Maxime Martineau

Romain Raveaux

Donatello Conte

Gilles Venturini

Graph matching as a graph convolution operator for graph neural networks

Convolutional neural networks (CNNs), in a few decades, have outperformed the existing state of the art methods in classication context. However, in the way they were formalised, CNNs are bound to operate on euclidean spaces. Indeed, convolution is a signal operation that are dened on euclidean spaces. This has restricted deep learning main use to euclidean-dened data such as sound or image. And yet, numerous computer application elds (among which network analysis, computational social science, chemo-informatics or computer graphics) induce non-euclideanly dened data such as graphs, networks or manifolds. In this paper we propose a new convolution neural network architecture, dened directly into graph space. The convolution operator is dened in graph domain thanks to a graph matching procedure between the input signal and a lter. We show its usability in a back-propagation context. Experimental results show that our model performance is at state of the art level on simple tasks. It shows robustness with respect to graph domain changes and improvement with respect to other euclidean and non-euclidean convolutional architectures. 1

Introduction

Graphs are frequently used in various elds of computer science, since they constitute a universal modeling tool which allows the description of structured data.

The handled objects and their relations are described in a single and humanreadable formalism. Hence, tools for graphs supervised classication and graph mining are required in many applications such as pattern recognition [START_REF] Riesen | Structural Pattern Recognition with Graph Edit Distance -Approximation Algorithms and Applications[END_REF], chemical components analysis [START_REF] Gaüzere | Two new graphs kernels in chemoinformatics[END_REF], structured data retrieval [START_REF] Raveaux | Structured representations in a content based image retrieval context[END_REF]. Graph classication can be operated on graph space. For instance, it can be done via a k-nearest neighbour setting using graph matching [START_REF] Riesen | Structural Pattern Recognition with Graph Edit Distance -Approximation Algorithms and Applications[END_REF][START_REF] Bougleux | Graph edit distance as a quadratic assignment problem[END_REF][START_REF] Liu | GNCCP -graduated nonconvexityand concavity procedure[END_REF][START_REF] Leordeanu | An integer projected xed point method for graph matching and map inference[END_REF]. Alternatively, graph classication can also be achieved through vector-based representation of graph and classic pattern recognition techniques (vector space graph classication) [START_REF] Riesen | Structural Pattern Recognition with Graph Edit Distance -Approximation Algorithms and Applications[END_REF].

Euclidean and geometric deep learning

Deep learning has achieved a remarkable performance breakthrough in several elds, most notably in speech recognition, natural language processing, and computer vision. In particular, convolutional neural network (CNN) architectures currently produce state-of-the-art performance on a variety of image analysis tasks such as object detection and recognition. Most of deep learning research has so far focused on dealing with 1D, 2D, or 3D Euclidean structured data such as acoustic signals, images, or videos.

Recently, there has been an increasing interest in geometric deep learning, attempting to generalize deep learning methods to non-Euclidean structured data such as graphs and manifolds, with a variety of applications from the domains of network analysis, computational social science, or computer graphics.

Graph Neural Networks

Among geometric deep learning methods are graph neural networks. These neural networks often try to apply convolution to graphs so that it mimics classical convolutional neural networks. Dening on graph space is not trivial. There is indeed no straightforward denition. However, one can identify two families of denitions in the existing literature [START_REF] Bronstein | Geometric deep learning: going beyond euclidean data[END_REF]. The rst family (spectral approaches among which [START_REF] Deerrard | Convolutional neural networks on graphs with fast localized spectral ltering[END_REF][START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF]) relies on the convolution theorem. This theorem states that the convolution operator on the spatial domain is equivalent to the product operator on the frequency domain. Although this theorem was only proven on euclidean spaces, spectral approaches postulate its validity on the graph space.Such approaches have two main limitations. The rst one is their sensitivity to topological variations: a slight deformation of the graph structure changes the resulting convolution signal drastically. The latter is that there is no Fast Fourier Transform on the graph space: as previously stated, accessing the graph frequency domain relies on matrix diagonalization and therefore inversion. Inverting a matrix is a costly operation. The second family of approaches (the spatial ones, [START_REF] Scarselli | The graph neural network model[END_REF][START_REF] Battaglia | Relational inductive biases, deep learning, and graph networks[END_REF][START_REF] Nowak | A note on learning algorithms for quadratic assignment with graph neural networks[END_REF][START_REF] Veli£kovi¢ | Graph Attention Networks[END_REF][START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF]) tries to come up with analogies of the original convolution denition. However, existing approaches don't rely solely on the graph domain as they use approximations of graphs (through aggregations [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF], expression as manifolds [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF], . . .).

