= 0 (sticking)

r̄α
t =−µr̄α

n
xα

t
‖xα

t ‖
∀ ‖xα

t ‖ 6= 0 (sliding) .
(17)

With consideration of adhesion, both tangential and normal contact forces are supplemented by contri-
butions due to interface adhesion as shown in Eq.(6), the above rules become{

‖rα
t ‖6 µrα

n ∀ ‖xα
t ‖= 0 (sticking)

rα
t =−µ(rα

n − r̃α
n )

xα
t
‖xα

t ‖
+ r̃α

t ∀ ‖xα
t ‖ 6= 0 (sliding) ,

(18)

in which r̃α
t , the adhesive tangential force on contact point α can be calculated by considering Eq.(12):

r̃α
t =−Ctxα

t β
2 , (19)

and in the normal direction, contact forces are{
rα

n − r̃α
n = r̄α

n ∀ ‖xα
n‖= 0 (unseparated)

rα
n − r̃α

n = 0 ∀ ‖xα
n‖> 0 (separated) .

(20)

With the consideration of interface adhesion, tangential friction is made from two contributions. The
first follows the classical Coulomb rule and disappears once contact surfaces are separated. The second,
r̃α

t , the adhesive tangential force arises when slip occurs, and maintains even with the surface starting to
separate.

2.3.3 Complete adhesive contact law within the bipotential method

By combining the modified Signorini law and Coulomb rule, we obtain the complete contact law with
the account for interface adhesion as follows :

Separation : xα
n > 0, rα =−Cnxα

n β2−Ctxα
t β2

Sticking : xα
n = 0 and ‖xα

t ‖= 0, rα = r̄α

Sliding : xα
n = 0 and ‖xα

t ‖> 0, rα
n = r̄α

n

rα
t =−µr̄α

n
xα

t
‖xα

t ‖
−Ctxα

t β2 ,

(21)

in which r̄α
n refers to the normal contact force on point α when surfaces are in contact. In the Sticking

situation, since no relative motion occurs, adhesive forces are absent, contact force vector r̄α lies in the
classical Coulomb cone Kµ, defined by

Kµ = {r̄α ∈ R3 | rα
n > 0, ‖rα

t ‖−µrα
n 6 0}. (22)

The bipotential fuction and inequality of contact law is as follows:

bc(−xα,rα) = Iℜ−(−xα
n )+ IKu(r

α)+µrα
n ||− xα

t || (23)
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bc(−xα,rα′)−bc(−xα,rα)≥−xα(rα′− rα) (24)

where I is indicator function. ℜ− and Ku represent respectively the negative real numbers and Coulomb
cone.

The indicator functions become null when the variables −xα and rα comply with the restraining condi-
tions, α denotes any contact node (α ∈ 1, ...,Nc).

We multiply both sides of the inequality (24) a parameter ρ, which is used to ensure numerical conver-
gence, and substitude (23) into (24):

ρµ(rα′
n − rα

n )||− xα
t ||+[rα− (rα−ρxα)](rα′− rα)≥ 0 (25)

Taking into account the decomposition x = xt + xnn, the following inequality has to be satisfied:

(rα− rα∗)(rα′− rα)≥ 0 (26)

where the modified augmented contact force rα∗ is defined by:

rα∗ = rα−ρ[x+µ||− xα
t ||n] (27)

rα is the projection of rα∗ onto the closed convex Coulomb cone:

rα = Pro j(rα∗,Ku) (28)

According to the three different contact states, the projection procedure becomes:

i f µ||rα∗
t ||<−rα∗

n then rα = 0 separating
elsei f ||rα∗

t || ≤ µrα∗
n then rα = rα∗ sticking

else rα = rα∗− ( ||r
α∗
t ||−µrα∗

n
1+µ2 )( rα∗

t
||rα∗

t ||
+µn) sliding

(29)

3 Numerical implementation

3.1 Finite element formulation of the nonlinear problem

Since contact between soft bodies involves treatment of nonlinear kinematic relations, we formulate the
nonlinear finite element problem within the framework of large deformations. In this work, we use
Green-Lagrangian strain tensor E which comprises both linear and nonlinear terms, as function of nodal
displacements u:

