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In this note, we study some concentration properties for Lipschitz maps defined on Hamming graphs, as well as their stability under sums of Banach spaces. As an application, we extend a result of Causey on the coarse Lipschitz structure of quasireflexive spaces satisfying upper p tree estimates to the setting of p-sums of such spaces.

Our result provides us with a tool for constructing the first examples of Banach spaces that are not quasi-reflexive but nevertheless admit some concentration inequality. We also give a sufficient condition for a space to be asymptotic-c0 in terms of a concentration property, as well as relevant counterexamples.

Introduction

In 2008, in order to show that L p p0, 1q is not uniformly homeomorphic to p 2 for p p1, Vqzt2u, Kalton and Randrianarivony [START_REF] Kalton | The coarse lipschitz geometry of p ` q[END_REF] introduced a new technique based on a certain class of graphs and asymptotic smoothness ideas. To be more specific, they introduced a concentration property for Lipschitz maps defined on Hamming graphs into a reflexive asymptotically uniformly smooth (AUS) Banach space X (we refer the reader to Section 2 for the definitions), that prevents coarse embeddings of certain other spaces into X. Their result was used by Kalton himself to deduce some information about the spreading models of a space that coarse Lipschitz embeds into a reflexive AUS space (see [START_REF]Uniform homeomorphisms of Banach spaces and asymptotic structure[END_REF]), and was later extended to the quasi-reflexive case by Lancien et Raja [START_REF] Lancien | Asymptotic and coarse Lipschitz structures of quasi-reflexive Banach spaces[END_REF], who introduced a weaker concentration property. Soon after, Causey [START_REF] Causey | Three and a half asymptotic properties[END_REF] proved that this same weaker concentration property also applies to quasi-reflexive spaces with so-called upper p tree estimates.

The purpose of this paper is to start a general study of these concentration properties, together with new ones. In particular, we will address the question of their stability under sums of Banach spaces. This will allow us to get non-quasi-reflexive examples. Our main result will be the following.

Theorem 1.1. Let p p1, Vq, λ ¡ 0, pX n q nN a sequence of Banach spaces with property λ-HIC p,d .

Let E be a reflexive Banach space with a normalized 1-unconditional p-convex basis pe n q nN with convexity constant 1.

Then X p °nN X n q E has property pλ 2 εq-HIC p,d for every ε ¡ 0.

where property λ-HIC p,d is a refinement of the property λ-HIC p first considered by Lancien and Raja: a space X has property λ-HIC p if for any Lipschitz function f : prNs k , d H q Ñ X, there exist n, m in interlacing position such that }fpnq ¡ f pmq} ¤ λk 1{p Lippf q (see Section 2 for the definitions of the concentration properties).

Let us mention that, in this paper, we will only be interested in the Hamming distance but originally, when Hamming graphs were used in [START_REF] Kalton | The coarse lipschitz geometry of p ` q[END_REF], it could be equally replaced (unless for their last Theorem 6.1) by the symmetric distance, defined by d ∆ pn, mq 1 2 |n m| for all n, m rNs ω , where n m denotes the symmetric difference between n and m.

2.3. Asymptotic properties. We now define the uniform asymptotic properties of norms that will be considered in this paper. Let pX, } ¤ }q be a Banach space. Following Milman (see [START_REF] Milman | Geometric theory of Banach spaces. II. Geometry of the unit ball[END_REF]), we introduce the two following moduli: for all t ¥ 0, let ρ X ptq sup

xS X inf Y sup yS Y p}x ty} ¡ 1q and δ X ptq inf xS X sup Y inf yS Y p}x ty} ¡ 1q
where Y runs through all closed linear subspaces of X of finite codimension.

We say that } ¤ } is asymptotically uniformly smooth (in short AUS) if lim tÑ0 ρ X ptq t 0. We say that } ¤ } is asymptotically uniformly convex (in short AUC) if δ X ptq ¡ 0 for all t ¡ 0. If p p1, Vq, } ¤ } is said to be p-AUS if there is a constant C ¡ 0 such that, for all t r0, Vq, ρ X ptq ¤ Ct p . If q r1, Vq, } ¤ } is said to be q-AUC if there is a constant C ¡ 0 such that, for all t r0, 1s, δ X ptq ¥ Ct q . If X has an equivalent norm for which X is AUS (resp. p-AUS), X is said to be AUSable (resp. p-AUSable). Every asymptotically uniformly smooth Banach space is p-AUSable for some p p1, Vq, this was first proved for separable Banach spaces by Knaust, Odell and Schlumprecht (see [START_REF] Knaust | On asymptotic structure, the Szlenk index and UKK properties in Banach spaces[END_REF]) and later generalized by Raja for any Banach space (see [START_REF] Raja | On asymptotically uniformly smooth Banach spaces[END_REF], Theorem 1.2).

Let X be a Banach space, B X and M rNs ω . A family px n q nrMs ¤k in B is a tree in B of height k. This tree px n q nrMs ¤k is said to be weakly null if the sequence px n,n q n¡maxpnq is weakly null for every n rMs k¡1 t∅u (with maxp∅q 0).

Let 1 p ¤ V, C ¡ 0. We say that X satisfies upper p tree estimates with constant C if for any k N and any weakly null tree px n q nrNs ¤k in B X , there exists n rNs k such that da pa 1 , . . . , a k q R k , k j1 a j x pn 1 ,...,n j q ¤ C}a} k p .

We say that X satisfies upper p tree estimates if X satisfies upper p tree estimates with constant C for some C ¡ 0. We say that X has the tree-p-Banach-Saks property with constant C if for any k N and any weakly null tree px n q nrNs ¤k in B X , there exists n rNs k such that k j1

x pn 1 ,...,n j q ¤ Ck 1{p with the convention 1{p 0 if p V.

We say that X has the tree-p-Banach-Saks property (tree-p-BS) if X has the tree-p-Banach-Saks property with constant C for some C ¡ 0.

Let p p1, Vq. We denote by T p the class of all p-AUSable Banach spaces, by A p the class of all Banach spaces satisfying upper p tree estimates, by N p the class of all Banach spaces with tree-p-BS property and P p 1 r p T r . It is known that (see [START_REF] Godefroy | Szlenk indices and uniform homeomorphisms[END_REF] and [START_REF]On asymptotic uniform smoothness and nonlinear geometry of Banach spaces[END_REF])

T p A p N p P p and Causey proved in [START_REF] Causey | Three and a half asymptotic properties[END_REF] (cf Theorem 6.2) that these inclusions are strict (even among reflexive spaces).

It is also known (see [START_REF]On asymptotic uniform smoothness and nonlinear geometry of Banach spaces[END_REF]) that N V A V .

Metric embeddings.

Let us recall some definitions on metric embeddings.

Let pX, d X q and pY, d Y q two metric spaces, f a map from X to Y .

We define the compression modulus of f by dt ¥ 0, ρ f ptq inftd Y pfpxq, f pyqq; d X px, yq ¥ tu;

and the expansion modulus of f by dt ¥ 0, ω f ptq suptd Y pfpxq, f pyqq; d X px, yq ¤ tu. We adopt the convention infp∅q V. Note that, for every x, y X, we have

ρ f pd X px, yqq ¤ d Y pfpxq, f pyqq ¤ ω f pd X px, yqq.
We say that f is a bi-Lipschitz embedding if there exist A, B in p0, Vq such that ρ f ptq ¥ At and ω f ptq ¤ Bt for all t ¥ 0. If there exists such an embedding f , we denote pX,

d X q ã Ñ L pY, d Y q.
If the metric spaces are unbounded, the map f is said to be a coarse embedding if lim tÑV ρ f ptq V and ω f ptq V for all t ¡ 0. If one is given a family of metric spaces pX i q iI , one says that pX i q iI equi-Lipschitz embeds into Y if there exist A, B in p0, Vq and, for all i I, maps f i : X i Ñ Y such that ρ f i ptq ¥ At and ω f i ptq ¤ Bt for all t ¥ 0. One also says that the family pX i q iI equi-coarsely embeds into Y if there exist non-decreasing functions ρ, ω : r0, Vq Ñ r0, Vq and for all i I, maps

f i : X i Ñ Y such that ρ ¤ ρ f i , ω f i ¤ ω, lim tÑV ρptq V and ωptq V for all t ¡ 0.
Besides, we say that f is a coarse Lipschitz embedding if there exist A, B, C, D in p0, Vq such that ρ f ptq ¥ At ¡ C and ω f ptq ¤ Bt D for all t ¥ 0. If X and Y are Banach spaces, this is equivalent to the existence of numbers θ ¥ 0 and 0 c 1 c 2 so that :

c 1 }x ¡ y} X ¤ }fpxq ¡ f pyq} Y ¤ c 2 }x ¡ y} X for all x, y X satisfying }x ¡ y} X ¥ θ.
Finally, a way to refine the scale of coarse embeddings is to talk about compression exponents, introduced by Guentner and Kaminker in [START_REF] Guentner | Exactness and uniform embeddability of discrete groups[END_REF]. Let X and Y to Banach spaces. The compression exponent of X in Y , denoted by α Y pXq, is the supremum of all α r0, 1q for which there exist a coarse embedding f : X Ñ Y and A, C in p0, Vq so that ρ f ptq ¥ At α ¡C for all t ¡ 0.

Definitions of concentration properties.

In this subsection, we introduce all the concentration properties mentioned in this paper. Before doing so, let us recall a version of Ramsey's Theorem we will use several times. Theorem 2.1 (Ramsey's Theorem [START_REF] Ramsey | On a Problem of Formal Logic[END_REF]). Let k N and A rNs k . There exists M rNs ω such that either rMs k A or rMs k A ∅.

The following properties are studied in [START_REF] Kalton | The coarse lipschitz geometry of p ` q[END_REF], [START_REF] Lancien | Asymptotic and coarse Lipschitz structures of quasi-reflexive Banach spaces[END_REF] and [START_REF]A new coarsely rigid class of Banach spaces[END_REF]. We use the convention 1{V 0. Definition 2.2. Let pX, dq be a metric space, λ ¡ 0, p p1, Vs.

We say that X has property λ-HFC p (Hamming Full Concentration) if, for all k N, for every Lipschitz function f : prNs k , d H q Ñ X, one can find M rNs ω such that dn, m rMs k , dpf pnq, f pmqq ¤ λk 1 p Lippf q. We say that X has property HFC p if X has property λ-HFC p for some λ ¡ 0.

