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ABSTRACT

In past years several works have noted that Twitter data are es-
sential in diverse fields and may have a lot of applications. Nev-
ertheless, the API proposed by Twitter sternly restricts access to
public data generated by users. These restrictions have the conse-
quences of greatly slowing down the contributions of researchers
and of limiting their scope. In this paper we introduce TwiScraper,
a collaborative project to enhance Twitter data collection by scrap-
ing methods. We present a module allowing user-centered data
collection: Twi-FFN.
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1 INTRODUCTION

In recent years Twitter has been the subject of numerous studies.
For instance, Bollen et al. [1] have analyzed messages shared on
Twitter to predict changes in the stock markets. In their approach,
Tumasjan et al. [24] have used messages diffused on Twitter to pre-
dict the results of a political election. Some studies have focused on
detecting real-world events [12, 22]. Twitter has also been widely
used in emergency situations such as forest fires [9], floods [25, 26]
and hurricanes [14]. Therefore, researchers have observed that mes-
sages posted on Twitter may be useful for predicting or detecting
events and saving lives.

Nevertheless, anyone can be the source of information and mes-
sages posted on Twitter are not systematically controlled. Thus,
Twitter frequently sees the appearance of rumors and misinfor-
mation. Due to dramatic consequences that fake information may
lead on individuals or society, several researchers [5, 8, 20, 30] have
focused on fake news and rumor detection. For instance, Henry
and Stattner [13] have used messages and users data to quickly and
precisely detect a death hoax diffusion.
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Other researchers [19, 28] have worked on information dissemi-
nation in Twitter. For example, Ferrara et al.[11] have observed that
negative messages do not spread extremely faster than neutral ones.
Son et al.[23] have remarked that messages containing hashtags
or URL spread faster than other ones. Some researchers[17] have
observed that user information may encourage the dissemination of
information. Yang et al.[29] have noticed that messages posted by
greatly active users spread faster than other users. Several studies
[6, 7, 10, 27] have demonstrated that the user network may have
an impact on information diffusion.

Therefore, to perform studies on Twitter researchers need to
have access to posted messages, user network and user information.
However, the Twitter API sternly restricts access to those data,
particularly regarding data concerning the user and his network.
Effectively, Twitter API allows a limit number of requests by using
an authentication token consequently it is impractical to gather
large datasets. In addition, Twitter data collection in parallel is not
possible. Several researchers [3, 4, 15] have mentioned the limit
of their recent work because of Twitter API limitations. Some re-
searchers [2, 18] have proposed tools to improve collect of messages
posted on Twitter. Recently, Pratikakis [21] has developed twAwler
aims to optimize the time to collect messages, users information
and users network. However, this tool is based on the Twitter API,
therefore the data collection time is still very important.

This is the reason why we found innovative and interesting
to introduce in this paper TwiScraper a collaborative project to
enhance Twitter data collection by scraping methods. Nowadays,
scraping is widely used, especially by start-ups, to aggregate a large
amount of content in a short time. From a practical point of view, the
scraping of public data consists in moving on a site without creating
an account and without having registered and consequently without
having accepted the terms of use of the site in question. Similarly
to tools or methods [2, 18] proposed in the literature, we collect
public data contained in HTML pages of Twitter.

The rest of the article is organized as follows: Section 2 intro-
duces some Twitter API limitations. Section 3 presents a module of
TwiScraper allowing users network extraction: Twi-FFN. Section 4
discusses the legal aspect of the use of scraping methods for Twitter
data collection. Finally, section 5 concludes this paper.

2 TWITTER API LIMITATIONS

Twitter launched in 2006 in the United States is today one of
the main social media with around 300 million active users and
nearly 500 million messages posted every day in different languages
around the world. Twitter users post messages called "tweets" lim-
ited to 280 characters (since November 2017) freely and are con-
nected to each other by a one-way link. Twitter (unlike most social
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media) allows access to metadata concerning public posted mes-
sages and concerning the user and his network if the user account
is public. Indeed, the social media Twitter offers an API! allowing
access to certain data after an authentication token. This section
presents some services of the API and their limitations.

2.1 Streaming tweets

This service allows to collect tweets in real time by asking a query
(with parameters such as language, location, etc.) based on key-
words. Access to this service is limited to 180 requests per 15-minute
window. Thus, as soon as the number of tweets related keywords
reaches a certain threshold, this service does not allow continuous
access to the new tweets published during a moment. In addition,
due to the limitation of the number of requests it seems impossible
to collect tweets on several subjects at the same time.

