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Flexoelectricity is an electromechanical phenomenon produced in a dielectric material, with or without cen-
trosymmetric microstructure, undergoing a non-uniform strain. It is characterized by the fourth-order flexo-
electric tensor which links the electric polarization vector with the gradient of the second-order strain tensor.
Our previous work [Le Quang and He, Roy. Soc. London, Ser. A 467, 2369-2386, 2011] solved the fundamen-
tal theoretical problem of determining the number and types of all rotational symmetries that the flexoelectric
tensor can exhibit. In the present one, compact explicit matrix representations of the flexoelectric tensor are
provided so as to facilitate the use of it with any possible rotational symmetry. The number and types of all
reflection symmetries that the flexoelectric tensor can have are also determined. To identify the rotational
symmetry and reflection symmetry of a given flexoelectric tensor, a simple and efficient graphic method based
on the concept of pole figures is presented and illustrated.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Flexoelectricity is a coupled electromechanical phe-
nomenon appearing a dielectric material subjected to a
non-uniform strain. In contrast to piezoelectricity, it
can be generated even in a dielectric material whose
microstructure is centrosymmetric. Indeed, in the case
of a dielectric material undergoing a uniform strain,
the electric polarization is produced if and only if the
microstructure of this material is non-centrosymmetric.
However, when a dielectric material with (or without)
a centrosymmetric microstructure is subjected to a non-
uniform strain whose gradient is non null, a relative dis-
placement of the centers of the positive and negative
charges is resulted in and gives rise to an electric po-
larization.

The flexoelectric effects can be produced in a multitude
of situations, for example, in bending crystal plates1,
nanobeams and nanowires2–4 or when stretching thin
films5 on liquid crystals6 and on elastomers7. The flex-
oelectric constants describing the flexoelectric effects of
some dielectric materials were observed and measured
in a direct or indirect way in a few experimental works
such as those made by Ma and Cross8–10 and Zubko
et al.11 for various perovskites which exhibit unusually
high flexoelectricity, the ones of Kalinin and Meunier12

and Naumov et al.13 for low-dimensional structures
like nanographitic systems and two-dimensional boron-
nitride sheets or by Zhang et al.14,15, Chu and Salem16

and Zhou et al.17 for dielectric materials and polymers

a)Corresponding author
Tel: 33 (0) 160 957 797; Fax: 33 (0) 160 957 799;
Email: hung.le-quang@univ-eiffel.fr

such as TiO2 ceramics and the polyvinylidene fluoride
(PVDF). In parallel with these experimental works, the-
oretical studies were also conducted to demonstrate the
size-dependent flexoelectric properties and surface effect
of dielectric materials/structures in nanoscale, for exam-
ple, by Sahin and Dost18, Tagantsev19,20, Yurkov and
Tagantsev21, He et al.22, Qi et al.23 and Bai et al.24. Nu-
merical approaches were elaborated according either to
the first-principles method, for example, by Maranganti
and Sharma25, Hong et al.26,27 or to the other theoreti-
cal calculation methods such as finite element method by
Deng et al.28 and Yvonnet et al.29, phase-field method by
Li et al.30 and Wang et al.31 to estimate the flexoelectric
properties of some dielectric materials/structures. For
more references about flexoelectricity and for discussions
on potential important applications of flexoelectricity,
the reader is referred to Tagantsev et al.20, Sharma et
al.32, Zubko et al.33, Wang et al.34, Narvaez et al.35, Ab-
dollahi et al.36 and Shu et al.37,38.

When a dielectric material is subjected to small de-
formations and when the piezoelectric and flexoelectric
phenomena produced in it are linear, the electric polar-
ization vector p is related to the infinitesimal strain ten-
sor ε and the gradient of the latter, namely E = ∇ε, by
a linear relation:

pi = Dijkεjk + FijklEjkl. (1)

Above, Dijk are the matrix components of the third-
order piezoelectric tensor D and Fijkl stand for the ma-
trix components of the fourth-order flexoelectric tensor
F. Due to the symmetry εij = εji of ε, the strain gradi-
ent E possesses the property Eijk = Ejik and the matrix
components of F have the following index permutation
symmetry:

Fijkl = Fikjl. (2)
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Note that, if the microstructure of the dielectric mate-
rial in question exhibits centrosymmetry, the requirement
that the third-order tensor D be invariant under the cen-
tral inversion transformation implies that D is null, so
that the constitutive law (1) reduces to

pi = FijklEjkl. (3)

In other words, when the dielectric material has a cen-
trosymmetric microstructure, the piezoelectric effect dis-
appears and the electric polarization vector p depends
only on the strain gradient E.

In the linear constitutive law (1), the classical third-
order piezoelectric tensor D has been completely inves-
tigated and understood; however, the fourth-order flexo-
electric tensor F, which is much more complicated than
the usual fourth-order elastic tensor, is far from being
thoroughly studied and understood. In our previous
one39, the number and types of all possible rotational
symmetries for the flexoelectric tensor F were specified
and the number of independent material parameters of
F belonging to each possible symmetry class was deter-
mined. Later, Shu et al.40 gave the matrix representa-
tions of F for various symmetries.