We say that X has property λ-HIC p (Hamming Interlaced Concentration) if, for all k N, for every Lipschitz function f : prNs k , d H q Ñ X, one can find pn, mq I k pNq satisfying dpf pnq, f pmqq ¤ λk 1 p Lippf q. We say that X has property HIC p if X has property λ-HIC p , for some λ ¡ 0.

Remark 2.3. 1q Let us notice that, by Ramsey's Theorem (I k pNq can be identified with rNs 2k ), a metric space pX, dq has property λ-HIC p if and only if, for all k N, for every Lipschitz function f : prNs k , d H q Ñ X, one can find M rNs ω that satisfies dpn, mq I k pMq, dpf pnq, f pmqq ¤ λk 1 p Lippf q.

2q Baudier, Lancien, Motakis and Schlumprecht showed that property HFC V is equivalent for a Banach space to being reflexive and asymptotic-c 0 (see [START_REF]A new coarsely rigid class of Banach spaces[END_REF] for the proof of this result and Section 4 for the definition of asymptotic-c 0 ).

We now introduce a property that seems weaker than the previous one but is enough to prevent the equi-Lipschitz embedding (or equi-coarse embedding for the case p V) of Hamming graphs. We will show later that this property actually coincides with property HIC p , p p1, Vs. Definition 2.4. Let pX, dq be a metric space, λ ¡ 0, and p p1, Vs. We say that X has property λ-HC p if, for all k N, for every Lipschitz function f : prNs k , d H q Ñ X, one can find n, m rNs k satisfying n m ∅ and dpf pnq, f pmqq ¤ λk 1 p Lippf q. We say that X has property HC p if X has property λ-HC p , for some λ ¡ 0.

It is easy to check that all these concentration properties are stable under coarse Lipschitz embeddings and that properties HFC V , HC V and HIC V are even stable under coarse embeddings, when the embedded space is a Banach space.

Let us now introduce the last concentration properties we will study here, more precise than HC p and HIC p , p p1, Vq, where directional Lipschitz constants take part, hence the "d" in subscript in the acronyms below.

Definition 2.5. Let pX, dq be a metric space, λ ¡ 0, p p1, Vq.

We say that X has property λ-HFC p,d (resp. λ-HIC p,d ) if, for every k N and every Lipschitz function f : prNs k , d H q Ñ X, there exists M rNs ω such that

dpf pnq, f pmqq ¤ λ £ k j1 α p j 1 p
for all n, m rMs k (resp. pn, mq I k pMq), where, for each j t1, ¤ ¤ ¤ , ku α j sup pn,mqH j pNq dpf pnq, f pmqq.

We say that X has property HFC p,d (resp. HIC p,d ) if X has property λ-HFC p,d (resp. λ-HIC p,d ), for some λ ¡ 0. Similary, we say that X has property λ-HC p,d if, for every k N and every Lipschitz function f : prNs k , d H q Ñ X, one can find n, m rNs k satisfying n m ∅ and

dpf pnq, f pmqq ¤ λ £ k j1 α p j 1 p
where the α j , j t1, ¤ ¤ ¤ , ku, are defined as above. We say that X has property HC p,d if X has property λ-HC p,d , for some λ ¡ 0.

It is important to note that Theorem 6.1 [START_REF] Kalton | The coarse lipschitz geometry of p ` q[END_REF] and Theorem 5.2 [START_REF] Causey | Three and a half asymptotic properties[END_REF] can be rephrased as follows: for p p1, Vq, a reflexive (resp. quasi-reflexive) Banach space satisfying upper p tree estimates has property HFC p,d (resp. HC p,d ) and a reflexive (resp. quasi-reflexive) Banach space with tree-p-Banach-Saks property has property HFC p (resp. HC p ). Even though Kalton and Randrianarivony [START_REF] Kalton | The coarse lipschitz geometry of p ` q[END_REF] proved their theorem for reflexive p-AUS Banach spaces, their proof implicitely contains the latter result. Let us also note that a Banach space with property HFC p is necessarily reflexive (see [START_REF] Baudier | A new metric invariant for Banach spaces[END_REF]). In 2017, Lancien and Raja [START_REF] Lancien | Asymptotic and coarse Lipschitz structures of quasi-reflexive Banach spaces[END_REF] proved that all quasi-reflexive p-AUS Banach spaces have property HC p,d . It was later extended as mentionned by Causey [START_REF] Causey | Three and a half asymptotic properties[END_REF].

The stability of these last properties under coarse Lipschitz embeddings when the embedded space is a Banach space is a bit less clear so we include a proof for completeness.

Proposition 2.6. Let p p1, Vq, P tHFC p,d , HIC p,d , HC p,d u, X a Banach space and pY, d Y q a metric space.

If Y has property P and X coarse Lipschitz embeds into Y , then X has property P .

Proof. We only prove the stability of HFC p,d , the proofs for the other two properties are similar.

Let us assume that Y has property λ-HFC p,d for a λ ¡ 0 and that there exist a map ϕ : X Ñ Y and A, B, C, D ¡ 0 such that ρ ϕ ptq ¥ At ¡ B and ω ϕ ptq ¤ Ct D for all t ¥ 0. Let k N, f : prNs k , d H q Ñ X a Lipschitz function with Lippf q ¡ 0. Without loss of generality, we can assume that, for all j t1, ¤ ¤ ¤ , ku, we have α j sup pn,mqH j pMq }fpnq ¡ f pmq} ¡ 0.

Indeed, d H is a graph metric so max jt1,¤¤¤ ,ku α j Lippf q ¡ 0 and if α j 0 for some j t1, ¤ ¤ ¤ , ku, then the expression of f does not depend on this j th coordinate.

Therefore α min 1¤j¤k α j p0, Lippf qs. Let us note that ω ϕ ptq ¤ pC Dqt for all t ¥ 1 so, for all j t1, ¤ ¤ ¤ , ku and for all pn, mq H j pNq, we have

d Y ¢ ϕ ¢ 1 α f pnq , ϕ ¢ 1 α f pmq ¤ ω ϕ ¡ α j α © ¤ C D α α j .
Now, by assumption on Y , we can find M rNs ω so that As promised, the next proposition shows that properties HC p and HIC p , p p1, Vs, are equivalent. This explains why we will only talk about property HC V in the last section.

d Y ¢ ϕ ¢ 1 α f pnq , ϕ ¢ 1 α f pmq ¤ λpC Dq
Before proving this result, let us introduce some vocabulary. Let M rNs ω . For n, m rMs k satisfying n m ∅, we denote by φ the unique increasing bijection from n m onto t1, ¤ ¤ ¤ , 2ku. If I tA t1, ¤ ¤ ¤ , 2ku; |A| ku , we say that pn, mq is in position A I if φpnq A. Thus, we note that the pair pn, mq with n, m rMs k and n m ∅, can be in 2k¡1 k¡1 possible different positions if we ask n 1 to be the first element (and we can do it without loss of generality). We denote these positions by

P k i pMq, i 3 1, ¤ ¤ ¤ , 2k¡1
k¡1 ¨A. Let us remark that each one of these positions can be identified with rMs 2k , which will allow us to use Ramsey's Theorem.

Proposition 2.7. For every p p1, Vs, properties HC p and HIC p are equivalent. More precisely, a metric space with property λ-HIC p , for some λ ¡ 0, has property λ-HC p and a metric space with property λ-HC p has property 2λ-HIC p .

Proof. For every p p1, Vs, λ ¡ 0, the implication λ-HIC p ùñ λ-HC p is clear so let us show the other implication.

We will do it with p V, the other cases can be treated similarly. Let pX, dq be a metric space with property λ-HC V for some λ ¡ 0. Let k N, f : prNs k , d H q Ñ X a Lipschitz function. For each M rNs ω , there exist i

3 1, ¤ ¤ ¤ , 2k¡1
k¡1 ¨A and pn, mq P k i pMq such that dpf pnq, f pmqq ¤ λ Lippf q. Let us show that there exist i

3 1, ¤ ¤ ¤ , 2k¡1
k¡1 ¨A and M rNs ω such that dpf pnq, f pmqq ¤ λ Lippf q for all pn, mq P k i pMq. By Ramsey's Theorem, if A 1 tpn, mq P k 1 pNq; dpf pnq, f pmqq ¤ λ Lippf qu P k 1 pNq, there exists M 1 rNs ω such that P k 1 pM 1 q A 1 or P k 1 pM 1 q A 1 ∅.

If P k

1 pM 1 qA 1 ∅, we apply the same result with A 2 tpn, mq P k 2 pM 1 q; dpf pnq, f pmqq ¤ λ Lippf qu P k 2 pM 1 q and we get M 2 rM 1 s ω such that P k 2 pM 2 q A 2 or P k 2 pM 2 q A 2 ∅.

We continue this way inductively.

As X has property λ-HC V , we cannot repeat this operation for all 2k¡1 k¡1 ¨positions so there exist i 3 1, ¤ ¤ ¤ , 2k¡1 k¡1 ¨A and M rNs ω such that dpf pnq, f pmqq ¤ λ Lippf q for all pn, mq P k i pMq. Let us show that there exists pn, mq I k pNq such that dpf pnq, f pmqq ¤ 2λ Lippf q. For that, let M tq 1 q 2 ¤ ¤ ¤ q j ¤ ¤ ¤ u. Now, we just have to observe that we can choose pn, pq P k i pMq such that n 1 p 1 and n, p tq 1 , q 2k 1 , ¤ ¤ ¤ , q 2kp2k¡1q 1 u. This leaves us enough space to get an element m rMs k so that pn, mq I k pMq and pm, pq P k i pMq.

The result follows from the triangle inequality.

Remark 2.8. With a similar proof, we can prove that properties HC p,d and HIC p,d are equivalent.

Stability under sums

3.1. Statements. In order to prove the stability of property HC p,d , p p1, Vq, under p sums, the idea is to adapt Braga's proof of Proposition 7.2 in [START_REF]On asymptotic uniform smoothness and nonlinear geometry of Banach spaces[END_REF] with property HIC p,d instead of property p-Banach-Saks.

To do so, we need the following proposition. We chose to state it with property HIC p,d , which we recall is equivalent to property HC p,d , but the same result can be shown for property HFC p,d with a similar proof.

Proposition 3.1. Let p p1, Vq, λ ¡ 0, E be a Banach space with a normalized 1unconditional p-convex basis pe n q nN with convexity constant 1.