2.2 Search tweets

This service makes it possible to extract by asking a query (with
parameters such as language, location, date of tweet, etc.) of tweets
present in the Twitter database (going back a maximum of 7 days)
depending keywords. Nevertheless, access to this service is limited
to 180 requests per 15-minute window, with a maximum of 100
tweets returned per request. In other words, this service enables
to perform only 540 requests in the same hour because it is nec-
essary to consider the time it takes for requests to return results.
Thus, this service permits to collect until 54 000 tweets in one hour,
it is not much for popular topics. In addition, this method is im-
practical to collect tweets related several topics at the same time.
Furthermore, the limitation of tweets published in the past 7 days
is very handicapping for the retrospective analysis of the evolution
of information dissemination on Twitter.

2.3 Tweet timelines

This service allows to collect user past tweets. However, access to
this service is limited to 900 requests per 15-minute window up to
a maximum of 200 tweets per distinct request. Furthermore, this
method can only return up to 3 200 of a user most recent tweets.
Thus, it is not possible to retrieve all of the tweets from a user who
posted more than 3 200 tweets.

2.4 User information

This service provides access to a variety of information related to
users profile such as description, number of followers / followings,
number of tweets posted, date of creation of the profile, etc. Access
to this service is limited to 900 requests per 15-minute window. In
other words, this service allows to collect only 2 700 users infor-
mation in one hour because requests take a few minutes. This is
insufficient for large datasets. Indeed, considering that we collected
100 000 tweets in two hours with the search tweets service and that
each user posted a single tweet, it would take about 37 hours to
collect information on these users.

!https://developer.twitter.com/en/docs

2.5 Followings and followers

This service is used to retrieve the list of identifiers of a user fol-
lowers/followings, up to a limit of 200 identifiers per request. In
addition, this service is limited to 15 requests per 15-minute win-
dow. This service allowing to recover the network of the users is
extremely restricted. Indeed, if the targeted users have about 12
000 followers, this service makes it possible to retrieve the list of
followers of only one user in one hour. Same things for user follow-
ings. So in this case, to extract the complete network of one user
would take more than one hour. Therefore, using this method, the
time required to recover the network of hundreds of thousands of
users would be counted in weeks or even months.

2.6 Consequences on researchers activities

The Twitter API allows free but very limited access to different
types of data linked to public messages broadcast or to users of the
platform. The time restrictions of the various API services make
it impractical to gather large datasets in a short time. In addition,
certain limitations prevent the collection of certain data as a whole.
We argue that these restrictions have the consequences of greatly
slowing down the contributions of researchers and of limiting their
scope. Indeed, on account of time limits of Twitter API sometimes
researchers focus on small data samples [8] or on biased data. For
instance, most recent studies [16] on rumors detection focus only on
tweets published in English and do not consider those disseminated
in other languages which should be useful to improve the accuracy
of detection. Thus, despite the important time required to collect
the data and then analyze it certain works are not presented in
conferences because the results of studies are too specific and can
not be generalized.

3 TWISCRAPER

In order to conduct studies on Twitter less costly in terms of data
collection time and also more faithful to reality, we suggest that
the community work together on the TwiScraper project. Thus,
through various methods of scraping Twitter pages and by offering
regular updates of the various modules set up, researchers will be
able to carry out their work on Twitter more efficiently and could
find new research partners.

The final objective of the TwiScraper project is to offer the scien-
tific community a set of modules allowing with less time constraint:

o the collection of messages posted on Twitter according to
several parameters such as keywords, location, accounts
cited, etc.,

o the collection of information concerning users such as their
number of followers, tweets, description of their profile, their
location, etc.,

o the collection of their network, that is to say their followers
list, on the one hand, and their following list on the other.

In this paper, we present the module Twi-FFN?(Followers Following
Networks) which allows the collection of the list of followers and
the collection of the list of following of a user by providing his
username. Twi-FFN was developed in Java, it is based on the Jsoup
library and is simply used on the command line.

2http://didier-henry.com/home/tools/
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Table 1: Comparison of the collection time between the Twit-
ter API and Twi-FFN module.

Number of followers | API Twitter time | Twi-FFN average time

10! 3 sec 1 sec

102 3 sec 5 sec

103 20 sec 30 sec

10% =~ 45 min 5 min 20 sec
10° ~ 8 h 30 min 45 min

10° ~3days+12h | 2h45min

This module uses the HTML pages of Twitter site to collect the
network of a user (see Figure 1).
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Figure 1: Twi-FFN module data collection process

According to the official Twitter API documentation® for col-
lecting the list of followers or following, it is possible to make
15 requests per 15 minutes, each request returns a list of up to
200 users. Therefore, in one hour, the API can collect up to 12,000
followers or 12,000 following. Thus, in one day, for example, it is
possible to collect 288,000 followers. This is insufficient because
most of the datasets collected by researchers contain hundreds of
thousands of messages posted by hundreds of thousands of users.
In addition, some users have more than 10,000 or even 100,000 fol-
lowers, recovering the network of all these users could take several
months.

