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Abstract

Frequently, population studies feature pyramidally-organized data represented us-
ing Hierarchical Bayesian Models (HBM) enriched with plates. These models can
become prohibitively large in settings such as neuroimaging, where a sample is
composed of a functional MRI signal measured on 64 thousand brain locations,
across 4 measurement sessions, and at least tens of subjects. Even a reduced exam-
ple on a specific cortical region of 300 brain locations features around 1 million
parameters, hampering the usage of modern density estimation techniques such
as Simulation-Based Inference (SBI). To infer parameter posterior distributions in
this challenging class of problems, we designed a novel methodology that automat-
ically produces a variational family dual to a target HBM. This variatonal family,
represented as a neural network, consists in the combination of an attention-based
hierarchical encoder feeding summary statistics to a set of normalizing flows. Our
automatically-derived neural network exploits exchangeability in the plate-enriched
HBM and factorizes its parameter space. The resulting architecture reduces by
orders of magnitude its parameterization with respect to that of a typical SBI repre-
sentation, while maintaining expressivity. Our method performs inference on the
specified HBM in an amortized setup: once trained, it can readily be applied to a
new data sample to compute the parameters’ full posterior. We demonstrate the ca-
pability of our method on simulated data, as well as a challenging high-dimensional
brain parcellation experiment. We also open up several questions that lie at the
intersection between SBI techniques and structured Variational Inference.

1 Introduction

Inference aims at obtaining the posterior distribution p(θ|X) of latent model parameters θ given the
observed data X . In setups such as neuroimaging, featuring Hierarchical Bayesian Models (HBM)
representing large population studies [4; 21], the dimensionality of θ can go over the million. This
dimensionality hinders the usage of modern, normalizing flows based techniques [14; 20; 26; 27].
Indeed, the parametrization of the these techniques usually scales quadratically with the size of the
parameter space [e.g. 9; 13; 25]. This in turn can lead to very complex, problem-specific derivations:
for instance Kong et al. [21] rely on a manually-derived Expectation Maximization (EM) technique.
This analytical complexity constitutes a strong barrier to entry, and limits the wide and fruitful usage
of Bayesian modelling in that field. Our first aim is to meet that experimental need: how can we
derive a technique both automatic and efficient in the context of very large, hierarchically-organised
data?

We take inspiration from the field of Variational Inference (VI) [3; 41], in which such an analytical
barrier to entry is also prominent. In VI, the experimenter posits a variational family Q so as to
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approximate q(θ) ≈ p(θ|X). In practice, deriving an expressive, yet computationally attractive
variational family can be challenging [3]. This triggered a trend towards the derivation of automatic
VI techniques readily applicable to a problem [1; 22; 29]. We follow that logic and present a
methodology that automatically derives a variational family Q.

Contrary to traditional VI, we aim at deriving a variational family Q in the context of amortized
inference [7; 31]. This means that, once an initial training overhead has been "paid" for, our technique
could readily be applied to a new data point. Amortized inference is an active area of research in
the context of Variational Auto Encoders (VAE) [17; 19; 32; 39]. It is also a natural possibility for
normalizing flows (NF) [see 28; 31, close to our work], our technology of choice. We note the focus
of modern inference techniques in that field is rather, placed on the derivation of sequential estimation,
refining a posteriors (and loosing amortization) across several rounds of simulation [7; 14; 27; 34].
With all those VAE and NF-based methods, we share the idea of encoding observed data through a
neural network to condition the density estimation of a stochastic block.

Yet, due to the very large parameter spaces presented above, our target applications aren’t amenable
to the generic black-box techniques described in Cranmer et al. [7]. We therefore differentiate
ourselves in our will to exploit the structure of the problem not only through the design of an adapted
encoder, but down to the very architecture of our density estimator. More specifically, we focus
on the inference problem for Hierarchical Bayesian Models (HBMs) [11]. The idea to condition
the architecture of a density estimator by an analysis of the dependency structure of an HBM has
been studied in [37; 38], in the form of the masking of a single normalizing flow. To our knowledge,
we introduce the first architecture that proposes instead to hierarchically combine separate flows.
Considering a different field, our static analysis of a generative model can also be associated with
structured VI [1; 16; 30]. But though we share the same philosophy, our working principles are rather
orthogonal: structured VI usually aims at exploiting model structure to augment the expressivity of a
variational family, whereas we aim at reducing its parametrization.

Our objective is therefore to derive an automatic methodology that takes as input a generative
HBM and generates a dual variational family able to perform amortized parameter inference. This
variational famimy exploits the exchangeability in the HBM to reduce its parametrization by orders
of magnitude compared to generic methods [14; 27]. Consequently, our method can be applied in the
context of large, pyramidally-structured data, a challenging setup in which generic methods would
fail. Our general scheme is visible in fig. 1, a figure that we will explain thorough the course of the
next section 1.

2 Methods

2.1 Pyramidal Bayesian Models

We are interested in practical experimental setups, such as population studies, modelled using HBMs
[4; 21]. These models feature independent sampling from a common conditional distribution at
multiple levels, translating the statistical notion of exchangeability [11], and the graphical notion of
plates [12]. Our methodology aims at taking advantage of plates in HBMs. We further refine the
sub-class of models we specialize upon as pyramidal models, represented by Direct Acyclic Graphs
(DAG) with vertices V , edges E , and plates P:

V = {θi}i=0...L P = {Pp}p=0...P

E ⊆ V × V Card = {Pp → #Pp}p=0...P

plates = {θi → (Pp, . . .Pq)}(i,p...q) where i belongs to plates p...q

(1)

where Card(P) represents the number of exchangeable elements in the plate P. Pyramidal graphs
are DAG with the 3 following differentiating properties: first, we consider a stacking of the plates
P0, . . . ,PP , where an decreasing index describes further subdivisions of the nodes. This means that
a plate Pp is included in every plate {Pq}q>p. Equivalently, if the vertex θi belongs to the plate Pp,
then it must belong to the plates {Pq}q>p; second, each plate Pp is associated to a fixed number of
draws Card(Pp); third, a vertex θi can only have its parents belonging to plate of larger rank than
his. The obtained graph follows a typical pyramidal structure, as seen in Figure 1.

1code available in https://github.com/NeuroLang/adavi
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Figure 1: Automatic Dual Amortized Variational Inference (ADAVI) working principle. On the left is
a generative HBM. It features 2 latent RV λ and Γ = [γ1, γ2], the observed X = [[x1

1, x
1
2], [x2

1, x
2
2]],

and 2 plates P0, P1 of cardinality 2. We analyse automatically the structure of the HBM to produce
its dual amortized variational family (on the right).Notice how the resulting architecture processes
data X through 2 successive set transformers to produce encodings E aggregating summary statistics
at different hierarchies. Those encodings are then used to condition normalizing flows producing the
variational distributions for each latent RV.