For every n N and every finite sequence pX j q n j1 of Banach spaces having property λ-HIC p,d , the space

¡ °n j1 X j © E has property pλ εq-HIC p,d for each ε ¡ 0. Proof. It is enough to prove this result for X X 1 À E X 2 . Let k N, M rNs ω , ε ¡ 0, h pf, gq : prMs k , d H q Ñ X a Lipschitz function.
For each j t1, ¤ ¤ ¤ , ku, let γ j sup pn,mqH j pMq }hpnq ¡ hpmq}.

There exists ε I ¡ 0 such that

λ p k j1 pγ j 2ε I q p ¤ pλ εq p k j1 γ p j . Let α 1 inf M 1 rMs ω sup pn,mqH 1 pM 1 q }fpnq ¡ f pmq}.
There exists M 1 rMs ω so that }fpnq ¡ f pmq} ¤ α 1 ε I for every pn, mq H 1 pM 1 q.

Let β 1 inf

M I 1 rM 1 s ω sup pn,mqH 1 pM I 1 q
}gpnq ¡ gpmq}.

There exists M I 1 rM 1 s ω so that }gpnq ¡ gpmq} ¤ β 1 ε I for every pn, mq H 1 pM I 1 q.

We continue inductively this way until we define α k and β k as follows.

Let

α k inf M k rM I k¡1 s ω sup pn,mqH k pM k q }fpnq ¡ f pmq}.
There exists

M k rM I k¡1 s ω so that }fpnq ¡ f pmq} ¤ α k ε I for every pn, mq H k pM k q. Let β k inf M I k rM k s ω sup pn,mqH k pM I k q }gpnq ¡ gpmq}.
There exists M I k rM k s ω so that }gpnq ¡ gpmq} ¤ β k ε I for every pn, mq H k pM I k q. Let us begin by showing that }α j e 1 β j e 2 } ¤ γ j for all j t1, ¤ ¤ ¤ , ku. For that, assume that there exists j t1, ¤ ¤ ¤ , ku such that }α j e 1 β j e 2 } ¡ γ j . Then, there exists η ¡ 0 so that }pα j ¡ ηqe 1 pβ j ¡ ηqe 2 } ¡ γ j . ¦ If there exists pn, mq H j pM I k q such that }fpnq¡fpmq} ¥ α j ¡η and }gpnq¡gpmq} ¥ β j ¡η, then }hpnq ¡ hpmq} ¡ γ j , which is impossible. ¦ So }fpnq ¡ f pmq} ¤ α j ¡ η or }gpnq ¡ gpmq} ¤ β j ¡ η for all pn, mq H j pM I k q. Now we note that H j pM I k q can be identified with rM I k s k 1 so, by Ramsey's Theorem, we get M I rM I k s ω such that }fpnq¡fpmq} ¤ α j ¡η for all pn, mq H j pM I q or }gpnq¡gpmq} ¤ β j ¡η for all pn, mq H j pM I q. This contradicts the definition of α j or β j . Thus }α j e 1 β j e 2 } ¤ γ j for all j t1, ¤ ¤ ¤ , ku.

By assumption, there exists M I rM I k s ω so that

}fpnq ¡ f pmq} ¤ λ £ k j1 pα j ε I q p 1 p and }gpnq ¡ gpmq} ¤ λ £ k j1 pβ j ε I q p 1 p
for all pn, mq I k pM I q. Let x n pα n ε I qe 1 pβ n ε I qe 2 for each n t1, ¤ ¤ ¤ , ku. Using p-convexity, we get :

}hpnq ¡ hpmq} p ¤ λ p £ k j1 pα j ε I q p 1 p e 1 £ k j1 pβ j ε I q p 1 p e 2 p ¤ λ p k ņ1 }x n } p λ p k j1 }pα j ε I qe 1 pβ j ε I qe 2 } p ¤ λ p k j1 pγ j 2ε I q p
for all pn, mq I k pM I q.

Therefore,

}hpnq ¡ hpmq} p ¤ pλ εq £ k j1 γ p j 1 p
, for all pn, mq I k pM I q, i.e, X has pλ εq-HIC p,d .

From this property about finite sums, we can deduce our main result. In order to do so, let us remark that a Banach space E that has a p-convex basis with constant 1 satisfies the following: if x E and px n q nN is a weakly null sequence in E, then lim sup }x x n } p ¤ }x} p lim sup }x n } p .

Therefore, we deduce from the proof of Theorem 4.2 [START_REF] Kalton | The coarse lipschitz geometry of p ` q[END_REF] that if E is in addition reflexive, then for every k N, every M rNs ω , every ε ¡ 0 and every Lipschitz function f : prMs k , d H q Ñ E, there exist M I rMs ω and u E so that

}fpnq ¡ u} ¤ £ k j1 α p j 1 p ε
for all n rM I s k , where α j sup pn,mqH j pMq }fpnq ¡ f pmq} for all j t1, ¤ ¤ ¤ , ku.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let ε ¡ 0, M rNs ω , k N, f : prMs k , d H q Ñ X a Lipschitz function. There exists ε I ¡ 0 such that pλ 2 ε I q £ k j1 α p j 1 p 4ε I ¤ pλ 2 εq £ k j1 α p j 1 p
where α j sup pn,mqH j pMq }fpnq ¡ f pmq} for all j t1, ¤ ¤ ¤ , ku.

The well-defined map φ :

6 8 7 X Ñ E px n q nN Þ Ñ V °n1
}x n }e n satisfies Lippφq ¤ 1 and }φpxq} }x} for all x X, thus sup pn,mqH j pMq }φ ¥ f pnq ¡ φ ¥ f pmq} ¤ α j for every j t1, ¤ ¤ ¤ , ku. From the previous remark, we get u E and M I rMs ω such that

}φ ¥ f pnq ¡ u} ¤ £ k j1 α p j 1 p ε I for all n rM I s k . Let N N such that °V kN 1 }u k }e k ¤ ε I .
For each n N, let us denote by P n the projection from X onto X n and Π n the projection from X onto p °n k1 X k q E . We have

V ņN 1 }P n ¥ f pnq}e n ¤ V ņN 1 }P n ¥ f pnq}e n ¡ V ņN 1 }u n }e n ε I ¤ V ņN 1 p}P n ¥ f pnq} ¡ }u n }qe n ε I ¤ }φ ¥ f pnq ¡ u} ε I ¤ £ k j1 α p j 1 p 2ε I
for all n rM I s k . Moreover, according to Proposition 3.1, we get an infinite subset M P rM I s ω such that

}Π N ¥ f pnq ¡ Π N ¥ f pmq} ¤ pλ ε I q £ k j1 α p j 1 p
for all pn, mq I k pM P q.

We deduce

}fpnq ¡ f pmq} ¤ }Π N pfpnq ¡ f pmqq} }pI ¡ Π N q ¥ f pnq} }pI ¡ Π N q ¥ f pmq} ¤ pλ ε I q £ k j1 α p j 1 p £ k j1 α p j 1 p 2ε I £ k j1 α p j 1 p 2ε I ¤ pλ 2 εq £ k j1 α p j 1 p
for all pn, mq I k pM P q. The result follows.

Remark 3.2. With this result and Proposition 2.7, we immediately deduce the following: if each X n , n N, has property λ-HC p,d , then p °nN X n q E has property p2λ 2 εq-HC p,d for every ε ¡ 0.

Once again, we chose to state this theorem with property HIC p,d , but the result stays true for property HFC p,d , with a similar proof. 

prNs ω , d H q ã Ñ L X ω £ V ņ1 n 1 p 2 q
2 even though n 1 p 2 q has property HFC 2,d (it is reflexive and 2-AUS) for every n N. To see that, let us note that, for every k N, prNs ¤k , d H q isometrically embeds into k 1 p 2 q.

Then, the barycentric gluing technique by Baudier (see [START_REF] Baudier | Barycentric gluing and geometry of stable metrics[END_REF]) gives us a bi-Lipschitz embedding from prNs ω , d H q into X ω .

In [START_REF] Braga | Asymptotic structure and coarse Lipschitz geometry of Banach spaces[END_REF], Braga asked the following (Problem 3.7): if a Banach space X has the Banach-Saks property, i.e, every bounded sequence in X admits a subsequence whose Cesàro means converge in norm, does it follow that prNs ω , d ∆ q does not Lipschitz embed into X ? The answer to this question is negative. Indeed, let pp n q nN p1, Vq be a decreasing sequence such that lim

nÑ V p n 1 and let X °V n1 pn ¨ 2 .
With a similar argument, or simply appealing to Ribe's Theorem [START_REF] Ribe | Existence of separable uniformly homeomorphic nonisomorphic Banach spaces[END_REF] (that implies that 1 coarse Lipschitz embeds into X), we see that

prNs ω , d H q ã Ñ L X and prNs ω , d ∆ q ã Ñ L X
even though the space X has the Banach-Saks property (see [START_REF] Partington | On the Banach-Saks property[END_REF]).

Before we write a direct consequence of this theorem, let us briefly recall the definition of the James sequence spaces.

Let p p1, Vq. The James space J p is the real Banach space of all sequences x pxpnqq nN of real numbers with finite p-variation and verifying lim nÑV xpnq 0. The space J p is endowed with the following norm }x} Jp sup

6 8 7 £ k¡1 i1 |xpp i 1 q ¡ xpp i q| p 1 p ; 1 ¤ p 1 p 2 ¤ ¤ ¤ p k D F E .
The space J J 2 , constructed by James in [START_REF] James | Bases and reflexivity of Banach spaces[END_REF], is the historical example of a quasi-reflexive Banach space which is isomorphic to its bidual. In fact, J ¦¦ p can be seen as the space of all sequences of real numbers with finite p-variation, which is J p Re, where e denotes the constant sequence equal to 1. Besides of being quasi-reflexive, the space J p has the property of being p-AUSable (see [START_REF] Netillard | Coarse Lipschitz embeddings of James spaces[END_REF], Proposition 2.3) and its dual J ¦ p is q-AUSable, where q denotes the conjugate exponent of p (see [START_REF] Lancien | On the coarse geometry of James spaces[END_REF] and references therein).

We can now state the following corollary.

Corollary 3.4. Let p, q p1, Vq, p I the conjugate exponent of p, s minpp, qq and t minpp I , qq.

If X a quasi-reflexive Banach space satisfying upper p tree estimates, then the space q pXq has property HC s,d .

In particular, q pJ p q has property HC s,d and q pJ ¦ p q has property HC t,d .