The present work can be regarded as a continuation of
our previous one39. Precisely, novel 3 × 18 matrix rep-
resentations of the flexoelectric tensor F are provided for
all 12 rotational symmetries determined in our previous
study39. The matrix representations of F given in the
present work are well-structured and much more com-
pact than those of Shu et al.40. This should facilitate
the practical use of F in various anisotropic cases. In ad-
dition, the flexoelectric tensor F is further investigated
in the present work by determining all of its reflection
symmetries. It is proved that the 12 rotational symme-
try classes of the flexoelectric tensor F are reduced to 8
reflection symmetries and these 8 reflection symmetries
are identical to those of the fourth-order elastic tensor.
Finally, a simple but efficient graphic method based on
the notion of pole figures is suggested and illustrated for
identifying the reflection symmetry and rotational sym-
metry that a given flexoelectric tensor may have.

The paper is structured as follows. In Section II, some
notations and definitions used throughout the paper are
presented. In Section III, the main results obtained in
our previous work39 on the symmetry groups and sym-
metry classes of the flexoelectric tensor are recalled for
the paper to be self-contained. In Section IV, compact
explicit matrix representations of the flexoelectric tensor
for all possible rotational symmetries are provided. Sec-
tion V is dedicated to finding out the reflection symmetry
classes of the flexoelectric tensor. In Section VI, a sim-
ple and efficient graphic method is elaborated to identify
not only the reflection symmetry but also the rotational
symmetry of a given flexoelectric tensor. In Section VII,

some concluding remarks are given.
II. NOTATIONS AND DEFINITIONS

Let V be a three-dimensional (3D) inner-product space
over the reals R and Lin be the space of all linear
transformations (second-order tensors) on V. The in-
ner product of two vectors a and b of V is symbolized
by a · b. The 3D orthogonal group O(3) is defined as
O(3) = {Q ∈ Lin | Qa · Qb = a · b,∀a,b ∈ V}. The
3D rotation group SO(3) is given by SO(3) = {Q ∈
O(3) | detQ = 1}. In what follows, Q(a, θ) stands for
the rotation about a ∈ V through an angle θ ∈ [0, 2π).

In particular, Q̃, Q̂ and Q̌ denote, respectively, the ro-
tations Q (e1 + e2 + e3, 2π/3), Q

(
2e2 + ϕ2e3, 2π/3

)
and

Q (ϕe2 + e3, π) with the golden ratio ϕ = (1 +
√

5)/2.
For later use, it is convenient to introduce the following

standard group notations:
(i) the identity group, denoted by I, is formed by the

second-order identity tensor I;
(ii) the cyclic group Zr (r ≥ 2) contains r elements

generated by Q(e3, 2π/r). In particular, when r → ∞,
Zr becomes the group SO(2) consisting of all rotations
Q about e3 such that Qe3 = e3;

(iii) the dihedral group Dr (r ≥ 2) comprises 2r ele-
ments generated by Q(e3, 2π/r) and Q(e1, π). The cor-
responding form of Dr when r → ∞ is O(2) consisting
of all orthogonal tensors Q such that Qe3 = ±e3;

(iv) the spatial groups T , O and I with T represent-
ing the tetrahedral group of 12 elements generated by D2

and Q̃, O being the octahedral group of 24 elements gen-
erated by D4 and Q̃, and I symbolizing the dodecahedral
group of 60 elements generated by D5, Q̂ and Q̌. Recall
that the spatial groups T , O and I map a tetrahedron, a
cube and a dodecahedron onto themselves, respectively.

Next, we define the space of flexoelectricity tensors as
follows:

F = {F = Fijklei ⊗ ej ⊗ ek ⊗ el | Fijkl = Fikjl}.

The symmetry group of a flexoelectricity tensor F ∈ F ,
is denoted by G(F) and characterized as

G(F) = {Q ∈ SO(3) | Q ∗ F = F} (4)

where Q∗F = QirQjmQknQlsFrmnsei⊗ej⊗ek⊗el. The
definition of G(F) implies that G(F) is a closed subgroup
of SO(3) and G(Q ∗ F) = QG(F)QT for any orthogonal
tensor Q ∈O(3). On the other hand, F is said to exhibit
G-symmetry when G ⊆ G(F) and Q ∗ F = F for all Q ∈
G. Consequently, two materials characterized by their
respective flexoelectric tensors F1 ∈ F and F2 ∈ F are
said to have the same type of symmetry if and only if
the symmetry groups of F1 and F2 are conjugate to each
other, i.e.

F1 ∼ F2 ⇔ G(F1) ∼ G(F2)⇔ ∃Q ∈ SO(3) such that G(F1) = QG(F2)QT . (5)
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TABLE I. List of notations

Notations Descriptions
p, pi Electric polarization vector and its components
F, Fijkl Fourth-order (type-II) flexoelectric tensor and its components

F̃, F̃iα Matrix representation of the flexoelectric tensor and its components
FI , F Iijkl Fourth-order type-I flexoelectric tensor and its components
D, Dijk Third-order piezoelectric tensor and its components
ε, εij Infinitesimal strain tensor and its components
E, Eijk Strain gradient tensor and its components

Ẽ, Ẽα Vector representation of the strain-gradient tensor and its components
H, H, H Second-, third-, fourth-order harmonic tensors
F Space of flexoelectricity tensors
Q Generic orthogonal tensor
Q(a, θ) Rotation about a through an angle θ
G(F) Rotation symmetry group of F
{Gi} Rotation symmetry class
Zn (n ≥ 2) Cyclic group of order n, generated by the n-fold rotation Q (e3, θ = 2π/n)
Dn (n ≥ 2) Dihedral group of order 2n generated by Zn and Q(e1, π)
SO(3) Tridimensional rotational group
O(3) Tridimensional orthogonal group

T Tetrahedral group of 12 elements generated by Q(e3, π), Q(e1, π), Q(v, 2π/3) with v =
√
3