This class of graphs is sufficiently expressive to represent many practical examples (see 8 schools and
medical survey examples in Gelman et al. [11]). Our methodology is designed to process generative
models whose dependency structure follow a pyramidal graph. As such, we cast our observed data X
as a realization of the RV θ0, that we expect to belong to the plate P0. The RVs {θi}i=1...L therefore
constitute the latent parameters on which we wish to perform inference.

A Pyramidal Bayesian Model can be summarized by the following descriptors:

Hier = {θi 7→ hi = min
p
{p : Pp ∈ plates(θi)}}i=0...L Shape = {θi 7→ Sei }i=0...L

Link = {θi 7→ (li : Sli → Sei )}i=0...L,
(2)

where: Hier describes the hierarchy h of an RV θ, i.e. the smallest rank for the plates it belongs
to, or equivalently the level of the pyramidal graph it is placed at (X is of hierarchy 0); Shape
maps a RV to its event shape Se, the latter potentially being high rank; Link maps a RV to its event
space link function l [6]. l is a diffeomorphism between the constrained, potentially high-rank event
space ZSe in which a RV lives and a flattened unbounded RSl space. Note that we potentially have∏

all dimensions(Sl) 6=
∏

all dimensions(Se). For instance, ZSe is the unit sphere for a Von Mises-Fisher
distribution and the simplex for a Dirichlet distribution).

In addition to the the random variables V , the plates P and the plate cardinalities Card defined in
eq. (1), these descriptors are the only inputs necessary for our derivation. Those descriptors can be
readily obtained from a static analysis of a generative model, especially when the latter is expressed
in a modern probabilistic programming framework [2; 8].

2.2 Function mapping and parameter sharing

We first introduce the notations for function mapping, a concept that we leverage thorough our entire
architecture to reduce its parametrization. Given a function f : F → G, we notate the mapping of f
over a tensor of shape (D1 × . . .×DK) of values in F as

−→
f D1×...×DK .

Our architecture is based upon the mapping of functions across plates to reduce its parametrization.
Considering that every independent draw from a plate consists in an equivalent problem, we train a
common function to solve this common problem. Normalizing-flow based density estimators for a
parameters space of size D have a parametrization in O(D2) [e.g. 9; 13; 25]. For a RV θ, of batch
shape Card(PP )× . . .×Card(Ph)×Se, this would result inO(Card(PP )2× . . .×Card(Ph)2×
Se2) parameters. But since we train a common density estimator on the event space of shape Se and
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map its usage across all plates PP , . . . ,Ph, we effectively reduce this parametrization to O(Se2).
This is a fundamental property of our approach, leveraged through the rest of this section.

2.3 Automatic derivation of a dual amortized variational family

In this section, we derive our main methodological contribution. We aim at obtaining posterior
distributions for a generative model described using equations 2. For this purpose, we construct a
family of variational distribution Q dual to the model. This architecture consists in the combination
of 2 items. First, a Hierachical Encoder that aggregates summary statistics from the data, exploiting
the exchangeability property introduced by plates. Second, a set of conditional density estimators.

For our encoder, our goal is to learn a function HE that takes as an input the observed data X
and successively exploits the permutation invariance across plates P0, . . .PP . In doing so, HE
produces encodings E at different hierarchy levels. To build HE, we leverage SetTransformers
[24]: an attention-based architecture based on the working principle of DeepSets [40]. We use
SetTransformers to derive encodings across a given plate, mapping them on all larger-rank plates.
Specifically we define, for our observed data, the initial encoding E0 as:

e0 =
∏

all dimensions

SlX E0 = l−1
0 (X) ∈ RCard(PP )×...×Card(P0)×e0

(3)

and an iterative encoding for every plate p, p = 1 . . . P , using the set transformer STp−1 as:

Ep =
−→
ST

Card(PP )×...×Card(Pp)
p−1 (Ep−1) ∈ RCard(PP )×...×Card(Pp)×ep (4)

Note that the application of the set transformer STp−1 produces a contraction of plate Pp−1. We
apply the mapping operation defined in section 2.2 on STp−1. As a consequence, the contraction
operation will be performed in parallel for all components exchangeable across a plate of higher rank
than p− 1.

We now will use the encodings E, gathering hierarchical summary statistics on the data X , to
condition the inference on the parameters θ. An encoding will condition the inference for the
parameters sharing its hierarchy. Put formally, the encodings {Ep}p=1...P−1 will respectively
condition the density estimators for the posterior distribution of parameters {{θi : hi = p}}p=1...P−1.

A conditional density estimator is a 2-step flow from a latent space onto the event space in which a
RV lives. We represent every RV as a standard normal distribution in the latent space RSl . First, this
latent distribution is reparametrized by a conditional normalizing flow F into a distribution of more
complex density in the space RSl .Second, the obtained latent distribution is projected onto the event
space by the application of the link function l.

The flow F is a diffeomorphism in Diff(RSl) conditioned by the encoding Eh. F could be more or
less expressive, opening up the possibility of sophisticated posteriors when leveraging the normalizing
flow literature [20; 26]. Note that the normalizing flow F is mapped (see section 2.2) on plates of
larger rank than the hierarchy of θ.

Put more formally, for every RV θi we have:

Bi = Card(PP )× . . .× Card(Phi) NFlow : Rehi → Diff(RS
l
i)

Sbi = Bi × Sli Fi(x;Ehi) =
−−−−→
NFlowBi(Ehi)(x)

ui ∼ N
(
~0Sbi , IdSbi

)
θ̃i = li(Fi(ui;Ehi)) ∼ qi(θi;Ehi)

(5)

Where qi is the conditional density estimator for the posterior distribution p(θi|X). A visualization
of the complete architecture can be seen in Figure 1.

2.4 Variational distribution and training

Given the encodings Ep provided by the hierarchical encoder HE, and the resulting conditioned
density estimators qi, we define our parametric amortized variational distribution as a mean field
approximation [3] as follow:

(E1, . . . EP ) = HEχ(X)

qχ,Φ(θ|X) = qΦ(θ; HEχ(X)) =
∏

i=1...L

qi(θi;Ehi ,Φ) (6)
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Where we can group parameters as Ψ = (χ,Φ). Our objective is to have qΨ(θ|X) ≈ p(θ|X).
Following the terminology introduced in Papamakarios et al. [26], we obtained the best experimental
results using a reverse KL divergence (see comparative experiments in supplemental material). We
therefore benefit from our access to a target joint density p(X, θ). The reverse KL loss is an amortized
version of the classical ELBO expression [3]. To train our full architecture, we only need to have
access to a dataset {Xm}m=1...M of points drawn from the generative HBM of interest. Indeed, the
θm points are sampled from the variational distribution (full derivation available in supplemental
material):

Ψ? = arg min
Ψ

EX∼p(X)[KL(qΨ(θ|X)||p(θ|X)]

≈ arg min
Ψ

1

M
×
∑

Xm∼p(X)
θm∼qΨ(θ|Xm)

log qΨ(θm|Xm)− log p(Xm, θm) (7)

Note that, as can be seen in supplemental material, we also studied the usage of the forward KL
divergence, more common for SBI techniques that assume that the target density p is only implicitly
defined by a simulator [7].

