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ABSTRACT

Most Neptune-mass planets in close-in orbits (orbital periods less than a few days) present nonzero eccentricity, typically around 0.15.
This is somehow unexpected, as these planets undergo strong tidal dissipation that should circularize their orbits in a timescale shorter
than the age of the system. In this paper we discuss some mechanisms that can oppose to bodily tides, namely, thermal atmospheric
tides, evaporation of the atmosphere, and excitation from a distant companion. In the first two cases, the eccentricity can increase
consistently, while in the last one, the eccentricity can only be excited for a limited amount of time (that may nevertheless exceed
the age of the system). We show the limitations of these different mechanisms and how some of them could, depending on specific
properties of the observed planetary systems, account for their presently observed eccentricities.

Key words. celestial mechanics – planet-star interactions – planets and satellites: dynamical evolution and stability –
planets and satellites: atmospheres

1. Introduction

Planets with orbital periods Porb . 10 day undergo strong tidal
interactions with the parent star (e.g., MacDonald 1964). Bod-
ily (or gravitational) tides are raised on the planet by the star
because of the gravitational gradient across the planet. Since
planets are not perfectly rigid, there is a distortion that gives rise
to a tidal bulge. The dissipation of the mechanical energy inside
the planet introduces a delay, and, hence, a phase shift between
the initial perturbation and the maximal tidal deformation. As a
consequence, the star exerts a torque on the tidal bulge which
modifies the spin and the orbit of the planet.

The ultimate stage for tidal evolution is the synchronization
of the rotation and orbital periods, alignment of the planet spin
axis with the normal to the orbit (zero planet obliquity), and
the circularization of the orbit (e.g., Hut 1980; Adams & Bloch
2015). Although the spin of close-in planets quickly evolves
into an equilibrium configuration, the orbital evolution is much
slower (e.g., Correia & Laskar 2010). The circularization char-
acteristic timescale is given by Eq. (20) using a constant-Q
tidal model

τcirc =
Porb

21π

( m
M

) ( a
R

)5 Q
k2
, (1)

where Porb is the orbital period, m is the mass of the planet, M
is the mass of the star, a is the semi-major axis of the orbit, R
is the average radius of the planet, and k2 is the second Love
number for potential. Q is the tidal quality-factor, which mea-
sures the ratio of energy dissipated during one period of tidal
stress over the peak energy stored in the system during the same
period.

For Uranus and Neptune, Q/k2 ∼ 105 (Tittemore & Wisdom
1990; Banfield & Murray 1992). Assuming that Neptune-mass

planets have similar rheologies, we obtain (Eq. (1))

τcirc[Gyr] ∼
1

200

(
M
M�

)2/3 (
Porb

day

)13/3

. (2)

According to this expression, all Neptune-mass planets with
Porb < 5 day should circularize in less than 5 Gyr. How-
ever, observations of Neptune-mass planets such as GJ 436 b
put this scenario into question. In a short-period orbit with
Porb = 2.644 day (Lanotte et al. 2014) around a cool star with
M = 0.445 M� (Mann et al. 2015), GJ 436 b has a circularization
timescale of τcirc ∼ 0.2 Gyr (Eq. (2)). This is much shorter than
the stellar age of about 4–8 Gyr (Bourrier et al. 2018a), yet the
planetary orbit has an eccentricity e = 0.162 ± 0.004 (Lanotte
et al. 2014), which is clearly different from zero. Several similar
cases have been reported in the literature, such as HD 125612 c
(Lo Curto et al. 2010), HAT-P-26 b (Hartman et al. 2011), HAT-
P-11 b (Yee et al. 2018), and GJ 3470 b (Kosiarek et al. 2019). In
fact, among all Neptune-size planets with Porb < 5 day (Fig. 1),
only HD 219828 b (Melo et al. 2007) and HD 47186 b (Bouchy
et al. 2009) exhibit a small measured eccentricity (e . 0.05),
which is still compatible with a nonzero value.

Figure 1 shows measurements of eccentricity for planets with
Porb < 100 day, divided into three groups: Earth-size (R⊕ <
R < 3 R⊕); Neptune-size (3 R⊕ < R < 9 R⊕); and Jupiter-size
(9 R⊕ < R < 25 R⊕). The distribution of Neptune-size planets
with Porb < 5 day contrasts with that given for close-in Jupiter-
or Earth-size planets. First, there are no warm Neptune planets
with Porb < 3 day, which corresponds to the well-known “Nep-
tunian desert” (Lecavelier des Etangs 2007; Davis & Wheatley
2009; Szabó & Kiss 2011; Mazeh et al. 2016). We note that the
lack of eccentricity values for Earth-size planets is due to the
difficulty in measuring them at a high precision level. Second,
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3 REarth < Rp < 9 REarth  