In order to show the relevance of Twi-FFN module, we carried
out several collections for users with different numbers of follow-
ers. For each category of a number of followers, we carried out
collection measurements on 100 different users. The results of these
experiments are presented in the table 1. Thus, we observe that to
collect the list of followers of a user with approximately 1 million
followers, it would take almost 3 days and 12 hours with the Twitter
API against only approximately 2 hours and 45 minutes with the
Twi-FFN module.

In addition, we argue that the Twi-FFN module can be used in
a multiprocessing architecture in order to recover the network of
several users simultaneously, which is impossible with the Twitter
API. This feature of Twi-FFN will improve research on a wide

3https://developer.twitter.com/en/docs/twitter-api/v1/accounts-and-users/follow-
search-get-users/api-reference/get-followers-list

variety of subjects such as the evolution of user networks, link or
content recommendation systems or even more realistic models of
information dissemination.

4 DISCUSSION

This section introduces recent legal cases or examples which demon-
strate that it is completely legal to use Twi-FFN module and partic-
ipate in the development of TwiScraper.

4.1 Opodo VS Ryanair

The airline Ryanair is scraped by an online flight comparator Opodo
but only part of the ticket price information is returned to end cus-
tomers, making the offer unattractive. In 2010 Ryanair took Opodo
to court over this matter. In France, the airline was ultimately re-
jected on appeal*. Among the reasons that led to the court of appeal
to this decision, the transformation carried out on the data was
considered sufficient to justify a substantial investment on the part
of Opodo. In addition, the general conditions invoked as violated by
Ryanair are applicable only when purchasing a plane ticket. This
scraping activity therefore does not violate these conditions and
was found to be legal by the court.

4.2 Resultly VS QVC

QVC is a known online TV retailer. Resultly is a start-up shopping
app which proposes a set of items for sale by scraping online retail-
ers websites among which there is QVC. In May 2014, the excessive
number of requests of Resultly’s bot scraper overburden QVC'’s
servers producing breakdowns. QVC blocked access to Resultly’s
scraper and sought a preliminary injunction® based on the Com-
puter Fraud and Abuse Act (CFAA) which prohibits intentionally
causing damage. In March 2015, the court denied the motion for a
preliminary injunction®, finding Resultly, a non-competitor, lacked
intent to cause damage to QVC'’s servers. In addition, the court
noted that QVC failed to demonstrate a irreparable prejudice be-
cause evidence indicated QVC’s capability to defend itself against
any future breakdowns provoked by bots.

4.3 HiQ VS LinkedIn

HiQ exclusively collects information from public LinkedIn profiles
of employees in a company using web scraping practices. HiQ
analyzes this information to determine the profiles of employees
for the benefit of their employer, in particular those who could be
recruited by competitors. LinkedIn asked HiQ to stop collecting
this data, under the pretext of certain laws such as the Computer
Fraud and Abuse Act integrated into 18 US §10307 and a violation
of the conditions of use of the site, which prohibits this type of
practice. However, in 2017 the Court® did not follow this argument
and considered that the data appearing on user profiles is public
by being disseminated via the Internet and can therefore be freely
collected via web scraping.

“https://www.legalis.net/jurisprudences/tribunal-de- grande-instance-de-paris-
3eme-chambre-2eme-section-jugement-du-09-avril-2010/
Shttps:/fr.scribd.com/doc/249068700/LinkedIn-v-Resultly-LLC-Complaint?secret_
password=pEVKDbnvhQL520KfdrmT
®https://www.leagle.com/decision/infdco20150317d82
https://www.law.cornell.edu/uscode/text/18/1030
8https://regmedia.co.uk/2017/08/14/higlinkedintro.pdf
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5 CONCLUSION

In this paper, we have introduced the collaborative project TwiScraper
in order to enhance Twitter data collection by scraping methods.
We have presented the module Twi-FFN for collecting the network
of a user more efficiently than using the official Twitter API Indeed,
this new community tool allows the collection of the network of
Twitter users in parallel. In addition, we have shown through ex-
amples that the scraping method used by this module is not illegal
and therefore the data recovered using this tool can be used legally.
In perspectives, we plan to collaboratively develop other data
extraction modules concerning user messages and information.
With the help of the scientific community, regular updates of all of
TwiScraper modules will help to energize future work on Twitter.
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