In this paper, we propose a graph convolution operator which operates solely on graph space. This is made possible by using graph matching to dene local convolutional operation. By doing so, we try to establish a link between two scientic communities who respectively work on graphs and deep learning. More specically, we dene graph-based computations using operators from the graph matching litterature in a deep learning (neural network) framework.

State of the Art

Every graph neural network layer can then be written as a non-linear function:

H (l+1) = f (H (l) , A).
As an example, let's consider the following very simple form of a layer-wise propagation rule: f (H (l) , A) = σ D -1 AH (l) W (l) . σ(.) is a non-linear activation function like the ReLU. Multiplying the input with D -1 A now corresponds to taking the average of neighboring node features from the layer l. It is also called in the literature "average neighbor messages" and it acts like passing average node features from one layer to another. In [START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF], a better (symetric) normalization of the adjacency matrix is proposed i.e. D -

f (H (l) , A) = σ D-1 2 D-1 2 H (l) W (l) with = A + I,
where I is the identity matrix and D is the diagonal node degree matrix of Â.

More operations have been investigated in the literature [START_REF] Nowak | A note on learning algorithms for quadratic assignment with graph neural networks[END_REF]. A complete family of operations can be used :

I: this identity operator does not consider the structure of the graph and neither provide any aggregation. Used alone this operator makes the GNN a composition of |V | MLP completly independent. One MLP for each node feature vector.

A:

The adjacency operator gather information on the node neighborhood (1 hop).

D: D = diag(A1). This degree operator gather information on the node degree. D is node degree matrix (a diagonal matrix). A j : A j = min(1, A U : U is matrix lled with ones. This average operator, which allows to broadcast information globally at each layer, thus giving the GNN the ability to recover average degrees, or more generally moments of local graph properties.

Let us denote

A = {I, D, A, A 1 , • • • , A J , U }. A GNN layer is dened as : f (H (l) , A) = σ B∈A BH (l) W (l) B . Ω = {W (l) 1 , • • • , W (l) |A| }, W (l) B ∈ R m (l) ×m (l+1)
are trainable parameters.

Key distinctions are in how dierent approaches aggregate messages. So far, proposals have aggregated the neighbor messages by taking their (weighted) average, but is it possible to do better? In [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF], a GNN called GraphSAGE is proposed. The aggregation of neighbors information is more complex. The very general scheme of aggregation can written thanks to the function AGG: H (l+1) = σ AGG(H (l))W (l) . Let us dene N (u) is the set of nodes in the 1-hop neighborhood of node u.

mean : AGG u = 1 |N (u)| v∈N (u) H (l) v ∀u ∈ V =⇒ AGG = D -1 AH (l) . max : AGG u = max({H (l) v , ∀v ∈ N (u)}) ∀u ∈ V . Transform neighbor
vectors into a matrix and apply a max pooling element-wise.

LSTM : AGG u = LST M ([H (l) v , ∀v ∈ π(N (u))]) ∀u ∈ V .
Where π is a random permutation. The idea is to provide to the LSTM a sequence composed of neighbor embeddings. So the input sequence is composed of vectors. The sequence is randomly permuted by the function π.

In [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF], the graph structure is locally embedded into a vector space. The distribution of local structures in the local space is estimated by a Gaussian Mixture Model. The AGG u function is then expressed by a mixture of Gaussians. The Gaussian parameters are covariance matrix and mean vector and they are learnt during the training of the neural network.