3 Experiments

All experiments were performed on a computational cluster with 40 Intel(R) Xeon(R) CPU E5-2660
v2 @ 2.20GHz CPUs (32Gb RAM per CPU), and a single Tesla V100 (32Gb) GPU. We implemented
our architecture on GPU using Tensorflow Probability [8], and SBI methods on CPU using the SBI
Python library [33].

3.1 Gaussian random effects

As a first experiment, we want to assess the performance of our method on a simple experiment, for
which theoretical results are available. We use the following model:

G, D, N = 3, 2, 50 σµ, σg, σx = 1.0, 0.2, 0.05

µ ∼ N(~0D, σµ) µ1, . . . , µG|µ ∼ N(µ, σg)

xgn|µg ∼ N(µg, σx)

(8)

where we try to recover the posterior distributions of the parameters µ, µ1, . . . , µG given the observed
data X = [x1

1, . . . x
G
N ]. Put more simply, given N points in each group g we wish to estimate the

group mean µg, and given all group means we wish to estimate the population mean µ. For this
problem, we note the presence of an analytical ground truth posterior derived in the supplemental
material.

In this section we use a Hierarchical encoder featuring 2 set transformers (encoding size of 16; split
in 4 attention heads of size 4; encoder with 2 SAB blocks; decoder with 1 seed vector). For the
conditional density estimators, we use simple affine flow with triangular scale. Note that we therefore
forgo the usage of a more expressive normalizing flow. This is to obtain Gaussian posteriors that
can be analytically compared to the theoretical ones (see supplemental material). We use the Adam
optimizer (10−3 learning rate), and minibatch gradient descent (batch size 32, 32 θm draws per Xm)
on a dataset of 20, 000 points (θm, Xm). Convergence took 10 epochs (under a minute).

We compare our technique with a state-of-the-art amortized density estimation technique: NPE-C
[14]. NPE-C was implemented using 3 Masked Autoregressive Flow (MAF) [25] blocks, each with
32 hidden units. To provide a fair point of comparison, we plugged as embedder to the density
estimator a stacking of a Set transformer [24] contracting the N plate (all embedding size 8: 2 SABs
with 4 heads, followed by a PMA with seed size 1 and a linear unit), and concatenated its output with
the one of a similar Set Transformer contracting the G plate. We carefully designed the architecture
of that embedder so as to provide a way for the density estimator to estimate per-group statistics, and
across-group statistics. The amortized training took 207 epochs over the same dataset as the one used
to train our methods, and more than 3 hours (2d of CPU time). In terms of parametrization, we also
note that, as it flattens the parameter space, the NPE-C has O(G2D2) parameters whereas we have
O(D2) (see section 2.2).

Results can be observed in Figure 2. Both method fit well to the theoretical ground truth in this
example.
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Figure 2: Graphical results on the Gaussian random effects. Rows represent 2 different data points.
Left column represents data, with colors representing 3 different groups. Other columns represent
posterior samples for µ (black) and µ1, µ2, µ3. Second column represents our results, and third
column represents NPE-C results. Associated with those posterior samples are analytical solutions
(thin black circles), centered on the analytical MAP point, and whose radius correspond to 2 times the
standard deviation of the analytical posterior: 95 % of the draws from a posterior should fall within
the corresponding circle. Both our technique and NPE-C manage to recover the correct posteriors.

3.2 Gaussian mixture with random effects

As a second experiment we want to test our architecture on a more challenging, yet interpretable
experiment. We consider the following model:

G, L, D, N = 3, 3, 2, 50 κ, σµ, σg, σx = 1, 1.0, 0.2, 0.05

µ1, . . . , µL ∼ N(~0D, σµ) µ1
l , . . . , µ

G
l |µl ∼ N(µl, σg)

(9)

π1, . . . , πG ∈ [0, 1]L ∼ Dirichlet([κ]× L)

xgn|πg, [µ
g
1, . . . , µ

g
L] ∼ Mixture(πg, [N(µg1, σx), . . . ,N(µgL, σx)])

(10)

Though of low dimensionality, this model features a mixture of distributions, a well-known difficult
setup for inference [18]. At the heart of the complexity of this example is the so-called label switching
problem [18] (further analysed in supplemental material). The problem is even further complexified
by the random effects introduced in the G groups. Yet this problem is not unnecessarily complex as it
can be seen as a simplification of our next target experiment (see section 3.3).

We use a Hierarchical encoder featuring 2 set transformers (encoding size of 32; split in 4 attention
heads of size 8; encoder with 2 SAB blocks; decoder with 1 seed vector). For the conditional density
estimators, we use a flow comprised of an affine block with diagonal scale, followed by a MAF with
hidden dimensions [32, 32, 32]. We use the Adam optimizer (10−3 learning rate), minibatch gradient
descent (batch size 32, 32 θm draws per Xm) over a training dataset of size 20, 000. Training took
30 epochs, and under 3 minutes.

We compare our technique with NPE-C, with the same architecture as described in 3.1. Training took
296 epochs and more than 9h (6d 22h of CPU time). To provided a fair point of comparison -even if
we position ourselves in the amortized setup- we also ran the NPE-C in its original, most efficient
sequential setting (SNPE-C). In the SNPE-C setup, we specialize the posterior for the example at
hand across several rounds of simulation. Training was run over 5 rounds and 4h (349, 50, 45, 31,
99 epochs respectively, total CPU time 2d 22h for a dataset of an effective size of 5000). We also
acknowledge here the existence of different SBI techniques, namely SNRE-B [34] and SNLE-A [27],
analysed in supplemental materials, that did not provide consistent results on this problem.

Results can be seen in Figure 3. We note that no technique recovers the complexity of the theoretical
posterior. NPE-C and SNPE-C’s performances are very degraded, and samples point in a broad
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Figure 3: Graphical representation of the inference results of various methods on the Gaussian
mixture with random effects example. First column represents a data point. All other columns
represent the posterior samples for population mixture components µ1, . . . , µ3 (black) and group
mixture components µ1

1, . . . , µ
1
3, µ

2
1, . . . , µ

2
3, µ

3
1, . . . , µ

3
3. Second column represents the results of

an amortized NPE-C. Third column represents the result of a non-amortized SNPE-C, specialized for
the given data point. Last column represent our amortized technique. We obtain results of greater
experimental value.