9 REarth < Rp < 25 REarth  

1 REarth < Rp < 3 REarth  

5 days

Fig. 1. Distribution of eccentricities as a function of orbital period. Only
eccentricities measured with uncertainties smaller than 0.1 are shown.
Planets are arbitrarily separated in three categories by radius: Jupiter-
size (red, top panel), Neptune-size (green, middle panel), and Earth-size
(blue, bottom panel). In the middle panel, black squares highlight three
iconic planets representative of the warm Neptunes population.

as noted above, all warm Neptune planets with Porb < 5 day have
eccentricities that are consistent with nonzero values despite
having damping timescales shorter than 5 Gyr. Finally, there is
no apparent correlation between orbital period and eccentricity;
on average, planets with shorter orbital periods are expected to
have smaller eccentricities because they have shorter damping
timescales (see Eq. (2)).

We observe that a fraction of Jupiter- and Earth-size plan-
ets with Porb < 5 day are also observed in eccentric orbits.
Nevertheless, the eccentricity values increase with the orbital
period, as expected, due to a more efficient tidal damping at
smaller distances (Eq. (1)). In the case of Jupiter-size planets, the
eccentricity leftovers are likely related to their formation process
through Lidov–Kozai cycles (e.g., Fabrycky & Tremaine 2007)
or planet–planet scattering (e.g., Beaugé & Nesvorný 2012).
Indeed, for Porb > 5 day, we observe that the eccentricity of
Jupiter-size planets can reach extremely high values, while for
the lower mass population it remains smaller than about 0.2.

One possibility to explain the observed eccentricities for
warm Neptunes is that we are overestimating the tidal dissipation
for these planets. If we adopt Q/k2 > 107, the present nonzero
eccentricities can be simply explained as residual values excited
during the formation process. However, such high values for Q

are not observed for similar mass planets in our Solar System
(e.g., Tittemore & Wisdom 1990; Banfield & Murray 1992). In
addition, this explanation also fails to explain the “Neptunian
desert” and the absence of correlation between orbital period
and eccentricity for Porb < 5 day (Sect. 2). Another possibil-
ity to explain the anomalous eccentricity distribution is that
additional mechanisms pump the eccentricity or delay the cir-
cularization of the orbit. In this paper, we discuss the most
likely mechanisms that act in opposition to gravitational tides,
namely, thermal atmospheric tides (Sect. 3), evaporation of the
atmosphere (Sect. 4), and excitation from a distant companion
(Sect. 5). We discuss their limits of applicability in Sect. 6.

2. High initial eccentricity

The damping timescale strongly depends on the orbital period,
τcirc ∝ P13/3

orb (Eq. (2)). Then, if the observed eccentric planet was
initially on a wider and more eccentric orbit, the initial damping
timescale is much longer than the τcirc obtained with the current
orbital period. In this section, we estimate this effect.

We assume that tides in the planet circularize its orbit
following the law (see Eq. (20))

ė = −
e
τcirc

, (3)

with

τcirc(a) = τ0

(
a
a0

)α
. (4)

Adopting the constant-Q model1 (Eq. (1)), we have α = 13/2.
We also assume that the tidal effect in the planet does not affect
its orbital angular momentum significantly. We thus have

a
(
1 − e2

)
= a0

(
1 − e2

0

)
(5)

and

ė = −
e
τ0

1 − e2

1 − e2
0

α , (6)

where a0, e0, and τ0 are the current (at the time of observation)
values of the parameters. In the case of small eccentricity, this
equation can be approximated by

ė = −
e
τ0
, (7)

which is equivalent to assuming a constant circularization
timescale τcirc. The evolution of the eccentricity in this regime
is the classical exponential decay,

e = e0e−t/τ0 . (8)
On the contrary, if the eccentricity is close to one, Eq. (6) can be
approximated by

ẋ =
2
τ0

(
x
x0

)α
, (9)

with x = 1 − e2, and we find
t
τ0

=
x0

2(α − 1)

(
1 −

( x0

x

)α−1
)
. (10)

Therefore, asymptotically (for e → 1), we have t → −∞. This
means that we can make the tidal circularization process arbi-
trarily long by taking an initial eccentricity very close to one,
together with a very large initial semi-major axis.
1 For close-in planets, the orbital mean motion does not change much
during the circularization process (see Fig. 2), so the constant-Q model
is a good approximation. Alternative tidal models provide different α,
which does not modify the final conclusions of this section.
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Fig. 2. Evolution (past and future) of the eccentricity (top) and semi-
major axis (bottom) of a planet undergoing tidal dissipation with a
power law ė ∝ −ea−13/2 (i.e. α = 13/2). The timescale τ0 is the currently
observed instantaneous damping timescale (in this example at a = a0,
e = e0 = 0.1). However, the shape of the curve is always the same and
does not depend on e0.