E =
(

BL +
1
2

BNL(u)
)

u, (30)

where BL is the matrix relating the linear strain term to nodal displacements, and BNL(u), relates the non-
linear strain term to nodal displacements. From Eq.(30), the incremental form of the strain-displacement
relationship can be written as :

δE =
(
BL +BNL(u)

)
δu. (31)

6
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Using the principle of virtual displacement, we can write the virtual work δU of the problem as :

δU = Müδu+Au̇δu+
∫

V0

SδEdV −Fext δu−Rδu = 0, (32)

where the second Piola-Kirchhoff stress tensor S. The vector of contact reaction force R is expressed
in the global coordinate system. It is obtained by considering Eqs.(5,6,7) and includes in particular
contributions due to adhesion :

R = HT (r̄+ r̃), (33)

with r̄ and r̃ determined according to the contact and friction rules given in Section 2.3. Other notations
in Eq.(32) include V0, volume of the initial configuration; Fext , vector of external loads; M, mass matrix;
A, damping matrix; u̇, vector of velocity, and ü, vector of acceleration. Substituting δE from Eq.(31)
into Eq.(32) results in

δU = Müδu+Au̇δu+
∫

V0

S
(
BL +BNL(u)

)
δudV −Fext δu−Rδu = 0. (34)

We can identify in Eq.(34) the vector of internal force:

Fint =
∫

V0

S
(
BL +BNL(u)

)
dV. (35)

Since δu is arbitrary, a set of nonlinear equations can be obtained as

Mü+Au̇+Fint −Fext −R = 0. (36)

It is noted that the stiffness effect is taken into account by the internal force vector Fint . Eq.(36) can be
transformed into

Mü = F+R, where F = Fext −Fint −Au̇, (37)

with the initial conditions at t = 0
u̇ = u̇0 and u = u0. (38)

Taking the derivative of Fint with respect to the nodal displacements u gives the tangent stiffness matrix
as

K =
∂Fint

∂u
=

∫
V0

(
∂S
∂u
(
BL +BNL(u)

)
+S

∂BNL(u)
∂u

)
dV. (39)

In addition, by considering Eqs.(31), the tangent stiffness matrix can be written as the sum of the elastic
stiffness matrix Ke, the geometric stiffness (or initial stress stiffness) matrix Kσ and the initial displace-
ment stiffness matrix Ku:

K = Ke +Kσ +Ku, (40)

with
Ke =

∫
V0

BT
L DBL dV

Kσ =
∫

V0

S
∂BNL

∂u
dV

Ku =
∫

V0

(
BT

L DBNL +BT
NLDBL +BT

NLDBNL
)
dV.

(41)
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3.2 Numerical integration algorithm

Now we need to integrate Eq.(37) between consecutive time configuration t and t +∆t. The Newmark
method is the most common method which is based on a second order algorithm. However, higher order
approximation does not necessarily mean better accuracy and may even be redundant in impact problems.
When the contact conditions suddenly change (impact, release of contact), the velocity and acceleration
are not continuous, and excessive regularity constraints may lead to serious errors. For this reason, Jean
[7] has proposed a first order algorithm which is used in this work, Eq.(37) can be transformed into:

Mdu̇ = Fdt +Rdt (42)

This algorithm is based on the following approximations:∫ t+∆t

t
Mdu̇ = M

(
u̇t+∆t − u̇t) (43)

∫ t+∆t

t
Fdt = ∆t

(
(1−ξ)Ft +ξFt+∆t) (44)∫ t+∆t

t
Rdt = ∆t Rt+∆t (45)

ut+∆t −ut = ∆t
(
(1−θ) u̇t +θ u̇t+∆t) (46)

where 0≤ ξ≤ 1; 0≤ θ≤ 1. In the iterative solution procedure, all the values at time t +∆t are replaced
by the values of the current iteration i+1; for example, Ft+∆t = Fi+1. A standard approximation of Fi+1

gives

Fi+1 = Fi
int +

∂F
∂u

(ui+1−ui)+
∂F
∂u̇

(u̇i+1− u̇i) = Fi
int −Ki

∆u−Ai
∆u̇ (47)

Finally, we obtain the recursive form of (42) in terms of displacements:

K̄i ∆u = F̄i + F̄i
acc +Ri+1

ui+1 = ui +∆u (48)

where the so-called effective terms are given by

K̄i
= ξKi +

ξ

θ∆t
Ai +

1
θ∆t2 Mi (49)