3
(e1 + e2 + e3)

O Octahedral group of 24 elements generated by Q(e3, π/2), Q(e1, π), Q(v, 2π/3) with v =
√
3

3
(e1 + e2 + e3)

I Dodecahedron group of 60 elements generated by Q(e3, 2π/5), Q(e1, π), Q(w, 2π/3)

with w = 1√
4+φ2

(2e2 + φe3) and φ =
√
5+1
2

SO(2) Subgroup of rotations Q(e3, θ) with θ ∈ [0; 2π)
O(2) Subgroup generated by SO(2) and Q(e1, π)
P(n) Reflection transformation through the plane of normal n
PF Set of reflection symmetry elements of F
{PF} Reflection symmetry class of F
Ph Set containing one reflection P(e3)
Pvk (k ≥ 1) Set containing k elements Pvk = {P(r3( 2pπ

k
)}1≤p≤k with r3(θ) = sin θe1 + cos θe2

Phvk (k ≥ 1) Set containing k elements of Pvk completed by P(e3)
PO Cubic set consisting of 9 reflections with respect to the nine planes of which the normals of 6 pass through

the center of each edge of a regular cube and the normals of 3 through the center of each face of the latter
PI Icosahedral set of 15 reflections with respect to the fifteen planes whose normals pass through the center

of each edge of a regular icosahedron
PO(3) Set composed of all reflections P(n)

With the above notion of conjugacy, a family of non-
empty subsets, (Fi)1≤i≤N , of F acts as a partition of the
flexoelectric tensor space F in the sense that no two ele-
ments of (Fi)1≤i≤N overlap and the union of (Fi)1≤i≤N
is equal to F . Thus, each element Fi of this partition

characterizes a symmetry class for flexoelectric tensors.
On the other hand, for a given flexoelectric tensor Fi ∈
Fi with the symmetry group G(Fi), the collection of all
the conjugates of G(Fi) in the set of subgroups of SO(3),
i.e.

{Gi} = {G(Fi)} = {G̃ ⊆ SO(3) | G̃ = QG(Fi)QT ,Q ∈SO(3)}, (6)

constitutes an intrinsic characterization of the type of
rotational symmetries exhibited by the elements of Fi.
Clearly, the definition of Fi through {Gi} is more con-
venient. Finally, we denote by {G} the collection of all
the conjugates of G ∈ SO(3) in the set of subgroups of
SO(3) and define F(G) as the set

F(G) = {F ∈ F | G(F) ∈ {G}}. (7)

For the convenience of the reader, the notations used in
this paper is summarized in Table I.
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III. ROTATIONAL SYMMETRY CLASSES OF THE
FLEXOELECTRIC TENSOR

For the paper to be self-contained and for later use, the
present section recalls the main results of our previous
study39 concerning the determination of the number and
types of all the rotational symmetries for the flexoelectric

tensor. First, using a general method due to Spencer41,
any fourth-order flexoelectric tensor F ∈ F can be first
decomposed into totally symmetric tensors and then split
into harmonic tensors. The following explicit harmonic
decomposition is established for the flexoelectric tensor
F:

Fijkl = [H]ijkl

+
1

3
(3εijm[H(1)]klm + εjkm[H(1)]ilm + εikm[H(1)]jlm) +

1

4
(εilm[H(2)]jkm + εjlm[H(2)]ikm + εklm[H(2)]ijm)

+
1

7
(δij [H

(1)]kl + δik[H(1)]jl + δil[H
(1)]jk + δjk[H(1)]il + δjl[H

(1)]ik + δkl[H
(1)]ij)

+
1

6
(3εijmεkln + εikmεjln + εjkmεiln)[H(2)]mn

+
2

9
(2δjk[H(3)]il − δik[H(3)]jl + δjl[H

(3)]ik − 2δil[H
(3)]jk + δlk[H(3)]ji − δij [H(3)]kl)

+
1

6
(δjl[H

(4)]ik + δkl[H
(4)]ij + δil[H

(4)]jk − δij [H(4)]kl − δik[H(4)]jl − δjk[H(4)]il)

+
3

10
(δijεklm + δjkεilm + δikεjlm)[a(1)]m

+
1

12
(2εkli[a

(2)]j − εklj [a(2)]i) +
1

12
(2εkimδjl + 2εlimδjk − εljmδik − εkjmδil − εlkmδij)[a(2)]m

+
1

15
(11εikmδjl − 4εjkmδil − 5εjlmδik + 10εilmδjk − 5εklmδij + 3εijmδkl)[a

(3)]m

+
1

15
(3εijk[a(3)]l + 3εijl[a

(3)]k + εikl[a
(3)]j + εjkl[a

(3)]i)

+
α1

15
(δijδkl + δikδjl + δilδjk) +

α2

3
(δjlδik + δijδkl − 2δilδjk). (8)

It can be seen from (8) that the harmonic decomposition
of F contains : two scalars α1 and α2; three vectors a(1),
a(2) and a(3); four second-order harmonic tensors H(1),
H(2), H(3) and H(4); two third-order harmonic tensors

H(1) and H(2) and a fourth-order harmonic tensor H.
The components of these harmonic tensors are explicitly
expressed in terms of Fijkl as

α1 =
1

3
(Fpqqp + 2Fppqq), α2 =

1

3
εpqkεmnkF(mp)nq, (9)

[a(1)]k =
1

9
εpqk(Fpmmq + 2Fmmpq), [a(2)]k = εmnpFmnkp, [a(3)]k =

1

6
(εpqkFpqmm + εpqnFpqkn), (10)