Figure 4: Results for our neuroimaging experiment in section 3.3. Networks show the top 1%
connected components. Network 0 (in blue) agrees with current knowledge in semantic/phonologic
processing while network 1 (in red) agrees with current networks known in language production [15;
42]. Our soft parcellation, where coloring lightens as the cortical point is less probably associated
with one of the networks, also agrees with current knowledge where more posterior parts are involved
in language production while more anterior ones in semantic/phonological processing [15; 42].

domain centered in between the 3 blobs of points. Our method doesn’t truly recover the theoretical
posterior (see supplemental material for details) but gives results close to the intuition one forms of the
problem. By exploiting the structure of the HBM, we therefore obtain results of greater experimental
value: contrary to NE-C, our results can be readily used to estimate the components of the Gaussian
mixture.

3.3 Neuroimaging: modelling multi-scale variability in Broca’s area functional parcellation

To show the efficiency of our method in a high-dimensional neuroimaging context, we consider the
model proposed by Kong et al. [21]. This features a HBM to parcel the human brain cortex in terms
of its functional MRI (fMRI)-based connectivity simultaneously at the population and individual
level. This approach’s main goal, achieved through a complex model-specific EM algorithm, is to
address the classical problem in neuroscience of estimating population commonalities along with
individual characteristics. Here, we study this model, for which ADAVI provides automatically an
efficient fitting strategy, in the context of parcelling the region of left inferior frontal gyrus (IFG)
composed by pars orbitalis and triangularis into L = 2 functionally-distinct regions, an open problem
in neuroscience [see e.g. 15].

As Kong et al. [21], we consider a population of S=30 subjects, each with T = 2 acquisition sessions,
from the Human Connectome Project dataset [36]. The fMRI connectivity between a cortical point
and the rest of the brain, split in D = 1, 483 regions, is represented as a vector of length D with each
component quantifying the temporal correlation of blood-oxygenation between the point and a region.
A main hypothesis of Kong et al. [21], and the fMRI field, is that the fMRI connectivity of points
belonging to the same parcel share a similar connectivity pattern or correlation vector. Following
Kong et al. [21], we represent D-dimensional correlation vectors as RVs on the positive quadrant of
the D-dimensional unit-sphere. We do this efficiently assuming they have a L-normal distribution,
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or Gaussian under the transformation of the link function L(x) =
√

SoftmaxCentered(x) [8]. The
resulting model, hierarchical with three levels: session, subject, and population, is expressed as the
HBM:

N,T, S,D,L = 314, 4, 30, 1483, 2 ε− = σ− = κ− = −10

π = 2 ε+ = σ+ = κ+ = −8

L−1(µgl ) ∼ N(~0D−1,Σg) Log(εl) ∼ UniformL(ε−, ε+)

L−1(µsl )|µ
g
l , εl ∼ N(L−1(µgl ), εl) Log(σl) ∼ UniformL(σ−, σ+)

L−1(µs,tl )|µsl , σl ∼ N(L−1(µsl ), σl) Log(κ) ∼ Uniform1(κ−, κ+)

Π ∼ Dirichlet([π]× L)

(11)

Where parameters µ represent the nested connectivity vectors at the population (g), subject (s), and
session (t) level. Thus, the connectivity signal at a given vertex n is given by the mixture:

L−1(Xs,t
n )|[µs,t1 , . . . , µs,tL ], κ,Π ∼ Mixture(Π, [N(L−1(µs,t1 ), κ), . . . ,N(L−1(µs,tL ), κ)]),

(12)
where the prior ND−1(~0D−1,Σg) is the result of a data pre-processing step described in supplemental
material.

Our aim is therefore to identify L = 2 functional networks that would produce a functional parcella-
tion of the studied IFG section. In this setting, the parameters θ are the networks µ. For these, we will
perform full-posterior inference using our automatically derived architecture instead of the complex
EM computation, derived in Kong et al. [21].

Our method, ADAVI, derives from eqs. (11) and (12) a Hierarchical encoder featuring 3 set transform-
ers (encoding size of 1024; split in 4 attention heads of size 128; encoder with 1 SAB blocks; decoder
with 1 seed vector). For the conditional density estimators, we use a flow comprised of an affine
block with diagonal scale, followed by a MAF with hidden dimensions [1024]. We use the Adam
optimizer (10−3 learning rate), stochastic gradient descent (batch size 1, 4 θm draws per Xm). We
further used a warm-up strategy for our training, for a total training time of 2h, as further described in
supplemental material.

The results of our experiment are shown in fig. 4. Where, in agreement with the literature, the two
predominant networks splitting the region composed by pars triangularis and opercularis are related
to semantic/phonologic processing (0, in blue) and language production (1, in red) [15; 42]. Our
inference of the full posterior enabled us to compute the confidence interval for all µ parameters,
which was at least one order of magnitude smaller than the values of µ, pointing to a high confidence
level in the estimation of our model. Furthermore, the full posterior also provided us with the
means to produce a soft parcellation, accounting for data uncertainty more accurately than with hard
clustering.

4 Conclusion and Discussion

4.1 Benefits of amortization and extension to a sequential version

Our main comparison point in this work has been amortized, normalizing-flows based inference
techniques [14; 26; 34]. But our contribution is actually rather orthogonal to those: we propose a
principled and automated way to combine several density estimators in a hierarchical structure. As
such, our methods could be applied to a different class of estimators such as VAEs [19]. SBI tech-
niques are meta-algorithms, in the sense that they leverage an arbitrary normalizing flow technology
for inference. Similarly, we could leverage the SBI techniques and extend our work into a sequential
version through the reparameterization of our conditional estimators qi (see section 2.3). Ultimately,
our method is not meant as an alternative to SBI, but a complement to it for the pyramidal class of
problems described in section 2.1.

We choose to posit ourselves as an amortized technique. Yet, in our target experiment [21] (see
section 3.3), the inference is performed on a specific data point. Since we also have access to a
differentiable density function, techniques in the line of Automatic Differentiation VI [22] could
appear as a more natural option. Our experimental experience on that example however makes us put

8



forth the value that can be obtained from sharing learning across multiple examples, as amortization
entitles [7]. Specifically, we encountered less issues related to local minima of the loss, a canonical
issue for VI [3]. We would therefore argue against the intuition that a (locally) amortized technique
is necessarily wasteful in the context of a single data point.

What’s more, in both our Gaussian RE (section 3.1) and Gaussian mixture (section 3.2), given
our very fast convergence, we argue that we benefit from amortization without too much of a
computational overhead. Yet, the cost to pay for amortization can become prohibitive in high
dimensions, as exponentially more training examples can be necessary to estimate densities properly
[10]. Specializing for a local parameter regime could therefore make us benefit from amortization
without too steep an upfront training cost.

4.2 Leveraging structure in density estimation

SBI techniques have also been presented as likelihood-free methods [see naming in 14; 34], buidling
upon the conception of a simulator as a black box [a concept explicited in 7]. Following the general
line of thinking of Bronstein et al. [5], we argue that there is much value to gain from analysing
the structure and geometry of a problem. In the SBI setup, this structure can be exploited through
learnable data embedders [28]. We go one step beyond and also use the problem structure to shape
our density estimator: we factorize the parameter space of a problem into smaller components, and
share network parametrization across tasks we know to be equivalent (see section 2.3).