A notable variant of GNN is graph attention networks (GAT), which was rst proposed in [START_REF] Veli£kovi¢ | Graph Attention Networks[END_REF]. This model includes the self attention mechanism to evaluate the individual importance of the adjacent nodes and therefore it can be applied to graph nodes having dierent degrees by specifying arbitrary weights to the neighbors [START_REF] Veli£kovi¢ | Graph Attention Networks[END_REF]. For further reading, good surveys about graph neural networks have been published [START_REF] Zhou | Graph neural networks: A review of methods and applications[END_REF][START_REF] Zhang | Deep learning on graphs: A survey[END_REF][START_REF] Wu | A comprehensive survey on graph neural networks[END_REF].

Deadlocks, contributions and motivations From the literature, two main deadlocks can be drawn. First, in many of the related works [START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF][START_REF] Nowak | A note on learning algorithms for quadratic assignment with graph neural networks[END_REF][START_REF] Veli£kovi¢ | Graph Attention Networks[END_REF], edge features are not well considered. However, the edge information is of rst interest to boosts the structural knowledge in the computation of the node embedding.

Second, most of the aforementioned approaches do not take full advantage of the graph topology [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF][START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF]. The graph structure is locally embedded into a vector space (i.e. the tangent space at a given point of a riemannian manifold).

In this paper, we propose CNN architectures that remain in the graph domain.

Especially, we design a convolution operator onto graph space through the solution of a graph matching problem. The problem of graph matching under node and pair-wise constraints is fundamental to capture topological information. It takes into account the nodes and edge features along with their neighborhood structure. Therefore, graph matching-based convolution can release deadlocks related to edge information integration, domain changes sensitivity and Euclidean space projection. Graph matching can be seen as added local constraints in the machine learning problem. We promote a truly novel class of neural network architecture where layers contain a combinatorial optimization scheme that plays a fundamental role in the construction of the entire neural network architecture. Consequently, we highlight the interplay between machine

G W F
A lter graph and its associated weights

µ(a) Vertex label of a µ W (a)
Vertex label of a parametrized by W

|Ω ij | Cardinality of Ω ij δ y x
Kronecker delta of x and y learning and combinatorial optimization.

Graph Convolutional Neural Network

Frequently used notations are summarized in Table 1.

Graph matching

To dene our convolution operator, we must dene the graph matching function that will be pointwisely used.

Let G 1 and G 2 be attributed graphs:

G 1 = (V 1 , E 1 , µ 1 , ζ 1) and G 2 = (V 2 , E 2 , µ 2 , ζ 2) GMS(G 1 , G 2) = max y s(G 1 , G 2 , y), (1a)
subject to y ∈ {0, 1} n1n2

(1b) n1 i=1 y i,a = 1 ∀a ∈ [1, • • • , n 2] (1c) n2 a=1 y i,a ≤ 1 ∀i ∈ [1, • • • , n 1] (1d) |V 1 | ≥ |V 2 | (1e)
The similarity function s is dened as follows:

s(G 1 , G 2 , y) = yia=1 s V (i, a) + yia=1 y jb =1 s E (ij, ab) (2a) s V (i, a) = µ 1 (i).µ 2 (a) (2b) s V (i,) = s V (, a) = 0 (2c) s E (ij, ab) = ζ 1 (ij).ζ 2 (ab) (2d) s E (ij,) = s E (, ab) = 0 (2e) Let π(G 1 , G 2 , e) denote an assignment of element (edge or vertex) e ∈ V 1 ∪E 1 to some element in V 2 ∪ E 2 ∪ { , }: π(G 1 , G 2 , i) = a ⇐⇒ ∃a ∈ V 2 : y ia = 1 (3a) π(G 1 , G 2 , i) = ⇐⇒ ∀a ∈ V 2 : y ia = 0 (3b) π(G 1 , G 2 , ij) = ab ⇐⇒ ∃ab ∈ E 2 : y ia = 1 ∧ y jb = 1 (3c) π(G 1 , G 2 , ij) = ⇐⇒ ∀a, b ∈ V 2 : y ia = 0 ∨ y jb = 0 (3d)
The similarity function can be rewritten as follows:

s(G 1 , G 2 , y) = i∈V1 s V (i, π(G 1 , G 2 , i)) + ij∈E1 s E (ij, π(G 1 , G 2 , ij)) (4a)

Graph convolution based on graph matching

Now that our matching operator is formulated, we can apply it over an input graph to compute the result of a convolution.