[H(1)]km = F(ppkm) −
1

3
α1δkm, [H(2)]km =

1

2
(εpqkεlnm + εpqmεlnk)F(lp)nq − α2δkm,

[H(3)]km =
1

2
εlnq(εpqmF(lp)nk + εpqkF(lp)nm), [H(4)]km =

1

2
εlnq(εpqmF(lpk)n + εpqkF(lpm)n), (11)
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[H(1)]kmn = [S(1)](kmn) −
1

5
(δmn[a(3)]k + δkm[a(3)]n + δkn[a(3)]m),

[H(2)]kmn = [S(2)](kmn) −
1

5
(δmn[a(1)]k + δkm[a(1)]n + δkn[a(1)]m), (12)

[H]klmn = F(klmn) −
1

7
(δkl[H

(1)]mn + δkm[H(1)]ln + δkn[H(1)]lm + δlm[H(1)]kn + δln[H(1)]km + δmn[H(1)]kl)

− α1

15
(δklδmn + δkmδln + δknδlm). (13)

Above, δij and εijk are the Kronecker delta and permuta-
tion symbol, respectively; either •i1i2...in or [•]i1i2...in is
the component of an nth-order tensor •; •(i1i2...ir)ir+1...in
denotes the average of r! components obtained by per-
muting the indices i1, i2, . . . , ir in all possible ways; the

third-order tensors S1 and S2 are defined as

[S(1)]kmn = εpqnF(pk)qm, [S(2)]kmn = εpqnF(pkm)q.
(14)

Next, by using the Cartan method, the second-, third-
and fourth-order harmonic tensors H(i), H(i) and H in
Eq. (8) can be rewritten as follows:

H(i) = α
(2)
0i U0 + α

(2)
1i U1 + β

(2)
1i T1 + α

(2)
2i U2 + β

(2)
2i T2 with i = 1, 2, 3, 4,

H(i) = α
(3)
0i U0 + α

(3)
1i U1 + β

(3)
1i T1 + α

(3)
2i U2 + β

(3)
2i T2 + α

(3)
3i U3 + β

(3)
3i T3 with i = 1, 2,

H = α
(4)
0 U0 + α

(4)
1 U1 + β

(4)
1 T1 + α

(4)
2 U2 + β

(4)
2 T2 + α

(4)
3 U3 + β

(4)
3 T3 + α

(4)
4 U4 + β

(4)
4 T4, (15)

where Ui, Ti, Ui, Ti, Ui and Ti are the tensors involved
in the Cartan decomposition, whose explicit expressions
can be found in Forte and Vianello42,43 or Le Quang and
He39.

With the help of the harmonic and Cartan decomposi-
tions presented above, it can be shown that the number
of all possible rotational symmetry classes for all flex-
oelectric tensors is 12. These 12 symmetry classes are
characterized by the conjugates of the following 12 sub-

groups of SO(3):

I, {Zr}, {Dr}, {O}, {T }, {SO(2)}, {O(2)}, SO(3) (16)

where 2 ≤ r ≤ 4.

Alternatively, the 12 sets F(I), F(Zr), F(Dr) with
2 ≤ r ≤ 4, F(O), F(T ), F(SO(2)), F(O(2)), F(SO(3))
form a partition of the flexoelectric tensor space F :

F = F(I) ∪4r=2 F(Zr) ∪4r=2 F(Dr) ∪ F(O) ∪ F(T ) ∪ F(SO(2)) ∪ F(O(2)) ∪ F(SO(3)). (17)

For more detail about the derivation of these results, the
reader can refer to our previous work39.

IV. COMPACT EXPLICIT MATRIX
REPRESENTATIONS OF THE FLEXOELECTRIC
TENSOR

In order to obtain explicit matrix expressions of the
fourth-order flexoelectric tensor for all the 12 rotational

symmetry classes, we first adopt the following reduced
suffix notations for the gradient E of the infinitesimal
strain tensor ε and for the fourth-order flexoelectric ten-
sor F ∈ F :

Ẽγ =
[√

2(1− δjk) + δjk

]
Ejkl, (18)

F̃iγ =
[√

2(1− δjk) + δjk

]
Fijkl, (19)
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TABLE II. Suffix notation correspondences between (j, k, l)
and γ.

(j, k, l) or (m,n, s) γ or ζ
(1,1,1) 1
(2,2,1) 2

(1,2,2) or (2,1,2) 3
(3,3,1) 4

(1,3,3) or (3,1,3) 5
(2,2,2) 6
(1,1,2) 7

(1,2,1) or (2,1,1) 8
(3,3,2) 9

(2,3,3) or (3,2,3) 10
(3,3,3) 11
(1,1,3) 12

(1,3,1) or (3,1,1) 13
(2,2,3) 14

(2,3,2) or (3,2,2) 15
(1,2,3) or (2,1,3) 16
(1,3,2) or (3,1,2) 17
(2,3,1) or (3,2,1) 18

where γ defined in Table II and the summation conven-
tion does not apply on j and k.

According to the previously reduced notation rules, the
constitutive relation (3) between the electric polarization
and the gradient of the infinitesimal strain tensor can now
be written in the following matrix form:

p = F̃ · Ẽ (20)

where the vectors p and Ẽ are specified by

p = [p1 p2 p3]T ,

Ẽ = [Ẽ1 Ẽ2 . . . Ẽ18]T , (21)

and F̃ is the 3× 18 flexoelectric matrix whose block ma-
trix representation has the general expression

F̃ =

 Dx Cxy Cxz Jx
Cyx Dy Cyz Jy
Czx Czy Dz Jz

 .
Here, the diagonal block matrices Dx, Dy and Dz of D-
type and extra-diagonal block matrices Cxy, Cxz, Cyx,
Cyz Czx and Czy of C-type have the same size 1 × 5
while the extra-diagonal block matrices Jx, Jy and Jz of
J-type are of the size 1× 3.