In the general case, the evolution of the eccentricity follows

t
τ0

= −
(
1 − e2

0

)α ∫ e(t)

e0

de
e
(
1 − e2)α , (11)

which can be rewritten as

t
τ0

=
1 − e2

0

2(α − 1)

 fα(e0) −
1 − e2

0

1 − e2

α−1

fα(e)

 , (12)

where

fα(e) = 2F1

(
1, 1 − α, 2 − α, 1 − e2

)
(13)

is the hypergeometric function. The above expression allows us
to estimate the time needed to reach the currently observed orbit
(a0, e0) as a function of the initial eccentricity e. Figure 2 shows
an example of the evolution of the semi-major axis and eccentric-
ity as a function of time. We assume the observed eccentricity to
be e0 = 0.1, typical of the values measured for warm Neptunes
(Fig. 1). As expected, for small eccentricities (e . 0.4), we
observe an exponential decay of the eccentricity (Eq. (8)), while

at high eccentricities (e & 0.6) the evolution is much slower
(Eq. (10)). This counter-intuitive behaviour is due to the fact that
when the eccentricity was large, the semi-major axis was also
large and, thus, tidal effects were much less efficient.

In Fig. 2, we see that if the initial eccentricity was around 0.8,
and the initial semi-major axis around 2.8 times the observed
one, the planet might have spent around 40 τ0 to reach the
observed configuration (where τ0 is the current instantaneous
damping timescale). For a warm Neptune like GJ 436 b, this cor-
responds to about 8 Gyr. Therefore, any mechanism (scattering,
Kozai, tidal pumping, etc.) that could have excited the eccen-
tricity to a high level during the formation of the planet (or at a
lower level more recently) might be responsible for the currently
remaining eccentricity.

A possible limitation of this scenario is that we have to
observe the system at a specific time in its evolution. Indeed, the
eccentricity spends a long time above 0.6, and a long time close
to 0, but a short time in-between (see Fig. 2). The probability
to observe the system at this specific time (i.e. during the phase
of exponential decay) is about τ0/T , where T is the star age.
Therefore, if the observed population of warm Neptunes with
eccentricity of ∼0.1 formed this way (Fig. 1), one would expect
to also observe sizeable populations of Neptune-mass planets in
the high eccentricity phase (on wider orbits) and in the circular
phase (on closer-in orbits).

3. Thermal atmospheric tides

The differential absorption of the stellar heat by the atmosphere
of a planet gives rise to local variations of temperature and, con-
sequently, to pressure gradients. The mass of the atmosphere
is then permanently redistributed, adjusting for an equilibrium
position. More precisely, the particles of the atmosphere move
from the high temperature zone (at the substellar point) to the
low temperature areas. Observations on Earth show that the
pressure redistribution is essentially a superposition of two pres-
sure waves (Chapman & Lindzen 1970; Auclair-Desrotour et al.
2017): a daily (or diurnal) tide of small amplitude (the pressure is
minimal at the subsolar point and maximal at the antipode) and
a strong half-daily (semi-diurnal) tide (the pressure is minimal at
the subsolar point and at the antipode).

As for bodily tides, there is a delay between the response
of the atmosphere and the thermal excitation. The phase shifted
elongation of the shell induces a torque which modifies the
rotational dynamics of the body as well as its orbit. For atmo-
spheric tides, the dominating semi-diurnal pressure wave usually
leads the perturbation. As a consequence, the thermal tide moves
the planet rotation away from the synchronous equilibrium,
and determines possible new states of equilibrium balanced by
bodily tides (Gold & Soter 1969; Correia & Laskar 2001).

The combined effect of bodily and thermal tides tend to align
the equator of the planet with the orbital plane (Correia et al.
2003). Therefore, for simplicity, we let the obliquity of the planet
to be zero. In this case, the secular evolution of the rotation rate,
Ω, and semi-major axis, a, due to a given kind of tidal effect
(bodily or thermal) can be written for small eccentricity, e, as
(Correia & Laskar 2003, 2010):

dΩ

dt
= −

3
2C

Kτ bτ(2Ω − 2n) , (14)

da
dt

=
3a
L

Kτ bτ(2Ω − 2n) , (15)
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where terms in e2 have been neglected. C is the principal
moment of inertia, L = βna2 is the orbital angular momentum,
n is the mean motion, and β = mM/(m + M) ≈ m is the reduced
mass of the system. Kτ is a constant factor related to the strength
of the tide, and bτ(x) is an odd function related to the dissipation
within the planet. For bodily (or gravitational) tides we denote
τ ≡ g, while for thermal (atmospheric) tides we denote τ ≡ a.
For the first kind we have