Let us mention that we stated this corollary for q -sums but we could have done it with any reflexive q-convexification of a Banach space with a 1-unconditional basis (such as T q , the q-convexification of Tsirelson space, or S q , the q-convexification of Schlumprecht space, see [START_REF] Braga | Asymptotic structure and coarse Lipschitz geometry of Banach spaces[END_REF] and references therein).

With p 2, we get that the spaces 2 pJq and 2 pJ ¦ q have property HC 2 and thus cannot contain equi-Lipschitz copies of Hamming graphs. In fact, property HC p provides more information than an obstruction to the equi-Lipschitz embedding of Hamming graphs, it also gives us an estimation of some compression exponents, given by the result below. Before stating it, we need the following definition. Definition 3.5. Let q p1, Vq and X be a Banach space. We say that X has the qco-Banach-Saks property if for every semi-normalized weakly null sequence px n q nN in X, there exists a subsequence px I n q nN of px n q nN and c ¡ 0 such that, for all k N and all

k ¤ n 1 ¤ ¤ ¤ n k , we have }x I n 1 ¤ ¤ ¤ x I n k } ¥ ck 1{q . Theorem 3.6. Let 1 q p in p1, Vq. Assume X is an infinite-dimensional Banach space
with the q-co-Banach-Saks property and Y is a Banach space with property HC p . Then X does not coarse Lipschitz embed into Y . More precisely, the compression exponent α Y pXq of X into Y satisfies the following:

piq if X contains an isomorphic copy of 1 , then α Y pXq ¤ 1 p ; piiq otherwise, α Y pXq ¤ q p .
In particular, if X is q-AUC, then α Y pXq ¤ q p . We refer the reader to Theorem 3.5 and Corollary 3.6 of [START_REF] Lancien | Asymptotic and coarse Lipschitz structures of quasi-reflexive Banach spaces[END_REF] for a proof of this result. Let us note that Proposition 3.2 of [START_REF] Lancien | Asymptotic and coarse Lipschitz structures of quasi-reflexive Banach spaces[END_REF] also stays true by replacing "quasi-reflexive AUS" by "having property HC p for some p p1, Vq".

We also would like to mention the following: we could define symmetric concentration properties SFC p , SIP p and SC p , corresponding respectively to properties HFC p , HIC p and HC p by asking the function f to be Lipschitz for the symmetric distance in the definitions of these properties (instead of being Lipschitz for the Hamming distance). Then, it is known that a reflexive (resp. quasi-reflexive) p-AUS Banach space, for p p1, Vq, would have property SFC p (resp. SC p ). Moreover, even though we wrote our properties HFC p,d , HIC p,d and HC p,d with the letter "H" because the quantities α j , j t1, ¤ ¤ ¤ , ku can be seen as directional Lipschitz constants when rNs k is endowed with the Hamming distance, we could replace "f : prNs k , d H q Ñ X Lipschitz" by "f : rNs k Ñ X bounded" in the definitions so that no reference to any specific metric is made. With that remark in mind and the fact that HC p,d implies SC p , we get that property HC p,d prevents the equi-Lipschitz embeddings of the symmetric graphs.

Before concluding this subsection with a last result, let us recall some facts that we will use concerning the spaces Ti ¦ q , the dual of the q-convexification of the Tirilman space Ti (see [START_REF] Tzafriri | On the type and cotype of Banach spaces[END_REF], [START_REF] Casazza | Tsirel son's space[END_REF], [START_REF] Causey | Three and a half asymptotic properties[END_REF] and references therein for more information about this space), and S ¦ q , the dual of the q-convexification of Schlumprecht space S (see [START_REF] Th | An arbitrarily distortable Banach space[END_REF], [START_REF] Causey | Three and a half asymptotic properties[END_REF] and references therein for more information about this space).

If we denote pe ¦ n q nN the coordinate functionals associated with the canonical basis pe n q nN of Ti, it is known that pe ¦ n q nN is 1-symmetric and that the formal identity I : q Ñ Ti q is bounded and stricty singular (see [START_REF] Causey | Three and a half asymptotic properties[END_REF]). As for S ¦ q , if we denote pf ¦ n q nN the sequence of coordinate functionals associated with the canonical basis pf n q nN of S and if p and q are conjugate exponents, it is known (see [9, Proposition 6.5 (iv)]) that for any finite, non-empty subset E of N,

iE f ¦ i S ¦ q ¥ |E| 1{p log 2 p|E| 1q 1{q ,
and that pf ¦ n q nN is 1-subsymmetric. Proposition 3.7. Let p p1, Vq, q its conjugate exponent.

The space Ti ¦ q has property HFC p but does not have property HC p,d , and the space S ¦ q has property HFC s,d for every s p1, pq, but does not have property HC p .

Proof. This space Ti ¦ q is reflexive and Ti ¦ q N p (see [START_REF] Causey | Three and a half asymptotic properties[END_REF] Proposition 6.5 (v)) hence it has property HFC p . Now, for a pa j q k j1 B k p , we let f :

5 rNs k Ñ Ti ¦ q n Þ Ñ °k j1 a j e ¦ n j
. This map satisfies Lippf q ¤ 2.

Let us assume Ti ¦ q has property λ-HC p,d for some λ ¡ 0. Then, there exist n, m rNs k such that n m ∅ and k j1 a j e ¦ j }fpnq} ¤ }fpnq ¡ f pmq} ¤ 2λ because of the 1-symmetry of pe ¦ j q jN . We deduce that the sequence of coordinate functionals pe ¦ j q jN is dominated by the p basis. This is impossible, by the same argument used by Causey [START_REF] Causey | Three and a half asymptotic properties[END_REF] to prove Ti ¦ q A p (by duality, the Ti q basis would dominate, and would therefore be equivalent to the q basis, contradicting the strict singularity of the formal inclusion

I : q Ñ Ti q , cf. [9, Proposition 6.5 (ii)]).
Then, the space S ¦ q is reflexive and S ¦ q P p (see the proof of Theorems 6.2, 6.3, case ξ 0, and Remark 6.7 in [START_REF] Causey | Three and a half asymptotic properties[END_REF]) hence it has property HFC s,d for every s p1, pq. We define similarly, for a pa j q k j1 B k p , a 2-Lipschitz map f :

5 rNs k Ñ S ¦ q n Þ Ñ °k j1 a j f ¦ n j
. Now, we may argue as we did for Ti ¦ q to deduce that, for all pn, mq I k pNq: }fpnq ¡ f pmq} ¥ k 1{p log 2 pk 1q 1{q

because of the 1-subsymmetry of the canonical basis and [9, Proposition 6.5 (iv)]. Since lim kÑV log 2 pk 1q 1{q V, the space S ¦ q cannot have property HC p . 3.2. Related questions. The following questions about Theorem 1.1 come up naturally.

Problem 1. Can we replace property HFC p,d (resp. HIC p,d ) by property HFC p (resp. HIC p ) in Theorem 1.1? Problem 2. Can the conclusion of Theorem 1.1 be improved so that X p °nN X n q E has property pλ εq-HIC p,d for every ε ¡ 0? Problem 3. Let p p1, Vq, X a p-AUS Banach space so that X is complemented in X ¦¦ and that X ¦¦ {X is reflexive and p-AUSable. Does X have property HC p ?

A positive answer to the second question would provide us, for each p p1, Vq, with an example of a reflexive Banach space, not AUSable, with property HFC p,d . Indeed, following Braga's proof of Theorem 7.1 [START_REF]On asymptotic uniform smoothness and nonlinear geometry of Banach spaces[END_REF], the space X p, 1 ,T would be such an example (see [START_REF]On asymptotic uniform smoothness and nonlinear geometry of Banach spaces[END_REF] and references therein for more information about this space).

Moreover, let us recall that Kalton proved the existence of a Banach space X that is not p-AUSable but that is uniformly homeomorphic to a p-AUS Banach space (see [START_REF] Kalton | Examples of uniformly homeomorphic Banach spaces[END_REF]). Thus, the space X has property HFC p,d , p p1, Vq, even though it is not p-AUSable. However, the following problem remains open. Problem 4. Is there a Banach space that has property HFC p (or HFC p,d /HC p /HC p,d ) without being AUSable? If a Banach space X coarse Lipschitz embeds into a Banach space Y that is reflexive and AUS, does it follow that X is AUSable?

We will finish this section by saying a few words about a natural class of spaces to study here: the Lindenstrauss spaces (see [START_REF] Lindenstrauss | On James's paper "Separable conjugate spaces[END_REF]). For any Banach space X, we will note by Z X the Lindenstrauss space associated to X. In [START_REF]On asymptotic uniform smoothness and nonlinear geometry of Banach spaces[END_REF], Braga showed that neither Z ¦ c 0 , Z 1 or Z ¦ X ¦ ω can have any of the concentration properties we introduced, even though they are 2-AUSable (see [START_REF] Causey | Prescribed Szlenk index of separable Banach spaces[END_REF]) and do not contain c 0 nor 1 . The key point of the proof for the spaces Z ¦ c 0 and Z ¦ X ¦ ω is that they satisfy the assumptions of the following proposition, that can be deduced from [START_REF]On asymptotic uniform smoothness and nonlinear geometry of Banach spaces[END_REF]. Proposition 3.8. Let X be a Banach space such that X ¦ is separable.

Assume that there exist A, C ¥ 1, pz ¦¦ k,j,n q kN,jt1,¤¤¤ ,ku,nN CB X ¦¦ such that for every k N, the map

F k : 6 8 7 rNs k Ñ X ¦¦ n Þ Ñ k °j1 z ¦¦ k,j,n j satisfies 1 A d H pn, mq ¤ }F k pnq ¡ F k pmq} ¤ Ad H pn, mq for all n, m rNs k .
Then, the space X does not have any of the concentration properties introduced before.

We can therefore ask ourselves the following question.

Problem 5. Can we find an infinite-dimensional Banach space X and a p p1, Vq such that Z X or Z ¦ X have property HC p ? Finally, by Aharoni's Theorem [START_REF] Aharoni | Every separable metric space is Lipschitz equivalent to a subset of c 0[END_REF], we know that the Hamming graphs equi-Lipschitz embed into Z ¦¦ c 0 {Z c 0 . Does it mean that these graphs can be Lipschitz embedded into Z ¦¦ c 0 ? Into Z c 0 ? 4. Asymptotic-c 0 spaces Before stating the last result of this paper, we recall the definition of an asymptotic-c 0 space. The following definition is due to Maurey, Milman and Tomczak-Jaegermann [START_REF] Maurey | Asymptotic infinite-dimensional theory of Banach spaces[END_REF]. Definition 4.1. Let X be a Banach space. We denote by cofpXq the set of all its closed finite-codimensional subspaces.