With the previously reduced notation rules, the action
of an orthogonal tensor Q ∈ O(3) on a flexoelectric tensor
F can be expressed in the following simple and explicit
matrix form:

QirQjmQknQlsFrmns = QirF̃rζQ̃ζγ (22)

where Q̃ζγ , standing for the components of the 18 × 18

matrix Q̃, are given by

Q̃ζγ =
[√

2(1− δjk) + δjk

]
×
[√

2(1− δmn) + δmn

]
QjmQknQls. (23)

Above, γ and ζ are defined in Table II and the summation
convention does not hold for j, k,m and n.

By using the procedure elaborated in Le Quang and
He39 to construct a flexoelectric tensor F exhibiting a
required symmetry and by exploiting the harmonic and
Cartan decompositions in Eqs. (8) and (15) together

with the Cartan decomposition parameters α
(•)
• and β

(•)
•

provided in Table III, we can exactly calculate the num-
ber of independent components contained in a flexoelec-
tric tensor F ∈ F belonging to a given symmetry class.
The corresponding results are shown in Table IV.

Next, by adopting the above reduced suffix notations
for the fourth-order flexoelectric tensor F, we obtain the
explicit matrix forms of the elementary block matrices of
(D,C, J)-type as well as the explicit matrix form of F̃ for
each symmetry class. These explicit block matrix forms
of F̃ are provided as follows:
Identity class: I

F̃I =

 D
(5)
x C

(5)
xy C

(5)
xz J

(3)
x

C
(5)
yx D

(5)
y C

(5)
yz J

(3)
y

C
(5)
zx C

(5)
zy D

(5)
z J

(3)
z

 , (24)

Cyclic classes: Zr

F̃Z2
=

 D
(5)
x C

(5)
xy 0 0

C
(5)
yx D

(5)
y 0 0

0 0 D
(5)
z J

(3)
z

 , (25)

F̃Z3
=

 D(4) C
(4)
xy C

(2)
xz C

(2)
yz · P1

−C(4)
xy D(4) C

(2)
yz −C(2)

xz · P1

C
(1)
zx C

(1)
zy D

(3)
z J

(1)
z

 , (26)

F̃Z4 =

 D(5) C
(5)
xy 0 0

−C(5)
xy D(5) 0 0

0 0 D
(3)
z J

(1)
z

 , (27)

F̃SO(2) =

 D(4) C
(4)
xy 0 0

−C(4)
xy D(4) 0 0

0 0 D
(3)
z J

(1)
z

 , (28)

Dihedral classes: Dr

F̃D2 =

 D
(5)
x 0 0 0

0 D
(5)
y 0 0

0 0 D
(5)
z 0

 , (29)

F̃D3
=

 D(4) 0 0 C
(2)
yz · P1

0 D(4) C
(2)
yz 0

0 C
(1)
zy D

(3)
z 0

 , (30)

F̃D4
=

 D(5) 0 0 0
0 D(5) 0 0

0 0 D
(3)
z 0

 , (31)

F̃O(2) =

 D(4) 0 0 0
0 D(4) 0 0

0 0 D
(3)
z 0

 , (32)
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TABLE III. Zero components · and non-zero independent material parameters • contained in a flexoelectric tensor belonging
to a given symmetry class

Parameters I {Z2} {D2} {Z3} {D3} {Z4} {D4} {T }a {O}b {O(2)} {SO(2)} {SO(3)}
α1 • • • • • • • • • • • •
α2 • • • • • • • • • • • •
a
(i)
1 • · · · · · · · · · · ·
a
(i)
2 • · · · · · · · · · · ·
a
(i)
3 • · • • · • · · · · • ·
α
(2)
0i • • • • • • • · · • • ·
α
(2)
1i • · · · · · · · · · · ·
β
(2)
1i • · · · · · · · · · · ·
α
(2)
2i • • • · · · · · · · · ·
β
(2)
2i • • · · · · · · · · · ·
α
(3)
0i • • · • · • · · · · • ·
α
(3)
1i • · · · · · · · · · · ·
β
(3)
1i • · · · · · · · · · · ·
α
(3)
2i • • · · · · · · · · · ·
β
(3)
2i • • • · · · · • · · · ·
α
(3)
3i • · · • • · · · · · · ·
β
(3)
3i • · · • · · · · · · · ·
α
(4)
0 • • • • • • • • • • • ·
α
(4)
1 • · · · · · · · · · · ·
β
(4)
1 • · · · · · · · · · · ·
α
(4)
2 • • • · · · · · · · · ·
β
(4)
2 • • · · · · · · · · · ·
α
(4)
3 • · · • · · · · · · · ·
β
(4)
3 • · · • • · · · · · · ·
α
(4)
4 • • • · · • • • • · · ·
β
(4)
4 • • · · · • · · · · · ·

a α
(4)
4 = 5α

(4)
0

b α
(4)
4 = 5α

(4)
0

TABLE IV. Number of independent material parameters contained in a flexoelectric tensor belonging to a given symmetry
class

Symmetry class I {Z2} {D2} {Z3} {D3} {Z4} {D4} {T } {O} {O(2)} {SO(2)} {SO(3)}
Number of independent components 54 28 15 18 10 14 8 5 3 7 12 2