Kg =
GM2R5

a6 and bg(x) = k2(x) sin δg(x) , (16)

while for the second kind

Ka =
4πMR6

5ma3 and ba(x) = −p2(x) sin δa(x) , (17)

where G is the gravitational constant. k2(x) > 0 is the second
Love number, p2(x) > 0 is the amplitude of the pressure vari-
ations at the ground, and 0 ≤ δτ(x) < 90◦ is the phase shift.
The minus sign in the expression of ba(x) already accounts for
the fact that thermal tides lead the perturbation (Correia et al.
2003; Auclair-Desrotour et al. 2017). The phase shift can be
related with the time delay ∆tτ between the perturbation and
the maximal amplitude of the tide through δτ(x) = x∆tτ(x). We
thus have bτ(0) = 0, and for x > 0, bg(x) > 0 and ba(x) < 0.
The phase shift can also be related to the quality factor through
Q−1
τ (x) = sin δτ(x) (Efroimsky 2012, Eq. (141)).

For the eccentricity evolution, bodily and thermal tides give
different evolutions2. For the first we have

de
dt

= −
3e

16L
Kg

[
6 bg(n) + 4 bg(2Ω − 2n)

+ bg(2Ω − n) − 49 bg(2Ω − 3n)
]
,

(18)

while for the second

de
dt

= −
3e

16L
Ka

[
4 ba(n) + 4 ba(2Ω − 2n)

+ 2 ba(2Ω − n) − 42 ba(2Ω − 3n)
]
,

(19)

If we consider bodily tides alone, from Eq. (14) we see that
the equilibrium configuration Ω̇ = 0 is obtained when for Ω = n,
that is, for synchronous rotation. In addition, this equilibrium is
stable because bg(x) is an odd function for which bg(x) > 0 when
x > 0. Replacing Ω = n in Eqs. (15) and (18), we get ȧ = 0, and

de
dt

= −
21e
2L

Kgbg(n) < 0 , (20)

which leads to an exponential damping of the eccentricity,
as expected. For thermal tides alone, we can derive similar
conclusions, but Ω = n becomes an unstable equilibrium and
(Eq. (19))

de
dt

= −
9e
L

Kaba(n) > 0 , (21)

since ba(x) < 0 when x > 0. Hence, we conclude that thermal
tides may be able to counterbalance the damping effect of bodily
tides on the eccentricity.

2 The bodily tides potential is proportional to r−6, while the thermal
tides potential is proportional to r−5, where r is the relative distance
between the planet and the star (see Correia et al. 2003).

When bodily and thermal tides are considered together,
the complete evolution of the rotation rate is given by
(Eq. (14))

dΩ

dt
= −

3
2C

[
Kg bg(2Ω − 2n) + Ka ba(2Ω − 2n)

]
. (22)

New equilibrium solutions for the rotation rate (Ω̇ = 0) are then
obtained for (Correia & Laskar 2001)

f (2Ω − 2n) = −
Kg

Ka
, (23)

where f (x) = ba(x)/bg(x). This simple condition explains why
the spin of the planet Venus is not synchronous. Let us express
the stable solutions of Eq. (23) as Ω = n + Ω0/2. For the stable
states we then have f (Ω0) = −Kg/Ka. Thus, for the semi-major
axis secular evolution we get (Eq. (15))

da
dt

=
3a
L

[
Kg bg(Ω0) + Ka ba(Ω0)

]
= 0 , (24)

and for the eccentricity (Eqs. (18) and (19))

de
dt

= −
3e

16L

[
Kg

(
6 bg(n) + bg(n + Ω0) + 49 bg(n −Ω0)

)
+ Ka

(
4 ba(n) + 2 ba(n + Ω0) + 42 ba(n −Ω0)

)]
.

(25)

The eccentricity evolution depends on the balance between
the bodily and thermal tides harmonic functions bτ(x), that is, it
depends on the tidal models that we adopt. As the rheology of
planets is poorly known, these functions are usually unknown.
However, for close-in planets it is expected that bodily tides
dominate thermal tides (Correia et al. 2008; Cunha et al. 2015;
Leconte et al. 2015) and, thus, |Ω0| � n. We can then simplify
the previous expression as

de
dt
≈ −

3e
2L

[
7 Kgbg(n) + 6 Kaba(n)

]
= −

21e
2L

Kg

[
bg(n) −

6
7

ba(n)
f (Ω0)

]
,

(26)

that is, the eccentricity increases whenever

ba(Ω0)
ba(n)

<
6
7

bg(Ω0)
bg(n)

. (27)