For C ¥ 1, we say that X is C-asymptotically c 0 if, for any k N, we have

hX 1 cofpXq dx 1 S X 1 hX 2 cofpXq dx 2 S X 2 ¤ ¤ ¤ hX k cofpXq dx k S X k , dpa 1 , . . . , a k q R k , k i1 a i x i ¤ C max 1¤i¤k |a i |
We say that X is asymptotically c 0 (or asymptotic-c 0 ) if it is C-asymptotically c 0 for some

C ¥ 1.
Let X be a Banach space. A family px piq j ; i, j Nq X is called an infinite array. For an infinite array px piq j ; i, j Nq, we call the sequence px piq j q jN the i-th row of the array. We call an array weakly null if all rows are weakly null. A subarray of px piq j ; i, j Nq is an infinite array of the form px piq js ; i, s Nq, where pj s q N is a subsequence. Thus, for a subarray, we are taking the same subsequence in each row.

The following notion, introduced by Halbeisen and Odell ( [START_REF] Halbeisen | On asymptotic models in Banach spaces[END_REF]), is a generalization of spreading models. Definition 4.2. A basic sequence pe i q iN is called an asymptotic model of a Banach space X if there exist an infinite array px piq j ; i, j Nq S X and a null-sequence pε n q nN p0, 1q, so that, for all n N, all pa i q n i1 r¡1, 1s and all

n ¤ k 1 k 2 ¤ ¤ ¤ k n , § § § § § } n i1 a i x piq k i } ¡ } n i1 a i e i } § § § § § ε n .
The following proposition concerning this notion was proved in [START_REF] Halbeisen | On asymptotic models in Banach spaces[END_REF]. ). Assume that px piq j ; i, j Nq S X is an infinite array, all of whose rows are normalized and weakly null. Then there is a subarray of px piq j ; i, j Nq which has a 1-suppression-unconditional asymptotic model pe i q iN . We call a basic sequence pe i q iN c-suppression-unconditional, for some c ¥ 1, if, for any pa i q iN c 00 and any A N, we have :

iA a i e i ¤ c V i1 a i e i .
Note that a c-unconditional basic sequence is c-suppression-unconditional and a c-suppressionunconditional basic sequence is 2c-unconditional.

As for the proof of the fact that every Banach space with property HFC V is asymptotic- c 0 (see [START_REF]A new coarsely rigid class of Banach spaces[END_REF]), the key ingredient will be the following theorem of Freeman, Odell, Sari and Zheng.

Theorem 4.4 ([15], Theorem 4.6). If a separable Banach space X does not contain any isomorphic copy of 1 and all the asymptotic models generated by normalized weakly null arrays are equivalent to the c 0 unit vector basis, then X is asymptotically c 0 .

We now have all the tools to prove our result.

Theorem 4.5. If a Banach space has property HC V , then it is asymptotic-c 0 .

Proof. Let X be a Banach space with property HC V . Then X has property λ-HIC V , for some λ ¡ 0, by Proposition 2.7. Let us note that we can assume that X is separable by Proposition 11 of [START_REF]The Szlenk power type and tensor products of Banach spaces[END_REF], and that X cannot contain an isomorphic copy of 1 since 1 does not have this property. Assume by contradiction that X is not asymptotic-c 0 . By Theorem 4.4, there exists a 1suppression-unconditional sequence pe i q iN that is not equivalent to the unit vector basis of c 0 , and hence λ k °k i1 p¡1q i e i Õ V, if k Õ V, and that is generated as an asymptotic model of a normalized weakly null array px piq j ; i, j Nq in X. Let k N such that λ 2k 4 ¡ λ, and δ λ . After passing to appropriate subsequences of the array, we may assume that, for any 2k ¤ j 1 ¤ ¤ ¤ j 2k and any a 1 , . . . , a 2k r¡1, 1s, we have §

§ § § § 2k i1 a i x piq j i ¡ 2k i1 a i e i § § § § § δ. (1) 
Define now f pmq 1 2 °k i1 x piq m i for m pm 1 , . . . , m k q rNs k . Note that f is 1-Lipschitz for the metric d H .

Let M rNs ω , n, m rMs k such that ppn 1 , . . . , n k q, pm 1 , . . . , m k qq I k pMq and m 1 , n 1 ¡ 2k. Using the Hahn-Banach Theorem, we can find x ¦ S X ¦ such that :

x ¦ £ k i1 x piq m i ¡ k i1 x piq n i k i1 x piq m i ¡ k i1 x piq n i .
Using equation p1q, we deduce that :

}fpm 1 , . . . , m k q ¡ f pn 1 , . . . , n k q} ¥ 1 2 λ 2k ¡ δ 2 λ 2k 4 ¡ λ.
This contradicts the assumption on X. The result follows.

Theorem 1.1 and Corollary 3.4 provided us with examples of non-quasi-reflexive Banach spaces having property HC p , for p p1, Vq. In order to obtain a similar result with p V, it seems natural to consider a T ¦ -sum of spaces with λ-HFC V , λ ¡ 0. However, as a direct consequence of Theorem 4.5, we get the following corollary.

Corollary 4.6. The space T ¦ pT ¦ q, where T ¦ is the original Banach space constructed by

Tsirelson in [START_REF] Tsirel'son | Not every Banach space contains an imbedding of p or c0[END_REF], does not have property HC V although it has property HFC p,d for every p p1, Vq.

Before proving this corollary, let us recall some properties of the space T ¦ . First, it is reflexive, so we will denote its dual by T . This space T ¦ has a normalized, shrinking, 1-unconditional basis pe n q V n1 . Let us denote by pe ¦ n q nN T the coordinate functionals of pe n q nN . For an element x °V n1 e ¦ n pxqe n X, let us denote by Supppxq the support of x, i.e, the subset of integers n such that e ¦ n pxq $ 0. The space T satisfies the following (see [START_REF] Tsirel'son | Not every Banach space contains an imbedding of p or c0[END_REF] and [START_REF] Figiel | A uniformly convex Banach space which contains no lp[END_REF]): for every px i q n i1 T with pSupppx i qq n i1 increasing, }x i } 1, and Supppx 1 q rk 1, Vq, we have

dpa i q n i1 R, n i1 a i x i ¥ 1 2 n i1 |a i |.
Proof of Corollary 4.6. The lack of property HC V is a direct consequence of Lemma 2.7

of [START_REF] Baudier | The geometry of Hamming-type metrics and their embeddings into Banach spaces[END_REF] (asserting that T ¦ pT ¦ q is not asymptotic-c 0 ) and Theorem 4.5 above. The fact that T ¦ pT ¦ q has property HFC p,d , for every p p1, Vq, can be deduced from Theorem 5.9 of [START_REF] Draga | Direct sums and summability of the Szlenk index[END_REF], applied with p 1, X n T ¦ for all n N and E T ¦ . Indeed, if we let ppXq inf

4 q ¥ 1; X is p-AUSable, 1 p 1 q 1 B
for a given Banach space X, Theorem 5.9 [START_REF] Draga | Direct sums and summability of the Szlenk index[END_REF] asserts that ppT ¦ pT ¦ qq 1. As T ¦ pT ¦ q is reflexive, the result follows from Theorem 6.1 [START_REF] Kalton | The coarse lipschitz geometry of p ` q[END_REF] of Kalton and Randrianarivony (see the remark after Definition 2.5).

As property HC V prevents the equi-coarse embeddability of the Hamming graphs, we can therefore ask the following : Problem 6. If the Hamming graphs do not equi-coarsely embed into a Banach space X, does it follow that X is asymptotic-c 0 ?

Let us mention that, in case the answer to this question is positive, the embeddings in a non-asymptotic-c 0 space would not be canonical, because of Proposition 4.6 and Remark 4.7 of [START_REF] Baudier | The geometry of Hamming-type metrics and their embeddings into Banach spaces[END_REF].

Moreover, let us note that we only defined property HFC p,d (resp. HIC p,d , resp. HC p,d ) for p p1, Vq because, for p V, this is exactly the definition of property HFC V (resp. HIC V , resp. HC V ). In the light of Section 3, the following question seems natural. Problem 7. Does property HC V imply quasi-reflexivity?

In addition, as Lindenstrauss spaces provided us with non trivial examples of AUSable dual Banach spaces without any concentration property, the following result, due to Schlumprecht, provides us with a non trivial example of an asymptotic-c 0 separable dual Banach space without any concentration property. Theorem 4.7 (Schlumprecht). Let X be a Banach space whose dual is separable. Then, there exists an asymptotic-c 0 separable dual Banach space

Z X such that Z ¦¦ X Z X X ¦ .
With this theorem, proved in Section 5, and arguments of Braga [START_REF]On asymptotic uniform smoothness and nonlinear geometry of Banach spaces[END_REF], we can prove the following result, which proof is in the spirit of Proposition 3.8.

Corollary 4.8.

There exists a separable asymptotic-c 0 dual space Z such that there exists a sequence of equi-Lipschitz functions pf k : rNs 2k Ñ Zq kN satisfying the following property: for all ε ¡ 0, all k N and all n, m rNs k , there exists i ¥ maxpn k , m k q such that }f k pn, n I q ¡ f k pm, m I q} ¥ 2d ∆ pn, mq ¡ ε for all n I , m I rNs k with n I 1 , m I 1 ¡ i.

In particular, Z cannot have any of the concentration properties we introduced.

Proof. Let Z Z c 0 given by the previous theorem. It is a separable asymptotic-c 0 dual space. Now, we start by noting that 1 linearly embeds into Z ¦¦ hence the existence of a bounded sequence pz ¦¦ n q nN Z ¦¦ with the following property p¦q dk N, dpε 1 , . . . , ε k q t¨1u k , dpn 1 , . . . , n k q rNs k ,

k j1 ε j z ¦¦ n j ¥ k. Let C sup nN }z ¦¦ n } Z ¦¦.
Since Z ¦ is separable, by Goldstine's Theorem, for each n N, we can find a sequence pz pn,mq q mN CB Z such that z ¦¦ n ω ¦ ¡ lim mÑV z pn,mq .

Then, for each k N, the map

f k : 6 8 7 rNs 2k Ñ Z n Þ Ñ k °j1
z pn j ,n k j q satisfies Lippf k q ¤ 2C. Using weak ¦ -lower semicontinuity of the norm and p¦q, we get the result.