Let G I and G F be attributed graphs:

G I = (V I , E I , µ I , ζ I) and G F = (V F , E F , µ F , ζ F)
. G I and G F are respectively referred to as the input graph and the lter graph.

Graph convolution operator

The graph convolution operator is a function G × G → G and is dened as follows:

G I G F = (V I , E I , µ, ζ) (5a) with µ : V I → R such that µ(i) = GMS(g i I , G F) (5b)
ζ :

E I → R such that ζ(ij) = score(ij, G I , G F) (5c)
where g i I and score are dened as follows.

Vertex neighbourhood graph (l-hops)

g i I is dening the neighbourhood (which is a subgraph) for vertex i in G I :

g i I = (N l I [i], E i I , µ I , ζ I) (6a) with N l I [i] the l-hops closed neighbourhood of i in G I (6b)
and

E i I = {kl ∈ E I s.t. k, l ∈ N l I [i]} (6c)

Edge attribute in convolved graph

score is a function mapping an edge to its matching score in the found GMS.

The problem is that it might be assigned multiple times:

let

Ω ij = {g k I ∀k ∈ V I : ij ∈ g k I } ∀ij ∈ E I (7)
Ω ij potentially contains more than one element. Therefore, score can be dened as follows:

score(ij, G I , G F) = θ ({s E (ij, π(g I , G F , ij)) ∀g I ∈ Ω ij }) (8a)
with θ : some statistical estimator (max or avg) (8b)

Convolution layer

Now that the convolution operator is dened, it is possible to use it as a base to build a convolution layer. This layer can be included in a graph neural network.

Graph convolution lter: the lter graph

A graph convolution lter is an attributed graph G W F . Its role is analogous to that of a vanilla CNN kernel: it modies the output and gets modied through backpropagation. Every attribute function is parametrized with respect to a

weight vector W ∈ R |V |+|E| . G W F = (V F , E F , µ W F , ζ W F) (9a) with µ W F (a) = W a (9b) ζ W F (ab) = W ab (9c)

Graph convolution layer

A convolution layer is a set of convolution lters {G p F } 1≤p≤n applied on a same input graph G I . The output of the layer consists of all lters results (analogous to euclidean convolution feature map) stacked up.

Let u be the output function of the layer s.t.:

u : G → G u(G I) = ψ({u p (G I)} 1≤p≤n) (10a) with ψ : G n → G ψ({u p (G I)} 1≤p≤n) = (V I , E I , M, Z) (10b) M : V I → R n (M (i)) p = µ p F (i) (10c)
Z :

E I → R n (Z(ij)) p = ζ p F (ij) (10d)
n the number of lters (10e)

ψ function keeps only a single graph structure and concatenates each vertex/edge attribute. The output function of the layer is a graph with same topology as G I but with attributes as vectors composed by attributes of every lters outputs.

Graph convolution computation can be seen as a step-by-step process. The rst step is neighbourhood extraction: for each vertice i in G I (the input graph), the neighbourhood graph g i is extracted. It is composed of every neighbour of i in a given range (it can be 1-hop away but also n-hops away). g i and G F (the lter graph) are matched. The matching score GMS(g i , G F) becomes the output of the convolution at i.

About graph matching dierentiation

In our method, a dierentiation of the convolution operator is proposed. This dierentiation does not take into account the dependencies between the optimal graph matching ŷ and the variables {µ I (k)} k∈E I and {ζ I (kl)} kl∈V I . As these variables are used to calculate the possible matchings, it is trivial to conclude such dependencies exist. Nevertheless, the matching solver in use (see Subsection 3.8) is not dierentiable, at least a priori. We therefore assumed ŷ as a constant in the gradient calculus with respect to these variables.

A "no edge matching" version of the graph convolution layer

This section presents a degraded model. It ignores topology at a local level by not matching edges. It therefore reduces the graph matching problem to a node assignment problem inside a given neighborhood. One concern on this simplication could be that we do not take advantage of the graphs topology and edges. However, topology and edge information is used when computing vertices neighbourhoods. If no edge exist between nodes i and j, i won't be included in g j 1 and neither will j in g i 1 .