We immediately see that the eccentricity always decreases if
we adopt for both tides a constant (bτ = cte) or a linear model
(bτ ∝ x). On the other hand, if we adopt a linear model for
thermal tides and a constant model for bodily tides, the eccen-
tricity always increases, since we get Ω0/n < 6/7, which is
consistent with |Ω0| � n. The constant and linear models are
widely used, because they are simple, but they are not very
realistic. A more correct description of the rheology involves
the use of viscoelastic models (e.g., Henning et al. 2009). In
particular, thermal tides are believed to follow a Maxwell rhe-
ology (Leconte et al. 2015; Auclair-Desrotour et al. 2017), for
which ba(x) ∝ −x/(1 + τ2

ax2), where τ is a viscous relaxation
time. Assuming also a Maxwell model for bodily tides, with
bg(x) ∝ x/(1 + τ2

gx2) (Remus et al. 2012; Correia et al. 2014),
the eccentricity increases for (Eq. (27))

Ω0

n
1 + τ2

an2

1 + τ2
aΩ2

0

<
Ω0

n

1 + τ2
gn

2

1 + τ2
gΩ

2
0

, (28)
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that is, for

τg > τa and |Ω0| < n . (29)

The value of τg can be estimated from Q ∼ τgn + 1/(τgn), which
has two solutions. With Q ∼ 104, for orbital periods Porb ∼ 5 day,
we get τg ∼ 104 day or τg ∼ 10−4 day. At present, there are
no estimations of τa for Neptune-like planets. However, for an
Earth-like planet, we get τa ∼ 10 day (Leconte et al. 2015).
Assuming an identical value for warm Neptunes, we see that
condition in Eq. (29) is widely assured for τg ∼ 104 day. We then
conclude that although there is a limited set of values (τg, τa) that
allow an increase in the eccentricity due to the combined action
of bodily and thermal tides, the rheology of warm Neptunes may
be such that condition in Eq. (29) can be met.

4. Evaporation of the atmosphere

Interestingly, it has been observed that the atmospheres of some
of the warm Neptunes with nonzero eccentricity are also under-
going strong evaporation. This is the case for the planets GJ 436 b
(Ehrenreich et al. 2015; Lavie et al. 2017; dos Santos et al.
2019) and GJ 3470 b (Bourrier et al. 2018b). Therefore, a fraction
of the mass of these planets is being lost through this pro-
cess. Isotropic planetary evaporation generates almost no orbital
evolution. However, the hottest region in a planet atmosphere
could shift with respect to the substellar point, usually east-
ward, depending on the strength of the imposed stellar heating
and other factors such as the radiative timescale and drag time
constant (e.g., Showman & Guillot 2002; Showman & Polvani
2011). This displacement could be associated with anisotropic
mass-loss, and a modification in the orbit of the planet (Boué
et al. 2012; Teyssandier et al. 2015).

We let θ be the angle between the star and the direction
of maximal mass ejection, ϕ be the solid angle aperture of the
stream, and ve be the ejection speed of atmospheric particles with
respect to the planet’s barycenter (see Fig. 1 in Boué et al. 2012).
The secular evolution of the semi-major axis and eccentricity due
to the mass-loss can be written as (Boué et al. 2012):

da
dt

= −
ṁ
m

(
2γ +

m
M

)
a , (30)

de
dt

= −
ṁ
m
γ

2
e , (31)

where terms in e2 have been neglected, and

γ = sin θ cos2 ϕ

2

(
ve

na

)
(32)

is a dimensionless parameter related to the efficiency of the
evaporation. We have γ = 0 for substellar (θ = 0, π) or
isotropic evaporation (ϕ = π). We also note that the orbital
speed vorb ≈ na. Since we assume that the planet is losing mass
(ṁ < 0), this leads to an increase in both semi-major axis and
eccentricity.

The secular evolution of the eccentricity due to the combined
effect of bodily tides (Eq. (20)) and evaporation (Eq. (31)) is then

de
dt

= −

[
21
2L

Kgbg(n) +
ṁ
m
γ

2

]
e , (33)

which is positive for

−
ṁ
m
γ >

2
τcirc

. (34)

For GJ 436 b and GJ 3470 b we need −γ ṁ/m > 10 Gyr−1

and 3.3 Gyr−1, respectively (Eq. (2)). The two planets have sim-
ilar orbital velocities, vorb ≈ 120 km s−1. Theoretical simulations
of escaping outflows yield typical escape velocities ve between
1−10 km s−1 (e.g., Salz et al. 2016). Simulations of GJ 436 b
exosphere based on Lyman-α transit observations suggest that
ve could reach up to 50−60 km s−1. Adopting the upper limit,
γ still remains lower than about 1. The present mass loss rates
from GJ 436 b and GJ 3470 b atmospheres are 2.2 × 1010 g s−1