In particular, this sequence of equi-Lipschitz functions is such that dk N, dM rNs ω , hpn, mq I 2k pMq; }f k pnq ¡ f k pmq} ¥ 2k ¡ 1 thus Z cannot have any of the concentration properties we introduced. Remark 4.9. Let us mention that Z is a non-quasi-reflexive asymptotic-c 0 space that does not satisfy any of the concentration properties for non-trivial reasons. Indeed, since Z has the Radon-Nikodỳm property (see [START_REF] Dunford | Linear operations on summable functions[END_REF]) and a separable bidual, it cannot contain a linear copy of c 0 , not even a Lipschitz copy of 1 .

Schlumprecht's construction of generalized Lindenstrauss spaces

This last section is dedicated to Schlumprecht's proof of Theorem 4.7.

Let X be a separable Banach space, and px n q nN be a sequence in S X which has the property that t¨x n , n Nu is dense in S X . Secondly, we are given a space U which has a normalized and 1-unconditional basis pu n q nN . On c 00 , we define the following norm: for a °iN a i e i c 00 , put

}a} max 6 8 7 k j1 } iI j a i x i } X u min I j U § § k N, I j N interval, j ¤ k I 1 I 2 ¤ ¤ ¤ I k D F E .
Here I J for two subsets I and J of N, with I being finite, means max I min J, and

we write I ¥ n, or I ¤ n if min I ¥ n, or max I ¤ n.
We let Z be the completion of c 00 under above defined norm and denote that norm by } ¤ } Z . Remark 5.1. In [START_REF] Lindenstrauss | On James's paper "Separable conjugate spaces[END_REF], the norm }¤} Z was defined by taking only intervals I 1 I 2 ¤ ¤ ¤ I k , with the property that minpI j 1 q maxpI j q 1, if 1 ¤ j k. But since pu j q jN is 1suppression-unconditional, this is irrelevant. Indeed, if I j rp j , q j q, for 1 ¤ j ¤ k, one may add, if necessary, the intervals rq j , p j 1 q, for 1 ¤ j k ¡ 1, to satisfy the condition in [START_REF] Lindenstrauss | On James's paper "Separable conjugate spaces[END_REF].

Let us first note some easy observations. Lemma 5.2. Assume that a °iN a i e i c 00 with m min Supppaq and n max Supppaq.

We have

}a} Z ¤ 2 max 6 8 7 k j1 } iI j a i x i } X u min I j U § § k N, I j N interval, j ¤ k m ¤ I 1 ¤ ¤ ¤ I k ¤ n D F E .
Proof. There exist k N and intervals

I 1 ¤ ¤ ¤ I k so that }a} Z k j1 } iI j a i x i } X u min I j U .
We can assume that max I k ¤ n (otherwise, I k would not contribute to }a} Z ) and we could replace I k by I k r1, ns without changing the left side of above equation. Secondly, we can assume that k ¥ 2 (otherwise the claim is trivial) and that m ¤ I 2 (otherwise, the contribution of the I 1 part is 0).

¦ If } °iI 1 a i x i } X ¤ 1 2 }a} Z , then }a} Z ¤ 2 k j2 } iI j a i x i } X u min I j U A. FOVELLE ¤ 2 max 6 8 7 k j1 } iJ j a i x i } X u min J j U ; k N, J j N interval, j ¤ k m ¤ J 1 ¤ ¤ ¤ J k ¤ n D F E . ¦ Otherwise, } °iI 1 a i x i } X ¡ 1 2 }a} Z and }a} Z ¤ 2} iI 1 a i x i } X 2 } iI 1 rm,ns a i x i } X u m U ¤ 2 max 6 8 7 k j1 } iJ j a i x i } X u min J j U § § k N, J j N interval, j ¤ k m ¤ J 1 ¤ ¤ ¤ J k ¤ n D F E
which proves the claim.

Proposition 5.3. We have piq pe j q jN is a normalized monotone basis of Z; piiq If pu j q jN is boundedly complete so is pe j q jN ; piiiq For °iN a i e i Z it follows that °iN a i x i converges in X, and the map

Q : 4 Z Ñ X °jN a j e j Þ Ñ °jN a j x j
is a quotient map with the property that, for each ε ¡ 0, B X Qpp1 εqB Z q. Proof. piq Let °jN a j e j c 00 , and n N. We define b °n j1 a j e j . We choose intervals

I 1 ¤ ¤ ¤ I k in N so that }b} Z k j1 } iI j b i x i } X u min I j U .
Let us note that we can assume max I k ¤ n. Now, for all j ¤ k, we have °iI j b i e i °iI j a i e i so }a} Z ¥ }b} Z . piiq Let pz l q be a block in Z, say z l °nl in l¡1 1 a i e i , with n 0 0 n 1 n 2 ¤ ¤ ¤ , and }z l } Z ¥ 1, for l N. We need to show that

lim nÑ V n i1 z i Z V. Using Lemma 5.2, we can choose natural numbers 0 k 0 k 1 k 2 ¤ ¤ ¤ and, for every l N, intervals n l¡1 1 ¤ I k l¡1 1 I k l¡1 2 ¤ ¤ ¤ I k l ¤ n l , so that }z l } Z ¤ 2 k l jk l¡1 1 } iI j a i x i } X u min I j U .
Define y l °kl jk l¡1 1 } °iI j a i x i } X u min I j U for every l N. Since pu i q iN is assumed to be boundedly complete, it follows from our assumption on pz l q that lim nÑ V n ļ1 y l U V.

Since x ¦ X ¦ and z ¦ Y Z ¦ are arbitrary, it follows that Q ¦ pX ¦ q Y t0u. Secondly, it follows that Q ¦ pX ¦ q Y is the direct sum of Q ¦ pX ¦ q and Y , and thus Q ¦ pX ¦ q Y is norm closed.

For A N finite or cofinite, we denote by P A : Z Ñ Z the canonical projection onto spanpe j ; j Aq, i.e

P A : 5 Z Ñ Z °iN a i e i Þ Ñ °iA a i e i .

P ¦

A denotes the adjoint of P A . Lemma 5.5. Define

S 5 k j1 P ¦ I j ¥ Q ¦ px ¦ j q § § I 1 ¤ ¤ ¤ I k intervals in N, minpI j 1 q maxpI j q 1, if j k x ¦ j X ¦ , j ¤ k, with } °k j1 }x ¦ j }u ¦ minpI j q } U ¦ ¤ 1 C 5 k j1 P ¦ rr j ,r j 1 q ¥ Q ¦ px ¦ j q § § 1 ¤ r 1 ¤ ¤ ¤ r k r k 1 and x ¦ j X ¦ , j ¤ k, with } °k j1 }x ¦ j }u ¦ r j } U ¦ ¤ 1 C .
Then S B Y B Z ¦ and S is norming the elements of Z, and thus its weak ¦ -closed convex hull is B Z ¦ by a Hahn-Banach argument.

Secondly, let m ¤ n and z ¦ spanpe ¦ j ; m ¤ j ¤ nq then it can be written as

(2) z ¦ l i1 k i j1 P ¦
rr pi,jq ,r pi,j 1q q ¥ Q ¦ px ¦ pi,jq q, where l N, m ¤ r pi,1q ¤ ¤ ¤ r pi,k i 1q ¤ n 1 and x ¦ pi,jq X ¦ , j ¤ k i , i ¤ l. And }z ¦ } is at most the minimum of °l i1 } °ki j1 }x ¦ pi,jq }u ¦ r pi,jq } U ¦ over all representations of z ¦ as in (2).

Proof. Let z °iN a i e i Z and z ¦ °k j1 P ¦ rr j ,r j 1 q ¥ Q ¦ px ¦ j q S. Then

z ¦ pzq £ k j1 P ¦ rr j ,r j 1 q ¥ Q ¦ px ¦ j q £ n i1 a i e i k j1 Q ¦ px ¦ j q ¤ ¥ r j 1 ¡1 i r j a i e i k j1 r j 1 ¡1 i r j a i x ¦ j px i q ¤ k j1 }x ¦ j } ¤ r j 1 ¡1 i r j a i x i £ k j1 }x ¦ j }u ¦ r j ¤ ¥ k j1 r j 1 ¡1 i r j a i x i u r j ¤ k j1 } r j 1 ¡1 i r j a i x i }u r j U ¤ }z} Z ,
which proves that S B Z ¦. Since, for i N, e ¦ i can be written as e ¦ i P ¦ i ¥ Q ¦ px ¦ i q, where x ¦ i S X ¦ with x ¦ i px i q 1, it follows that, for m ¤ n, every z ¦ spanpe ¦ i ; m ¤ j ¤ nq can be represented as in [START_REF] Baudier | Barycentric gluing and geometry of stable metrics[END_REF] and in particular, it follows that S B Y . For z °iN a i e i Z c 00 , it follows, for an appropriate choice of k and

r 1 ¤ ¤ ¤ r k 1 in N that }z} k j1 r j 1 ¡1 i r j a i x i X u r j U sup 6 8 7 k j1 b j r j 1 ¡1 i r j a i x i X ; k j1 b j u ¦ r j U ¦ ¤ 1 D F E sup 6 8 7 k j1 b j x ¦ j ¡ r j 1 ¡1 i r j a i x i © ; x ¦ j S X ¦, j t1, ¤ ¤ ¤ , ku, and k j1 b j u ¦ r j U ¦ ¤ 1 D F E sup 6 8 7 k j1 x ¦ j ¡ r j 1 ¡1 i r j a i x i © ; k j1 }x ¦ j } X ¦u ¦ r j U ¦ ¤ 1 D F E sup 5 ¡ k j1 P ¦ rr j ,r j 1 ¡1q ¥ Q ¦ px ¦ j q © pzq; k j1 }x ¦ j } X ¦u ¦ r j U ¦ ¤ 1 C ¤ sup z ¦ S z ¦ pzq,
which implies that S is norming the elements of Z, and thus its weak ¦ -closed convex hull is B Z ¦.