Spatial classes:

F̃T =

 D(5) 0 0 0
0 D(5) · P2 0 0
0 0 D(5) 0

 , (33)

F̃O =

 D(3) 0 0 0
0 D(3) 0 0
0 0 D(3) 0

 , (34)

F̃SO(3) =

 D(2) 0 0 0
0 D(2) 0 0
0 0 D(2) 0

 . (35)

In Eqs. (25)-(35), the superscript of each elementary
block matrix of D, C or J-type denotes the number of
independent material parameters; P1 and P2 are two cor-

rection matrices. By introducing two material parame-
ters defined as

η =
1√
2

(F̃11 − F̃12), θ =
1√
2

(F̃22 − F̃21), (36)

the elementary block matrices of (D,C, J)-types as well
as of the correction matrices P1 and P2 are explicitly
expressed as follows:
D-type elements:

D(5) =
[
d1 d2 d3 d4 d5

]
, (37)

D(4) =
[
d1 d2 η d4 d5

]
, (38)

D(3) =
[
d1 d2 d3 d2 d3

]
, (39)

D(2) =
[
d1 d2 η d2 η

]
, (40)
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C-type elements:

C(5) =
[
c1 c2 c3 c4 c5

]
, (41)

C(4) =
[
c1 c2 θ c4 c5

]
, (42)

C(2) =
[

0 c2 c3 −c2 −c3
]
, (43)

C(1) =
[
c1 −c1 −c1 0 0

]
, (44)

J-type elements:

J (3) =
[
j1 j2 j3

]
, J (1) =

[
0 j2 −j2

]
, (45)

Correction elements:

P1 =


0 0 0
1 0 0
0 1 1
0 0 0
0 0 1

 , P2 =


1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

 . (46)

Finally, the compact explicit matrix expressions for the
12 symmetry classes of flexoelectric tensors are shown in
Table V.

V. REFLECTION SYMMETRY CLASSES OF THE
FLEXOELECTRIC TENSOR

First, let us introduce P(n) ∈ O(3)\SO(3), the re-
flection through the plane P(n) = {x ∈R3 | x · n = 0}
perpendicular to a unit vector n, by

P(n) = I− 2n⊗ n. (47)

It can be seen from (47) that P is an even function of n
in the sense that P(−n) = P(n). Thus, two unit normal
vectors are associated to each reflection.

Next, we denote by PF the set of reflection symmetry
elements of F ∈ F . The reflection symmetry class of
F ∈ F , symbolized by {PF}, is defined as the collection
of all the conjugates of PF, namely

{PF} = {P′F = RPFR
T | R ∈ SO(3)}. (48)

Note that {PF} represents the reflection symmetry class
and not the symmetry group of F ∈ F .

We introduce the unit vector

ri(θ) = sin θej + cos θek (49)

with {i, j, k} being a cycle permutation of {1, 2, 3}, and
the following sets of reflection transformations:

• Ph being the set which contains only the reflection
P(e3). The label h means “horizontal”.

• Pvk being the set defined by Pvk =

{P(r3( 2pπ
k )}1≤p≤k and consisting of k elements.

The label v means “vertical”.

• Phvk (k ≥ 1) being the set defined by the k elements
of Pvk completed by P(e3): this set comprises k+1
elements.

• PO designating the cubic set of nine reflections with
respect to the nine planes of which the normals of
6 pass through the center of each edge of a regular
cube and the normals of 3 through the center of
each face of the latter.

• PI denoting the icosahedral set consisting of fifteen
reflections with respect to the fifteen planes whose
normals pass through the center of each edge of a
regular icosahedron;

• PO(3) representing the set composed of all reflec-

tions P(n) with n ∈ S2 where S2 is the unit sphere
defined by S2 = {x ∈ R3 | ‖x‖ = 1}.

We can show that the space F of flexoelectric tensors is
divided into the 8 reflection symmetry classes which are
characterized by the following 8 sets of reflection trans-
formations:

∅, {Ph}, {Phv2}, {Pv3}, {Phv4}, {Phv∞}, {PO}, {PO(3)}.
(50)

The characteristics of each reflection symmetry class, and
especially its link with the rotational ones, are detailed in
Table VI. It is important and interesting to remark that:
(i) unlike the results as obtained by Chadwick et al.44

for the space of fourth-order elasticity tensors, accord-
ing to which the classifications by rotational symmetry
groups and by reflection symmetry planes give the same
response, the number of rotational symmetry classes for
the space of fourth-order flexoelectric tensors is 12 while
the one of reflection symmetry classes is only 8; (ii) these
8 reflection symmetry classes for the space of flexoelectric
tensors are exactly identical to the ones for the space of
elasticity tensors, even through a fourth-order flexoelec-
tric tensor is algebraically more complex than a fourth-
order elasticity tensor.

VI. A GRAPHIC METHOD FOR IDENTIFYING
REFLECTION AND ROTATIONAL SYMMETRIES

The important question now arises as to how to iden-
tify the reflection symmetry and rotational symmetry
and of a given flexoelectric tensor from the knowledge of
its matrix relative to a basis. The present section aims
at elaborating a simple but efficient graphic method to
answer this question.