In any case, edge attributes are never used. Additionally, this model has lower time complexity as edge information is not taken into account (see details in Subsection 3.8.)

Used graphs are 3-uplets (V, E, µ) and the similarity function is simplied as follows:

s(G 1 , G 2 , y) = yia=1 s V (i, a) (11a) s V (i, a) = µ 1 (i).µ 2 (a) (11b)
As a consequence of the edge attributes deletion in the lter graph, its parameter becomes vector W ∈ R |V | (as many parameters as vertex). The lter is dened as follows:

G W F = (V F , E F , µ W F) (12a) with µ W F (a) = W a (12b)
The output function of the lter u : G → G is dened as follows:

u(G I) = G I G W F (13a) = (V I , E I , µ) (13b)

Graph pooling

As in euclidean convolutional neural nets, we want to implement not only convolutional layers but also pooling/downsampling layers. In the existing literature, downsampling is view as graph coarsening [START_REF] Bronstein | Geometric deep learning: going beyond euclidean data[END_REF]. A recurrent graph coarsening algorithm choice seems to be Graclus [START_REF] Dhillon | Weighted graph cuts without eigenvectors a multilevel approach[END_REF] (used in [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF][START_REF] Deerrard | Convolutional neural networks on graphs with fast localized spectral ltering[END_REF]). We propose to use a community detection algorithm (Louvain method [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF]) as the base of our graph pooling layer. Louvain method deals with weighted graphs. In our case, edge weights are computed by scalar products of involved vertices. This choice is brought by the following intuition: the higher nodes attributes scalar product get, the more these vertices probabilities to fall in the same cluster increases (because a higher scalar product implies vector similarity).

Hyperparameterization

As in any neural network, graph neural networks have parameters that won't be optimized from gradient descent. The rst one is the graph lter (its number of nodes and adjacency matrix). The number of nodes in the graph lter is analogous to the size of a classic convolution kernel (for example, 3 × 3 kernel lter is equivalent to a 9 nodes lter graph with grid-like adjacency). The second hyperparameter is the size of extracted neighbourhoods graphs which is the maximum node distance in a given node neighbourhood. A 2-hop-sized neighbourhoods will include nodes that can be reached from the origin node in two hops or less. These hyperparameters could be optimized through grid or random search. However, to restrain our study, we will consider the following postulate: a graph lter should be congruent with the neighbourhoods. In other words, lters and neighbourhoods should have equal sizes and identical topologies as much as possible. This postulate comes from classic graph convolution where each kernel coecient is matched with one and only one image coecient. As we only experimented with the "no edge-matching" model, the lters topologies weren't to be dened. However we set the lters size to the average neighbourhood size in the dataset.

Choosing the graph matching solver

The algorithm for solving the graph matching problem is a critical element for the model. The rst reason is that it is potentially the highest in complexity since graph matching problems are up to NP-hard. Additionally, graph matching is solved as many times as there are vertices in the input graph (the size of every problem to solve being that of every vertex neighbourhood). We opted for a bipartite (BP) graph matching algorithm [START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF]. Complexity of such an algorithm is among the lowest (polynomial time) for solving error-tolerant graph matching problems suboptimally. Bipartite graph matching algorithm reduces graph matching to vertex matching by embedding an estimation for edge costs in the vertex costs. This edge cost estimation is computed by solving an edgeassignment problem for every node-matching possibility. Therefore, BP has to solve as many matching problems as there are edge-costs.

We used a variant of BP called Square Fast BP [START_REF] Serratosa | Speeding up fast bipartite graph matching through a new cost matrix[END_REF] where the cost ma- Quantitative experiments in this section are operated on digit images of MNIST dataset [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. We chose this dataset as this was in use in the graph convolution literature. MNIST is a good "hello world" machine learning (ML) dataset.