For z ¦ °l i1 °ki j1 P ¦ rr pi,jq ,r pi,j 1q q ¥ Q ¦ px ¦ pi,jq q Y and z °iN a i e i Z, it follows that

z ¦ pzq £ k i1 k i j1 P ¦ rr pi,jq ,r pi,j 1q q ¥ Q ¦ px ¦ pi,jq q £ iN a i e i k i1 k i j1 x ¦ pi,jq ¤ ¥ r pi,j 1q ¡1 şr pi,jq a s x s ¤ k i1 k i j1 }x ¦ pi,jq } X ¦ r pi,j 1q ¡1 şr pi,jq a s x s X k i1 £ k i j1 }x ¦ pi,jq } X ¦u ¦ r pi,jq ¤ ¥ k i j1 r pi,j 1q ¡1 şr pi,jq a s x s X u r pi,jq ¤ k i1 k i j1 }x ¦ pi,jq } X ¦u ¦ r pi,jq U ¦ }z} Z , which implies that }z ¦ } Z ¦ ¤ k i1 k i j1 }x ¦ pi,jq } X ¦u ¦ r pi,jq U ¦ ,
and thus our claim on the upper estimate of }z ¦ } Z ¦.

Our next goal is to formulate a condition on the space U under which Z ¦ is equal to Q ¦ pX ¦ q Y . We first make some general observations. Assume that z ¦ Z ¦ with distpz ¦ , Y Q ¦ pX ¦ qq ¡ 0, for some z ¦ B Z ¦ B Y ¦¦. By Lemma 5.5, we can write z ¦ as rr pn,l,jq ,r pn,l,j 1q q ¥ Q ¦ px ¦ pn,l,jq q S.

z ¦ w ¦ ¡ lim nÑ V z ¦ n ,
By possibly adding 0, we assume that 1 r pn,l,1q ¤ ¤ ¤ r pn,l,k pn,lq q r pn,l,k pn,lq 1q V.

For n N, and l ¤ s n , we define R pn,lq tr pn,l,jq , 1 ¤ j ¤ k pn,lq u and, for p q, we put A pp,q,nq tl ¤ s n ; pp, qqR pn,lq ∅u tl ¤ s n ; h1 ¤ j ¤ k pn,lq r pn,l,jq ¤ p q ¤ r pn,l,j 1q u.

We define a ¦ n pp, qq ļA pp,q,nq λ pn,lq y ¦ pn,lq .

By passing to subsequences and using diagonalization, we can assume that, for all p q εpp, qq lim nÑ V ļA pp,q,nq λ pn,lq exists.

Note that, for fixed p N, εpp, qq is decreasing (not necessarily strictly) to some εppq ¥ 0, if q increases to V, and εppq is increasing to some ε 0 , if p increases to V.

We first consider the following case:

Case 1. ε 0 ¡ 0, which means that there is a p N and an ε ¡ 0 so that, for all p q, lim nÑ V ļA pp,q,nq λ pn,lq ¡ ε.

First, fix p N so that εppq ¡ 0. After passing to a subsequence, we can assume that there is an increasing sequence pq n q nN in N so that ļA pp,qn,nq

λ pn,lq ¡ εppq ¢ 1 ¡ 1 n , for all n N.
After passing to a subsequence, we can assume that v ¦ p w ¦ ¡ lim nÑV a ¦ pp,qnq exists. Let n N. For l A pp,qn,nq , choose j l t1, ¤ ¤ ¤ , k pn,lq u, so that rp, q n s rr pn,l,j l q , r pn,l,j l 1q s and put

x ¦ n ļA pp,qn,nq λ pn,lq x ¦ pn,l,j l q .

Then, }x ¦ n } ¤ °lA pp,qn,nq λ pn,lq and a ¦ n pp, q n qpe i q x ¦ n px i q, for all i rp, q n s. Again, by passing to a subsequence, we can assume that x ¦ w ¦ ¡ lim nÑV x ¦ n exists and (3)

}x ¦ } ¤ lim inf nÑV }x ¦ n } ¤ lim inf nÑV ļA
pp,qn,nq λ pn,lq εppq.

It follows, for all

i ¥ p, that v ¦ p pe i q lim nÑ V a ¦ n pp, q n qpe i q lim nÑ V x ¦
n px i q x ¦ px i q.

Thus, we can write v ¦ p Q ¦ px ¦ q ¡ P ¦ r1,pq ¥ Q ¦ px ¦ q P ¦ r1,pq pv ¦ p q P ¦ rp,Vs ¥ Q ¦ px ¦ q P ¦ r1,pq pv ¦ p q,

which implies that v ¦ p Q ¦ pX ¦ q Y . It follows that distpz ¦ ¡ v ¦ p , Q ¦ pX ¦ q Y q distpz ¦ , Q ¦ pX ¦ q Y q
¡ 0. Now, we can iterate the above argument applying it to large enough p N and find p 0 N and, for every p N, p ¥ p 0 , a vector v ¦ p Q ¦ pX ¦ q Y , an increasing sequence pq n q nN in N and infinite sets it follows that pv ¦ p q pN is a (norm) Cauchy sequence in Q ¦ pX ¦ qY which converges to some v ¦ . Since the w ¦ -topology is metrizable, it follows that we can assume (after possibly passing to a subsequence of pq n q nN ), that, for some diagonal sequence N of the N p , p N, and some increasing sequence pp n q nN , we have ε 0 lim nÑV,nN ļA ppn,qn,nq

N N p 0 N p 0 1 ¤ ¤ ¤ so that distpz ¦ ¡ v ¦ p , Q ¦ pX ¦ q Y q distpz ¦ , Q ¦ pX ¦ q Y q and v ¦ p w ¦ ¡
λ pn,lq , v ¦ w ¦ ¡ lim nÑV,nN ļA ppn,qn,nq λ pn,lq y ¦ pn,lq Y Q ¦ pX ¦ q, distpz ¦ ¡ v ¦ , Q ¦ pX ¦ q Y q distpz ¦ , Q ¦ pX ¦ q Y q ¡ 0. Now consider z¦ z ¦ ¡ v ¦ w ¦ ¡ lim nÑV,nN z¦ n ,
where, for n N , we put z¦ n ļt1,¤¤¤

,snuzA ppn,qn,nq λ pn,lq y ¦ pn,lq and define, for n N , and p q B pp,q,nq 2 l ¤ s n , l A ppn,qn,nq and h1 ¤ j ¤ k pn,lq r pn,l,jq ¤ p q ¤ r pn,l,j 1q Replacing now z ¦ by z¦ , and replacing the sequence pz ¦ n q nN by pz ¦ n q nN , we can from now on assume that we are in Case 2.

Case 2. For all ε ¡ 0 and all p N, there is a q so that lim sup nÑV ļA pp,q,nq λ pn,lq ε (App, q, nq defined as above). Let η 1 2 distpz ¦ , Q ¦ pX ¦ q Y q and let pη m q mN p0, ηq, with °mN η m η. Inductively, we can choose 1 q 1 q 2 ¤ ¤ ¤ so that lim sup nÑV ļA pqm,q m 1 ,nq λ pn,lq η m for all m N.

Put, for n N: 

z¦ n ļt1,¤¤¤ ,snuz m A pqm,q m 1 ,
¦ , Y Q ¦ pX ¦ qq distpz ¦ , Y Q ¦ pX ¦ qq ¡ η ¡ 0.
We replace from now on z ¦ by z¦ and z ¦ n by z¦ n , and therefore assume that, for each n N and each l ¤ s n , there is a t pn,lq ¤ k pn,lq and a subsequence pj l q t pn,lq l1 of t1, ¤ ¤ ¤ , k pn,lq u, j 1 1, so that 1 r pn,l,1q r pn,l,2q ¤ ¤ ¤ r pn,l,j 2 ¡1q q 2 ¤ r pn,l,j 2 q ¤ ¤ ¤ r pn,l,j 3 ¡1q q 3 ¤ r pn,l,j 3 q ¤ ¤ ¤ q t pn,lq ¡1 ¤ r pn,l,j t pn,lq ¡1 q ¤ ¤ ¤ r pn,l,jt pn,lq ¡1q q t pn,lq ¤ r pn,l,t pn,lq q ¤ ¤ ¤ q t pn,lq 1 .

After possibly adding some zero vectors to the y ¦ pn,lq , we can assume that, for all n N and all l ¤ k pn,lq , t pn,lq t n max l¤sn t pn,lq . We can also assume that t n is even, say t n 2w n , and that w n ¥ n. We write now, for n N, z ¦ n f ¦ rr pn,l,jq ,r pn,l,j 1q q ¥ Q ¦ px ¦ pn,l,jq q and g ¦ n sn ļ1 λ pn,lq

wn i1 j 2i 1 ¡1 j j 2i P ¦
rr pn,l,jq ,r pn,l,j 1q q ¥ Q ¦ px ¦ pn,l,jq q.

(here, we put j 2i 1 ¡ 1 k pn,lq if i w n ).

After passing to a subsequence, we can assume that f ¦ w ¦ ¡ lim nÑV f ¦ n and g ¦ w ¦ ¡ lim nÑV g ¦ n exist. It also follows from the above representations of the f ¦ n and g ¦ n that }f ¦ }, }g ¦ } ¤ 1. Since z ¦ f ¦ g ¦ , we can, without loss of generality, assume that distpf ¦ , Y Q ¦ pX ¦ qq ¡ 0. So, again, after replacing z ¦ by f ¦ , and defining r j q 2j¡1 , for j N, r pr j q jN and possibly adding again zero vectors, we can assume that, for each n N, the vectors z ¦ rr pn,l,iq ,r pn,l,i 1q q ¥ Q ¦ px ¦ pn,l,iq q with r j r pn,l, mpn,l,jq q r pn,l, mpn,l,jq 1q ¤ ¤ ¤ r pn,l, mpn,l,j 1q ¡1q r pn,l, mpn,l,j 1q q r j 1 , for j ¤ w n , l ¤ k pn,lq . We define the following norm ~¤ ~r on spanpe ¦ j ; j Nq. For y ¦ spanpe ¦ j ; j Nq, we let ~y¦ ~r to be the infinimum of all expressions

l i1 k i j1 }x ¦ pi,jq } X ¦u ¦ r pi,jq U ¦ ,
where the infinimum is taken over all representations of y ¦ as y ¦ l i1 k i j1 P ¦ rr pi,jq ,r pi,j 1q q ¥ Q ¦ px ¦ pi,jq q where l N, r pi,1q ¤ ¤ ¤ r pi,k i q r pi,k i 1q , and additionally, for some m n in N, r m r pi,1q , r n r pi,k i 1q and tr m , r m 1 , ¤ ¤ ¤ , r n u tr pi,1q , ¤ ¤ ¤ , r pi,k i q , r pi,k i 1q u and x ¦ pi,jq X ¦ , j ¤ k i , i ¤ l. It follows that the norm ~¤ ~r dominates } ¤ } Z ¦ and that ~z¦ n ~r ¤ 1 for all n N. For n, j N, we put v ¦ pn,jq °sn l1 λ pn,lq v ¦ pn,l,jq if j ¤ w n and v ¦ pn,jq 0 if j ¡ w n . v ¦ pn,jq is an element of the finite-dimensional space F j spanpe ¦ i ; r j ¤ i r j 1 q. We can therefore, after passing to a subsequence, assume that

v ¦ j ~¤ ~r ¡ lim nÑ V v ¦ pn,jq F j exists. It follows that # # # m j1 v ¦ j # # # r ¤ 1 for every m N, and z ¦ w ¦ ¡ lim mÑV m j1 v ¦ j .
Since °m j1 v ¦ j is not norm converging for m Õ V (otherwise, z ¦ would be an element of Y ), it follows that we can find δ ¡ 0 (which can actually be chosen as close to 1 as we wish) and an increasing sequence pm j q V j1 , so that