(Bourrier et al. 2016) and 8.5 × 1010 g s−1 (Bourrier et al. 2018b),
respectively. These values are also upper limits, assuming the
planets’ atmospheres are in the energy-limited regime and all
input stellar energy is used for the escape. Even with maximum
values, −γ ṁ/m would thus reach 0.0025 Gyr−1 for GJ 436 b and
0.016 Gyr−1 for GJ 3470 b, far too low for anisotropic escape to
balance the damping effect from tides. Indeed, in the optimistic
case for which γ ∼ 1, the planet would have to lose roughly half
of its mass every 100 Myr to balance the damping effect from
tides; after a few Myr the planet would have completely lost its
atmosphere. We then conclude that, unless there is an unknown
mechanism that produces an ejection speed of ve > 103 km s−1,
the orbital effect of atmospheric evaporation is not sufficient to
explain the eccentricities observed for warm Neptunes.

5. Excitation from a distant companion

Most warm Neptune eccentric planets were discovered using
radial velocity combined with transit observations. At present,
these are the two most successful techniques for detecting plan-
ets, but they share a caveat: they are unable to spot planets whose
orbital plane lie near the observer’s plane of the sky. In the case
of radial velocity, the amplitude of the signal is proportional to
the sinus of the inclination of the orbital plane to the plane of
the sky, while for transits we can only detect planets passing in
front of the star. Therefore, we cannot rule out that a compan-
ion is present in the system, provided that it lies in a inclined
or very distant orbit with respect to the warm Neptune. Indeed,
some warm Neptune planets have been observed in systems
with more massive distant companions (HAT-P-11, HD 219828,
HD 47186 and HD 125612). We note, however, that even in these
positive cases, we also lack knowledge for their true masses
and inclinations, since they were all spotted by radial-velocity
alone. In other cases, such as GJ 436, GJ 3470 and HAT-P-26, no
companion has been identified so far.

In planetary dynamics, still undetected companions are often
suggested to solve unexplained observations. For instance, a
ninth planet was proposed to explain the observed clustering
in the perihelia of the distant Kuiper Belt objects (Trujillo &
Sheppard 2014; Batygin & Brown 2016). A great success was
the discovery of the planet Neptune by Le Verrier (1846), that
probably triggered all the other undetected companion scenarios.
A great failure was the prediction of planet Vulcan to explain
the perihelion advance of Mercury, also by Le Verrier (1859),
which was later explained in the frame of general relativity
(Einstein 1915). Therefore, the undetected companion scenario
should always be considered with a degree of caution.

When the orbit of a planet is excited by an outer companion
in a inclined orbit, its eccentricity undergoes some perturbations.
Assuming for simplicity that the perturber is on a circular orbit
with radius ap, mutual inclination I, and its mass mp � m, the
dominating (quadrupolar) contribution for the eccentricity and
pericenter are (e.g., Correia et al. 2013):

ė ≈ 5
2ν e (1 − e2)1/2 sin2 I sin 2ω , (35)
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ω̇ ≈
νg

(1 − e2)
+
νr (Ω/n)2

(1 − e2)2

+ ν
2(1 − e2) + 5

2 (e2 − sin2 I)(1 − cos 2ω)
(1 − e2)1/2 ,

(36)

where

ν = n
3
4

mp

M

(
a
ap

)3

, (37)

is due to the perturber, while

νg = 3n
(na

c

)2
and νr = n

k2

2
M
m

(R
a

)5

, (38)

are due to general relativity and planet oblateness, respectively.
The mutual inclination can also change over time, but it can be
related with the eccentricity using the conservation of the total
orbital angular momentum:

h =
√

1 − e2 cos I ≈ cte , (39)

also known by the “Kozai constant”.

5.1. Lidov–Kozai cycles

When a massive companion in a inclined orbit is present, there
is an alternative mechanism to the migration in the accretion
disk for the formation of close-in planets: high eccentricity
migration through Lidov–Kozai cycles combined with tidal fric-
tion (e.g., Wu & Murray 2003; Correia et al. 2011; Anderson
et al. 2016). This mechanism has been proposed by Beust et al.
(2012) to explain the present eccentricity of GJ 436 b and it is
strengthened by the measurement of the planet misaligned orbit
(Bourrier et al. 2018a), which is also a natural consequence of the
Kozai cycles.