trix
MNIST helps at quickly iterating on the learning model. Performance information gathered from experiments on MNIST can be great for judging how the model might perform on much harder and larger datasets like ImageNet. In addition to the original MNIST dataset, a rotated version was used [START_REF] Larochelle | An empirical evaluation of deep architectures on problems with many factors of variation[END_REF]. To compare results with MNIST-rotated, MNIST-reduced has been extracted from MNIST to match MNIST-rotated cardinalities (see Table 2). Note that the test set of MNIST-reduced is larger than the training set by a factor 5, thus the generalization ability is better assessed. MNIST-mixed. It was generated by combining MNIST-reduced train and validation sets and MNIST-rotated test set. It is design so that the models are trained on rotation-free images but tested on rotated images. As MNIST is an image dataset, a graph-based representation of images has to be chosen. Representations used in [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF] are superpixels graphs and grid graphs. We used 1 4 grids (28 × 28 images resized to 14 × 14) and generated 75 superpixels Region Adjacency Graphs (RAG) using SLIC algorithm [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF] with superpixel adjacency as edges (see Table 3). Sample graphs are depicted in Figure 2. (tr), the validation (va) and the test set (te), the number of classes, the label alphabet of both nodes and edges, the average and maximum number of nodes and edges, whether the graphs are uniformely distributed over the classes or not (balanced) [START_REF] Riesen | Iam graph database repository for graph based pattern recognition and machine learning[END_REF] 4

.3 Parameterization

Following hyperparameters were set after preliminary tests were conducted: models are trained during 100 epochs using Adaptive Moment (Adam) gradient descent (learning rate 10 -4). Neighbourhood reach in use is 1-hop and lter size was set in accordance with average neighbourhood size (9 nodes).

Protocol

Following experiments were conducted:

Results

On MNIST-2class (Experiment 1), results are depicted in Table 5. Our model competes in a 3% margin with used baselines. On IAM Graph (Experiment 2), the results are reported in Table 6. They show that our method achieved similar or better results than baselines except on the Web database where GraphSAGE performed better. This exception can be explained by the fact that the connectivity of the Web database is the lowest among all the data sets. The web data set has more nodes than edges in average. GraphSAGE has specic parameters only dened for the node' features without considering the neighborhood. This can give a strong advantage in that case. Our model performed well on the IAM database due to the importance of node information during matching (in the contrary to MNIST experiments): when classifying an image, edge information is mainly used to orient the lter (as in classical CNN). In the contrary, it might be dierent on other types of data such as molecules or pages. Extending the neighbourhood size (Experiment 3) did not have any signicant eect on performance (see Table 7). A possible reason is that experiments were performed with the no edge-matching" model where edge attributes are not taken into account. Therefore, increasing the size of neighbourhoods provides only little information because this information is not spatially dened. The bigger the neighbourhood gets, the more critical spatiality becomes. On MNIST-mixed (Experiment 4), no performance loss was observed on testing for our method. This is especially visible on grid graphs results where only classic CNN and MoNet show a 10 percent loss. A trivial explanation of how is this invariance Experiment 5: Visualizing graph convolution on images As an additional experimental material, we tried to visualize the result of a handcrafted lter on images. As for euclidean convolution, the most straightforward lter operation is edge detection. This is usually done by using Sobel operator that calculates intensity gradient at each spatial point of the image.

A potential equivalent graph convolution lter is (-1 1) (the lter is a 2nodes graph with respective attributes -1 and 1.) The intuition behind this lter is that the nodes will be matched respectively to the lowest (for the attributed -1 node) and highest (for the attributed 1 node) intensities. As a consequence, this lter will nd the highest node attribute dierence in every node neighbourhood, making it a sort of eager edge detection lter.

We applied this lter on grid graphs to visualize the output graph as an image (as the graph-to-image transformation is trivial). Figure 3 shows example 8.

Conclusion and perspectives

In this paper, a graph convolutional neural network layer is proposed where graph matching is used as a convolution operator. The proposal was tested in a simplied form. Our model performance is at state of the art level on simple tasks. It shows robustness with respect to graph domain changes. Following improvements could highly benet to performances and computational costs.

The bipartite solver is not the most suitable choice for our use. Using a less complex solver would allow the full model to be used in practice and applied to larger graphs. More and more combinatorial components are embedded into deep learning architectures [START_REF] Zanr | Deep learning of graph matching[END_REF][START_REF] Carion | End-to-end object detection with transformers[END_REF]. The goal is to make them more ecient but it comes at the price of a higher time complexity. Graph matching has never been used as a convolution operator before and our implementation depends on the graph matching solver. Fast and direntiable graph matching solvers like in [START_REF] Zanr | Deep learning of graph matching[END_REF] could be seen as a mean to speed up our model. These solvers rely on full GPU implementations and therefore run in a highly parallel and optimized way.