Contrary to the notion of black box, we argue that experimenters oftentimes can identify properties
such as exchangeability in their experiments [11]. The presence of such properties is also not tied to
the explicit modelling of a problem as a HBM: Zaheer et al. [40] rather describe this property as an
permutation invariance present in the studied data. As a consequence, though our derivation is based
on HBMs, we believe that the working principle of our method could be applied to a broader class of
simulators featuring exchangeability. Our reliance on HBMs is in fact only tied to our usage of the
revers KL loss (see section 2.4), a readily modifiable implementation detail. Beyond the notion of
plates, some VI literature is based on the complex and automated analysis of the data flow inside
a generative model [16; 35]. This kind of analysis could potentially automatically identify, beyond
plates, desirable properties that could be then leveraged for efficient inference.

A main limitation in our work is that our amortized posterior distribution is ultimately akin to a mean
field approximation of the problem [3]. Though computationally attractive, this limits the expressivity
of our variational family [16; 30]. We ponder the possibility to leverage VI techniques such as the
one derived by Ranganath et al. [30] and their variational objectives for structured populations of
normalizing flows such as ours.

In this work, we restrict o urselves to the pyramidal class of Bayesian networks (see section 2.1.
Going further, this class of models could be extended to cover more and more use-cases. This
bottom-up approach stands at opposite ends from the generic approach of SBI techniques [7]. But,
as our target experiment in 3.3 demonstrates, we argue that in the long run this bottom-up approach
could result in more scalable and efficient architectures, applicable to challenging setups such as
neuroimaging.

4.3 Conclusion

For the delineated yet expressive class of pyramidal Bayesian models, we have introduced a potent,
automatically derived architecture able to perform amortized parameter inference. This architecture
leverages the mapping of functions across plates: through a Hierarchical Encoder it conditions
a network of normalizing flows that stand as a variational family dual to the forward HBM. To
demonstrate the expressivity and scalability of our method, we successfully applied it to a challenging
neuroimaging setup. Our work stands as an original attempt to leverage exchangeability in a generative
model, and presents a general framework that could be extended to different forms of inference
(VAEs, Sequential inference) and structures (beyond the sole notion of plates).
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Supplemental material

This supplemental material complements our main work both with theoretical points and experiments:

A complements to the Gaussian random effects experiment (section 3.1). We present results
mostly related to hyperparameter analysis.

B complements to the Gaussian mixture with random effects experiment (section 3.2). We
explore the complexity of the example at hand and present aditional SBI results [27; 34].

C complements to the MS-HBM experiments (section 3.3). We present a toy dimensions
experiment and implementation details.

A Complements to the Gaussian Random Effects experiment:
hyperparameter analysis

This section is a complement to the experiment described in section 3.1, we thus consider the model
described in eq. (8). We present results of practical value, mostly related to hyperparameters.

A.1 Descriptors, inputs to ADAVI

We can analyse the model decribed in eq. (8) using the descriptors defined in eq. (2). Those descriptors
constitute the inputs our methodology needs to automatically derive the dual architecture from the
generative HBM:

V = {µ,MG, X}
P = {P0,P1}

Card = {P0 7→ N,P1 7→ G}
Hier = {µ 7→ 2,MG 7→ 1, X 7→ 0}

Shape = {M 7→ (D, ),MG 7→ (D, ), X 7→ (D, )}
Link = {M 7→ Identity,MG 7→ Identity, X 7→ Identity}

(A.1)

A.2 Derivation of an analytic posterior

To have a ground truth to which we can compare our methods results (see fig. 2 notably), we derive
the following analytic posterior distributions. Assuming we know σµ, σg, σx:

µ̂g =
1

N

N∑
n=1

xgn (A.2a)

µ̃g|µ̂g ∼ N
(
µ̂g,

σx√
N

IdD

)
(A.2b)

µ̂ =
1

G

G∑
g=1

µ̂g (A.2c)

µ̃|µ̂ ∼ N

 G
σ2
g
µ̂

1
σ2
µ

+ G
σ2
g

,

√
1

1
σ2
µ

+ G
σ2
g

IdD

 (A.2d)

Where in equation A.2b we neglect the influence of the prior (against the evidence) on the posterior
in light of the large number of points drawn from the distribution.

A.3 Training losses full derivation and comparison

Full formal derivation Following the nomenclature introduced in Papamakarios et al. [26], there
are 2 different ways in which we could train our variational distribution:
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• using a forward KL divergence, benefiting from the fact that we can sample from our
generative model to produce a dataset {(θm, Xm)}m=1...M . This is the loss used in most of
the SBI literature [7], as those are based around the possibility to be likelihood-free, and
have a target density p only implicitly defined by a simulator:

Ψ? = arg min
Ψ

EX∼p(X)[KL(p(θ|X)||qΨ(θ|X)]

= arg min
Ψ

EX∼p(X)[Eθ∼p(θ|X)[log p(θ|X)− log qΨ(θ|X)]]

= arg min
Ψ

EX∼p(X)[Eθ∼p(θ|X)[− log qΨ(θ|X)]]

= arg min
Ψ

∫
p(X)

[ ∫
−p(θ|X) log qΨ(θ|X)dθ

]
dX

= arg min
Ψ

∫ ∫
−p(X, θ) log qΨ(θ|X)dθdX

≈ arg min
Ψ

1

M
×
∑

(Xm,θm)∼p(X,θ)

− log qΨ(θm|Xm)

(A.3)

• using a reverse KL divergence, already introduced in our paper (section 2.4):

Ψ? = arg min
Ψ

EX∼p(X)[KL(qΨ(θ|X)||p(θ|X)]

= arg min
Ψ

EX∼p(X)[Eθ∼qΨ(θ|X)[log qΨ(θ|X)− log p(θ|X)]]

= arg min
Ψ

EX∼p(X)[Eθ∼qΨ(θ|X)[log qΨ(θ|X)− log p(X, θ) + log p(X)]]

= arg min
Ψ

EX∼p(X)[Eθ∼qΨ(θ|X)[log qΨ(θ|X)− log p(X, θ)]]

= arg min
Ψ

∫
p(X)

[ ∫
qΨ(θ|X)[log qΨ(θ|X)− log p(X, θ)]dθ

]
dX

= arg min
Ψ

∫ ∫
p(X)qΨ(θ|X)[log qΨ(θ|X)− log p(X, θ)]dθdX

≈ arg min
Ψ

1

M
×
∑

Xm∼p(X)
θm∼qΨ(θ|Xm)

log qΨ(θm|Xm)− log p(Xm, θm)

(A.4)

As it more uniquely fits our setup and provided better results experimentally, we chose to focus on
the usage of the reverse KL divergence. During our experiments, we also tested the usage of the
unregularized ELBO loss:

Ψ? = arg min
Ψ

1

M
×
∑

Xm∼p(X)
θm∼qΨ(θ|Xm)

− log p(Xm, θm)
(A.5)

This formula differs from the one of the reverse KL loss by the absence of the term qΨ(θm|Xm), and
is a converse formula to the one of the forward KL (in the sense that it permutes the roles of q and p).