For planets far from the star, the gravitational perturbations
from the companion dominate over the general relativity and the
oblateness terms (ν � νg, νr) in the precession of the periap-
sis (Eq. (36)). As a consequence, it is possible to find stable
equilibria points for the eccentricity (ė = 0, ω̇ = 0), known as
Kozai equilibria (Lidov 1962; Kozai 1962). These points are
centered at ω = ±π/2 and cos I =

√
3/5
√

1 − e2. They corre-
spond to a resonance between the precession of the longitude of
the node and the longitude of the pericenter of the inner orbit.
Therefore, there is a libration zone associated to this resonance
(for cos I <

√
3/5), a separatrix, and a nonresonant circulation

zone.
High-eccentricity migration through Lidov–Kozai cycles is

very efficient, provided that the planet is close to the sepa-
ratrix of the Lidov–Kozai equilibria. Indeed, near the sepa-
ratrix, the mutual inclination undergoes large variations, that,
in turn, induce large eccentricity oscillations (Eq. (39)). Even
at large distances, the outer companion can significantly per-
turb the inner orbit as long as the initial mutual inclina-
tion is cos I <

√
3/5. If the inner orbit is initially circu-

lar, the maximum eccentricity achieved in a Lidov–Kozai
cycle is emax =

√
1 − (5/3) cos2 I (e.g., Lidov & Ziglin 1976).

When the eccentricity reaches very high values tidal dissipa-
tion is enhanced and the semi-major axis of the inner orbit
decreases.

Lidov–Kozai cycles persist as long as the perturbation from
the outer companion is the dominant cause of periapse preces-
sion in the planetary orbit. However, small additional sources of

periapse precession, such as general relativity (νg) or oblateness
(νr), can compensate the gravitational precession (ν) and sup-
press the eccentricity oscillations (Eq. (35)). The inner planet is
then left in a close-in orbit with large eccentricity that is then
progressively damped by tides (see Sect. 2).

The presence of the Lidov–Kozai cycle from an undetected
companion then act as possible mechanism of formation of the
warm Neptune that simultaneously accounts for the possible
observed eccentricity, as a remnant of this formation mechanism.
Although the circularization timescale for GJ 436 b is only about
0.2 Gyr (Eq. (2)), there is a range of parameter values for its com-
panion for which the Lidov–Kozai cycles could delay the deliver
of the planet close to the star; that would explain why we still
observe e ≈ 0.16 at present (Bourrier et al. 2018a).

5.2. Spin-driven eccentricity pumping

This effect has been first described for coplanar orbits (Correia
et al. 2012; Greenberg et al. 2013), but it is also much more
efficient for mutually inclined orbits (Correia et al. 2013).

When the general relativity or the oblateness terms dominate
over the gravitational perturbations (νg or νr � ν), the Lidov–
Kozai cycles no longer work. This is the case for all currently
observed warm Neptunes. Thus, at first order, the precession of
the periastron is constant, ω̇ ' g (Eq. (36)), and the eccentricity
shows small oscillations around a mean value, e = e0 + δe, with

δe = ∆e cos(gt + ω0) , (40)

where e0, ∆e and ω0 are constant. The evolution of the rotation
rate (Eq. (14)) also depends on the eccentricity3, so the rotation
rate experiences a variation Ω = Ω0 + δΩ, with

δΩ = ∆Ω cos(gt + ω0 − φ) , (41)

where Ω0, ∆Ω and φ are constant. The rotation rate thus presents
an oscillation identical to the eccentricity (Eq. (40)), but delayed
by an angle φ, such that (Correia et al. 2013)

sin φ ∼ 2g(k2 + 4g2)−1/2 , with k =
Kg

Cn
k2

Q
. (42)

The damping timescale for the spin can be seen as τspin ≈ k−1,
which is usually much shorter than the circularization timescale,
τcirc ≈ LQ/k2Kg (Eq. (1)), since L � Cn. At second order,
the precession of the periastron depends on the eccentricity
(Eq. (36)), but also on the rotation rate (term in νr). Replacing
Eqs. (40) and (41) in the expression of the periastron (Eq. (36)),
integrating and replacing the result again in Eq. (40), we obtain
a secular contribution for the eccentricity (see Appendix A in
Correia et al. 2013)

δė ≈
νr

8
sin 2φ . (43)

Thus, the secular term vanishes when φ = 0 or π/2, that is, for
strong dissipation (k � g), where δė ∼ νrg/k, or for weak dis-
sipation (k � g), where δė ∼ νrk/g, respectively. The effect on
the eccentricity is then maximized when φ = π/4, which occurs
for k ∼ g, for which δė ∼ νr. We conclude that, in order to
observe the spin-driven eccentricity pumping effect, the damp-
ing timescale of the spin (k−1) should be of the order of the
period of eccentricity oscillations (g−1).