Using the edge information would probably enhance performances signicantly as it will probably help with solving more complex problems. Another point of improvement is regarding dierentiation: the gradient must then be approximated by neglecting contribution of the non-dierentiable solver intermediary states. Finding a dierentiable solver would enhance trainability of the model.

Addressing these issues will not only enhance the current degraded version of the model but also allow to implement the full model in a usable form. This model has the peculiarity to learn edge attributes as well as vertex attributes.

It is to our knowledge the only graph convolution formulation that suggests to modify the spatiality of edge attributes. Finally, investigating our downsampling layer would justify a whole study for itself. It would be interesting to study the quality of the downsampled graphs but also to study the eect of weighting edges regarding vertex similarity.

Our core contribution is about bringing this new direction that is graphmatching based GCNN and using combinatorial methods in deep learning. This is, from our point of view, the reason why these models are not outperforming the state of the art yet. The work that is presented here is still at its preliminary stage. In another point-of-view, adding complexity to models is also done in hope of increasing learning performances, as for example work involving

Transformers [START_REF] Carion | End-to-end object detection with transformers[END_REF].

Figure 2 :

 2 Figure 2: MNIST graphs. Left is 1 4 grid, right is 75 superpixels RAG. Red symbolizes vertex frontiers and green shows edges.

Figure 3 :

 3 Figure 3: MNIST graph convolution examples (respectively original, convoluted and rotated convoluted versions)

Table 1 :

 1 Frequently used notations

	Notation Description
	G I G F	An input graph A lter graph
	g i I i, j	Neighbourhood subgraph rooted at vertex i in I Vertices in graph G I

ij An edge in graph G I between i and j a A vertex in G F ab An edge in G F between a and b µ Labelling function for vertices ζ Labelling function for edges

 for vertex matching is of size max(|g I |, |G F |) × max(|g I |, |G F |) with |G F | and |g I | being number of vertices in lter graph G F and neighbourhood graph g I . Assuming both neighbourhood and lter graphs are complete, a matching problem complexity is O(max(|g I |, |G F |) 3). As a consequence, worst case complexity with fast bipartite matching is O(max(|g I |, |G F |) 5). Some preliminary experiments showed impracticable computation time of the full model.In case of graph convolution, n × n convolution lters equivalents are n 2 nodes lters and 2 × 2 pooling becomes 4 nodes pooling. n is set depending on average graph connectivity in a given dataset: if the average number of neighbours in a given dataset is 9, n = 9. The last layer is a global pooling one. As in the euclidean case, it consists in aggregating each lter feature map in one scalar value. In our case, feature maps are aggregated by taking its average value.

	n × n conv, 32
	maxpool/2 n × n conv, 64
	maxpool/2 n × n conv, 128
	maxpool/2 global avgpool fc, n
	Figure 1: Network structure used for graph convolution experiments
	4.2 Data
	4.2.1 MNIST
	Our approach was compared with three other approaches: a •) a Vanilla CNN
	layer, b •) MoNET [16] a mixture model graph CNN and GraphSAGE [10]. Same
	network topology was used for all approaches. It consists of classical ConvPool
	blocks linearly connected. Figure 1 shows the exact network structure in use.

As a rst workaround, the experimental part of this paper will focus on "no edge matching" model. This workaround allowed to keep processing to an acceptable level (that is suitable for small classication experiments). Edge cost estimation by edge matching is no longer required. The simplied model has

O(max(|g I |, |G F |) 3) as pointwise complexity.

We should stress that the choice of the graph matching solver is critical because it denes our model capabilities of handling rich graph data: if the GM operator can handle oriented attributed graphs, so can our model.