F̄i
acc =−

1
θ∆t2 Mi{ui−ut −∆t u̇t} (50)

F̄i
= (1−ξ)

(
Ft

int +Ft
ext
)
+ξ
(
Fi

int +Ft+∆t
ext
)

(51)

At the end of each time step, the velocity is updated by

u̇t+∆t =
(

1− 1
θ

)
u̇t +

1
θ∆t

(ut+∆t −ut) (52)

By setting θ = 1
2 , this scheme is then called the implicit trapezoidal rule and it is equivalent to the Tamma

- Namburu method in which the acceleration need not be computed [19].
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4 Numerical results

4.1 Indentation on a hyperelastic material with adhesive surface

The adhesion effect is usually most significant in the normal direction. In order to clearly show the evolu-
tion of β during the complete process of bonding and de-bonding, the first example simulates the normal
adhesive contact between an elastic semi-sphere and a hyperelastic block, shown in Figure 2(a). Mate-
rial parameters of two bodies are: For the sphere indentor, Young’s modulus E = 7 · 1010Pa, Poisson’s
ratio ν = 0.3, density ρ = 2500kg/m−3; For the block, Young’s modulus E = 5 · 106Pa, Poisson’s ratio
ν = 0.48, density ρ = 1000kg/m−3. In this case, the sphere indentor behaves as a rigid body compared
to the block.

A time dependent displacement is prescribed on the upper surface of the semi-sphere, so that a complete
cycle of indentation is performed in 4 seconds. Figure 2(b) is the load curve showing the displacement
of the upper surface of the sphere.

3 mm

30 mm

R=15 mm
x

y

uy

(a)

uy (mm)
t (s)

1 2 3 40

-1

(b)

d

O
A

Figure 2: Indentation on a hyperelastic material with adhesive surface: (a) Problem set; (b) Loaded displacement
on the upper surface of the sphere.

Figure 3(e) lists three different sets of adhesive parameters used in the test, whose results are reported
in Figure 3(c). Cocou and al. in [2] investigated similar scenarios and obtained concordant results.
Figure 3(a) shows the evolution of β on 7 contact nodes in case 1. On any contact point, its horizontal
distance from the center point O determines the time length of the contact process on this point, involving
bonding and de-bonding. The sequence of β evolution is thus distinctive on each point. Figure 3(b)
shows the normal adhesion force of the 7 contact nodes in case 1. Similarly, the distance from the center
point O determines the sequence of separation, which however does not influence the adhesion force at
the moment of separation. Figure 3(c) shows evolution of β on the contact point A under 3 groups of
different adhesive parameters. Figure 3(d) shows the normal adhesion force of the contact point A during
the de-bonding process under 3 cases. We can see that the increase of Cn makes the detachment difficult.
The difference in adhesion force determines the rate of decrease of β as shown in Figure 3(c).

4.2 Adhesive friction between a hyperelastic plate and a deformable semi-cylinder

In this example, we investigate the adhesive friction between a hyperelastic plate that slides on top of a
deformable semi-cylinder, as shown in Figure 4(a). Both the plate and the semi-cylinder are modelled
by Blatz-Ko hyperelastic material, based on the same material property with shear modulus G = 10MPa.
Radius of the cylinder is 5mm, and the plate thickness H = 2mm. The plate is sufficiently long so as to
ensure contact between the plate and the cylinder during the simulation. While the plate is allowed to
slide horizontally, the bottom surface of the semi-cylinder is fixed. The simulated scenario involves 2

9
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Figure 3: Indentation on a hyperelastic material with adhesive surface: (a) Evolution of β calculated on 7 contact
nodes of the hyperelastic block. At t = 0s, the only contact point between the indentor and the block is point O,
see Figure 2(a), and d represents the horizontal distance between each node and the center point O; (b) Evolution
of the adhesion force R̃n calculated on 7 contact nodes of the hyperelastic block; (c) Evolution of β with 3 different
sets of adhesive parameters (w and Cn) on node A (d = 3.4mm); (d) Evolution of the adhesion force R̃n based on 3
different sets of adhesive parameters, calculated on node A; (e) Table of the tested adhesive parameter sets.