Intuitively, it posits our architecture as a pure sampling distribution that aims at producing points
θm in regions of high joint density p. In that sense, it acts as a first moment approximation for the
target posterior distribution (akin to MAP parameter regression). Experimentally, the usage of the
unregularized ELBO loss provided fast convergence to a mode of the posterior distribution, with very
low variance for the variational approximation.

We argue the possibility to use the unregularized ELBO loss as a warm-up before switching to the
reverse KL loss, with the latter considered here as a regularization of the former. We introduce this
training strategy as an example of the modularity of our approach, where one could transfer the rapid
learning from one task (amortized mode finding) to another task (amortized posterior estimation).

Graphical comparison In Figure A.1 we analyse the influence of these 3 different losses on the
training of our posterior distribution, compared to the analytical ground truth. This example is typical
of the relative behaviors induced on the variational distributions by each loss:
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Figure A.1: Graphical results on the Gaussian random effects example for our architecture trained
using 3 different losses. Rows represent 3 different data points. Left column represents data, with
colors representing 3 different groups. Other columns represent posterior samples for µ (black) and
µ1, µ2, µ3. Visually, posterior samples µ1, µ2, µ3 should be concentrated around the mean of the
data points with the same color, and the black points µ should be repartitioned around the mean of
the 3 group means (with a shift towards 0 due to the prior). Associated with the posterior samples
are analytical solutions (thin black circles), centered on the analytical MAP point, and whose radius
correspond to 2 times the standard deviation of the analytical posterior: 95 % of the draws from a
posterior should fall within the corresponding circle.

• The forward KL provides very erratic training, and results after several dozen epochs (several
minutes) with a careful early stopping in posteriors with too large variance.

• The unregularized ELBO loss converges in less then 3 epochs (a couple dozen seconds),
and provides posteriors with very low variance, concentrated on the MAP estimates of their
respective parameters.

• The reverse KL converges in less 10 epochs (less than 3 minutes) and provides relevant
variance.

Losses convergence speed We analyse the relative convergence speed of our variational posterior to
the analytical one when using the 3 aforementioned losses for training. To measure the convergence,
we compute analytically the KL divergence between the variational posterior and the analytical one
(every distribution being a Gaussian), summed for every distribution, and averaged over a validation
dataset of size 2000.

We use a training dataset of size 2000, and for each loss repeated the training 20 times (batch size 10,
10 θm samples per Xm) for 10 epochs, resulting in 200 optimizer calls. This voluntary low number
allows us to asses how close is the variational posterior to the analytical posterior after only a brief
training. Results are visible in Table 1, showing a faster convergence for the unregularized ELBO.
After 800 more optimizer calls, the tendency gets inverted and the reverse KL loss appears as the
superior loss (though we still notice a larger variance).
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Table 1: Convergence of the variational posterior to the analytical posterior over an early stopped
training (200 batches) and after convergence (1000 batches) for the Gaussian random effects example

Mean of analytical KL divergences
from the theoretical posterior (low is good)
Early stopping After convergence

Loss NaN runs Mean Std Mean Std

forward KL 0 3847.7 5210.4 2855.3 4248.1
unregularized ELBO 0 6.6 0.7 6.2 0.9

reverse KL 2 12.3 19.8 3.0 4.1

The large variance in the results may point towards the need for adapted training strategies involving
Learning rate decay and/or scheduling [22], an extension that we leave for future work.

A.4 Monte Carlo approximation for the gradients and computational budget comparison

In section 2.4, for the reverse KL loss, we approximate expectations using Monte Carlo integration.
We further train our architecture using minibatch gradient descent, as opposed to stochastic gradient
descent as proposed by Kucukelbir et al. [22]. An interesting hyper-parametrization of our system
resides in the effective batch size of our training, that depends upon:

• the size of the mini batches, determining the number of Xm points considered in parallel
• the number of θm draws per Xm point, that we use to approximate the gradient in the ELBO

More formally, we define a computational budget as the relative allocation of a constant effective
batch size batch size× θ draws per X between batch size and θ draws per X.

To analyse the effect of the computational budget on training, we use a dataset of size 1000, and run
experiment 20 times over the same number of optimizer calls with the same effective batch size per
call. Results can be seen in fig. A.2. From this experiment we can draw the following conclusions:

• we didn’t witness massive difference in the global convergence speed across computational
budgets

• the bigger the budget we allocate to the sampling of multiple θm per point Xm (effectively
going towards a stochastic training in terms of the points Xm), the more erratic is the loss
evolution

• the bigger the budget we allocate to the Xm batch size, the more stable is the loss evolution,
but our interpretation is that the resulting reduced number of θm draws per Xm augments
the risk of an instability resulting in a NaN run

Experimentally, we obtained the best results by evenly allocating our budget to the Xm batch size
and the number of θm draws per Xm point (typically, 32 and 32 respectively for an effective batch
size of 1024). Overall, in the amortized setup, our experiment stand as a counterpoint to those of
Kucukelbir et al. [22] who pointed towards the case of a single θm draw per point Xm as their
preferred hyper-parametrization.

B Complements to the Gaussian mixture with random effects experiment:
further posterior analysis

This section is a complement to the experiment described in section 3.2, we thus consider the model
described in eq. (9). We explore the complexity of the theoretical posterior for this experiment. We
also present additional SBI results [27; 34].

B.1 Descriptors, inputs to ADAVI

We can analyse the model decribed in eq. (9) using the descriptors defined in eq. (2). Those descriptors
constitute the inputs our methodology needs to automatically derive the dual architecture from the
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Figure A.2: Loss evolution across batches for different computational budgets. All experiments are
designed so that to have the same number of optimizer calls (meaning that batch size× epochs =
1000) and the same effective batch size (meaning that batch size× θ draws per X = 1000). Every
experiment is run 20 times, error bands showing the standard deviation of the loss at the given time
point. Note that the blue line (batch size 1, 1000 θ draws per X) is more erratic than the other ones
(even after a large number of batches). On the other hand, the red line (batch size 1000, 1 θ draws per
X) is more stable, but 19 out of 20 runs ultimately resulted in an instability

generative HBM:

V = {M,MG,ΠG, X}
P = {P0,P1}

Card = {P0 7→ N,P1 7→ G}
Hier = {M 7→ 2,MG 7→ 1,ΠG 7→ 1, X 7→ 0}

Shape = {M 7→ (L,D),MG 7→ (L,D),ΠG 7→ (L, ), X 7→ (D, )}
Link = {
M 7→ Reshape((LD, )→ (L,D)),

MG 7→ Reshape((LD, )→ (L,D)),

ΠG 7→ SoftmaxCentered((L− 1, )→ (L, )),

X 7→ Identity

}

(B.6)

For the definition of the SoftmaxCentered link function, see Dillon et al. [8].