# # # m j 1 ¡1 im j v ¦ i # # # r ¥ δ. We put w ¦ j °mj 1 ¡1 im j v ¦
i , and we deduce that there is an increasing sequence pk n q nN in N and a sequence ps n q nN in N so that, for each n N, rr pn,l,iq ,r pn,l,i 1q q ¥ Q ¦ px ¦ pn,l,iq q with (6) ~w¦ j ~r ¥ δ, where, for 1 ¤ l ¤ s n 1 m pn,l,1q m pn,l,2q ¤ ¤ ¤ m pn,l,n 1q r 1 r pn,l,1q rpn,l,2q ¤ ¤ ¤ rpn,l,m pn,l,2q q r k 2 rpn,l,m pn,l,2q 1q ¤ ¤ ¤ rpn,l,m pn,l,3q q r k 3 ¤ ¤ ¤ rpn,l,m pn,l,nq q r kn rpn,l,m pn,l,nq 1q ¤ ¤ ¤ rpn,l,m pn,l,n 1q q r k n 1

x ¦ pn,l,iq X ¦ , for l ¤ s n and 1 ¤ i ¤ m pn,l,n 1q ¡ 1, (although w ¦ j does not depend on n, its specific representation to compute the norm of the sums of w ¦ j could depend on n). Note that ( 5), [START_REF] Braga | Asymptotic structure and coarse Lipschitz geometry of Banach spaces[END_REF], and the definition of the norm ~.~r imply that, for n N and j N This leads to the following result which provides a sufficient condition on U and its dual to imply that Z ¦ is the complemented sum of Q ¦ pX ¦ q and Y . Lemma 5.6. Assume the basis pu ¦ j q jN of U ¦ satisfies the following condition:

For every increasing sequence M pM n q nN in N, there is a boundedly complete and 1-unconditional basic sequence pf n q nN pf pM,nq q nN (in some Banach space F ) which satisfies the following property:

Every normalized block sequence pa ¦ n q nN in U ¦ with Supp U ¦pa ¦ n q rM n , M n 1 q, for all n N dominates pf n q nN . Then Z ¦ Y Q ¦ pX ¦ q. Proof. Assume that our claim is wrong and that there is a z ¦ B Z ¦ which is not in Q ¦ pX ¦ q Y . By our previous arguments, we can assume that

z ¦ w ¦ ¡ lim nÑ V n j1 w ¦ j ,
where the sequence pw ¦ j q jN satisfies the above equations ( 4), ( 5) and ( 6), for some δ ¡ 0, some sequences pk n q nN , ps n q nN , and families pm pn,l,jq ; n N, l ¤ s n , j ¤ n 1q, and pr pn,l,jq ; n N, l ¤ s n , j ¤ m pn,l,n 1q q. For j N, we put M j r k j rpn,l,m pn,l,jq q and let pf j q jN be a normalized 1-unconditional basic sequence which is C-dominated by every normalized block sequence pa ¦ j q jN in U ¦

with Supppa ¦ j q rM j , M j 1 q, for each j N. We deduce, for every n N, that 1 ¥ # # # For l t1, ¤ ¤ ¤ , s n u, and j ¤ n, put a ¦ pl,jq ãpl,jq {}ã pl,jq } with ãpl,jq °mpn,l,j 1q ¡1 im pn,l,jq }x ¦ pn,l,iq } X ¦u ¦ rpn,l,iq (By [START_REF]On asymptotic uniform smoothness and nonlinear geometry of Banach spaces[END_REF] and unconditionality of pf j q jN ) Since pf j q jN is boundedly complete, it follows that °n j1 f j F Õ V, if n Õ V, and thus we obtain a contradiction.

Let us note that T ¦ satisfies the hypothesis of Lemma 5.6. Indeed, by reflexivity and Lemma II.3 of [START_REF] Casazza | Tsirel son's space[END_REF], we can chose pf n q nN pu ¦ M n 1 ¡1 q nN , where pu ¦ j q jN denotes the usual basis of T ¦ .

Proposition 5.7. Assume that U has the "Tsirelson property", i.e, for some C ¡ 0, a normalized block of n elements after n is C equivalent to the n 1 -unit vector basis. Then Y is asymptotically c 0 .

Proof. Since pe ¦ j q jN is a shrinking basis of Y , it is enough to show that, for every n N, every normalized block sequence py j q n j1 in Y , with n ¤ min Supp Y py 1 q is 2C-equivalent to the n V -unit vector basis. So let ε ¡ 0, pa j q n j1 r¡1, Let r j min Supppy j q, for 1 ¤ j ¤ n, r n 1 V and put z j °irr j ,r j 1q b i e i . By Lemma 5.2, we can find, for each j t1, ¤ ¤ ¤ , nu, intervals r j ¤ I pj,1q I pj,2q ¤ ¤ ¤ I pj,k j q r j 1 so that }z j } ¤ 2 a j z j py j q ε ¤ n j1 }z j } Z ε ¤ 2C ε, which proves our claim, since ε ¡ 0 was arbitrary.

Corollary 5.8. If U is T , the dual of the original Tsirelson space, as described in [START_REF] Figiel | A uniformly convex Banach space which contains no lp[END_REF], with its usual 1-unconditional basis, then Z X is asymptotic-c 0 and Z ¦¦ X is the complemented sum of Z X and Q ¦ pX ¦ q.

Define W kerpQq tz Z; Qpzq 0u. Since Q ¦ pX ¦ q W u , we deduce this final corollary by noticing that, in this case, Y is isomorphic to Z ¦ {W u , which is itself isomorphic to W ¦ . Corollary 5.9. Assume that Z ¦ is the complemented sum of Y and Q ¦ pX ¦ q. Then Y is isomorphic to W ¦ .

1 p

 1 for all n, m rMs k . Consequently, X has property HFC p,d .

Remark 3 . 3 .

 33 Of course, the condition that all spaces have property HIC p,d with the same constant is essential because
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 43 [START_REF] Halbeisen | On asymptotic models in Banach spaces[END_REF], Proposition 4.1 and Remark 4.7.5
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with z ¦ n sn ļ1 λ

 ļ1 pn,lq y ¦ pn,lq where λ pn,lq ¥ 0 for l ¤ s n and n N, and sn ļ1 λ pn,lq 1 for l N

@.

  It follows that, for any p N, we have lim nÑV,nN ļB pp,qn,nq λ pn,lq ¤ lim nÑV,nN ļB ppn,qn,nq λ pn,lq 0.

m

  pn,l,j 1q ¡1 im pn,l,jq }x ¦ pn,l,iq } X ¦u ¦ rpn,l,iq U ¦ ¤ 1 and, for every j N, the vector w ¦ j has the representation (

m

  pn,l,j 1q ¡1 im pn,l,jq }x ¦ pn,l,iq } X ¦u ¦ rpn,l,iq U ¦ ¥ ~w¦ j ~r ¥ δ.

m 1 C

 1 pn,l,j 1q ¡1 im pn,l,jq }x ¦ pn,l,iq } X ¦u ¦ rpn,l,iq U ¦ (By (4)) ¥ sn ļ1 n j1 m pn,l,j 1q ¡1 im pn,l,jq }x ¦ pn,l,iq } X ¦u ¦ rpn,l,iq U ¦ f j F £

m

  pn,l,j 1q ¡1 im pn,l,jq }x ¦ pn,l,iq } X ¦u ¦

  1s and choose z °iN b i e i S Z c 00 ,

.

  b i x i X u min I pj,lq U By stringing the intervals to one sequence, it follows from our condition on U that
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But this implies that

Thus, the operator

is well defined and }Q} ¤ 1. Let x B X and ε ¡ 0. Inductively, we can choose, for each j N, σ j ¨1, n j N, a j p0, 2 ¡j εq, if j ¥ 2, a 1 }x} X , so that n 1 n 2 ¤ ¤ ¤ , and

σ j a j e n j p1 εqB Z and Qpzq lim lÑV l j1 σ j a j x n j x.

From now on, we assume that pu j q jN is boundedly complete. By Proposition 5.3 piiq, Z is then the dual of the space Y spanpe ¦ j ; j Nq Z ¦ , where pe ¦ j q jN are the coordinate functionals of pe j q jN (cf Proposition 1.b.4 of [START_REF] Lindenstrauss | Classical Banach spaces[END_REF]). Therefore, pe ¦ j q jN is a shrinking basis of Y . For z °iN a i e i , we call the set Supppzq Supp Z pzq ti N; a i $ 0u the support of z. For z ¦ Z ¦ , we call Supppz ¦ q Supp Z ¦pz ¦ q ti N; z ¦ pe i $ 0u the support of z ¦ .

From Proposition 5.3 piiiq, it follows that Q ¦ : X ¦ Ñ Z ¦ is an isometric embedding. Lemma 5.4. Considering Q ¦ pX ¦ q as a subspace of Z ¦ , it follows that Q ¦ pX ¦ q Y t0u and Q ¦ pX ¦ q Y is norm closed. Proof. Let x ¦ X ¦ and z ¦ Y Z ¦ . Since the pe n q nN , acting on elements of Y , are the coordinate functionals of pe ¦ n q nN , it follows that lim nÑV z ¦ pe n q 0. Thus, by the density condition on the x n , n N, it follows that }Q ¦ px ¦ q z ¦ } ¥ lim sup nÑV |x ¦ px n q z ¦ pe n q| lim sup nÑV |x ¦ px n q| }x ¦ } }Q ¦ px ¦ q}.