stages. On the first stage, the upper plate descends for 1mm to exert slight compression on the cylinder.
Then on the second stage, lateral displacement is prescribed on the plate at a constant velocity. As a result
of the combined effect of friction and adhesion, the cylinder is dragged to deform, and we investigate
the interfacial behaviour during the process. In particular, by varying the descent velocity of the first
stage, we modulate the total time of compression before sliding, during which bonding process takes
place. This will have impact on the final adhesion level (characterized by β) before de-bonding starts at
the onset of the sliding stage. In order to explore the influence of the adhesion level β on the subsequent
adhesive friction behaviour, we set up 5 groups of cases with for each group a different descent velocity
( summarized by Figure 5(a)). Then for each group, we test on 5 different friction coefficients µ, so as
to investigate the combined effect of friction and adhesion on the tangential interface behaviour. The
adhesive parameters used in the simulations are: w = 20J ·m−2, Cn = 2 ·109N ·m−3 and b = 0.1Ns ·m−1.

Figure 4(b) and (c) present the Von Mises stress distributions of the sliding system, respectively at the
onset of sliding, and during the sliding process. We post-process the frictional adhesive behaviour by
isolating 2 nodes belonging to the system: as seen in Figure 4(a), one blue node on the lower surface of
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Figure 4: Adhesive friction between a hyperelastic plate and a deformable semi-cylinder: (a) Problem setup; (b)
The distribution of Von Mises stress of the substrate and the cylinder at the end of push down; (c)The distribution
of Von Mises stress at the end of calculation.

the plate in contact with the cylinder, and one red node on top of the cylinder, in contact with the plate.
Here, we investigate the evolution of β during the first stage. By considering different descent velocities
of the plate, varying from 1000mm/s to 200mm/s, we modulate for each case the time for the bonding
process. As shown in Figure 5(c), the case with the plate slowly descending at 200mm/s (green curve)
had sufficient time to achieve perfect bonding of adhesive links (β reached 1), whereas the most rapid
descent (blue curve) did not allow enough time for the formation of complete bonding. In this case, de-
bonding was already initiated after β reached 0.2. We then investigate the influence of friction coefficient
µ on the de-bonding behaviour, by prescribing varying friction coefficients µ while considering the same
plate descent velocity. We report in Figure 5(b) 5 simulations based on 5 values of µ ranging from 0
to 0.8. All the 5 cases consider the same plate descent velocity of 1000mm/s (Case 1 of Figure 5(a)).
Results in Figure 5(b) indicate the formation of stronger bond (higher β) on rougher surfaces (greater µ).
This can be interpreted by the fact that a rougher surface (higher µ) delays the onset of sliding motion,
according to the Coulomb friction model, which results in longer time for better bonding of adhesive
links. Therefore, we observe concordant trend on the curves reflecting tangential adhesion forces. With
greater friction coefficient (Figure 5(d)), the onset of de-bonding is delayed, creating increased level of
adhesion force. Then, lower descent velocity on the first stage (Figure 5(e)) also creates the effect of
delaying the onset de de-bonding, permitting better bonding and more significant adhesion forces.

5 Conclusions

In this work, an interface adhesion model is proposed within the bipotential method to solve contact and
friction problems between soft bodies. The model proposes a straightforward description of the interface
adhesion based on a local scalar parameter, and allows coupling the effect of adhesion, friction and uni-
lateral contact within a unified framework. Both normal and tangential effects are taken into account by
the adhesive interface model. Interface behaviours can be tracked beyond the onset of tangential sliding
or normal separation, with interface adhesion driven by the conditions of normal contact. Numerical
examples have been performed to investigate the effects of friction and adhesion, including their com-
bined effect, on the interface behaviour based on frictional contact scenarios in tangential and normal
directions.
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Figure 5: Adhesive friction between a hyperelastic plate and a deformable semi-cylinder: (a) 5 cases with different
time and velocity of push down. This kind of setting is to ensure that the substrate has the same displacement during
the whole process; (b) The evolution of β of blue node (see Figure 4(a)) with different friction coefficients µ in case
1; (c) The β evolution of blue node with different descent velocities under µ = 0; (d) Evolution of the tangential
adhesion force R̃t of blue node with different friction coefficients µ in case 1; (e) Evolution of the tangential
adhesion force R̃t of blue node with 5 cases under µ = 0.
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