3 In Eq. (14) we neglected terms in e2, but expanding to a higher
order we get (Correia et al. 2008): CΩ̇ = − 3

2 Kg[(1 − 5e2)bg(2Ω − 2n) +
1
4 e2bg(2Ω − n) + 49

4 e2bg(2Ω − 3n)] + O(e4).
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The secular evolution that results from expression (43) must
be added to the usual orbital damping (Eq. (20)). As long as the
spin-driven term counterbalances the damping effect, the eccen-
tricity can increase to high values. However, when we consider
the full nonlinearized problem, the secular increase (Eq. (43))
cannot last indefinitely because when the eccentricity reaches
high values, the damping effect is also enhanced. As a con-
sequence, the spin-driven pumping of the eccentricity is never
permanent, although it can last through the age of the system.

6. Discussion

The distribution of eccentricity measured for warm Neptunes
with Porb < 5 day contrasts with that given for smaller and larger
close-in planets. In particular, most warm Neptunes present
nonzero eccentricity, a surprising feature considering that bodily
tides should have circularized their orbits in a timescale shorter
than the age of the systems. In this paper, we investigate several
mechanisms that could counterbalance the bodily tides, namely,
thermal atmospheric tides, evaporation of the atmosphere, and
excitation from a distant companion.

The combined action of bodily and thermal tides can be
simplified using their relaxation times, (τg, τa), respectively. A
dynamical analysis shows that the eccentricity is allowed to
increase under some conditions for these two parameters, in par-
ticular, for τa < τg (Eq. (29)). Observational constraints on the
rheology and atmospheric composition of warm Neptunes are
required to assess the fraction of these planets maintained on
eccentric orbits because of thermal tides.

Spectacular evaporation has been observed for the warm
Neptunes GJ 436 b (Bourrier et al. 2018a) and GJ 3470 b
(Bourrier et al. 2018b). This class of planets is expected to
be particularly sensitive to atmospheric escape (Owen & Wu
2017). If anisotropic, their evaporation would always contribute
to increase the orbital eccentricity. Our estimates, however, show
that the velocity and mass loss rate of the gas escaping from
warm Neptunes (as derived from observations and predicted the-
oretically) are not sufficient to counterbalance the damping effect
from bodily tides.

Distant, more massive planets have been found to accom-
pany some warm Neptunes. Those that appear alone may still
have undetected companions. In that case, mutual gravitational
interactions between the two planets can temporarily excite the
eccentricity of the inner warm Neptune, thus delaying the cir-
cularization of the orbit up to several Gyrs. This excitation can
be induced via Lidov–Kozai cycles for companions with mutual
inclinations cos I <

√
3/5, or via spin-driven eccentricity pump-

ing when the damping timescale of the spin (k−1) is of the
order of the period of eccentricity oscillations (g−1). Because
they excite the eccentricity for a limited amount of time, these
mechanisms alone cannot explain the distribution of eccentric-
ity observed for warm Neptunes, in particular the absence of
close-in Neptunes on circular orbits.

Although all the proposed scenarios have some limitations,
we cannot rule out that more than one of these mechanisms is
simultaneously at work. It is possible that the hot expanding
atmosphere of an evaporating Neptune creates an additional ther-
mal tidal torque on the planet that would help to increase its
eccentricity. Alternatively, a distant companion can excite the
eccentricity, and as the Neptune-size planet migrates closer to
the star, it would evaporate increasingly and erode into a smaller
planet before it can fully circularize, thus explaining why no
Neptune-mass planets are found on circular orbits close to their

star. This combination of high-eccentricity migration and evapo-
ration as the origin of eccentric warm Neptunes was proposed by
Bourrier et al. (2018a), based on the study of GJ 436b, and is now
gaining interest to explain the structure of the “Neptune desert”
(e.g., Owen & Lai 2018). In this scenario, the warm Neptunes
on eccentric orbits are either still undergoing their migration and
will erode as they enter the desert or they have already reached
a stable orbit far enough from the star to be safe from evapora-
tion. The orbital properties and evaporation status of the warm
Neptunes GJ 436 b (Bourrier et al. 2018a) and GJ 3470 b
(Bourrier et al. 2018b) are consistent with this scenario.

In conclusion, thermal atmospheric tides or excitation from a
distant companion combined with evaporation could explain the
distribution of eccentricities observed for warm Neptunes. These
scenarios require specific conditions for the warm Neptunes,
their host star, and possible companions. At present we cannot
conclude whether one of these mechanisms is dominant, whether
they act together, or whether each influence a fraction of the
observed warm Neptunes.

Further theoretical modeling of these mechanisms should be
attempted to better understand their impact, complemented by
in-depth characterizations of the orbital and atmospheric proper-
ties of known warm Neptunes, along with a search for additional
Neptune-size planets and their putative companions. Studying
the distribution of eccentricities as a function of the tidal quality
factor could also allow us to better assess the role of tidal circu-
larization for each class of planets, though this requires a larger
sample of high-precision mass and radius measurements, and a
finer understanding of planetary internal structures.
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