B.2 Amortized SBI techniques on the Gaussian mixture with random effects

We present here the results of 2 other amortized SBI techniques: NRE-B, based on likelihood ratio
estimation [34] and NLE-A, estimating the density of the data X instead of the parameters θ [27]:

• for NRE-B, we used the embedder described in section 3.1 (contracting the G an N plates
separately) and plugged it to a ResNet architecture (2 blocks of 50 units each). Training
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Figure B.3: Graphical representation of the inference results of various methods on the Gaussian
mixture with random effects example. First column represents a data point. All other columns
represent the posterior samples for µ1, . . . , µ3 (black) and µ1
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Second column represents the results of an amortized NLE-A. Third column represents the results
of an amortized NRE-B. Last column represent our amortized technique. For inference techniques
only, the first row represent the superposition of the posteriors for all the mixture components, while
the second row only represents the posterior samples for the first mixture component. Note that for
NLE-A and NRE-B, the axis of the graph are not aligned to the ones of the data, and that the points
are distributed on a very wide support.

took approximately 50h of CPU time. Sampling required a lengthy MCMC procedure (more
that 80 hours of CPU time for a thousand samples).

• for NLE-A, we used 5 MAF blocks, each with 50 hidden units. To our knowledge NLE-
A can only be applied to a flattened data vector, which implies a large parametrization
O(G2N2D2). Training took approximately 50h of CPU time (similar to NRE-B). In
addition, sampling also requires a lengthy MCMC sampling (more that 80 hours of CPU
time for a thousand samples, similar to NRE-B).

Results can be seen in Figure B.3. Both NLE-A and NRE-B sample posterior points in a very large
support, underlining their difficulty to tackle the Gaussian mixture with random effects example.

B.3 Theoretical posterior recovery in the Gaussian mixture random effects model

We further analyse the complexity of model described in section 3.2.

Due to the label switching problem [18], the relative position of the L mixture components in the D
space is arbitrary. Consider a non-degenerate example like the one in fig. B.4, where the data points
are well separated in 3 blobs (likely corresponding to the L = 3 mixture components). Since there
is no deterministic way to assign component l = 1 unequivocally to a blob of points, the posterior
distribution for the position of the component l = 1 should be multi-modal, with -roughly- a mode
placed at each one of the 3 blobs of points. This posterior would be the same for the components l = 2
and l = 3. In truth, the posterior is even more complex than this 3-mode simplification, especially
when the mixture components are closer to each other in 2D (and the grouping of points into draws
from a common component is less evident).

In fig. B.4, we note that our technique doesn’t recover this multi-modality in its posterior, and instead
assigns different posterior components to different blobs of points. Indeed, when plotting only the
posterior samples for the first recovered component l = 1, all points are concentrated around the
top-most blob, and not around each blob like the theoretical posterior would entail (see fig. B.4
second row).
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Figure B.4: Theoretical posterior recovery for the Gaussian mixture with random effects example.
We represent the inference results of 2 methods: SNPE-C (second column) and ours (third column).
First row represents the full posterior samples. Second and third row only represents the first mixture
component samples (third row zooms in on the data). Notice how neither technique recovers the
actual multi-modality of the theoretical posterior.

This behavior most likely represents a local minimum in the reverse KL loss that is common to many
inference techniques [for instance consider multiple non-mixing chains for MCMC 18]. We note
that training in forward KL wouldn’t provide such a flexibility in that setup, as it would enforce the
multi-modality of the posterior, even at the cost of an overall worst result (as it is the case for NPE-C
and SNPE-C in fig. 3 and fig. B.3). Indeed, let’s imagine that our training dataset features M ′ draws
similar to the one in fig. B.4. Out of randomness, the labelling l of the 3 blobs of points would be
permuted across those M ′ examples. A density estimator would then most likely attempt to model a
multi-modal posterior.

Though it is not similar to the theoretical result, we argue that our result is of experimental value, and
close to the intuition one forms of the problem: using our results one can readily estimate the original
components for the mixture. Indeed, for argument’s sake, say we would recover the theoretical,
roughly trimodal posterior. To recover the original mixture components, one would need to split the
3 modes of the posterior and arbitrarily assign a label l to each one of the modes. In that sense, our
posterior naturally features this splitting, and can be used directly to estimate the L = 3 mixture
components.

19



C Complements to the neuroimaging experiment

This section is a complement to the experiment described in section 3.3, we thus consider the model
described in eq. (11) and eq. (12). We present a toy dimension version of our experiment, useful to
build an intuition of the problem. We also present implementation details for our experiment, and
additional neuroimaging results.

C.1 Descriptors, inputs to ADAVI

We can analyse the model decribed in eq. (11) and eq. (12) using the descriptors defined in eq. (2).
Those descriptors constitute the inputs our methodology needs to automatically derive the dual
architecture from the generative HBM:

V = {Mg, ε,Ms, σ,Ms,t, κ,Π, X}
P = {P0,P1,P2}

Card = {P0 7→ N,P1 7→ T,P2 7→ S}
Hier = {Mg 7→ 3, ε 7→ 3,Ms 7→ 2, σ 7→ 3,Ms,t 7→ 1, κ 7→ 3,Π 7→ 3, X 7→ 0}

Shape = {
Mg 7→ (L,D),

ε 7→ (L, ),

Ms 7→ (L,D),

σ 7→ (L, ),

Ms,t 7→ (L,D),

κ 7→ (1, ),

Π 7→ (L, ),

X 7→ (D, )

}
Link = {
Mg 7→ L ◦ Reshape((LD, )→ (L,D)),

ε 7→ Exp,

Ms 7→ L ◦ Reshape((LD, )→ (L,D)),

σ 7→ Exp,

Ms,t 7→ L ◦ Reshape((LD, )→ (L,D)),

κ 7→ Exp,

Π 7→ SoftmaxCentered((L− 1, )→ (L, )),

X 7→ L
}

(C.7)
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C.2 Experiment on MS-HBM model on toy dimensions

To get an intuition of the behavior of our architecture on the MS-HBM model, we consider the
following toy dimensions reproduction of the model:

N,T, S,D,L = 50, 2, 2, 2, 2

g−, g+ = −4, 4

κ− = −4

κ+ = σ− = −3

σ+ = ε− = −2

ε+ = −1

π = 2

L−1(µgl ) ∼ UniformD−1(−g−, g+)

Log(εl) ∼ UniformL(ε−, ε+)

L−1(µsl )|µ
g
l , εl ∼ N (L−1(µgl ), εl)

Log(σl) ∼ UniformL(σ−, σ+)

L−1(µs,tl )|µsl , σl ∼ N (L−1(µsl ), σl)

Log(κ) ∼ Uniform1(κ−, κ+)

Π ∼ Dirichlet([π]× L)

L−1(Xs,t
n )|[µs,t1 , . . . , µs,tL ], κ,Π ∼ Mixture(Π, [N (L−1(µs,t1 ), κ), . . . ,L(L−1(µs,tL ), κ)])

(C.8)
We use a Hierarchical encoder featuring 2 set transformers (encoding size of 32; split in 4 attention
heads of size 8; encoder with 2 SAB blocks; decoder with 1 seed vector). For the conditional density
estimators, we use a flow comprised of an affine block with diagonal scale, followed by a MAF with
hidden dimensions [32]. We use the Adam optimizer (10−3 learning rate), minibatch gradient descent
(batch size 32, 32 θm draws per Xm) over a training dataset of size 20, 000. Training took under 10
minutes using the 3-fold training strategy described in appendix C.3.