Francois et al.45 initiated a graphic approach to identi-
fying the reflection symmetry planes that a given fourth-
order elastic tensor has. This approach is based on the
notion of “pole figures”. Owing to the fact that the re-
flection symmetry classes of the fourth-order elastic ten-
sor are identical to its rotational symmetry classes, the
identification of the formers leads also the one of the lat-
ters. However, when the fourth-order elastic tensor is
concerned, the situation is much more complicated, since
its reflection symmetry classes are 8 while its reflection
symmetry classes are 12. Thus, in this section we extend
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TABLE V. Number of independent material parameters and compact explicit matrix expression for each of the 12 symmetry
classes of flexoelectric tensorsclasses of flexoelectric tensors
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TABLE VI. Symmetry plane stratification of the space F of fourth-order flexoelectric tensors

System Reflection Number of reflection Rotational
symmetry class symmetry planes symmetry class

Triclinic ∅. 0 I, {Z3}
Monoclinic {Ph} 1 {Z2}, {Z4}, {SO(2)}
Orthotropic {Phv2} 3 {D2}, {T }

Trigonal {Pv3} 3 {D3}
Tetragonal {Phv4} 5 {D4}

Trans. isotropic {Phv∞} ∞+ 1 {O(2)}
Cubic {PO} 9 {O}

Isotropic {PO(3)} ∞3 {SO(3)}
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the graphic approach of Francois et al.45 to being able
to identify not only the reflection symmetry of a given
flexoelectric tensor but also its rotational symmetry.

Let n ∈ S2 be the unit vector relative to the reflection
transformation P(n) = I − 2n ⊗ n through the plane
P(n). With no loss of generality, n is expressed by

n = sin θ cosφe1 + sin θ sinφe2 + cos θe3 (51)

where (φ, θ) ∈ [0, 2π[×[0, π[ denote, respectively, the lon-
gitude and colatitude angles relative to a system of spher-
ical coordinates. Then, by considering, for a given flexo-
electric tensor F ∈ F , the function:

L(θ, φ) = ‖P(θ, φ) ∗ F− F‖ = ‖P(θ, φ) · F̃ · P̃(θ, φ)− F̃‖
(52)

in which ‖ · ‖ is the Frobenius norm inherited from the
scalar product on F , P(θ, φ) is a reflection operator
parametrized with the longitude and colatitude angles
and P̃(θ, φ) is a 18 × 18 matrix whose components are
obtained by replacing Q with P in (23). Finally, the
vanishing loci of L(θ, φ) give the unit normals to the sym-
metry planes that F has.

Concretely, the function (52) is numerically evaluated
in a discrete way. Precisely, we introduce

Mij = L(θi, φj) with θi = i
2π

N
and φj = j

2π

N

where the number N depends on the degree of numer-
ical accuracy required. In our computations, N is set
to be equal to 160. To evaluate the function L(θ, φ),
we first use the matrix representations of flexoelectric
tensors presented in Section IV. In addition, the numeri-
cal values of the components of a flexoelectric tensor are
determined as random integers picked-up in the range
{−10, 10}. We show, in Figure 1, the loci of the zeros of
L(θ, φ) plotted on the θ−φ plane for all rotation symme-
try classes and all reflection symmetry classes. It can be
seen from Figure 1 that the number of symmetry planes
for a given rotation symmetry class or reflection sym-
metry class coincides exactly with the one provided in
Table VI. This also constitutes a validity verification of
our theoretical results.

In addition, it can be observed from Figure 1 that,
even through the flexoelectric tensors belonging to both
rotational symmetry classes {Z3} and I do not exhibit
any reflection symmetry plane, we can differentiate them
since the loci of the function L(θ, φ) for the flexoelectric
tensors belonging to {Z3} are periodic in the φ-direction
with period 2π/3 while the ones for the flexoelectric ten-
sors appertaining to I are not periodic. Similarly, even if
the flexoelectric tensors belonging to the rotational sym-
metry classes {D2} and T possess the same number of re-
flection symmetry planes, the loci of the function L(θ, φ)
for flexoelectric tensors belonging to {T } are periodic in
the φ-direction with period π/2 but the counterpart of
the flexoelectric tensors appertaining to {D2} are peri-
odic in φ-direction with period π.

The foregoing graphical approach is now applied to
a given flexoelectric tensor F ∈ F with a given angle
ψ ∈ [0; 2π[ for identifying all invariant directions defined
by n = sin θ cosφe1 + sin θ sinφe2 + cos θe3 in the sense
that F is unchangeable under the rotational transforma-
tion action Q(n, ψ). As before, by using the well-known
Rodrigues expression of Q(n, ψ), i.e.

Q(n, ψ) = cos(ψ)I− sin(ψ)ε ·n+ [1− cos(ψ)]n⊗n (53)

in which ε denotes the Levi-Civita third-order tensor, and
by introducing the following function

J(θ, φ, ψ) = ‖Q(θ, φ, ψ) ∗ F− F‖
= ‖Q(θ, φ, ψ) · F̃ · Q̃(θ, φ, ψ)− F̃‖ (54)

where Q(θ, φ, ψ) is a rotation operator parametrized with

the longitude, colatitude and rotation angles; Q̃(θ, φ, ψ)
is a 18 × 18 matrix whose components are defined by
(23), the vanishing loci of J(θ, φ, ψ) allow us to obtain
the invariant directions n that F possesses.

We illustrate, in Figure 2, the vanishing loci of the
function J(θ, φ, 2π/3) plotted on the θ − φ plane for a
flexoelectric tensor F belonging to the rotational symme-
try class {Z3} whose matrix representation is provided in
Section IV. It can be seen from Figure 2 that there exists
only one invariant axis spanned by n = e3 or n = −e3.
This is in agreement with the fact that the rotational
symmetry class {Z3} contains Q(e3, 2π/3).