4 Experimental work

In this section, we test the model according to several parameters. We want to test our model with a simple classication task on MNIST digit images. Code for running the model can be found at https://github.com/prafiny/graphconv 4.1 Baselines

Table 2 :

 2 Dierent MNIST-based graph datasets

	Dataset	Training set	Validation set	Testing set
	MNIST-original	48 000	12 000	10 000
	MNIST-rotated			
	MNIST-reduced	10 000	2 000	50 000
	MNIST-mixed			
	Lastly, to test rotation invariance, a third MNIST-based dataset was added:

Table 3 :

 3 MNIST representations

	Representation	Nb nodes	Vertex	at-	Edge	at-
			tributes		tributes	
	1 4 grid	14 2	Pixel intensi-ties	Relative polar coordinates
	75 superpixels	75 (average) Average super-		
			pixel intensities		
	4.2.2 IAM graphs					
	Database AIDS Mutagenicity (1 500, 500, 2 337) size (tr, va, te) (250, 250, 1 500) Web (780, 780, 780)	# classes 2 2 20	node labels Chemical symbol Chemical symbol Word and frequency Section type 186.1 104.6 edge labels |V | |E| Valence 15.7 16.2 Valence 30.3 30.8	max |V | 95 417 834	max |E| 103 112 596	balanced N N N

Classication experiments have been conducted on graph-based data: IAM graph datasets Web, Mutagenicity and AIDS

[START_REF] Riesen | Iam graph database repository for graph based pattern recognition and machine learning[END_REF]

. Mutagenicity and AIDS are a graph collection composed of molecular data: nodes and edges are respectively representing atoms and chemical bonds. The classication tasks for these two sets is to infer a given chemical property for each graph. Web graphs represent web pages in terms of text they contain: nodes are words occuring in a given page and edges represent context relationships between words. The classication task for Web is to identify each page category. Table

4

describes in further details every dataset.

Table 4 :

 4 Summary of graph data set characteristics, viz. the size of the training

Table 5 :

 5 Recognition rates on MNIST 2class

	Representation	Dataset	CNN	MoNet	Ours
			Valid	Test	Valid	Test	Valid	Test
	1 4 grid	MNIST reduced 100 % 99.88 % 97.56 % 99.40 % 99.51 % 97.76 % MNIST mixed 100 % 89.87 % 97.76 % 88.90 % 99.27 % 95.63 %
	75 superpixels	MNIST reduced MNIST mixed			94.13 % 92.70 % 93.64 % 91.62 % 94.13 % 92.90 % 94.62 % 94.17 %

Table 6 :

 6 Recognition rates on IAM graph datasets

	Dataset	MoNet	GraphSAGE	Ours
		Valid	Test	Valid	Test	Valid	Test
	AIDS	80.00% 79.73% 79.60% 79.40% 96.39% 96.93%
	Mutagenicity 68.20% 69.41% 69.60% 67.65% 74.00% 76.42%
	Web	26.92% 29.74% 40.00% 47.82% 31.79% 31.66%

obtained is that our graph convolution lters are non-oriented because edge attributes are ignored. In the contrary, MoNet loss seems lower on irregular grids. This is possibly due to the fact that the model is less tted, therefore less prone to overtting when used on new data. Also, the RAG representation is likely to inuence the results. A particular concern on graph convolution operators is sensitivity to domain changes, i.e. capacity to identify similarities on irregular graphs (Experiment 5). Both graph convolution tested show little performance loss between regular (grids) and irregular (75 superpixels RAG) results.

Table 7 :

 7 Recognition rates for dierent neighbourhood sizes on MNIST reduced

	2 class	Representation	1 hop	2 hops
			Valid	Test	Valid	Test
		1 4 grid 75 superpix-	99.02% 97.55% 98.04% 96.47% 97.55% 93.74% 96.82% 93.62%
		els		

Table 8 :

 8 Epoch durations on MNIST 2class (Models use dierent implementations/hardware: CNN is Keras on GPU, MoNet is Theano on GPU and Ours is Keras on CPU)

	Representation CNN	MoNet	Ours
	1 4 grid 75 superpix-	1s NA	1s 1s	17min 29s 2min 42s
	els			

applications of this lter on both original and rotated examples. This last gure suggests rotation invariance.

Acknowledgments

This work was supported by a research grant from the Région Centre-Val de Loire, France.