The results can be visualized on fig. C.5. This experiment shows the expressivity we gain from the
usage of link functions.

C.3 Implementation details for the neuro-imaging MS-HBM example

Main implementation differences with the original MS-HBM model Our implementation of
the MS-HBM (eq. (11) and eq. (12)) contains several notable differences with the original one from
Kong et al. [21]:

• we model µ distributions as Gaussians linked to the positive quadrant of the unit sphere via
the function L. In the orignal model, RVs are modelled using Von Mises Fisher distributions.
Our choice allows us to express the entirety of the connectivity vectors (that only lie on a
portion of the unit sphere). However, we also acknowledge that the densities incurred by the
2 distributions on the positive quadrant of the unit sphere are different.

• we forgo any spatial regularization, and also the assumption that the parcellation of a given
subject s should be constant across sessions t. This is to streamline our implementation.
Adding components to the loss optimized at training could inject those constraints back into
the model, but this was not the subject of our experiment, so we left those for future work.

Data pre-processing and dimensionality reduction Our model was able to run on the full dimen-
sionality of the connectivity, D0 = 1483. However, we obtained better results experimentally when
further pre-processing the used data down to the dimension D1 = 141. The displayed results in fig. 4
are the ones resulting from this dimensionality reduction:

1. we projected the (S, T,N,D0) X connectome (lying on the D0 unit sphere) to the un-
bounded RD0−1 space using the function L
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Figure C.5: Visual representation of our results on a synthetic MS-HBM example. Data is represented
as colored points on the unit positive quadrant, each color corresponding to a subject × session.
Samples from posterior distributions are represented as concentric colored markings. Just below
the data points are µs,t samples. Then samples of µs. Then samples of µg (black lines). Notice
how the µ posteriors are distributed around the angle bisector of the arc covered by the points at the
subsequent plate.
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Figure C.6: 3-step loss evolution across epochs for the MS-HBM ADAVI training. Losses switch
are visible at epochs 1000 and 2000. Training was run for a longer period after epoch 3000, with no
significant results difference.

2. in this RD0−1 space, we performed a Principal Component Analysis (PCA) to bring us
down to D1 − 1 = 140 dimensions responsible for 80% of the explained data variance

3. in the resulting RD1−1 space, we calculated the mean of all the connectivity points, and
their standard deviation, and used both to whiten the data

4. from the whitened data, we calculated the Ledoit-Wolf regularised covariance [23], that we
used to construct the Σg matrix used in eq. (11)

5. finally, we projected the whitened data onto the unit sphere in D1 = 141 dimensions via the
function L

To project our results back to the original D0 space, we simply ran back all the aforementioned steps.
Our prior for µg has been carefully designed so has to sample connectivity points in the vicinity of
the data point of interest. Our implementation is therefore in spirit close to SBI [7; 14; 27; 34] that
aims at obtaining an amortized posterior only in the relevant data regime.

Mutli-step training strategy In section 3.3 we described our conditional density estimators as
the stacking of a MAF [25] on top of a diagonal-scale affine block. To accelerate the training of our
architecture and minimize numerical instability (resulting in NaN evaluations of the loss) we used the
following 3-step training strategy:

1. we only trained the shift part of our affine block into a Maximum A Posteriori regression
setup. This can be viewed as the amortized fitting of the first moment of our posterior
distribution

2. we trained both the shift and scale of our affine block using an unregularized ELBO loss.
This is to rapidly bring the variance of our posterior to relevant values

3. we then trained our full posterior (shift and scale of our affine block, in addition to our MAF
block) using the reverse KL loss.

This training strategy shows the modularity of our approach and the transfer learning capabilities
already introduced in appendix A.3. Loss evolution can be seen in fig. C.6

Soft labelling In eq. (11) and eq. (12) we define µ variables as following Gaussian distributions
in the latent space RD1−1. This means that, considering a vertex Xs,t

n and a session network µs,tk ,
the squared Euclidean distance between L−1(Xs,t

n ) and L−1(µs,tk ) in the latent space RD1−1 is
proportional to the log-likelihood of the point L−1(Xs,t

n ) for the mixture component k:

‖L−1(Xs,t
n )− L−1(µs,tk )‖2 = log p(Xs,t

n |l = k) + C(κ) (C.9)
Note that κ is the same for both networks. Additionally, considering Bayes theorem:

log p(l = k|Xs,t
n ) = log p(Xs,t

n |l = k) + log p(l = k)− log p(Xs,t
n )

log
p(l = 0|Xs,t

n )

p(l = 1|Xs,t
n )

= log p(Xs,t
n |l = 0)− log p(Xs,t

n |l = 1) + log
p(l = 0)

p(l = 1)

(C.10)
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Figure C.7: Subject-level parcellations and networks. For 3 different HCP subjects, we display
the individual parcellation (on the bottom) and the individual µs networks (on the top). Note how
the individual parcellations, though showing the same general split between the pars opercularis
and pars triangularis, slightly differ from each other and from the population parcellation (fig. 4).
Similarly, networks µs differ from each other and from the population networks µg (fig. 4) but keep
their general association to semantic/phonologic processing (0, in blue) and language production (1,
in red) [15; 42]. To be able to model and display such variability is one of the interests of models like
the MS-HBM [21].

Where log p(Xs,t
n |l = k) can be obtained through eq. (C.9) and log p(l = k) via draws from the

posterior of Π (see eq. (11)). To integrate those equations, we used a Monte Carlo procedure.

C.4 Additional neuro-imaging results

As pointed out in section 3.3, the MS-HBM model aims at representing the functional connectivity
of the brain at different levels, allowing for estimates of population characteristics and individual
variability [21]. It is of experimental value to compare the parcellation for a given subject, that is to
say the soft label we give to a vertex Xs,t

n , and how this subject parcellation can deviate from the
population parcellation. Those differences underline how an individual brain can have a unique local
organization. Similarly, we can obtain the subject networks µs and observe how those can deviate
from the population networks µg. Those results underline how a given subject can have his own
connectivity, or, very roughly, his own "wiring" between different areas of the brain. Results can be
seen in fig. C.7.
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