By combining the knowledge of the matrix representa-
tions of all rotational symmetry classes with pole figures,
we can finally identify the rotational symmetry class to
which a given flexoelectric tensor belongs. The corre-
sponding identification procedure is summarized in Fig-
ure 3.

VII. CONCLUDING REMARKS

Flexoelectricity is an electromechanical phenomenon
which has a great number of potential applications
including energy harvesting, sensors, actuators and
biotechnology. A full understanding of the fourth-order
flexoelectric tensor is essential not only to the fundamen-
tal theory of flexoelectricity but also to all possible ap-
plications of flexoelectricity. In the present work, which
may be viewed as a continuation of our previous one39,
compact explicit matrix representations of the flexoelec-
tric tensor have been provided for all the 12 possible ro-
tational symmetry classes, so as to facilitate its use in
various situations; the reflection symmetry classes of the
flexoelectric tensor have been also determined and shown
to be identical to those of the fourth-order elastic ten-
sor; a simple and efficient graphic method for identifying
the rotational symmetry and reflection symmetry of a
given flexoelectric tensor has been elaborated and illus-
trated. These results contribute to developing the con-
tinuum theory of flexoelectricity and rendering the use of
this theory easier in various anisotropic cases.
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FIG. 1. Loci of the zeros of the function L(θ, φ) plotted on the θ − φ plane for all rotation symmetry classes and all reflection
symmetry classes.
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FIG. 2. Loci of the function J(θ, φ, 2π/3) plotted on the θ−φ
plane for a flexoelectric tensor F belonging to the rotational
symmetry class {Z3}

As a simple example of application of our results,
we consider Pervoskites with general chemical formula
ABO3, which are known as ferroelectric materials ex-
hibiting higher permittivity ferroelectrics like flexoelec-
tricity, piezoelectricity and pyroelectricity than the ones
of usual dielectric materials, and which are now widely
used for the production of electronic components and mi-
crotransducers. Since the oxygen octahedral structure of
Pervoskites, the symmetry behavior of the corresponding
flexoelectricity tensor is cubic and characterized by the
rotation symmetry class {O} or by the reflection symme-
try class {PO}. The matrix of the flexoelectricity tensor

relative to an appropriate basis, denoted by F̃ABO3
, is

given by

F̃ABO3 =

 F1111 F2112 F2121 F2112 F2121 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 F1111 F2112 F2121 F2112 F2121 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 F1111 F2112 F2121 F2112 F2121 0 0 0

 .

The matrix F̃ABO3
has 3 independent components, i.e.,

the longitudinal flexoelectric coefficient F1111, transverse
flexoelectric coefficient F2112 and shear flexoelectric coef-
ficient F2121. The values of F1111, F2112 and F2121 deter-
mined experimentally and computationally can be found
in Wang et al.34 and Shu et al.37 for some Pervoskites.

In parallel with the formulation used in the present
work in which the electric polarization vector p is linearly
related to the strain gradient E through the fourth-order
flexoelectric tensor F, there is another formulation of the
electric polarization vector p linearly connected to the
second-order derivative of the displacement vector, U =
∇∇u, as follows (see e.g. Hong et al.27):

pi = F IijklUjkl or pi = F Iijkluj,kl. (55)

Here F Iijkl, the tensor component of the type-I flexoelec-

tric tensor FI , possesses the index permutation symmetry
F Iijkl = F Iijlk. Compared with F, called also type-II flex-
oelectric tensor, more suitable not only for formulating
the thermodynamic theory of ferroelectric materials but
also for making comparisons with experimental measure-
ments, the definition of the type-I flexoelectric tensor FI
is complicated for mathematical derivations of the micro-
scopic theory of flexoelectricity. It can be shown that the
connections between FI and F are given by

F Iijkl =
1

2
(Fijkl + Fijlk), Fijkl = F Iijkl + F Iikjl − F Iiljk.

(56)
In addition, due to the fact that both flexoelectric tensors
FI and F exhibit mathematically the same permutation
symmetry with respect to two indexes, the flexoelectric
tensors FI and F will possess the same rotation and re-
flection symmetry classifications. Moreover, by adopting

TABLE VII. Suffix notation correspondences between (j, k, l)
and γ.

(j, k, l) γ
(1,1,1) 1
(1,2,2) 2

(2,1,2) or (2,,2,1) 3
(1,3,3) 4

(3,1,3) or (3,3,1) 5
(2,2,2) 6
(2,1,1) 7

(1,1,2) or (1,2,1) 8
(2,3,3) 9

(3,2,3) or (3,3,2) 10
(3,3,3) 11
(3,1,1) 12

(1,1,3) or (1,3,1) 13
(3,2,2) 14

(2,2,3) or (2,3,2) 15
(3,1,2) or (3,2,1) 16
(2,1,3) or (2,3,1) 17
(1,2,3) or (1,3,2) 18

the reduced suffix notations described in Table VII the
fourth-order flexoelectric tenor FI with component F Iijkl
can be expressed in a 3 × 18 matrix form F̃I with com-
ponents F̃ Iiγ . Consequently, the number of independent
material parameters and compact explicit matrix expres-
sion for each of the 12 symmetry classes of flexoelectric
tensors FI are exactly identical to the ones of F.

Finally, it is interesting and important to remark that
the methods and results presented in the present work
are directly applicable to the fourth-order flexomagnetic
tensor46.
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FIG. 3. Procedure for identifying the rotational symmetry class to which a flexoelectric tensor belongs with respect to a given
basis
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